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Abstract: The synchronization problem of delayed nonautonomous neural networks with Caputo 

derivative is studied in this article. Firstly, new neural networks are proposed by introducing variable 

parameters into known models, and the analytical formula of the synchronous controller is given 

according to the new neural networks. Secondly, from the drive-response systems corresponding to 

the above delayed neural networks, their error system is obtained. Thirdly, by constructing the 

Lyapunov function and utilizing the Razumikhin-type stability theorem, the asymptotic stability of 

zero solution for the error system is verified, and some sufficient conditions are achieved to ensure 

the global asymptotic synchronization of studied neural networks. Finally, some numerical 

simulations are given to show the availability and feasibility of our obtained results. 
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1. Introduction 

For the actual neural network system, it will be affected by the outside world or its own system, 

which will lead to the deterioration of the stability and even the instability of the system. Therefore, 

when the neural networks with fractional-order (FO) derivative are selected as the research target, it 

is necessary to consider the above effects. And then, it is an important topic to analyze the stability of 

the system and how to design a system synchronous controller simply and effectively. Only by doing 

these things well can we effectively use the FO neural network and apply it better in practice. 
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Synchronization is one of the dynamic behaviors of actual systems, which exists widely in real life. 

Therefore, studying the synchronization of FO neural network models is meaningful and extremely 

important. In view of this, a lot of scholars have paid attention to the synchronization issues of neural 

networks with FO derivative, see [1–7] and the references therein. 

Yu et al. [8] analyzed the following neural networks with FO derivative in 2014 

    (1.1) 

where .10  Based on some analytical techniques and combining effective control method, some 

new criteria for guaranteeing the projection synchronization of the neural networks with FO 

derivative are achieved. In 2015, Bao et al. [9] investigated the projective synchronization of FO 

memristor-based neural networks corresponding to model (1.1) and achieved some sufficient 

conditions by utilizing a FO differential inequality. In 2018, Hu et al. [10] studied the neural network 

model (1.1), and the global synchronization problem was considered. Firstly, some properties for 

fractional calculus are discussed, and the stability theorem for the neural network model (1.1) is 

proposed. Moreover, a new feedback controller is given. Finally, some sufficient conditions ensuring 

the global synchronization of the neural network model (1.1) are given by utilizing the matrix 

inequality technique and the obtained stability theorem. However, it can be seen that there is no delay 

term in model (1.1). Because time delays are inevitable in practical network fields, the real-world 

neural network model should contain time delays. Therefore, in recent years, more and more scholars 

focus on the dynamic behavior of delayed neural networks with FO derivative. For example, Wang et 

al. [11] researched the following delayed FO Hopfield neural network as described below in 2015 
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where ijiji cbaq ,,),1,0( are constants, and acquired some stability conditions of solution for the FO 

network system (1.2) according to the Laplace transform and linearization method. In 2017, Peng et 

al. [12] considered the following FO neural networks with time delays and discontinuous activation 

functions 
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      (1.3) 

where
n

n Rtxtxtxtx = ))(,),(),(()( 21  is the state vector of neuron at time t . Several sufficient 

conditions ensuring the global synchronization of neural networks (1.3) are given by using the 

property of matrix inequalities and the theory of FO differential inclusion. Zhang et al. [13] paid 

attention to the following neural networks with FO derivative and delays in 2018 

      (1.4)

 

where 0 < 𝛼 < 1, 𝑖 𝜖 𝑁 = 1, 2, ∙∙∙, 𝑛, and derived several new synchronization conditions of the 

delayed system (1.4) by utilizing the corresponding theoretical knowledge. In 2020, Wang et al. [14] 

investigates the problem of event-based sliding-mode synchronization of memristive neural networks 

with delay by means of continuous/ periodic sampling algorithm. More recently, in 2021, Wang et al. [15] 

considered the multiple delayed FO neural networks with Caputo derivatives as described below 
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     (1.5) 

where 0 1,  and obtained some synchronization conditions of the delayed FO neural networks (1.5) 

by constructing a suitable Lyapunov function and using the properties of delayed differential 

inequality. In 2022, Hui et al. [16] investigated a kind of variable-delay FO complex-valued neural 

networks and achieved the adaptive synchronization results of the network system, Ye et al. [17] 

considered a kind of variable-parameter FO neural networks and obtained two types of 

quasi-synchronization results of the network system, and Zhao et al. [18,19] discussed respectively PID 

control, adaptive control, pinning control, and impulsive control for a class of complex networks. 

On the other hand, as we all know, it is challenging to obtain the exact values of model 

parameters when we build mathematical models. The main reason is the environmental disturbance 

that leads to parameter uncertainty. Hence, when we discuss the dynamic properties of nonlinear 

systems, we cannot ignore the effect of these parameter nondeterminacy, because parameter 

indeterminacy will damage the synchronization, stability, or any other performances of the nonlinear 

system. Recently, the synchronization of neural network models with parameter nondeterminacy has 

received extensive attention from many scholars, such as Yang et al. [20] in 2018 considered the 

parameter nondeterminacy to study a kind of FO memristor-based complex-valued neural networks 

described below 

     (1.6) 

and several effective global asymptotically synchronization results of the neural networks system (1.6) 

are obtained. It is particularly worth mentioning that Wang et al. [21] researched the nonautonomous 

delayed neural networks with FO derivatives as described below in 2020 

  (1.7) 

Firstly, the authors obtained the analytical formula of the synchronous controller for the delayed 

neural networks (1.7) according to the new state control schemes and Mittag-Leffler function. 

Secondly, by improving some new analytical techniques, using delay differential inequalities and 

building appropriate Lyapunov functions, the authors achieved several sufficient conditions to ensure 

the global synchronization of the FO nonautonomous delayed neural networks (1.7). 

However, in the existing work, nonautonomous delayed FO neural networks (DFNNs) have 

rarely been discussed. Because of the fact that the self-inhibition rate and the connection weight 

between neurons in the neural networks should be a time-varying function, not a constant, the 

nonautonomous DFNNs can preferably simulate the interaction between neurons in the network 

system. Therefore, inspired by the existing work, the purpose of this article is to research the 

synchronization of a nonautonomous DFNNs with Caputo derivatives. By constructing the Lyapunov 

function, the asymptotic stability of zero solution for the error system is verified, and some sufficient 

conditions are achieved to ensure the global synchronization behaves well. The remainder of this 
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work is organized as follows. In Section 2, some definitions and lemmas are presented, and new 

neural networks are proposed. In Section 3, the global asymptotically synchronization controller is 

obtained, and some criteria ensuring the global asymptotically synchronization for the new neural 

networks are afforded. In Section 4, the feasibility of the obtained theoretical results is shown by 

some numerical simulations. In the last part, the conclusions are summarized. 

Remark 1: As we all know, there is no general rule in the design of the synchronization 

controller of the neural network, which brings difficulties and challenges to the design of the 

controller. An excellent controller should have two main characteristics: first, it is simple and easy to 

realize, and second, it has good robustness. The following is the summary of contributions and 

innovations of this article: (1) In order to preferably represent the interaction between neurons, new 

neural networks are proposed by introducing the variable-parameters into the known DFNNs. Our 

new model cover the autonomous DFNNs and FNNs with Caputo derivatives in the literature. (2) 

Utilizing the delayed FO differential inequalities and Razumikhin-type stability theorem of the 

delayed FO differential system, some sufficient conditions are achieved to ensure the global 

synchronization of studied neural networks. In particular, our synchronization control scheme has 

strong robustness to the above new model. (3) In contrast with the previous works in the 

literature [8,12,13,21], our controller is simpler and easier to implement. Secondly, our criterion for 

ensuring the synchronization of drive-response systems is easier to verify, which can provide more 

convenience for the application by using these results into DFNNs. 

2. Problem statement 

In this article, R is a real space, and mR is an m-dimensional Euclidean space. The norm  in mR is 

expressed as an arbitrary norm and N +
is a set of positive integers. Next, we will recommend several 

definitions and lemmas. 

Definition 1. [22,23] The fractional integral of the integrable function )(tx is defined as 

       (2.1) 

where 0tt  , order 0 . )( is a Gamma function, which is defined as 

1

0
( ) .te t dt
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− − =           (2.2) 

It is obvious that ( ) satisfies recursive relationship )( )1(  =+ . 

As above mentioned, the Caputo FO derivative has a more practical significance in the physical 

system and is more suitable for describing the actual system with the initial value than the 

Riemann-Liouville (R-L) FO derivative and the Grunwald-Letnikov (G-L) FO derivative. Thus in 

practical applications, the Caputo differential operation is more used than the R-L differential 

operation and the G-L differential operation. So, the definition of the Caputo FO derivative will also 

be used in this paper. 

Definition 2. [22,23] The Caputo FO derivative of function )),,0([)( RCtx n  is defined as 
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,1 nn −     (2.3) 

where represents the order of the derivative. 

In particular, when 10  , there is 
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Lemma 1. [22] For any constant ,, 21 cc  if 
0( ), ( ) ([ , ), ),w t u t C t R + ,0,0  

 then 

 

Lemma 2. [24] Set is a differentiable vector value function, is a symmetric 

positive definite real matrix, then we have the following inequalities 

      (2.5) 

where ],1,0[ 0ss  . 

Lemma 3. [25] If there is a continuously differentiable function RRRV n →: and two positive 

constants ,p q with qp  such that 

    (2.6) 

for 0tt  , then the differential system with Captuto derivative 

       (2.7) 

is globally asymptotically stable. 

In this article, a non-autonomous DFNNs with Caputo derivative are researched, and the 

systems are described as follows 
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where ,10  ,i N n+ represents the number of neurons, nT

n Rtxtxtx = ))(,),(()( 1 
 

represents a state variable of neuron at time t , represents the propagation delay of the neuron,

1( ) ( ( ), , ( ))T n

nx t x t x t R  − = − −  represents a state variable of neuron at time −t , 

1 1( ( )) ( ( ( )), , ( ( )))T

n nf x t f x t f x t= and
1 1( ( )) ( ( ( )), , ( ( ))) ,T

n ng x t g x t g x t n N +=  denote an excitation 

function of a neuron, )(tC denotes a self-joining weight matrix of a neuron, )(tA denotes an internal 

connection weight matrix when there is no time delay, )(tB denotes an internal connection weight 

matrix when there exists time delay, and T

nIIII ),,( 21 = denotes an external input vector. 

3. Synchronization of nonautonomous DFNNs 

In this section, the synchronization of the nonautonomous DFNNs with Caputo derivative are 

studied and several sufficient results are given. In this work, if we regard the system (2.8) as the 

driving system, the following is the corresponding response system 

  (3.1)

 

write as a vector representation 

   (3.2) 

here nT

n Rtytyty = ))(,),(()( 1  represents a state variable from the system (18), the representation 

of ),(),(),( tCtBtA ),(f )(g is consistent with the drive system (2.8), T
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represents the synchronous controller of the system. 

Set the error vector ,,,2,1 ),()()( nitxtyte iii =−= , then the expression of the error system 

can be obtained from the drive system (2.8) and response system (3.1) 
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Through analysis, it can be found that the global synchronization of drive-response system (2.8) 

and (3.1) is equivalent to the global asymptotic stability of the zero solution for error system (3.3). In 

this article, the activation function is a common Lipschitz continuous, and the following assumptions 

are necessary to prove the main conclusions of this paper. 

)( 1H  Suppose that there exist constants 0,0  ii hl , 1,2, , ,i n=  such that 
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2( )H  Suppose that
1 2( ) ( ( ), ( ), , ( ))nC t diag c t c t c t= , and each element in matrices )(),(),( tCtBtA  

is bounded function. 

Theorem 1. Assume that assumption )( 1H and
2( )H are satisfied, then the driving systems (2.8) and 

response system (3.1) are globally asymptotically synchronized under the controller as follow 

                      

(3.5) 

where
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here 1,2, , ,i n=  and R which satisfies 0 pq can be appropriately selected. 

Constructing the Lyapunov function 

          (3.8) 
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According to the trigonometric inequality, we can get 

     
(3.11) 

thus, from Eqs (3.10) and (3.11), it holds that 
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Moreover, for any given
0t t , there exists a [ ,0]  − such that 

         (3.13) 

From Eqs (3.12) and (3.13), we have 

     (3.14) 

Base on Lemma 3 and Eq (3.14), under the controller Eq (3.5) the zero solution of the error 

system (3.3) is globally asymptotically stable. That is to say, the drive system (2.8) and the response 

system (3.1) is globally asymptotically synchronized. This complete the proof of Theorem 1.  

4. Numerical experiment 

In this section, the effectiveness of results for FO delayed nonautonomous neural networks Eq (2.8) 

is shown by a numerical example. The numerical simulation of the instantiated system is carried out 

by MATLAB simulation software, and the simulation results are analyzed to verify the correctness of 

the above theoretical analysis and derivation. 
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Eq (2.8) are selected as 

 

Set the state variable at time t ,))(),(()( 21

Ttxtxtx =  the delay 1,0.0=  the derivative order , 87.0=

the external input vector
1 2 ( , ) (0,0) ,T TI I I= =  and the activation function vectors 

,)(
2

1
)(

2

1
)()(

22
 −+− tetetete iiii

0

sup ( ) ( ).
t

V t V t


 
−  

+ = +

0

( , ( )) ( , ( )) sup ( , ( )).D V t x t qV t x t p V t x t

 

 
−  

 − + + +

cos( ) 2 0
( ) ,

0 cos( ) 2

t
C t

t

+ 
=  

+ 

cos( ) cos( )
 ( ) ,

sin( ) 2cos( )

t t
A t

t t

− 
=  
 

sin( ) cos( )
( ) .

2sin( ) sin( )

t t
B t

t t

− − 
=  

− 



349 

Networks and Heterogeneous Media  Volume 18, Issue 1, 341–358. 

( ( )) ( ( ))g x t f x t= =
1 2(tanh( ( )), tanh( ( ))) .Tx t x t  Thus, the numerical simulation model of the drive 

system is as follows 

  (4.1) 

note that assumptions
1( )H and

2( )H are satisfied with (1,1)L H diag= = . Set the controller return 

matrix (7, 7)R diag= , thus, the state-feedback controller is designed as follows 

        (4.2) 

Therefore, the numerical simulation model of the response system is as follows 
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Figure 1. Evolution of the solutions for systems (4.1) and (4.3) with the initial values Eq (4.4). 

 

Figure 2. Synchronization errors of the systems (4.1) and (4.3) with the initial values Eq (4.4). 

To further verify that the drive-response systems (4.1) and (4.3) are globally asymptotically 

synchronized, different initial conditions, different fractional orders, and different time delays are 

selected respectively for simulation, which is shown in Figures 3–8. 

It can be found from Figures 3 and 4 that in the case of selecting different initial values, the 

curves of solutions for the drive-response systems (4.1) and (4.3) tend to be consistent, and the error 

curves of the solutions of the systems (4.1) and (4.3) tend to zero. From Figures 5 and 6, it is easy to 

see that in the case of selecting different fractional orders, the curves of solutions for the drive-response 

systems (4.1) and (4.3) tend to be consistent, and the error curves of the solutions of systems (4.1) 

and (4.3) tend to zero. It can also be seen from Figures 7 and 8, in the case of selecting different time 

delays, the curves of solutions for the drive-response systems (4.1) and (4.3) tend to be consistent, and 

the error curves of the solutions of the systems (4.1) and (4.3) tend to zero. 

In summary, when different initial conditions, different fractional orders, and different time 

delays are selected respectively for simulation, the error curves eventually tend to zero, which verifies that 

the drive system (4.1) is globally asymptotically synchronized with the response system (4.3), and the initial 

conditions, the fractional orders and time delays only change the synchronization time, but not the 

synchronization behavior of the drive-response systems (4.1) and (4.3). 
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Figure 3. Evolution of the solutions for systems (4.1) and (4.3) with the different initial values. 

 

Figure 4. Synchronization errors of the systems (4.1) and (4.3) with the different initial values. 

 

Figure 5. Evolution of the solutions for systems (4.1) and (4.3) with the different 

fractional orders 10  . 
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Figure 6. Synchronization errors of the systems (4.1) and (4.3) with the different 

fractional orders 10  . 

 

Figure 7. Evolution of solutions for the systems (4.1) and (4.3) with the different time delays. 

 

Figure 8. Synchronization errors of the systems (4.1) and (4.3) with the different time delays. 
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Figure 9. Evolution of the solutions for systems (4.1) and (4.3) with the different initial 

values based on the controller in reference [8]. 

 

Figure 10. Synchronization errors of the systems (4.1) and (4.3) with the different initial 

values based on the controller in reference [8]. 

 

Figure 11. Evolution of the solutions for systems (4.1) and (4.3) with the different 

fractional orders 10  based on the controller in reference [8]. 
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Figure 12. Synchronization errors of the systems (4.1) and (4.3) with the different 

fractional orders 10  based on the controller in reference [8]. 

 

Figure 13. Evolution of solutions for the systems (4.1) and (4.3) with the different time 

delays based on the controller in reference [8]. 

 

Figure 14. Synchronization errors of the systems (4.1) and (4.3) with the different time 

delays based on the controller in reference [8]. 
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Next, some comparison experiments are given to show the performances of the proposed 

methods in this paper. Figures 9–14 are the experiment results based on the controller in reference [8]. 

By comparing Figures 3–8 and Figures 9–14, we can clearly see that the synchronization time of the 

controller in this paper is less than that of the controller in reference [8]. In addition, Figures 15 and 16 

show the experimental results of the fractional derivatives with an order greater than 1 based on the 

controller in this paper. From the experimental results in Figures 15 and 16, it can be seen that when 

the derivative order is greater than 1, the drive-response system is not synchronized. 

 

Figure 15. Evolution of the solutions for systems (4.1) and (4.3) with the different 

fractional orders 1 based on the controller in this paper. 

 

Figure 16. Synchronization errors of the systems (4.1) and (4.3) with the different 

fractional orders 1 based on the controller in this paper. 

4. Conclusion 

In this article, a class of delayed nonautonomous FO neural networks with Caputo derivatives is 

considered and the global synchronization problem of the above system is studied. Firstly, new FO 

neural networks are proposed by introducing variable parameters into known models, and the 

analytical formula of the synchronous controller is given according to the new neural networks. 
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Secondly, from the drive-response systems corresponding to the above delayed FO neural networks, 

their error system is obtained. Thirdly, by constructing the Lyapunov function and utilizing the 

Razumikhin-type stability theorem, the asymptotic stability of zero solution for the error system is 

verified, and some sufficient conditions are achieved to ensure the global synchronization of studied 

neural networks. Finally, some numerical simulations are presented to show the availability and 

feasibility of our theoretical results. The theoretical results obtained in this article not only can 

effectively determine the synchronization of the new FO neural networks but also improve and 

extend some existing results [8,12,13,21]. 
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