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Abstract: In this study, we construct two explicit finite difference methods (EFDMs)
for nonlinear wave equation with delay. The first EFDM is developed by modifying the
standard second-order EFDM used to solve linear second-order wave equations, of which stable
requirement is accepted. The second EFDM is devised for nonlinear wave equation with delay
by extending the famous Du Fort-Frankel scheme initially applied to solve linear parabolic
equation. The error estimations of these two EFDMs are given by applying the discrete energy
methods. Besides, Richardson extrapolation methods (REMs), which are used along with them,
are established to improve the convergent rates of the numerical solutions. Finally, numerical
results confirm the accuracies of the algorithms and the correctness of theoretical findings.
There are few studies on numerical solutions of wave equations with delay by Du Fort-Frankel-
type scheme. Therefore, a main contribution of this study is that Du Fort-Frankel scheme
and a corresponding new REM are constructed to solve nonlinear wave equation with delay,
efficiently.

Keywords: Explicit finite difference methods; Du Fort-Frankel scheme; richardson
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1. Introduction

Let Ω = [b1, b2] ×[d1, d2], where b1, b2, d1 and d2 are constant numbers and belong to R.
Then we denote Ω = (b1, b2)× (d1, d2) ⊂ R2 and x = (x, y). In this study, we are concerned with
the numerical solutions of the following nonlinear wave equations with time delay [1–8]

∂2u
∂t2 − a2(

∂2u
∂x2 +

∂2u
∂y2 ) = f (u(x, t), u(x, t − s), x, t), (x, t) ∈ Ω × [0,T ], (1.1a)

u(x, t) = ϕ(x, t), (x, t) ∈ Ω × [−s, 0], (1.1b)
u(x, t) = ψ(x, t), (x, t) ∈ ∂Ω × [0,T ] (1.1c)
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by devising efficient numerical methods. Here, s > 0 is a constant delay, x and y represent
spatial variables in x- and y-directions, respectively, and t denotes temporal variable. Denote
(x, y) by x for brevity. The exact solution to the problem (1.1a)–(1.1c) is denoted by u(x, t).
Furthermore, we assume that f (u(x, t), u(x, t − s), x, t), ϕ(x, t) and φ(x, t) are sufficiently smooth
to make the regularity of the exact solutions satisfied, and our algorithms achieve claimed
accuracies.

Delayed partial differential equations (DPDEs) are extensively utilized to simulate many
natural, social and engineering phenomena such as population ecology, cell biology and control
theory [9, 10]. For example, the following nonlinear delayed reaction-diffusion equations

ut − uxx = f (u(x, t), u(x, t − s), x, t), (x, t) ∈ Ω × [0,T ], (1.2a)
u(x, t) = ϕ(x, t), (x, t) ∈ Ω × [−s, 0], (1.2b)
u(x, t) = ψ(x, t), (x, t) ∈ ∂Ω × [0,T ], (1.2c)

is used to describe many practical problems. Also, in Eqs (1.2a)–(1.2c), s > 0 is a time delay,
u(x, t) denotes the exact solution to the IBVPs (1.2a)–(1.2c), and x and t represent spatial and
temporal variables, respectively. As

f (u(x, t), u(x, t − s), x, t) = −αu(x, t) −
βθdu(x, t)
θd + ud(x, t)

+
2βθdu(x, t − s) exp(−γs)

θd + ud(x, t − s)
,

Eq (1.2a) is referred to as Hematopoiesis model, and applied to describe the dynamics of blood
cell production (cf. [11–13]). Denote the density of mature stem cells by u(x, t) in blood
circulation. The time delay between the production of immature stem cells in the bone marrow
and their maturation for release in the circulating blood stream is represented by s ≥ 0.
Parameters α, β, θ, γ and d ∈ (1,∞) are positives constants. Besides, as

f (u(x, t), u(x, t − s), x, t) = −νu(x, t) + ϱu(x, t − s) exp(−ξu(x, t − s)),

Eq (1.2a) is known as diffusive Nicholson’s blowflies equation (cf. [14–16]). Here, u(x, t), ϱ,
1/ξ, ν and s denote the size of the population at time t, represents maximum per capita daily
egg production rate, the size at which the population reproduces at its maximum rate, the per
capita daily adult death rate and the generation time, respectively. Finally, as

f (u(x, t), u(x, t − s), x, t) = u(x, t)[1 − u(x, t − s)],

Eq (1.2a) is well-known Hutchinson equation. It is proposed by American biologist
Hutchinson in 1948 (cf. [17–19]). Here, u(x, t) denotes the current population density of
mammals. For much more detailed mathematical models with delays, readers are referred
to [9, 10]. Hence, it is important and necessary to comprehensively research this kinds of
equations from the theoretical point of view and from numerical analysis because they possess
strong applied background. In these three examples, u(x, t) should be more than zero according
to its meaning.

Theoretical studies on the exact solutions of the DPDEs, such as the unique existence,
asymptotic behavior and blow up, have been attracting a lot of attention. Considerably
theoretical findings can be found in [9, 10] and the related references. However, for DPDEs
with arbitrary initial-boundary conditions, it is difficult to obtain the exact solutions of them.
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Thus, it is of great significance to explore high-performance numerical algorithms used to
solve them.

In the past two decades, there have been great advance in numerical researches for delayed
parabolic equations (DPEs). For example, a FDM combined with domain decomposion
technique was derived for solving one-dimensional (1D) nonlinear delayed DPEs in [20]. It is
second-order accurate in both time and space. To improve spatial accuracy, a compact FDM,
which is second-order and fourth-order accurate in time and space, respectively, was developed
for 1D and two-dimensional (2D) DPEs in [21]. In [22], it is shown that the use of fourth-order
compact FDM to the spatial discretization leads to a reduction of the asymptotic stability
region of the original DPEs. Recently, a class of θ-schemes combined with Lagrange
interpolation has been suggested for nonlinear parabolic equations with variable delays in [23].
A Crank-Nicolson alternating directional implicit (ADI) FDM [24], which is second-order
accurate in both time and spaces, was first developed for 2D DPEs in [24]. A Crank-Nicolson
ADI compact FDM, which is second-order and fourth-order accurate in time and spaces,
respectively, was developed in [25]. By using second-order backward differentiation formula
(BDF2) to discrete temporal derivatives, a multistep ADI compact FDM, which is
second-order and fourth-order accurate in time and spaces, respectively, was developed for 2D
nonlinear delayed parabolic equations with constant coefficients in [26]. Similarly, two
multistep ADI compact FDMs, which are second-order and fourth-order accurate in time and
spaces, respectively, were developed for 2D nonlinear delayed parabolic equations with
different variable coefficients in [27] and [28], respectively. Other efficient numerical methods
including locally discontinuous Galerkin method [29], waveform relaxation methods
combined with spectral collocation methods [30] and finite volume element method [31] were
developed for solving 1D parabolic equations with constant delays. Furthermore, a box
scheme with second-order temporal and spatial accuracies was derived for delayed
convection-diffusion equations with Riemannian boundary conditions in [32]. A compact
FDM, which is second-order and fourth-order accurate in time and space, respectively, was
developed for delayed convection-diffusion equations in [33]. Moreover, Legendre spectral
Galerkin method was also established for solving 2D convection-diffusion equations with
delays in [34]. Similarly, FDMs [35, 36], multi-domain Legendre spectral collocation
method [37] and Galerkin methods [38] were constructed for the neutral DPEs. More recently,
in [39], a compact difference method with second-order temporal accuracy and fourth-order
spatial accuracy, which was used along with a Richardson extrapolation method (REM) to
obtain fourth-order temporally and spatially accurate solutions, was devised for Sobolev
equations with constant delay. A adaptive FDM based on Bakhvalov mesh has been
constructed for a singularly perturbed Sobolev equations with constant delay in [40]. An
exponentially-fitted difference scheme on a uniform mesh was designed for a singularly
perturbed Sobolev equations with constant delay in [41].

Also, much attention has been paid on the theoretical studies of the delayed wave equations.
A number of theoretical results, such as the well posedness, stability, long time behavior and
existence of the exact solutions, can be found in [1–5]. Moreover, separation of variables and
Lie group method were applied to find the exact solutions of them in [6,7] and [8], respectively.
In contrast, there have been only a few numerical studies on nonlinear wave equations with
delays. A three-level compact FDM, which is second-order and fourth-order accurate in time
and space, respectively, has been derived for 1D delayed wave equation in [42]. Subsequently,
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a three-level ADI compact FDM, which is also second-order and fourth-order accurate in time
and spaces, respectively, has been derived for 2D delayed wave equation in [43]. To promote
the numerical studies for delay wave equations, two explicit finite difference methods (EFDMs)
and corresponding REMs are designed to solve the delayed wave equations.

As we know, the stable requirement of the standard EFDM for linear wave equation is
accepted. Optimally convergent solutions can be obtained as long as spatial and temporal
meshsizes are reasonably chosen in accordance with the stable requirement. Besides, Du
Fort-Frankel scheme proposed by Du Fort and Frankel for 1D linear parabolic equations with
periodic boundary conditions is unconditionally Riemann stable, and fast convergent as
consistent condition is satisfied (cf. [44]). However, there has been no numerical studies for
nonlinear wave equation with delays by Du Fort-Frankel-type schemes. In this paper, inspiring
by these two types of EFDMs, two EFDMs, which can be used along with REMs to get
high-order accurate numerical solutions of nonlinear wave equation with delay, have been
designed. By using the discrete energy methods, error estimations are deduced, rigorously.
There are some advantages of our algorithms listed as follows. (1) The algorithms are both
very easy to be implemented because they are explicit schemes. (2) The explicit methods
combined with REMs possess low computational burden because of explicitness and
high-order accuracy. (3) They are easily generalized to multi-dimensional problems with
various kinds of delays, such as multiple delays, variable delays and distributed delays. What’s
more, a main contribution of this study is that Du Fort-Frankel scheme and a new REM are
constructed for nonlinear wave equation with delay. They possess good stability, high-order
accuracy and low computational burden.

The basic organization of the article is as follows. Partition and notations are given in Section
2. The construction and theoretical analyses of the the first EFDM and corresponding REM are
given in Section 3. Section 4 is devoted to the establishment and theoretical analyses of the
the second EFDM and corresponding REM. The extensions of the proposed methods to wave
equation with other delays are discussed in Section 5. Section 6 concentrates on numerical
experiments. A conclusion is summarized in Section 7.

2. Partition and Notations

To begin with, we divide the spatial domain Ω = [b1, b2] ×[d1, d2] ⊂ R2, where b1, b2, d1 and
d2 are constant numbers. Let hx = (b2 − b1)/m1, hy = (d2 − d1)/m2, (m1,m2 ∈ Z+) be spatial
meshsizes in x- and y-directions, respectively.

Let T and s be positive constants. Then the temporal domain and delay are denoted by [0,T ]
and s, respectively. As [20–23], the restricted grid with meshsize τ (τ = s/n1 = T/n) (n1, n ∈
Z+) is used. If the restricted grid is not used, Lagrange interpolation formula will be applied to
approximate the delay term u(x, t − s). The use of Lagrange interpolation formula brings about
computational complexity and the failure of improving temporal accuracy by REMs. Thus, for
constant time delays, we choose constrained timestep.

By denoting tk = kτ, h = max {hx, hy}, xi = b1 + ihx, y j = d1 + jhy and (xi, y j) = xi, j, the
domain Ω × [0,T ] is covered by Ωhτ = Ω̄h ×Ωτ, where

Ω̄h = {xi, j | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2}, Ωτ = {tk | −n1 ≤ k ≤ n}.
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Besides, we introduce

Ωh = {xi, j | 1 ≤ i ≤ m1 − 1, 1 ≤ j ≤ m2 − 1}, Γh = Ω̄h\Ωh.

On Ωhτ, further define

S h = {U |U = {Ui, j | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2}},

S 0
h = {U | U = {Ui, j | 0 ≤ i ≤ m1, 0 ≤ j ≤ m2} and when xi, j ∈ Γh,Ui, j = 0}.

Then, on Ωh ×Ωτ, we further introduce the following difference notations

δ2
t Uk

i, j =
Uk+1

i, j − 2Uk
i, j + Uk−1

i, j

τ2 , δt̂Uk
i, j =

Uk+1
i, j − Uk−1

i, j

2τ
, δtU

k− 1
2

i, j =
Uk

i, j − Uk−1
i, j

τ
,

δ2
xU

k
i, j =

Uk
i+1, j − 2Uk

i, j + Uk
i−1, j

h2
x

, δ2
yUk

i, j =
Uk

i, j+1 − 2Uk
i, j + Uk

i, j−1

h2
y

,

δxUk
i− 1

2 , j
=

Uk
i, j − Uk

i−1, j

hx
, δyUk

i, j− 1
2
=

Uk
i, j − Uk

i, j−1

hy
, ∆hUi, j = (δ2

x + δ
2
y)Ui, j.

Finally, ∀ U, V ∈ S 0
h, we define the norms as follows

⟨U,V⟩ = hxhy

m1−1∑
i=1

m2−1∑
j=1

Ui, jVi, j, ⟨U,V⟩1,x = hxhy

m1∑
i=1

m2−1∑
j=1

δxUi− 1
2 , j
δxVi− 1

2 , j
,

⟨U,V⟩1,y = hxhy

m1−1∑
i=1

m2∑
j=1
δyUi, j− 1

2
δyVi, j− 1

2
, ∥U∥ =

√
⟨U,U⟩, ∥U∥∞ = max

i, j∈Ωh
|Ui, j|,

∥δxU∥ =
√
⟨U,U⟩1,x, ∥δyU∥ =

√
⟨U,U⟩1,y, |U |1 =

√
∥δxU∥2 + ∥δyU∥2,

∥U∥1 =
√
∥U∥2 + |U |21.

3. The construction and analysis of the first EFDM

3.1. The construction of the first EFDM

Define grid functions uk
i, j = u(xi, j, tk), xi, j ∈ Ωh, −n1 ≤ k ≤ n. The approximation of uk

i, j is
denoted by Uk

i, j.
Applying second-order centered difference formulas to approximate temporal and spatial

derivatives at point (xi, j, tk) yields that

δ2
t uk

i, j − a2(δ2
xu

k
i, j + δ

2
yuk

i, j) = f (uk
i, j, u

k−n1
i, j , xi, j, tk) + (R1)k

i, j,

xi, j ∈ Ω, 0 ≤ k ≤ n,
(3.1)

where

(R1)k
i, j =

τ2

12
∂4u
∂t4 (xi, j, tk) −

a2h2
x

12
∂4u
∂x4 (xi, j, tk) −

a2h2
y

12
∂4u
∂y4 (xi, j, tk)

+O(τ4 + h4
x + h4

y).
(3.2)

Omitting the small term (R1)k
i, j, and then replacing uk

i, j with Uk
i, j in Eq (3.1), we get the first

EFDM as follows

δ2
t Uk

i, j − a2(δ2
xU

k
i, j + δ

2
yUk

i, j) = f (Uk
i, j,U

k−n1
i, j , xi, j, tk), xi, j ∈ Ωh, 0 ≤ k ≤ n, (3.3a)

Uk
i, j = ϕ(xi, j, tk), xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (3.3b)

Uk
i, j = ψ(xi, j, tk), xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (3.3c)

Obviously, the EFDM (3.3a)–(3.3c) is uniquely solvable because it is an explicit scheme.
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3.2. The convergence analysis of the first EFDM

Besides, we give an assumption for f (µ, υ, x, t) as follow.
Assumption A. Let u(x, t) be the exact solution to the problem (1.2a)–(1.2c). Then, there

are positive constants c1 and ε0, and ∀ εl (l = 1, 2) satisfying |εl| < ε0, (l = 1, 2), it holds that

| f (u(x, t) + ε1, u(x, t − s) + ε2, x, t) − f (u(x, t), u(x, t − s), x, t) |≤ c1(ε1 + ε2).

Moreover, denote ek
i, j = uk

i, j −Uk
i, j, 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, −n1 ≤ k ≤ n and h = max {hx, hy},

and give several lemmas used later.
Lemma 3.1 [45] Let V ∈ S 0

h, we have

[
6

(b2 − b1)2 +
6

(d2 − d1)2 ]∥V∥2 ≤ |V |21, |V |21 ≤ ∥V∥
2
1 ≤ [1 +

1
6

(b2−b1)2 +
6

(d2−d1)2

]|V |21,

h2
x∥δxV∥2 ≤ 4∥V∥2, h2

y∥δyV∥2 ≤ 4∥V∥2.

Lemma 3.2 [26] Let both A and B be positive constants, {Fk|k ≥ 0} be a non-negative

sequence and satisfy the following inequality Fk+1 ≤ A + Bτ
K∑

k=0
Fk. Then we can obtain

max
0≤k≤K+1

Fk ≤ A exp(B(K + 1)τ). Moreover, if Fk+1 ≤ A + Bτ
K+1∑
k=0

Fk, we have

max
0≤k≤K+1

Fk ≤ A exp(2B(K + 1)τ) as long as τ is sufficiently small such that Bτ ≤ 1
2 .

Lemma 3.3 [46] Let rχ = (|a|τ)/hχ (χ = x or y), Ek = ||δtek+ 1
2 ||2+a2⟨ek, ek+1⟩1,x+a2⟨ek, ek+1⟩1,y,

c2 = 1 − r2
x − r2

y . Then when r2
x + r2

y < 1, the following inequalities

∥δtek+ 1
2 ∥2 ≤

Ek

c2
, |ek+ 1

2 |21 ≤
Ek

a2 , (3.4a)

a2|ek+1|21 ≤
2
c2

Ek, (3.4b)

∥ek∥2 ≤
1

6
(b2−b1)2 +

6
(d2−d1)2

|ek|21 ≤
(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
2

c2a2 Ek−1 (3.4c)

hold.
Proof. By using the equality αβ = [(α + β)2 − (α − β)2]/4 and simple computations, we have

Ek = ∥δtek+ 1
2 ∥2 + a2|ek+ 1

2 |21 − a2[||δxek+ 1
2 ||2 − ⟨ek, ek+1⟩1,x] − a2[∥δyek+ 1

2 ∥2 − ⟨ek, ek+1⟩1,y]

= ∥δtek+ 1
2 ∥2 + a2|ek+ 1

2 |21 −
a2

4
|ek+1 − ek|21

= c2∥δtek+ 1
2 ∥2 + a2|ek+ 1

2 |21 + r2
x∥δtek+ 1

2 ∥2 −
r2

x

4
hxhy

m1−1∑
i=0

m2−1∑
j=1

(δte
k+ 1

2
i+1, j − δte

k+ 1
2

i, j )2

+r2
y∥δtek+ 1

2 ∥2 −
r2

y

4
hxhy

m1−1∑
i=1

m2−1∑
j=0

(δte
k+ 1

2
i, j+1 − δte

k+ 1
2

i, j )2

≥ c2∥δtek+ 1
2 ∥2 + a2|ek+ 1

2 |21,

which is used along with r2
x + r2

y < 1 to yield Eq (3.4a).
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According to δxek+1
i+ 1

2 , j
= τ

2δxδte
k+ 1

2

i+ 1
2 , j
+ δxe

k+ 1
2

i+ 1
2 , j

, by simple computation, it is easy to find that

(δxek+1
i+ 1

2 , j
)2 = δxe

k+ 1
2

i+ 1
2 , j
δxek+1

i+ 1
2 , j
+

rx

2|a|
(δte

k+ 1
2

i+1, j − δte
k+ 1

2
i, j )δxek+1

i+ 1
2 , j

≤

(δxe
k+ 1

2

i+ 1
2 , j

)2 + (δxek+1
i+ 1

2 , j
)2

2
+

[ rx
|a| (δte

k+ 1
2

i+1, j − δte
k+ 1

2
i, j )]2 + (δxek+1

i+ 1
2 , j

)2

4

≤
3
4

(δxek+1
i+ 1

2 , j
)2 +

1
2

(δxe
k+ 1

2

i+ 1
2 , j

)2 +
r2

x

4a2 (δte
k+ 1

2
i+1, j − δte

k+ 1
2

i, j )2.

(3.5)

Multiplying a2hxhy to both sides of Eq (3.5) and summing i from 1 to m1 − 1 and j from 1 to
m2 − 1, we obtain

a2∥δxek+1∥2 ≤
3a2

4
∥δxek+1∥2 +

a2

2
∥δxek+ 1

2 ∥2 +
r2

x

2
∥δtek+ 1

2 ∥2,

which shows that

a2∥δxek+1∥2 ≤ 2a2∥δxek+ 1
2 ∥2 + 2r2

x∥δtek+ 1
2 ∥2. (3.6)

Also, noting δyek+1
i, j+ 1

2
= τ

2δyδte
k+ 1

2

i, j+ 1
2
+ δye

k+ 1
2

i, j+ 1
2

and utilizing the analytical methods similar to
Eq (3.6) get that

a2∥δyek+1∥2 ≤ 2a2∥δyek+ 1
2 ∥2 + 2r2

y∥δtek+ 1
2 ∥2. (3.7)

Adding Eq (3.6) to Eq (3.7) and using Eq (3.4a) lead to

a2|ek+1|21 ≤ 2Ek +
2(r2

x + r2
y )

c2
Ek =

2
c2

Ek,

which is used along with Lemma 3.1 to find that

∥ek∥2 ≤
1

6
(b2−b1)2 +

6
(d2−d1)2

|ek|21 ≤
(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
2

c2a2 Ek−1. (3.8)

The proof is finished. □
Let exact solution u(x, t) ∈ C4,4(Ω× [−s,T ]). Then there exists positive constant c3 such that

|(R1)k
i, j| ≤ c3(τ2 + h2

x + h2
y). (3.9)

Theorem 3.1 Let u(x, t) ∈ C4,4(Ω × [−s,T ]) be the exact solution of (1.2a)–(1.2c), and Uk
i, j be

the solution of the scheme (3.3a)–(3.3c) at the time level k. Assuming that there exist positive
constants µ, σ and ϵ, such that µh ≤ hx ≤ h, µh ≤ hy ≤ h and τ ≤ σh

1
2+ϵ , we can derive that

∥ek∥1 ≤ c4(τ2 + h2
x + h2

y) (3.10)

under the conditions that

r2
x + r2

y < 1, h ≤ min ((
ε0µ

2σ2c4
)

1
2ϵ ,
ε0
√
µ

4c4
), τ{4 +

8c2
3(b2 − b1)2(d2 − d1)2

3c2
2a2[(b2 − b1)2 + (d2 − d1)2]

} ≤ 1,
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and Assumption A are valid. Here,

c4 =

√
(1 +

(b2 − b1)2(d2 − d1)2

6[(d2 − d1)2 + (b2 − b1)2]
)

2c5

a2c2
,

c5 =
Tc2

3(b2 − b1)(d2 − d1)
c2

exp({4 +
8c2

1(b2 − b1)2(d2 − d1)2

3c2
2a2[(b2 − b1)2 + (d2 − d1)2]

}T ).

Proof. For convenience, denote f (uk
i, j) = f (uk

i, j, u
k−n1
i, j , xi, y j, tk), f (Uk

i, j) = f (Uk
i, j,U

k−n1
i, j , xi, y j, tk)

without confusion. Subtracting Eq (3.3a) from Eq (3.1), the error equations are derived as
follows

δ2
t ek

i, j − a2(δ2
xe

k
i, j + δ

2
yek

i, j) = f (uk
i, j) − f (Uk

i, j) + (R1)k
i, j, xi, j ∈ Ω̄h, 0 ≤ k ≤ n, (3.11a)

ek
i, j = 0, xi, j ∈ Ω̄h, − n1 ≤ k ≤ 0, (3.11b)

ek
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (3.11c)

As ek
i, j = 0 (−n1 ≤ k ≤ 0), it is obvious that Eq (3.10) holds for −n1 ≤ k ≤ 0. Assuming that

Eq (3.10) is valid for −n1 ≤ k ≤ l , we will prove that it is also true for k = l + 1.
As µh ≤ hx ≤ h and µh ≤ hy ≤ h, it is easy to find that

1
√

hx
≤

1√
µh
,

1√
hy
≤

1√
µh
. (3.12)

Thus, using τ ≤ σh
1
2+ϵ and Eq (3.12), we obtain

τ2

√
hx
√

hy
+

h
3
2
x√
hy
+

h
3
2
y
√

hx
≤

σ2h1+2ϵ√
µh
√
µh
+

h
3
2√
µh
+

h
3
2√
µh
≤
σ2

µ
h2ϵ +

2h
√
µ
. (3.13)

Besides, applying h ≤ min{(( ε0µ

2σ2c4
)

1
2ϵ , ε0

√
µ

4c4
)}, it is easy to find that

σ2

µ
h2ϵ ≤

ε0

2c4
,

σ2

µ
h2ϵ ≤

ε0

2c4
. (3.14)

As a result, using the induction hypothesis and Eqs (3.12)–(3.14) yields that

|ek
i, j| ≤ h−

1
2

x h−
1
2

y ∥ek∥ ≤ h−
1
2

x h−
1
2

y ∥ek∥1 ≤ h−
1
2

x h−
1
2

y c4

(
τ2 + h2

x + h2
y

)
= c4

( τ2

√
hx
√

hy
+

h
3
2
x√
hy
+

h
3
2
y
√

hx

)
≤ c4

( τ2

µh
+

h
3
2√
µh
+

h
3
2√
µh

)
≤ c4(

σ2h2ϵ

µ
+

2h
√
µ

) < ε0, −n1 ≤ k ≤ l,

which follows from Assumption A that

| f (uk
i, j) − f (Uk

i, j)| ≤ c1(|ek
i, j| + |e

k−n1
i, j |), −n1 ≤ k ≤ l. (3.15)

Taking inner product with Eq (3.11a) by 2δt̂ek gives that

⟨δ2
t ek, 2δt̂ek⟩ − a2⟨δ2

xe
k, 2δt̂ek⟩ − a2⟨δ2

yek, 2δt̂ek⟩

= ⟨ f (uk) − f (Uk), 2δt̂ek⟩ + ⟨(R1)k, 2δt̂ek⟩.
(3.16)
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In what follows, we estimate each terms of Eq (3.16) step by step. Using the equality α2−β2

= (α − β)(α + β) gives that

⟨δ2
t ek, 2δt̂ek⟩ =

1
τ

(∥δtek+ 1
2 ∥2 − ∥δtek− 1

2 ∥2). (3.17)

Applying the discrete Green formula yields that

−a2⟨δ2
xe

k, 2δt̂ek⟩ =
a2

τ
hxhy

m1−1∑
i=0

m2∑
j=0

(δxek
i+ 1

2 , j
)(δxek+1

i+ 1
2 , j
− δxek−1

i+ 1
2 , j

)

=
a2

τ

[
⟨ek, ek+1⟩1,x − ⟨ek, ek−1⟩1,x

]
.

(3.18)

Similar to Eq (3.18), we also arrive at

−a2⟨δ2
yek, 2δt̂ek⟩ =

a2

τ

[
⟨ek, ek+1⟩1,y − ⟨ek, ek−1⟩1,y

]
. (3.19)

Next, we estimate each terms at the right of Eq (3.16). Applying Eq (3.15), the inequalities
2αβ ≤ 1

ε
α2 + εβ2 and (α + β)2 ≤ 2(α2 + β2), and Lemma 3.3, we have

⟨ f (Uk) − f (uk), 2δt̂ek⟩ ≤
2c2

1

c2
(∥ek∥2 + ∥ek−n1∥2) +

c2

2
(∥δtek+ 1

2 ∥2 + ∥δtek− 1
2 ∥2)

≤
2c2

1

c2
(∥ek||2 + ∥ek−n1∥2) +

1
2

(Ek + Ek−1).
(3.20)

Using the analytical methods similar to Eq (3.20) yields that

⟨(R1)k, 2δt̂ek⟩ ≤
c2

3(b2 − b1)(d2 − d1)
c2

(τ2 + h2
x + h2

y)2 +
1
2

(Ek + Ek−1). (3.21)

Substituting Eqs (3.17)–(3.21) into Eq (3.16) infers that

Ek − Ek−1 ≤ τ(Ek + Ek−1) +
2c2

1τ

c2
(||ek||2 + ||ek−n1 ||2)

+
c2

2(b2 − b1)(d2 − d1)τ
c2

(τ2 + h2
x + h2

y)2. (3.22)

Using Eq (3.4c) in Eq (3.22), replacing k with γ and summing γ from 0 to k, we have

Ek ≤ τ

k∑
γ=1

Eγ + τ

k−1∑
γ=0

Eγ + τ(
2c1

c2a
)2

k−1∑
γ=0

(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
Eγ+

τ(
2c1

c2a
)2

k−n1−1∑
γ=−n1

(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
Eγ + τ

k∑
γ=0

c2
3(b2 − b1)(d2 − d1)

c2
(τ2 + h2

x + h2
y)2

≤ τ{2 +
8c2

1

c2
2a2

(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
}

k∑
γ=0

Eγ +
c2

3(b2 − b1)(d2 − d1)kτ
c2

(τ2 + h2
x + h2

y)2

≤ τ{2 +
4c2

1(b2 − b1)2(d2 − d1)2

3c2
2a2[(b2 − b1)2 + (d2 − d1)2]

}

k∑
γ=0

Eγ +
c2

3(b2 − b1)(d2 − d1)T
c2

(τ2 + h2
x + h2

y)2.

(3.23)
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Hence, applying Lemma 3.2 to Eq (3.23), it follows from τ{4 + 8c2
3(b2−b1)2(d2−d1)2

3c2
2a2[(b2−b1)2+(d2−d1)2] } ≤ 1 that

Ek ≤ c5(τ2 + h2
x + h2

y)2, 0 ≤ k ≤ l. (3.24)

In Eq (3.24), setting k = l, applying Lemma 3.1, Eqs (3.4b)–(3.4c) in Lemma 3.3, we can
conclude that Eq (3.10) holds for k = l + 1.

Thus, by mathematical induction, this theorem is valid. □

3.3. The improvement of the computational efficiency

This section is suggested for the improvement of the computational efficiency of the EFDM
in Eqs (3.3a)–(3.3c) by using REMs. As this EFDM (3.3a)–(3.3c) is conditionally stable,
temporal meshsize is often taken smaller than spatial meshsizes. Thus, a REM in spaces is
devised to improve the computational efficiency. In this section, C is a positive constant and
independent of grid parameters τ, hx and hy.
Theorem 3.2 Suppose that u(x, t) ∈ C6,4(Ω× [−s,T ]) is the exact solution of Eqs (1.2a)–(1.2c),
and Uk

i, j(τ, hx, hy) is the numerical solution of the 1st EFDM (3.3a)–(3.3c) at (xi, j, tk) using
meshsizes hx, hy and τ. Define a REM as follows

(UE)k
i, j =


4
3

Uk
2i,2 j(τ,

hx

2
,

hy

2
) −

1
3

Uk
i, j(τ, hx, hy), xi, j ∈ Ω̄h, 1 ≤ k ≤ N,

ψ(xi, j, tk), xi, j ∈ Ω̄h, −m ≤ k ≤ 0.
(3.25)

Then, as 4a2[( τ
hx

)2 + ( τhy
)2] < 1, and grid parameters τ, hx and hy are small enough, we obtain

∥uk − (UE)k∥1 ≤ C(τ2 + h4
x + h4

y). (3.26)

Proof. Let r1(x, t) = a2

12
∂4u
∂x4 (x, t) and r2(x, t) = a2

12
∂4u
∂y4 (x, t). Then a combination of Taylor

expansion formula with (3.2) gives that

(R1)k
i, j =

τ2

12
∂4u
∂t4 (xi, j, tk) − h2

xr1(xi, j, tk) − h2
yr2(xi, j, tk) + O(τ4 + h4

x + h4
y). (3.27)

By Eq (3.27), we can rewrite the error equations Eqs (3.11a)–(3.11c) as

δ2
t ek

i, j − a2∆hek
i, j = f (uk

i, j, u
k−n1
i, j , xi, j, tk) − f (Uk

i, j,U
k−n1
i, j , xi, j, tk) +

τ2

12
∂4u
∂t4 (xi, j, tk)

−h2
x(r1)k

i, j − h2
y(r2)k

i, j + O(τ4 + h4
x + h4

y), xi, j ∈ Ω̄h, 0 ≤ k ≤ n; (3.28a)

ek
i, j = 0, xi, j ∈ Ω̄h, −n1 ≤ k ≤ 0; (3.28b)

ek
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (3.28c)

Furthermore, two auxiliary problems are introduced to derive the asymptotic expansion of
the numerical solutions. Namely, let v1(x, t) and v2(x, t) be the exact solutions of the following
initial-boundary-value problems (IBVPs)

(v1)tt − a2∆v1 = r1(x, t) + fµ(u(x, t), u(x, t − s), x, t)v1(x, t)
+ fυ(u(x, t), u(x, t − s), x, t)v1(x, t − s), (x, t) ∈ Ω × [0,T ]; (3.29a)

v1(x, t) = 0, (x, t) ∈ Ω × [−s, 0]; (3.29b)
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v1(x, t) = 0, (v1)t(x, t) = 0, x ∈ ∂Ω, t ∈ ×[0,T ]; (3.29c)

(v2)tt − a2∆v2 = r2(x, t) + fµ(u(x, t), u(x, t − s), x, t)v2(x, t)
+ fυ(u(x, t), u(x, t − s), x, t)v2(x, t − s) (x, t) ∈ Ω × [0,T ]; (3.30a)

v2(x, t) = 0, (x, t) ∈ Ω × [−s, 0]; (3.30b)
v2(x, t) = 0, (v2)t(x, t) = 0, x ∈ ∂Ω, t ∈ ×[0,T ], (3.30c)

respectively.
Denote (v1)k

i, j = v1(xi, j, tk) and (v2)k
i, j = v2(xi, j, tk). Applying the difference methods similar

to those utilized in Eqs (3.3a)–(3.3c) to discrete Eqs (3.29a)–(3.29c) and Eqs (3.30a)–(3.30c)
yields that

δ2
t (v1)k

i, j − a2∆h(v1)k
i, j = r1(xi, j, tk) + fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v1)k

i, j

+ fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v1)k−n1

i, j + O(τ2 + h2
x + h2

y), xi, j ∈ Ω̄h, 0 ≤ k ≤ n; (3.31a)

(v1)k
i, j = 0, xi, j ∈ Ω̄h, −n1 ≤ k ≤ 0; (3.31b)

(v1)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (3.31c)

δ2
t (v2)k

i, j − a2∆h(v2)k
i, j = r2(xi, j, tk) + fµ(Uk

i, j,U
k−n1
i, j , xi, j, tk)(v2)k

i, j

+ fυ(Uk
i, j,U

k−n1
i, j , xi, j, tk)(v2)k−n1

i, j + O(τ2 + h2
x + h2

y), xi, j ∈ Ω̄h, 0 ≤ k ≤ n; (3.32a)

(v2)k
i, j = 0, xi, j ∈ Ω̄h, −n1 ≤ k ≤ 0; (3.32b)

(v2)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (3.32c)

respectively.
Denote pk

i, j = ek
i, j + h2

x(v1)k
i, j + h2

y(v2)k
i, j, 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, −n1 ≤ k ≤ n. Then,

multiplying Eqs (3.31a)–(3.31c) by h2
x and Eqs (3.32a)–(3.32c) by h2

y , respectively, and then
adding the obtained results to Eqs (3.28a)–(3.28c), we have

δ2
t pk

i, j − a2∆h pk
i, j = (H̃1)k

i, j + (R̃1)k
i, j, xi, j ∈ Ω̄h, 0 ≤ k ≤ n; (3.33a)

pk
i, j = 0, xi, j ∈ Ω̄h, − n1 ≤ k ≤ 0; (3.33b)

pk
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (3.33c)

where

(H̃1)k
i, j = f (uk

i, j + h2
x(v1)k

i, j + h2
y(v2)k

i, j, u
k−n1
i, j + h2

x(v1)k−n1
i, j + h2

y(v2)k−n1
i, j , xi, j, tk)

− f (Uk
i, j, u

k−n1
i, j , xi, j, tk),

and

(R̃1)k
i, j =

τ2

12
∂4u
∂t4 (xi, y j, tk) + O(τ4 + h4

x + h4
y). (3.34)

In Eq (3.33a), the following Taylor expansion formula

f (uk
i, j, u

k−n1
i, j , xi, j, tk) + h2

x

[
fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v1)k

i, j + fυ(uk
i, j,U

k−n1
i, j , xi, j, tk)(v1)k−n1

i, j

]
+h2

y

[
fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v2)k

i, j + fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v2)k−n1

i, j

]
= f (uk

i, j + h2
x(v1)k

i, j + h2
y(v2)k

i, j, u
k−n1
i, j + h2

x(v1)k−n1
i, j + h2

y(v2)k−n1
i, j , xi, j, tk)

+O(h4
x + h4

y + h2
xh

2
y)
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is used.
Then, as a2[( τ

hx
)2 + ( τhy

)2] < 1, using the same techniques as those proposed in the proof of
Theorem 3.1, we find that

∥pk∥1 ≤ C(τ2 + h4
x + h4

y), 0 ≤ k ≤ n, (3.35)

where, C is a positive constant number and independent of grid parameters. Namely,

∥uk − [Uk(τ, hx, hy) − h2
x(v1)k − h2

y(v2)k]∥1 ≤ C(τ2 + h4
x + h4

y), 0 ≤ k ≤ n. (3.36)

On the other hand, from Richardson extrapolation solutions

(UE)k
i, j =

4
3

Uk
2i,2 j(τ,

hx

2
,

hy

2
) −

1
3

Uk
i, j(τ, hx, hy), xi, j ∈ Ωh, 0 ≤ k ≤ n, (3.37)

it follows that

uk
i, j − (UE)k

i, j =
4
3

{
uk

i, j −
[
Uk

2i,2 j(τ,
hx

2
,

hy

2
) − (

hx

2
)2(v1)k

i, j − (
h2

y

2
)2(v2)k

i, j
]}

−
1
3

{
uk

i, j −
[
Uk

i, j(τ, hx, hy) − h2
x(v1)k

i, j − h2
y(v2)k

i, j
]}
. (3.38)

Using the triangle inequality to Eq (3.38) and noting Eq (3.36) yields that

∥uk − (UE)k∥1 ≤
4
3
∥uk − [Uk(τ,

hx

2
,

hy

2
) − (

hx

2
)2(v1)k − (

h2
y

2
)2(v2)k]∥1

+
1
3
∥uk − [Uk(τ, hx, hy) − h2

x(v1)k − h2
y(v2)k]∥1

≤
4C
3

[
τ2 + (

hx

2
)4 + (

hy

2
)4
]
+

C
3

(τ2 + h4
x + h4

y)

≤
5C
3

(τ2 + h4
x + h4

y), (3.39)

holds as long as 4a2[( τ
hx

)2 + ( τhy
)2] < 1. The proof is completed. □

Remark I Theorem 3.1 shows that the first EFDM (3.3a)–(3.3c) is conditionally convergent
with an order of O(τ2 + h2

x + h2
y) as r2

x + r2
y < 1. Besides, Theorem 4.1 shows that REM (3.25) is

also conditionally convergent with an order of O(τ2 + h2
4 + h4

y) as 4(r2
x + r2

y ) < 1 (see Eq (3.39)).
Besides, as hx = hy = h and τ = h2, Richardson extrapolation solutions have a convergent rate
of O(h4). In Section 6, to obtain numerical solutions with optimal convergent rates, we take
temporal and spatial grids according to these conditions.

4. The development and analysis of the second EFDM

In this section, the famous Du Fort-Frankel scheme is generalized to the numerical solutions
of delay nonlinear wave Eqs (1.2a)–(1.2c).

4.1. The establishment of the second EFDM

Using the following difference formulas

uxx(xi, j, tk) = δ2
xu

k
i, j −

τ2

h2
x
δ2

t uk
i, j +

h2
x

12
∂4u
∂x4 (xi, j, tk) +

τ2

h2
x

∂2u
∂t2 (xi, j, tk) + O(

τ4

h2
x
+ h4

x), (4.1a)
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uyy(xi, j, tk) = δ2
yuk

i, j −
τ2

h2
y
δ2

t uk
i, j +

h2
y

12
∂4u
∂y4 (xi, j, tk) +

τ2

h2
y

∂2u
∂t2 (xi, j, tk) + O(

τ4

h2
y
+ h4

y) (4.1b)

to approximate the spatial derivatives of Eqs (1.2a)–(1.2c) yields that

(1 + r2
x + r2

y )δ2
t uk

i, j − a2∆huk
i, j = f (uk

i, j, u
k−n1
i, j , xi, j, tk) + (R2)k

i, j,

xi, j ∈ Ωh, 0 ≤ k ≤ n,
(4.2)

where

(R2)k
i, j =

τ2

12
∂4u
∂t4 (xi, j, tk) −

a2h2
x

12
∂4u
∂x4 (xi, j, tk) −

a2h2
y

12
∂4u
∂y4 (xi, j, tk)

+a2(
τ2

h2
x
+
τ2

h2
y
)
∂2u
∂t2 (xi, j, tk) + O(τ4 + h4

x + h4
y +

τ4

h2
x
+
τ4

h2
y
).

(4.3)

Omitting the small term (R2)k
i, j and replacing uk

i, j by its approximation Uk
i, j in Eq (4.2), we get

the second EFDM as follows

(1 + r2
x + r2

y )δ2
t Uk

i, j − a2∆hUk
i, j = f (Uk

i, j,U
k−n1
i, j , xi, j, tk), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.4a)

Uk
i, j = ϕ(xi, j, tk), xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.4b)

Uk
i, j = ψ(xi, j, tk), xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (4.4c)

4.2. The convergence analysis of the second EFDM

This subsection is suggested for the convergence of the second EFDM (4.4a)–(4.4c).
Lemma 4.1 Let Gk = (1+ r2

x + r2
y )∥δtek+ 1

2 ∥2+a2⟨ek, ek+1⟩1,x+a2⟨ek, ek+1⟩1,y. Then the following
inequalities

∥δtek+ 1
2 ∥2 ≤ Gk, |ek+ 1

2 |21 ≤
Gk

a2 , (4.5a)

|ek+1|21 ≤
2(1 + r2

x + r2
y )

a2 Gk, (4.5b)

∥ek+1∥21 ≤
{
1 +

(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]

}2(1 + r2
x + r2

y )

a2 Gk (4.5c)

are valid.
Proof. Using Lemma 3.1, we obtain

r2
x∥δtek+ 1

2 ∥2 −
a2τ2

4
∥δxδtek+ 1

2 ∥2 = r2
x∥δtek+ 1

2 ∥2 −
a2τ2

4h2
x

h2
x∥δxδtek+ 1

2 ∥ ≥ 0, (4.6a)

r2
y∥δtek+ 1

2 ∥2 −
a2τ2

4
∥δyδtek+ 1

2 ∥2 = r2
y∥δtek+ 1

2 ∥2 −
a2τ2

4h2
y

h2
y∥δxδtek+ 1

2 ∥ ≥ 0. (4.6b)

Applying Eqs (4.6a),(4.6b) and the equality αβ = (α + β)2/4 −(α − β)2/4, we have that

Gk = (1 + r2
x + r2

y )∥δtek+ 1
2 ∥2 +

(
a2∥δxek+ 1

2 ∥2 −
a2τ2

4h2
x
∥δxδtek+ 1

2 ∥2
)

+
(
a2∥δyek+ 1

2 ∥2 −
a2τ2

4h2
y
∥δyδtek+ 1

2 ∥2
)

≥ ∥δtek+ 1
2 ∥2 + a2|ek+ 1

2 |21,
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which shows that Eq (4.5a) is valid.
Using the skills similar to those developed in Eqs (3.6),(3.7), Lemma 3.1 and Eq (4.5a) in

Lemma 4.1 gives

|ek+1|21 ≤ 2|ek+ 1
2 |21 +

2(r2
x + r2

y )

a2 ||δtek+ 1
2 ||2 ≤

2(1 + r2
x + r2

y )

a2 Gk, (4.7a)

∥ek+1∥2 ≤
(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]
|ek+1|21

≤
(b2 − b1)2(d2 − d1)2(1 + r2

x + r2
y )

3a2[(b2 − b1)2 + (d2 − d1)2]
Gk. (4.7b)

Making use of Eqs (4.7a),(4.7b) directly infers that

∥ek+1∥21 ≤
{
1 +

(b2 − b1)2(d2 − d1)2

6[(b2 − b1)2 + (d2 − d1)2]

}2(1 + r2
x + r2

y )

a2 Gk.

The proof is completed. □
Assuming u(x, t) ∈ C4,4(Ω × [−s,T ]), there exists positive constant c6 such that

|(R2)k
i, j| ≤ c6(τ2 + h2

x + h2
y +

τ2

h2
x
+
τ2

h2
y
). (4.8)

Theorem 4.1 Let u(x, t) ∈ C4,4(Ω × [−s,T ]) be exact solution of Eqs (1.2a)–(1.2c), Uk
i, j be the

solution of the scheme Eqs (4.4a)–(4.4c) at node (xi, j, tk). Assume that there are constants µ, σ
and ϵ such that µh ≤ hx ≤ h, µh ≤ hy ≤ h, τ ≤ σh

3
2+ϵ . It holds that

∥ek∥1 ≤ c7

(
τ2 + h2

x + h2
y +

τ2

h2
x
+
τ2

h2
y

)
(4.9)

under the conditions that

h ≤ min
{
(
µε0

3c7σ2 )
1

2(1+ϵ) ,

√
µε0

6c7
, (
µ3ε0

6c7σ2 )
1
2ϵ
}
, τ

{
4 +

4c2
1(b2 − b1)2(d2 − d1)2(1 + r2

x + r2
y )

3[(b2 − b1)2 + (d2 − d1)2]a2

}
≤ 1

and Assumption A hold. Here,

c7 =

√
(1 +

(b2 − b1)2(d2 − d1)2

6[(d2 − d1)2 + (b2 − b1)2]
)
2(1 + r2

x + r2
y )c8

a2 ,

c8 = Tc2
6(b2 − b1)(d2 − d1) exp

((
4 +

4c2
1(b2 − b1)2(d2 − d1)2(1 + r2

x + r2
y )

3[(b2 − b1)2 + (d2 − d1)2]a2

)
T
)
.

Proof. Also, let f (uk
i, j) = f (uk

i, j, u
k−n1
i, j , xi, j, tk), f (Uk

i, j) = f (Uk
i, j,U

k−n1
i, j , xi, j, tk) for convenience.

Subtracting Eq (4.4a) from Eq (4.2), the error equations are derived as follows

(1 + r2
x + r2

y )δ2
t ek

i, j − a2∆hek
i, j = f (uk

i, j) − f (Uk
i, j) + (R2)k

i, j, xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.10a)

ek
i, j = 0, xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.10b)

ek
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (4.10c)
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As ek
i, j = 0 (−n1 ≤ k ≤ 0), it is obvious that Eq (4.9) holds for −n1 ≤ k ≤ 0. Assuming that

Eq (4.9) is valid for −n1 ≤ k ≤ l, we will prove that it is also true for k = l + 1.
As µh ≤ hx ≤ h and µh ≤ hy ≤ h, it is easy to find that

1
√

hx
≤

1√
µh
,

1√
hy
≤

1√
µh
. (4.11)

Thus, using τ ≤ σh
3
2+ϵ and Eq (4.11), we obtain

( τ2

√
hx
√

hy
+

h
3
2
x√
hy
+

h
3
2
y
√

hx
+

τ2√
h5

x

√
hy

+
τ2

√
hx

√
h5

y

)
≤

σ2h3+2ϵ√
µh
√
µh
+

h
3
2√
µh
+

h
3
2√
µh
+

σ2h3+2ϵ√
(µh)5

√
µh
+

σ2h3+2ϵ√
µh
√

(µh)5

≤
σ2

µ
h2+2ϵ +

2h
√
µ
+

2σ2h2ϵ

µ3 .

(4.12)

Besides, applying h ≤ min (( µε0
3c7σ2 )

1
2(1+ϵ) ,

√
µε0

6c7
, ( µ3ε0

6c7σ2 )
1
2ϵ ), it is easy to find that

σ2

µ
h2(1+ϵ) ≤

ε0

3c7
,

2h
√
µ
≤

ε0

3c7
,

2σ2

µ3 h2ϵ ≤
ε0

3c7
. (4.13)

Thus, by applying the induction hypothesis, Eq (4.12) and Eq (4.13), we can deduce that

|ek
i, j| ≤ h−

1
2

x h−
1
2

y ∥ek∥ ≤ h−
1
2

x h−
1
2

y ∥ek∥1 ≤ h−
1
2

x h−
1
2

y c7(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
)

= c7

( τ2

√
hx
√

hy
+

h
3
2
x√
hy
+

h
3
2
y
√

hx
+

τ2√
h5

x

√
hy

+
τ2

√
hx

√
h5

y

)
≤ c7(

σ2h2+2ϵ

µ
+

2h
√
µ
+

2σ2h2ϵ

µ3 ) < ε0, −n1 ≤ k ≤ l.

(4.14)

Hence, applying Assumption A directly infers that

| f (Uk
i, j) − f (uk

i, j)| ≤ c1(|ek
i, j| + |e

k−n1
i, j |), −n1 ≤ k ≤ l. (4.15)

Acting the inner product with Eq (4.10a) by 2δt̂ek yields that

(1 + r2
x + r2

y )⟨δ2
t ek, 2δt̂ek⟩ − a2⟨δ2

xe
k, 2δt̂ek⟩ − a2⟨δ2

yek, 2δt̂ek⟩

= ⟨ f (uk) − f (Uk), 2δt̂ek⟩ + ⟨(R2)k, 2δt̂ek⟩.
(4.16)

Similar to the proof of the Theorem 3.1, and using Lemma 4.1, the formula at the left of
Eq (4.16) is estimated as follows

(1 + r2
x + r2

y )(δ2
t ek, 2δt̂ek) − a2(δ2

xe
k, 2δt̂ek) − a2(δ2

yek, 2δt̂ek)

=
1 + r2

x + r2
y

τ
(∥δtek+ 1

2 ∥2 − ∥δtek− 1
2 ∥2) +

a2

τ

[
⟨ek+1, ek⟩1,x − ⟨ek, ek−1⟩1,x

]
+

a2

τ

[
⟨ek+1, ek⟩1,y − ⟨ek, ek−1⟩1,y

]
=

1
τ

(Gk −Gk−1).

(4.17)

Networks and Heterogeneous Media Volume 18, Issue 1, 412–443.



427

In what follows, we estimate each terms at the right of Eq (4.16). Applying the inequalities
2αβ ≤ 1

ε
α2 + εβ2 and (α + β)2 ≤ 2(α2 + β2), Eq (4.15) and Lemma 4.1, we can get that

⟨ f (uk) − f (Uk), 2δt̂ek⟩ ≤ 2c2
1(∥ek∥2 + ∥ek−n1∥2) +

1
2

(||δtek+ 1
2 ∥2 + ||δtek− 1

2 ∥2)

≤ 2c2
1(∥ek∥2 + ||ek−n1∥2) +

1
2

(Gk +Gk−1).
(4.18)

Using Cauchy-Schwarz inequality and Lemma 4.1, it is easy to find that

⟨(R2)k, 2δt̂ek⟩ ≤ c2
6(b2 − b1)(d2 − d1)(τ2 + h2

x + h2
y +

τ2

h2
x
+
τ

h2
y
)2 +

1
2

(Gk +Gk−1). (4.19)

Inserting Eq (4.17), Eq (4.18) and Eq (4.19) into Eq (4.16), adopting Lemma 3.1 and Eq
(4.5b) in Lemma 4.1, and replacing k with γ, summing γ from 0 to k, we can arrive at

Gk ≤ τ(
k∑
γ=0

Gγ +

k−1∑
γ=−1

Gγ) + τ
c2

1(b2 − b1)2(d2 − d1)2(1 + r2
x + r2

y )

3[(b2 − b1)2 + (d2 − d1)2]a2

k−1∑
γ=−1

Gγ

+τ
c2

1(b2 − b1)2(d2 − d1)2(1 + r2
x + r2

y )

3[(b2 − b1)2 + (d2 − d1)2]a2

k−n1−1∑
γ=−n1−1

Gγ + τ

k∑
γ=0

∥(R2)γ∥2

≤ τ{2 +
2c2

1(b2 − b1)2(d2 − d1)2(1 + r2
x + r2

y )

3[(b2 − b1)2 + (d2 − d1)2]a2 }

k∑
γ=0

Gγ

+Tc2
6(b2 − b1)(d2 − d1)(τ2 + h2

x + h2
y +

τ2

h2
x
+
τ2

h2
y
)2.

(4.20)

As τ{4 +
4c2

1(b2−b1)2(d2−d1)2(1+r2
x+r2

y )
3[(b2−b1)2+(d2−d1)2]a2 } ≤ 1, applying Lemma 3.2 to Eq (4.20) derives that

Gk ≤ c8(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
)2, 0 ≤ k ≤ l. (4.21)

Taking k = l in Eq (4.21) and using Eq (4.5c) derives that Eq (4.9) holds for k = l + 1. From
induction hypothesis, it follows that the claimed finding holds. The proof is completed. □

Remark II From Theorem 4.1, we can find that numerical solutions obtained by the second
EFDM (4.4a)–(4.4c) converge to exact solution with an order of O(τ2 + h2

x + h2
y +

τ2

h2
x
+ τ2

h2
y
) in

H1-norm without any restriction no rx and ry. From truncation error Eq (4.10), it follows that the
second EFDM (4.4a)–(4.4c) is conditionally consistent, and (R2)k

i, j tends to zero as τ = o(hx),
τ = o(hy), and hx and hy tend to zero. What’s more, although the condition τ ≤ σh

3
2+ϵ (σ and

ϵ are both positive constant.) is necessary in Theorem 4.1, we would like to adopt the grid
τ = h2 and hx = hy = h to get numerical solutions with an optimal convergent order of O(h2) in
practical computations.

4.3. Richardson extrapolation method

In what follows, a REM in both space and time is developed for the 2nd EFDM (4.4a)–(4.4c).
Theorem 4.2 Assume that u(x, t) ∈ C4,4(Ω× [−s,T ]) is the exact solution of Eqs (1.2a)–(1.2c),
and Uk

i, j(τ, hx, hy) is the numerical solution of the second EFDM (4.4a)–(4.4c) at (xi, j, tk) using
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meshsizes hx, hy and τ. Define the following REM

(UE)k
i, j =



1
9

Uk
i, j(τ, hx, hy) −

4
9

U2k
i, j(
τ

2
, hx, hy) −

4
9

U2k
2i,2 j(

τ

2
,

hx

2
,

hy

2
)

+
16
9

U4k
2i,2 j(

τ

4
,

hx

2
,

hy

2
), xi, j ∈ Ω̄h, 1 ≤ n ≤ N,

ψ(xi, j, tk), xi, j ∈ Ω̄h. − m ≤ k ≤ 0,

(4.22)

Then under the conditions of Theorem 4.1, hx = O(hy), τ
hx

and τ
hy
−→ 0 as grid parameters τ,

hx, hy −→ 0, we arrive at

∥uk − (UE)k∥1 ≤ C
[
τ2 + τ4 + h4

x + h4
y +

τ4

h2
x
+
τ4

h2
y
+ (

τ

hx
)4 + (

τ

hy
)4
]
, (4.23)

as long as parameter grids τ hx and hy are small enough.
Proof. Let w1(x, t) = 1

12
∂4u
∂t4 (x, t), w2(x, t) = a2

12
∂4u
∂x4 (x, t), w3(x, t) = a2

12
∂4u
∂y4 (x, t) and w4(x, t) =

a2 ∂2u
∂t2 (x, t). Then, we define the grid functions (wl)k

i, j = wl(xi, j, tk), (l = 1, 2, 3, 4), xi, j ∈ Ω̄h,
−n1 ≤ k ≤ n. Thus, it follows from Eq (4.3) that

(R2)k
i, j = τ

2(w1)k
i, j − h2

x(w2)k
i, j − h2

y(w3)k
i, j + (

τ2

h2
x
+
τ2

h2
y
)(w4)k

i, j + O(τ4 + h4
x + h4

y +
τ4

h2
x
+
τ4

h2
y
). (4.24)

Furthermore, the error Eqs (4.10a)–(4.10c) can be rewritten as

(1 + r2
x + r2

y )δ2
t ek

i, j − a2(δ2
xe

k
i, j + δ

2
yek

i, j) = f (uk
i, j) − f (Uk

i, j) + τ
2(w1)k

i, j − h2
x(w2)k

i, j − h2
y(w3)k

i, j

+(
τ2

h2
x
+
τ2

h2
y
)(w4)k

i, j + O(τ4 + h4
x + h4

y +
τ4

h2
x
+
τ4

h2
y
), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.25a)

ek
i, j = 0, xi, j ∈ Ωh, −n1 ≤ k ≤ 0, (4.25b)

ek
0, j = 0, ek

m1, j = 0, 0 ≤ j ≤ m2, 0 ≤ k ≤ n, (4.25c)

ek
i,0 = 0, ek

i,m2
= 0, 0 ≤ i ≤ m1, 0 ≤ k ≤ n. (4.25d)

Suppose that functions v1(x, t), v2(x, t), v3(x, t) and v4(x, t) are exact solutions of the following
IBVPs

∂2v1

∂t2 − a2(
∂2v1

∂x2 +
∂2v1

∂y2 ) = w1(x, t) + h1(x, t), (x, t) ∈ Ω × [0,T ], (4.26a)

v1(x, t) = 0, (x, t) ∈ Ω × [−s, 0], (4.26b)
v1(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ]; (4.26c)

∂2v2

∂t2 − a2(
∂2v2

∂x2 +
∂2v2

∂y2 ) = w2(x, t) + h2(x, t), (x, t) ∈ Ω × [0,T ], (4.27a)

v2(x, t) = 0, (x, t) ∈ Ω × [−s, 0], (4.27b)
v2(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ]; (4.27c)

∂2v3

∂t2 − a2(
∂2v3

∂x2 +
∂2v3

∂y2 ) = w3(x, t) + h3(x, t), (x, t) ∈ Ω × [0,T ], (4.28a)
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v3(x, t) = 0, (x, t) ∈ Ω × [−s, 0], (4.28b)
v3(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ]; (4.28c)

∂2v4

∂t2 − a2(
∂2v4

∂x2 +
∂2v4

∂y2 ) = w4(x, t) + h4(x, t), (x, t) ∈ Ω × [0,T ], (4.29a)

v4(x, t) = 0, (x, t) ∈ Ω × [−s, 0], (4.29b)
v4(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ]; (4.29c)

respectively, where

h1(x, t) = fµ(u(x, t), u(x, t − s), x, t)v1(x, t) + fυ(u(x, t), u(x, t − s), x, t)v1(x, t − s), (4.30a)
h2(x, t) = fµ(u(x, t), u(x, t − s), x, t)υ2(x, t) + fυ(u(x, t), u(x, t − s), x, y, t)v2(x, t − s), (4.30b)
h3(x, t) = fµ(u(x, t), u(x, t − s), x, t)v3(x, t) + fυ(u(x, t), u(x, t − s), x, t)v3(x, t − s), (4.30c)
h4(x, t) = fµ(u(x, t), u(x, t − s), x, t)v4(x, t) + fυ(u(x, t), u(x, t − s), x, t)v4(x, t − s). (4.30d)

Denote (vl)k
i, j = vl(xi, j, tk), l = 1, 2, 3, 4. Approximating IBVPs (4.26a)–(4.26c), IBVPs

(4.27a)–(4.27c), IBVPs (4.28a)–(4.28c) and IBVPs (4.29a)–(4.29c) by using the numerical
methods similar to Eqs (4.4a)–(4.4c) yields that

(1 + r2
x + r2

y )δ2
t (v1)k

i, j − a2
[
δ2

x(v1)k
i, j + δ

2
y(v1)k

i, j

]
= (w1)k

i, j + h1(xi, j, tk)

+O(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.31a)

(v1)k
i, j = 0, xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.31b)

(v1)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (4.31c)

(1 + r2
x + r2

y )δ2
t (v2)k

i, j − a2
[
δ2

x(v2)k
i, j + δ

2
y(v2)k

i, j

]
= (w2)k

i, j + h2(xi, j, tk)

+O(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.32a)

(v2)k
i, j = 0, xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.32b)

(v2)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (4.32c)

(1 + r2
x + r2

y )δ2
t (v3)k

i, j − a2
[
δ2

x(v3)k
i, j + δ

2
y(v3)k

i, j

]
= (w3)k

i, j + h3(xi, j, tk)

+O(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.33a)

(v3)k
i, j = 0, xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.33b)

(v3)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (4.33c)

(1 + r2
x + r2

y )δ2
t (v4)k

i, j − a2
[
δ2

x(v4)k
i, j + δ

2
y(v4)k

i, j

]
= (w4)k

i, j + h4(xi, j, tk)
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+O(τ2 + h2
x + h2

y +
τ2

h2
x
+
τ2

h2
y
), xi, j ∈ Ωh, 0 ≤ k ≤ n, (4.34a)

(v4)k
i, j = 0, xi, j ∈ Ωh, − n1 ≤ k ≤ 0, (4.34b)

(v4)k
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n. (4.34c)

Denote qk
i, j = ek

i, j + h2
x(v1)k

i, j + h2
y(v2)k

i, j + ( τ
2

h2
x
+ τ2

h2
y
)(v3)k

i, j + τ
2(v4)k

i, j, 0 ≤ i ≤ m1, 0 ≤ j ≤ m2,

−n1 ≤ k ≤ n. Then, multiplying h2
x, h2

y , ( τ
2

h2
x
+ τ2

h2
y
) and τ2 to both sides of Eqs (4.31a)–(4.31c),

Eqs (4.32a)–(4.32c), Eqs (4.33a)–(4.33c) and Eqs (4.34a)–(4.34c), respectively, and then adding
up the obtained results, we arrive at

δ2
t qk

i, j − a2(δ2
xq

k
i, j + δ

2
yqk

i, j) = h̃k
i, j + (R̃2)k

i, j, xi, j ∈ Ω̄h, 0 ≤ k ≤ n, (4.35a)

qk
i, j = 0, i, j ∈ Ω̄h, − n1 ≤ k ≤ 0, (4.35b)

qk
i, j = 0, xi, j ∈ ∂Ωh, 0 ≤ k ≤ n, (4.35c)

where

(h̃1)k
i, j = f (uk

i, j + h2
x(v1)k

i, j + h2
y(v2)k

i, j + (
τ2

h2
x
+
τ2

h2
y
)(v3)k

i, j + τ
2(v4)k

i, j, (4.36a)

uk−n1
i, j + h2

x(v1)k−n1
i, j + h2

y(v2)k−n1
i, j + (

τ2

h2
x
+
τ2

h2
y
)(v3)k−n1

i, j + τ
2(v4)k−n1

i, j , xi, j, tk)

− f (Uk
i, j,U

k−n1
i, j , xi, j, tk), (4.36b)

(R̃2)k
i, j = O

(
τ4 + h4

x + h4
y + τ

2h2
x + τ

2h2
y +

τ4

h2
x
+
τ4

h2
y
+ ((

hx

hy
)2 + (

hx

hy
)2)τ2 (4.36c)

+(
τ

hx
)4 + (

τ

hx
)4 + (

τ2

hxhy
)2
)
. (4.36d)

It is worth mentioning that the following Taylor expansion formula

f (uk
i, j, u

k−n1
i, j , xi, j, tk) + h2

x

[
fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v1)k

i, j + fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v1)k−n1

i, j

]
+h2

y

[
fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v2)k

i, j + fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v2)k−n1

i, j

]
+
[
(
τ

hx
)2 + (

τ

hy
)2
][

fµ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v3)k

i, j + fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v3)k−n1

i, j

]
+τ2
[
fµ(uk

i, j, u
k−n1
i, j , xi, j, tk)(v4)k

i, j + fυ(uk
i, j, u

k−n1
i, j , xi, j, tk)(v4)k−n1

i, j

]
+

O
(
τ4 +

τ4

h2
x
+
τ4

h2
x
+ τ2h2

x + τ
2h2

y + (
h2

x

h2
y
+

h2
y

h2
x
)τ2 + h4

x + h2
xh

2
y + h4

y+

(
τ

hx
)4 + (

τ2

hxhy
)2 + (

τ

hy
)4
)

(4.37)

= f (uk
i, j + h2

x(v1)k
i, j + h2

y(v2)k
i, j + ( τ

2

h2
x
+ τ2

h2
y
)(v3)k

i, j + τ
2(v4)k

i, j,

uk−n1
i, j + h2

x(v1)k−n1
i, j + h2

y(v2)k−n1
i, j + (

τ2

h2
x
+
τ2

h2
y
)(v3)k−n1

i, j + τ
2(v4)k−n1

i, j , xi, j, tk)

+O
(
τ4 +

τ4

h2
x
+
τ4

h2
y
+ τ2h2

x + τ
2h2

y + (
h2

x

h2
y
+

h2
y

h2
x
)τ2 + h4

x + h2
xh

2
y + h4

y + (
τ

hx
)4 + (

τ2

hxhy
)2 + (

τ

hy
)4
)

Networks and Heterogeneous Media Volume 18, Issue 1, 412–443.



431

is applied in Eqs (4.35a)–(4.35c).
Then, using the same techniques as those proposed in the proof of Theorem 4.1 and using

the inequalities αβ ≤ (α2 + β2)/2 and max(( hy

hx
)2, ( hx

hy
)2) ≤ µ−2, we have

∥qk∥1 ≤ C
(
τ2 + h4

x + h4
y + τ

4 +
τ4

h2
x
+
τ4

h2
y
+ (

τ

hx
)4 + (

τ

hy
)4
)
, 0 ≤ k ≤ n, (4.38)

where C is a positive constant and independent of grid parameters τ, hx and hy. Finally, similar
to Eq (3.39), using the triangle inequality to the following equality

uk
i, j − (UE)k

i, j =
1
9

{
(uk

i, j − Uk
i, j(hx, hy, τ) + h2

x(v1)k
i, j + h2

y(v2)k
i, j + (

τ2

h2
x
+
τ2

h2
y
)(v3)k

i, j

+τ2(v4)k
i, j

}
−

4
9

{
(uk

i, j − U2k
i, j(hx, hy,

τ

2
) + h2

x(v1)k
i, j + h2
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( τ2 )2

h2
x
+

( τ2 )2

h2
y
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+(
τ

2
)2(v4)k

i, j

}
−

4
9

{
(uk
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2i,2 j(
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2
,

hy

2
,
τ

2
) + (

hx

2
)2(v1)k
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hy

2
)2(v2)k
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[ ( τ2 )2

(hx
2 )2

+
( τ2 )2

( hy

2 )2

]
(v3)k

i, j + (
τ

2
)2(v4)k

i, j

}
+

16
9

{
(uk

i, j − U4k
2i,2 j(

hx

2
,

hy

2
,
τ

4
) + (

hx

2
)2(v1)k

i, j

+(
hy

2
)2(v2)k
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(hx
2 )2
+

( τ4 )2

(hy
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(v3)k

i, j + (
τ

4
)2(v4)k

i, j

}
and applying the estimation Eq (4.38) yield the claimed results. The proof is completed. □

Remark III Like Remark II, it follows from Theorem 4.2 that numerical solutions obtained
by the second EFDM (4.4a),(4.4b) combined with REM in Eq (4.22) converge to the exact
solution with an order of O(τ2+τ4+h4

x+h4
y+

τ4

h2
x
+ τ4

h2
y
+( τ

hx
)4+( τhy

)4) in H1-norm. According to the

convergence rate O(τ2+τ4+h4
x+h4

y+
τ4

h2
x
+ τ4

h2
y
+( τ

hx
)4+( τhy

)4), the optimal estimation ∥uk−(UE)k∥1 =

O(h4), 0 ≤ k ≤ n can be obtained as an optimally temporal and spatial relationship hx = hy = h
and τ = h2 is used. Thus this relationship hx = hy = h and τ = h2 is applied in practical
computations.

5. Extension to nonlinear wave equation with several delays

Partial differential equations with several delays are extensively applied in scientific and
engineering fields. For example, a delayed convective-diffusion equation (see [10])

∂u
∂t
=
∂2u
∂x2 + υ(g(u(x, t − τ1)))

∂u
∂x
+ c[ f (u(x, t − τ2)) − u(x, t)],

which arises from furnace control, models a furnace used to process metal sheets. Here, u
is the temperature distribution in a metal sheet, v represents velocity, f denotes a distributed
temperature source function, both v and f are dynamically adapted by a controlling device
monitoring the current temperature distribution. However, the finite speed of the controller
leads to two fixed delays of length τ1 and τ2. Thus it is necessary and important to study
numerical solutions of partial differential equations with several delays.
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This section focuses on the generalization of the proposed numerical algorithms and
corresponding analytical results to 2D nonlinear wave equation with several delays as follows

utt − a2(uxx + uyy) = f (u(x, t), u(x, t − s1(t)), u(x, t − s2(t)), . . . , u(x, t − sL(t)), x, t),
(x, t) ∈ Ω × [0,T ],

u(x, t) = ψ(x, t), x ∈ Ω̄, t ∈ [−s, 0]
u(x, t) = ϕ(x, t), (x, t) ∈ ∂Ω × [0,T ],

(5.1)

where sl(t) > 0 (l = 1, 2, . . . , L) and s = max
1≤l≤L

sl(t).

As sκ(t) = sκ (κ = 1, 2, · · · , L) are all constant delays, i.e. independent of temporal variable t,
constrained temporal grid τ = s1/n1 = s2/n2 = · · · = sL/nL, (nl ∈ Z

+) is adopted to make t = Ksl

(K ∈ Z+) locate the temporal grid nodes, thus avoiding the use of Lagrangian interpolation
and reducing computational complexity. In this case, the first and second EFDMs, and their
corresponding REMs for Eqs (1.2a)–(1.2c) can be easily adapted to the numerical solution of
Eq (5.1) by replacing f (Uk

i, j, Uk−n1
i, j , xi, j, tk) with f (Uk

i, j, Uk−n1
i, j , Uk−n2

i, j , . . ., Uk−nL
i, j , xi, j, tk). Also,

corresponding theoretical results are derived by using similar analytical methods as long as
f (u(x, t), u(x, t − s1), u(x, t − s2), . . ., u(x, t − sL), x, t) satisfies ε0-continuous with respect to its
first, second, . . . , L + 1-th variables.

As sl(t) (l = 1, 2, · · · , L) are variable delays, we should use non-constrained temporal grid,
i.e. τ = T/n. The linear Lagrange interpolation is used to approximate the nonlinear delayed
terms. Let sl(tk) = Plτ + θlτ, (Pl ∈ Z

+ 0 ≤ θl ≤ 1). Then delay term u(x, t − sl(tk)) can
be approximated by applying the linear Lagrange interpolation as follows u(xi, j, t − sl(tk)) =
(1 − θl)u

k−Pl
i, j +θlu

k−Pl−1
i, j +O(τ2). Write Ûk,l

i, j = = (1 − θl)U
k−Pl
i, j +θlU

k−Pl−1
i, j , which is viewed as

a second-order approximations to u(xi, j, t − sl(tk)). Consequently, the first and second EFDMs
for Eqs (1.2a)–(1.2c) can be easily adapted to the numerical solution of Eq (5.1) by replacing
f (Uk

i, j,U
k−n1
i, j , xi, j, tk) with f (Uk

i, j, Û
k,1
i, j , Û

k,2
i, j , . . . , Û

k,L
i, j , xi, j, tk). Also, the convergence analysis of

the modified first and second EFDMs can be constructed using the analytical techniques similar
to those developed in Theorem 3.1 and Theorem 4.1.

6. Numerical experiments

This section is devoted to numerical experiments. Three numerical examples are solved
by the proposed methods. For convenience, denote the first EFDM in Eqs (3.3a)–(3.3c) by
EFDM-I, and the second EFDM (4.4a)–(4.4c) by EFDM-II, respectively. Meanwhile, REM-I
and REM-II are used to represent EFDM-I combined with REM (3.25), and EFDM-II combined
with REM (4.22), respectively.

To facilitate numerical calculations, the same meshsizes in the spatial directions are adopted
(i.e., hx = hy = h). Besides, as EFDM-I and REM-I are used, we should carefully choose
temporal and spatial meshsizes to satisfy r2

x + r2
y < 1 for EFDM-I and r2

x + r2
y <

1
4 for REM-I.

By Theorem 3.2, Theorem 4.1, Theorem 4.2, and Remarks I–III, hx = hy = h and τ = h2 are
often applied for REM-I, EFDM-II and REM-II to obtain numerical solutions with optimally
convergent rates.

The errors ME = max
0≤k≤n
∥ek∥∞, LE = max

0≤k≤n
||ek||2 and HE = max

0≤k≤n
∥ek∥21 and corresponding

orders denoted by r∞, rL2 and rH1 , respectively, and CPU time in seconds are used to test the
accuracy and performance of our algorithms. All computer programmes are carried out by
MATLAB R2016a.
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Example 6.1. Set Ω = [0, 1] × [0, 1]. On Ω × [−s,T ], consider the numerical solutions of the
following delayed wave equation

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 + u2(x, t)u2(x, t − s) + f (x, t), x ∈ Ω, 0 ≤ t ≤ T

with Dirichlet initial-boundary conditions by using our numerical methods. Here, f (x, t) =
−(sin x + cos y)2(sin t)2(sint−s)2. Initial-boundary-values conditions (IBVCs) are determined by
its exact solution u(x, t) = (sin x + cos y) sin t.

In Table 1, τ = h
2 is adopted to satisfy the condition r2

x + r2
y < 1. Table 1 shows that EFDM-I

is second-order accurate in time.

Table 1. Numerical results obtained by EFDM-I for Example 6.1, s = 0.01, T = 1,
(τ = 0.5h).

h ME r∞ LE rL2 HE rH1 CPU
1/50 3.3184 × 10−6 – 1.7790 × 10−6 – 8.2345 × 10−6 – 0.082
1/100 8.3000 × 10−7 1.999 4.4483 × 10−7 2.000 2.0594 × 10−6 2.000 0.514
1/200 2.0752 × 10−7 2.000 1.1121 × 10−7 2.000 5.1490 × 10−7 2.000 3.931
1/400 5.1880 × 10−8 2.000 2.7803 × 10−8 2.000 1.2873 × 10−7 2.000 31.872

In Table 2 and Table 3, timestep τ = 1 × 10−4 is taken to test the spatial accuracies of
EFDM-I and REM-I. Obviously, Table 2 and Table 3 exactly show that EFDM-I and REM-I are
second-order and fourth-order accurate in space, respectively.

Table 2. Numerical results obtained by EFDM-I for Example 6.1, s = 0.01, T = 1,
(τ = 1 × 10−4).

h ME r∞ LE rL2 HE rH1 CPU
1/2 2.2247 × 10−3 – 1.1124 × 10−3 – 4.586 × 10−3 – 0.045
1/4 6.5754 × 10−4 1.759 3.5141 × 10−4 1.663 1.5731 × 10−3 1.544 0.081
1/8 1.6883 × 10−4 1.962 9.1542 × 10−5 1.941 4.1991 × 10−4 1.905 0.215
1/16 4.2969 × 10−5 1.974 2.3100 × 10−5 1.987 1.0669 × 10−4 1.977 0.697

Table 3. Numerical results obtained by REM-I for Example 6.1, s = 0.01, T = 1,
(τ = 1 × 10−4).

h ME r∞ LE rL2 HE rH1 CPU
1/2 1.3515 × 10−4 – 6.7575 × 10−5 – 2.7862 × 10−4 – 0.127
1/4 6.6217 × 10−6 4.351 4.4421 × 10−6 3.927 2.0899 × 10−5 3.737 0.282
1/8 4.5813 × 10−7 3.853 2.9362 × 10−7 3.919 1.6356 × 10−6 3.676 0.890
1/16 2.8925 × 10−8 3.985 1.6823 × 10−8 4.126 1.2135 × 10−7 3.753 3.120

In Table 4, τ = h2 is taken. By Theorem 3.1, we have max
−n1≤k≤n

{∥uk − (UE)k∥1} = O(τ2+h4
x +h4

y)

= O(h4) as τ = h2. It is clearly observed from Table 4 that numerical solutions obtained by
REM-I is convergent with an order of O(h4) in L2-, H1- and L∞-norms.

In Table 5 and Table 6, τ = h2 is used. By Remak II and Theorem 4.1, we can infer
max
−n1≤k≤n

∥ek∥1 = O(h2) provided by the EFDM-II with τ = h2. By Remak III and Theorem 4.2,
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we can derive max
−n1≤k≤n

{∥uk − (UE)k∥1} = O(h4) yielded by the REM-II with τ = h2. Table 5 and

Table 6 clearly show that numerical solutions obtained by EFDM-II and REM-II possess the
convergent orders of O(h2) and O(h4) in L2-, H1- and L∞-norms, respectively.

Table 4. Numerical results obtained by REM-I for Example 6.1, s = 0.01, T = 1,
(τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/10 9.4174 × 10−7 - 4.8164 × 10−7 - 2.228 × 10−6 - 0.051
1/20 5.9300 × 10−8 3.989 3.0126 × 10−8 3.999 1.4220 × 10−7 3.970 0.230
1/30 1.1705 × 10−8 4.002 5.9652 × 10−9 3.994 2.8672 × 10−8 3.949 1.025
1/40 3.5988 × 10−9 4.100 1.8360 × 10−9 4.096 9.0027 × 10−9 4.027 3.097

Table 5. Numerical results obtained by EFDM-II for Example 6.1, s = 0.01, T = 1,
(τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/10 2.7125 × 10−3 – 1.467 × 10−3 – 6.751 × 10−3 – 0.0311
1/20 6.8927 × 10−4 1.977 3.6976 × 10−4 1.988 1.7092 × 10−3 1.982 0.061
1/30 3.0704 × 10−4 1.994 1.6457 × 10−4 1.997 7.6142 × 10−4 1.994 0.232
1/40 1.7280 × 10−4 1.998 9.2619 × 10−5 1.998 4.2865 × 10−4 1.997 0.695

Table 6. Numerical results obtained by REM-II for Example 6.1, s = 0.01, T = 1,
(τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/10 1.5748 × 10−6 – 1.0746 × 10−6 – 5.559 × 10−6 – 0.1500
1/20 9.6861 × 10−8 4.023 6.4358 × 10−8 4.062 3.4267 × 10−7 4.020 1.292
1/30 1.8432 × 10−8 4.092 1.2358 × 10−8 4.070 6.6824 × 10−8 4.032 6.175
1/40 3.6389 × 10−9 5.640 2.6048 × 10−9 5.412 1.6076 × 10−8 4.953 19.494

From Table 7, we can find that to obtain much more accurate solutions, REMs often cost
much lower time. For example, to achieve ME ≈ 1.0 × 10−8, the CPU times of REM-I and
REM-II are both much less than that of EFDM-I. Obviously, REM-I is the highest in terms of
computational efficiency, while EFDM-II is the lowest.

Table 7. Numerical results obtained by REM-II for Example 6.1, s = 0.01, T = 1,
(τ = h2).

Methods EFDM-I REM-I EFDM-II REM-II
(τ, h) ( 1

800 ,
1

400 ) ( 1
900 ,

1
30 ) ( 1

1402 ,
1

140 ) ( 1
900 ,

1
30 )

ME 5.1880 × 10−8 1.1705 × 10−8 1.9212 × 10−5 1.8432 × 10−8

CPU 31.872 1.025 48.804 6.175

Figure 1 displays that numerical solutions provided by EFDM-I and EFDM-II coincide with
exact solutions very well. This illustrates our methods are accurate and efficient.
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Figure 1. Example 6.1: Numerical solution at T = 1 obtained by EFDM-I with (τ, h)
= (1.0×10−04, 1

16 ) (left), numerical solution at T = 1 obtained by EFDM-II with (τ, h)
= (1.0 × 10−04, 1

16 ) (middle) and exact solution at T = 1 (right).

In a word, Tables 1–7 and Figure 1 exactly confirm that theoretical findings agree with
numerical findings very well.

Example 6.2. Let Ω = (0, 1) × (0, 1). On Ω × [−s,T ], we consider numerical solutions of the
following wave equations with three constant delays

utt − ∆u(x, t) = g(u(x, t), u(x, t − s1), u(x, t − s2), u(x, t − s3)) + f (x, t), (6.1)

where s1 = 0.1875, s2 = 0.3125, s3 = 0.5625, s = max(s1, s2, s3),

g(u(x, t), u(x, t − s1), u(x, t − s2), u(x, t − s3))
= u2(x, t) + [u(x, t − s1) − 1]u(x, t − s2)[u(x, t − s3) + 1],

f (x, t) = [− exp(x + y) sin(t) − 3] exp(x + y) sin(t)
−[exp(x + y) sin(t − s1) − 1] exp(x + y) sin(t − s2)[exp(x + y) sin(t − s3) + 1].

IBVCs are determined by its exact solution u(x, t) = exp(x + y) sin(t).

In Table 8, τ = h
2 is used to satisfy the condition r2

x + r2
y < 1. Table 8 shows that the

generalized EFDM-I is second-order temporally accurate.

In Table 9 and Table 10, τ = 1.0 × 10−4 is fixed to test the accuracies of the generalized
EFDM-I and generalized REM-I in spaces. Table 8 and Table 9 show that the generalized
EFDM-I and generalized REM-I are second-order spatially accurate and fourth-order spatially
accurate, respectively.

Table 8. Numerical results obtained by EFDM-I for Example 6.2, T = 1, (τ = h
2 ).

h ME r∞ LE rL2 HE rH1 CPU
1/8 7.1666 × 10−4 – 3.8867 × 10−4 – 1.809 × 10−3 – 0.0192
1/16 1.8363 × 10−4 1.965 9.8195 × 10−5 1.985 4.6060 × 10−4 1.974 0.024
1/32 4.6021 × 10−5 1.997 2.4611 × 10−5 1.996 1.1567 × 10−4 1.994 0.055
1/64 1.1531 × 10−5 1.997 6.1565 × 10−6 1.999 2.8950 × 10−5 1.998 0.319
1/512 1.8021 × 10−7 2.000 9.6215 × 10−8 2.0000 4.5251 × 10−7 2.0000 256.052
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Table 9. Numerical results obtained by EFDM-I for Example 6.2, T = 1, ( τ =
1 × 10−4).

1/4 3.0678 × 10−3 – 1.6821 × 10−3 – 7.6089 × 10−3 – 0.1363
1/8 8.1830 × 10−4 1.907 4.4351 × 10−4 1.923 2.0644 × 10−3 1.882 0.406
1/16 2.0984 × 10−4 1.963 1.1218 × 10−4 1.983 5.2619 × 10−4 1.972 1.417
1/32 5.2587 × 10−5 1.997 2.8120 × 10−5 1.996 1.3216 × 10−4 1.993 5.499

Table 10. Numerical results obtained by REM-I for Example 6.2, T = 1, ( τ =
1 × 10−4).

h ME r∞ LE rL2 HE rH1 CPU
1/4 4.194 × 10−5 – 2.7443 × 10−5 – 1.2633 × 10−4 – 0.520
1/8 2.773 × 10−6 3.919 1.7571 × 10−6 3.965 9.2531 × 10−6 3.771 1.862
1/16 1.707 × 10−7 4.022 1.0624 × 10−7 4.048 6.8458 × 10−7 3.757 7.240
1/32 1.645 × 10−8 3.376 9.8264 × 10−9 3.435 6.3410 × 10−8 3.432 30.986

By Remark I and Theorem 3.2, we can find that the generalized REM-I possess the
convergent rate of O(h4) in H1-norm as hx = hy = h and τ = h2. Table 11 exactly confirms that
numerical solutions are convergent with an order of O(h4) in L2-, L∞- and H1-norms as τ = h2

which satisfes r2
x + r2

y < 1/4.
By Remark II and Theorem 4.1, we can derive that the generalized EFDM-II possesses the

convergent rate of O(h2) in H1-norm as hx = hy = h and τ = h2. By Remark III and Theorem
4.2, we can deduce that the generalized REM-II owns the convergent order of O(h4) in H1-norm
as hx = hy = h and τ = h2. Table 12 and Table 13 exactly confirm that the generalized EFDM-II
and the generalized REM-II have the convergent rates of O(h2) and O(h4) with respect to L2-,
L∞- and H1-norms, respectively.

Table 14 confirms that REM-I is much more efficient than EFDM-I, and REM-II is also much
more efficient than EFDM-II. This exactly shows REMs can greatly improve the computational
efficiency indeed. Also, Table 14 shows that REM-I is the most efficient algorithm, in contrast,
EFDM-II is the lowest.

Table 11. Numerical solutions provided by REM-I for Example 6.2, T = 1, (τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/4 6.2221 × 10−5 – 2.0943 × 10−5 – 1.5250 × 10−4 – 0.038
1/8 4.0593 × 10−6 3.938 1.3489 × 10−6 3.957 1.0813 × 10−5 3.818 0.048
1/16 2.3929 × 10−7 4.084 8.5942 × 10−8 3.972 7.4360 × 10−7 3.862 0.252
1/32 1.5077 × 10−8 3.988 5.4254 × 10−9 3.986 5.6416 × 10−8 3.720 4.051

Table 12. Numerical results provided by EFDM-II for Example 6.2, T = 1, (τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/4 3.8157 × 10−2 - 2.0972 × 10−2 - 9.4933 × 10−2 - 0.024
1/8 1.0545 × 10−2 1.855 5.7124 × 10−3 1.876 2.6592 × 10−2 1.836 0.021
1/16 2.7222 × 10−3 1.954 1.4551 × 10−3 1.973 6.8253 × 10−3 1.962 0.065
1/32 6.8337 × 10−4 1.994 3.6541 × 10−4 1.994 1.7174 × 10−3 1.991 0.734
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Table 13. Numerical results obtained by REM-II for Example 6.2, T = 1, (τ = h2).

h ME r∞ LE rL2 HE rH1 CPU
1/4 4.8076 × 10−4 – 1.4869 × 10−4 – 1.0973 × 10−3 – 0.080
1/8 2.9946 × 10−5 4.005 8.8740 × 10−6 4.067 7.1303 × 10−5 3.944 0.156
1/16 1.7963 × 10−6 4.059 5.4497 × 10−7 4.025 4.5193 × 10−6 3.980 1.147
1/32 1.1331 × 10−7 3.987 3.3910 × 10−8 4.006 2.8498 × 10−7 3.987 17.646

Table 14. Comparisons of numerical results obtained by the current algorithms for
Example 6.2, T = 1.

Methods EFDM-I REM-I EFDM-II REM-II
(τ, h) ( 1

1024 ,
1

512 ) ( 1
1024 ,

1
32 ) ( 1

1402 ,
1

140 ) ( 1
1024 ,

1
32 )

ME 1.8021 × 10−7 2.3929 × 10−7 3.5806 × 10−5 1.1331 × 10−7

CPU 256.05 0.252 252.273 17.646

Figure 2 exhibits that both of numerical solutions given by the generalized REM-I and the
generalized REM-II agree with exact solutions very well. This confirms that the current REMs
are accurate and efficient.

In a word, Tables 8–14 and Figure 2 illustrate that the extensions of EFDM-I, REM-I,
EFDM-II and REM-II to solve wave equations with several constant delays are practicable and
preserve the accuracies of the original algorithms.
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Figure 2. Example 6.2: Numerical solutions at T = 1 obtained by REM-I with
(τ, h) = ( 1

322 ,
1

32 ) (left), numerical solution at T = 1 obtained by REM-II with (τ, h)
= ( 1

322 ,
1
32 ) (middle) and exact solution at T = 1 (right).

Example 6.3. Let Ω = (0, 1)× (0, 1). To further compare EFDM-I with EFDM-II, they are used
to solve wave equations with two variable delays as follows

utt − a2∆u(x, t) = g(u(x, t), u(x, t − ν1(t)), u(x, t − ν2(t)) + f (x, t), (x, t) ∈ Ω × (0,T ]

where

g(u(x, t), u(x, t − ν1(t)), u(x, t − ν2(t)) =
βθdu(x, t)
θd + ud(x, t)

+
bu(x, t − ν1(t))

1 + u2(x, t − ν2(t)
,

f (x, t) = (1 − 2a2) exp(x + y + t) −
exp(x + y + t − 1

2 | sin(t)|)

1 + exp(2x + 2y + 2t − 1
2 (1 − cos(t)))

−

9
2 exp(x + y + t)

9 + exp(2x + 2y + 2t)
.
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Numerical results are exhibited in Table 15 and Table 16, respectively. The exact solution
to this problem is u(x, t) = exp(x + y + t), by which we can get IBVCs. Here, we take the
values of the parameters as follows: β = 0.5, θ = 3, d = 2, b = 1, ν1(t) = 1

2 | sin(t)|, and
ν2(t) = 1

4 [1−cos(t)]. From Table 15 and Table 16, we can obtain several conclusions as follows.
(1) As stable condition r2

x + r2
y < 1 is satisfied, numerical solutions obtained by the generalized

EFDM-I with linear Lagrangian interpolation are convergent with an order of O(h2) in L2-, H1-
and L∞-norms in the case of a = 1 and τ = h2. Besides, as τ = h2, numerical solutions obtained
by the generalized EFDM-II with linear Lagrangian interpolation converge to exact solution
with an order of O(h2) in the cases of a = 1, a = 10, and a = 50. These results show that
by introducing linear Lagrangian interpolation, the extensions of the EFDM-I and EFDM-II to
solve wave equations with variable delays are workable and efficient with the same accuracies
as the original algorithms. (2) By Theorem 3.1 and Theorem 4.1, we can find that EFDM-II
does not have any restriction on rx and ry, in contrast, r2

x + r2
y < 1 is necessary for EFDM-I. This

finding is sufficiently confirmed by Table 15 and Table 16. For example, from Table 15 and
Table 16, we can find that for larger a, much finer grids are needed to obtain accepted solution
for EFDM-I, while, there are no grid requirements for EFDM-II whatever a is. (3) Using the
same meshsizes, which fulfill r2

x+r2
y < 1, numerical solutions yielded by EFDM-I more accurate

than those provided by EFDM-II. Thus, EFDM-I and EFDM-II own the respective advantages
of themselves. We use them according to our demands.

Table 15. Numerical results at T = 1 provided by EFDM-I for Example 6.3, (τ = h2).

a = 1
h ME r∞ LE rL2 HE rH1 CPU
1/4 6.4324 × 10−3 – 3.3163 × 10−3 – 1.5167 × 10−2 – 0.022
1/8 1.7193 × 10−3 1.904 9.0800 × 10−4 1.869 4.2917 × 10−3 1.821 0.024
1/16 4.2600 × 10−4 2.013 2.3171 × 10−4 1.970 1.1086 × 10−3 1.953 0.064
1/32 1.0658 × 10−4 1.999 5.8214 × 10−5 1.993 2.7952 × 10−4 1.988 0.681

a = 10
h ME r∞ LE rL2 HE rH1 CPU
1/4 7.7627 × 1020 – 3.8921 × 1020 – 1.7310 × 1021 – 0.021
1/8 3.0460 × 1063 – 1.5232 × 1063 – 6.8955e × 1063 – 0.024
1/16 4.8082 × 10−4 - 1.4334 × 10−4 – 1.2615 × 10−3 – 0.064
1/32 1.2264 × 10−4 1.971 3.5381 × 10−5 2.018 3.1772 × 10−4 1.989 0.677
1/64 3.0881 × 10−5 1.990 8.8345 × 10−6 2.002 7.9602 × 10−5 1.997 10.822

a = 50
h ME r∞ LE rL2 HE rH1 CPU
1/4 3.7278 × 1043 – 1.8725 × 1043 – 8.3312 × 1043 – 0.021
1/8 1.1456 × 10151 – 5.7339 × 10150 – 2.5974 × 10151 – 0.024
1/16 inf – nan – inf – 0.063
1/32 inf – nan inf – 0.713
1/64 9.8788 × 10321 – nan – inf – 10.812
1/72 2.6889 × 10−5 – 1.2652 × 10−5 – 6.4906 × 10−5 – 17.489
1/80 2.1797 × 10−5 1.993 1.0233 × 10−5 2.014 5.2583 × 10−5 1.998 26.321
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Table 16. Numerical results at T = 1 provided by EFDM-II, (τ = h2).

a = 1
h ME r∞ LE rL2 HE rH1 CPU
1/2 2.6289 × 10−1 – 1.3144 × 10−1 – 5.4195 × 10−1 – 0.021
1/4 7.5543 × 10−2 1.799 4.0166 × 10−2 1.710 1.7985 × 10−1 1.591 0.023
1/8 1.9199 × 10−2 1.976 1.0250 × 10−2 1.970 4.8114 × 10−2 1.902 0.026
1/16 4.7029 × 10−3 2.029 2.5659 × 10−3 1.998 1.2252 × 10−2 1.973 0.068
1/32 1.1735 × 10−3 2.003 6.4144 × 10−4 2.000 3.0783 × 10−3 1.993 0.757

a = 10
h ME r∞ LE rL2 HE rH1 CPU
1/2 7.7084 × 10−2 – 2.1323 × 10−2 – 1.7722 × 10−1 – 0.023
1/4 2.2280 × 10−2 1.791 1.2451 × 10−2 0.776 5.8129 × 10−2 1.608 0.026
1/8 5.3874 × 10−3 2.048 2.5637 × 10−3 2.28 1.2847 × 10−2 2.178 0.069
1/16 1.3888 × 10−3 1.956 7.8055 × 10−4 1.716 3.6596 × 10−3 1.812 0.757
1/64 3.4522 × 10−4 2.008 1.0268 × 10−4 2.926 8.8984 × 10−4 2.040 11.981

a = 50
h ME r∞ LE rL2 HE rH1 CPU
1/2 7.5423 × 10−2 – 2.1693 × 10−2 – 1.7635 × 10−1 – 0.022
1/4 2.0843 × 10−2 1.855 5.8594 × 10−3 1.888 5.3050 × 10−2 1.733 0.026
1/8 5.6388 × 10−3 1.886 2.0030 × 10−3 1.549 1.4149 × 10−2 1.907 0.070
1/16 1.4379 × 10−3 1.971 7.5796 × 10−4 1.402 3.6415 × 10−3 1.958 0.756
1/64 3.5599 × 10−4 2.014 1.5314 × 10−4 2.307 9.1584 × 10−4 1.991 11.962
1/72 2.8676 × 10−4 1.836 1.0786 × 10−4 2.976 7.0903 × 10−4 2.173 19.357

7. Conclusion

In this paper, two explicit difference schemes have been derived for solving nonlinear wave
equation with delays. The first EFDM (3.3a)–(3.3c) has been designed by adapting the standard
explicit difference scheme for linear wave equations. It is conditionally convergent with an
order of O(τ2 + h2

x + h2
y) in H1-norm as r2

x + r2
y < 1. Besides, a spatial REM (3.25) has been

derived to improve computational efficiency. The REM (3.25) is also conditionally convergent
with a convergent rate of O(τ2 + h4

x + h4
y) as 4(r2

x + r2
y ) < 1. Although these two methods are

conditionally stable, we can get numerical solutions with optimal convergent rate as long as
optimal temporal and spatial grids are taken by stable conditions.

The second EFDM (4.4a)–(4.4c) has been proposed by generalizing the Du Fort-Frankel
scheme which initially was proposed for parabolic equation with periodic boundary conditions.
It is conditionally consistent. Namely, for its truncation error (R2)k

i, j (see Eq (4.3)), as τ = o(hx),
τ = o(hy), and hx and hy tend to zero, the truncation error (R2)k

i, j tends to zero. Although
numerical solutions obtained by the second EFDM (4.4a)–(4.4c) are convergent with an order
of O(τ2 + h2

x + h2
y +( τ

hx
)2 + ( τhy

)2) in H1-norm under the conditions of τ = o(h
3
2 ) (h = max(hx, hy))

and other grids conditions, it is suggested that hx = hy = h and τ = h2 are applied to obtain
numerical solutions with an optimal convergent rate of O(h2) H1-norm. Besides, for the second
EFDM (4.4a)–(4.4c), a new REM (4.22) has been derived to improve computational accuracy.
As far as we know, there has been no numerical studies of nonlinear wave equations with delay
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by the Du Fort-Frankel scheme combined with REMs. Thus, the derivation and analyses of this
new REM is a main contribution of this study. What’s more, The second EFDM (4.4a)–(4.4c)
and the corresponding REM for Eq (4.22) have no any restrictions on rx and ry.

Finally, numerical results illustrate the correctness of the theoretical results, the performance
of the algorithms and the comparisons among the current algorithms. The current algorithms
own the respective advantages of themselves. We use them according to our demands.

Recently, although energy-preserving Du Fort-Frankel schemes have been developed for
sine-Gordon equation [47], coupled sine-Gordon equations [47] and Schrödinger with wave
operator [48], we noted that there is few structuring-preserving numerical methods for
nonlinear wave equations with delay. In future, we will consider the developments and
analyses of structure-preserving Du Fort-Frankel schemes for nonlinear wave equations with
delays.
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