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Abstract: This paper is concerned with the numerical approximations for the variable coefficient
fourth-order fractional sub-diffusion equations subject to the second Dirichlet boundary conditions. We
construct two effective difference schemes with second order accuracy in time by applying the second
order approximation to the time Caputo derivative and the sum-of-exponentials approximation. By
combining the discrete energy method and the mathematical induction method, the proposed methods
proved to be unconditional stable and convergent. In order to overcome the possible singularity of the
solution near the initial stage, a difference scheme based on non-uniform mesh is also given. Some
numerical experiments are carried out to support our theoretical results. The results indicate that the
our two main schemes has the almost same accuracy and the fast scheme can reduce the storage and
computational cost significantly.

Keywords: Caputo derivative; Second Dirichlet boundary condition; Variable coefficient;
Unconditionally stable; Convergence

1. Introduction

In this paper we consider the numerical approximations of the following problem

C
0 Dαt u(x, t) +

∂2

∂x2

(
ω(x)
∂2u(x, t)
∂x2

)
+ κu(x, t) = f (x, t), 0 < x < L, 0 < t ≤ T, (1.1)

u(x, 0) = φ(x), 0 < x < L, (1.2)
u(0, t) = α1(t), u(L, t) = α2(t), 0 ≤ t ≤ T, (1.3)
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∂2u(0, t)
∂x2 = β1(t),

∂2u(L, t)
∂x2 = β2(t), 0 ≤ t ≤ T, (1.4)

where κ ≥ 0 is given constant, φ(x), α1(t), α2(t), β1(t), β2(t) and f (x, t) are given sufficiently smooth
functions satisfying φ(0) = α1(0), φ(L) = α2(0), φ′′(0) = β1(0) and φ′′(L) = β2(0), C

0 Dαt u(x, t) denotes
Caputo fractional derivative defined by

C
0 Dαt u(x, t) =

1
Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

1
(t − s)α

ds, 0 < α < 1.

And we suppose that there exist two constants C1 and C2 such that 0 < C1 ≤ ω(x) ≤ C2 for 0 ≤ x ≤ L.
More and more attention has been paid to the fractional differential equations (FDEs) due to its

application foreground in chemistry, physics, finance and hydrology in the past twenty years [1–4]. As
we know, the analytic solutions of FDEs are very difficult to obtain, some efficient numerical methods
should be considered, especially fast algorithms with high order accuracy. Some essential definitions
and properties of fractional derivatives can refer to monograph [5].

This target problem in Eq (1.1) is frequently employed to simulate some phenomena in physics,
such as wave propagation in beams, brain warping, ice formation and designing special curves on
surfaces and so on, e.g., [6–11] and their references.

Up to now considerable works have been done from theoretical and numerical point of view for
fourth-order fractional diffusion equations. For instance, Hu and Zhang successively presented a finite
difference scheme for the fourth-order fractional diffusion-wave and sub-diffusion equations, and a
compact difference scheme for the former, see [12, 13]. Ji et al. [14] constructed a compact difference
scheme for the fourth-order fractional sub-diffusion equation under the fist Dirichlet boundary
conditions. Zhang and Pu [15] presented a compact difference scheme for such equation by L2 − 1σ
formula [16]. Ran and Zhang [17] presented a new compact difference schemes for the such equation
of the distributed order.

However, most of the work focus on the constant coefficient case. Recently, Zhao and Xu [18]
presented a compact difference scheme for the time fractional sub-diffusion equation with the variable
coefficient under the Dirichlet boundary conditions. Subsequently, based on the subtle decomposition
of the coefficient matrices, Vong, Lyu and Wang [19] presented a compact difference scheme to solve
the equations under Neumann boundary conditions. But the above works has only accuracy of order
2 − α in time.

In this paper, our attention will be paid on the higher order difference scheme for solving the variable
coefficient equations under the second Dirichlet boundary conditions For this purpose, we use the
L2−1σ formula to approximate the Caputo fractional derivative. Unlike the integer order case, the time
fractional derivative requires all history information. In order to reduce the computational complexity,
we also construct a fast difference scheme. The stability and convergence of both schemes are proved
in detail.

The structure of this paper is as follows: In Section 2, some necessary notations and lemmas are
first introduced and a second-order difference scheme for the target problem (1.1)–(1.4) is
constructed. In Section 3, an important priori estimate is first proved, and the unconditional stability
and convergence of scheme are obtained. In Section 4, a fast second-order difference scheme is
presented, and the corresponding unconditional stability and convergence are also strictly proved. In
Section 5, a difference scheme based on nonuniform time grids is first presented, and some numerical
examples are provided to verify the theoretical results. A brief conclusion is given finally.
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2. Derivation of the L2 − 1σ scheme

Let h = L/M and τ = T/N, where M, N are two positive integers. Denote xi = ih, 0 ≤ i ≤ M, tn =

nτ, 0 ≤ n ≤ N,Ωh = {xi | 0 ≤ i ≤ M}, Ωτ = {tn | 0 ≤ n ≤ N}. LetVh = {v | v = (v0, v1, · · · , vM)} be grid
function space on Ωh, and V̊h = {v | v ∈ Vh, v0 = vM = 0}. Also we denote σ = 1 − α2 , tn+σ = (n + σ)τ
and ω(xi) = ωi.

For u ∈ Vh, we define

δxui+ 1
2
=

1
h

(ui+1 − ui), δ2
xui =

1
h2 (ui+1 − 2ui + ui−1).

For any u, v ∈ V̊h, we define the inner products

(u, v) = h
M−1∑
i=1

uivi, (δxu, δxv) = h
M−1∑
i=0

(δxui+ 1
2
)(δxvi+ 1

2
), (u, v)ω = h

M−1∑
i=1

uiviωi,

and norms

∥u∥ =
√

(u, u), ∥u∥ω =
√

(u, u)ω, ∥δxu∥ =
√

(δxu, δxu), (δ2
xu, δ

2
xv) = h

M−1∑
i=1

δ2
xuiδ

2
xvi.

In [16], Alikhanov developed a new second order difference formula (called L2 − 1σ formula) for
the Caputo fractional derivative, which can be expressed in the following lemma.

Lemma 2.1 ( [16]). Suppose α ∈ (0, 1), σ = 1 − α2 and u(t) ∈ C3[0,T ]. It holds

| C
0 Dαt u(t)|t=tn−1+σ − Dατ,σun |= O(τ3−α),

where

Dατ,σun =
τ−α

Γ(2 − α)

[
C(n)

0 un −

n−1∑
j=1

(C(n)
n− j−1 −C(n)

n− j)u
j −C(n)

n−1u0
]
,

in which C(n)
0 = a0 = σ

1−α for n = 1, and

C(n)
k =


a0 + b1, k = 0,
ak + bk+1 − bk, 1 ≤ k ≤ n − 2,
ak − bk, k = n − 1

for n ≥ 2, where a j = ( j + σ)1−α − ( j − 1 + σ)1−α and
b j =

1
2−α [( j + σ)2−α − ( j − 1 + σ)2−α] − 1

2 [( j + σ)1−α + ( j − 1 + σ)1−α] for all j ≥ 1.

Let v(x, t) = ∂
2u
∂x2 . Then the problem Eqs (1.1)–(1.4) can be written in the equivalent system

C
0 Dαt u(x, t) +

∂2

∂x2 (ω(x)v(x, t)) + κu(x, t) = f (x, t), 0 < x < L, 0 < t ≤ T, (2.1)
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v(x, t) =
∂2u(x, t)
∂x2 , 0 < x < L, 0 < t ≤ T, (2.2)

u(x, 0) = φ(x), 0 < x < L, (2.3)
u(0, t) = α1(t), u(L, t) = α2(t), v(0, t) = β1(t), v(L, t) = β2(t), 0 ≤ t ≤ T. (2.4)

Suppose u(x, t) ∈ C(6,3)
x,t ([0, L] × [0,T ]). Define

Un
i = u(xi, tn), Vn

i = v(xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Considering the Eqs.(2.1)–(2.2) at the point (xi, tn−1+σ), we obtain

C
0 Dαt u(xi, tn−1+σ) +

∂2

∂x2 (ω(xi)v(xi, tn−1+σ)) + κu(xi, tn−1+σ) = f (xi, tn−1+σ), (2.5)

v(xi, tn−1+σ) =
∂2u(xi, tn−1+σ)

∂x2 . (2.6)

Using Taylor expansion

u(xi, tn−1+σ) = σUn
i + (1 − σ)Un−1

i + O(τ2) = Un−1+σ
i + O(τ2),

where Un−1+σ
i = σUn

i + (1 − σ)Un−1
i . Then we obtain

∂2u(xi, tn−1+σ)
∂x2 = δ2

xU
n−1+σ
i + O(τ2 + h2),

and

∂2

∂x2 (ω(xi)v(xi, tn−1+σ)) = δ2
x(ωiVn−1+σ

i ) + O(τ2 + h2).

Using Lemma 2.1, it follows from Eq (2.5), Eq (2.6) that

Dατ,σUn
i + δ

2
x(ωiVn−1+σ

i ) + κUn−1+σ
i = f n−1+σ

i + (R1)n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.7)

Vn−1+σ
i = δ2

xU
n−1+σ
i + (R2)n

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.8)

and there exists a constant Cr such that

| (R1)n
i | + | (R2)n

i |≤ Cr(τ2 + h2), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (2.9)

Omitting the small terms (R1)n
i and (R2)n

i in Eq (2.7) and Eq (2.8), we present the difference scheme
(called L2 − 1σ scheme) for the equivalent system (2.1)–(2.4) as follows

Dατ,σun
i + δ

2
x(ωivn−1+σ

i ) + κun−1+σ
i = f n−1+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.10)
vn−1+σ

i = δ2
xu

n−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (2.11)

u0
i = φ(xi), 0 ≤ i ≤ M, (2.12)

un
0 = α1(tn), un

M = α2(tn), vn
0 = β1(tn), vn

M = β2(tn), 1 ≤ n ≤ N, (2.13)

where the initial-boundary conditions Eq (2.3), Eq (2.4) have been used.

Networks and Heterogeneous Media Volume 18, Issue 1, 291–309.
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Theorem 2.2. The above difference scheme (2.10)–(2.13) is equivalent to

kun−1+σ
1 + Dατ,σun

1 +
1
h2 (ω0β1(tn−1+σ) + ω2δ

2
xu

n−1+σ
2 − 2ω1δ

2
xu

n−1+σ
1 ) = f n−1+σ

1 , (2.14)

Dατ,σun
i + δ

2
x(ωiδ

2
xu

n−1+σ
i ) + kun−1+σ

i = f n−1+σ
i , 2 ≤ i ≤ M − 2, (2.15)

kun−1+σ
M−1 + Dατ,σun

M−1 +
1
h2 (ωMβ2(tn−1+σ) + ωM−2δ

2
xu

n−1+σ
M−2 − 2ωM−1δ

2
xu

n−1+σ
M−1 ) = f n−1+σ

M−1 , (2.16)

u0
i = φ(xi), 0 ≤ i ≤ M, (2.17)

u0 = α1(tn), un
M = α2(tn). (2.18)

Proof. Since

δ2
xω1vn−1+σ

1 =
1
h2 (ω0vn−1+σ

0 − 2ω1vn−1+σ
1 + ω2vn−1+σ

2 ),

δ2
xωM−1vn−1+σ

M−1 =
1
h2 (ωMvn−1+σ

M − 2ωM−1vn−1+σ
M−1 + ωM−2vn−1+σ

M−2 ).

It follows from Eq (2.11) and Eq (2.13) that

δ2
xω1vn−1+σ

1 =
1
h2 (ω0β1(tn−1+σ) − 2ω1δ

2
xu

n−1+σ
1 + ω2δ

2
xu

n−1+σ
2 ),

δ2
xωM−1vn−1+σ

M−1 =
1
h2 (ωMβ2(tn−1+σ) − 2ωM−1δ

2
xu

n−1+σ
M−1 + ωM−2δ

2
xu

n−1+σ
M−2 ).

This together with Eq (2.10), we get Eq (2.14) and Eq (2.16). Eq (2.15) can be obtained by substituting
Eq (2.11) into Eq (2.10). This proof is completed. □

The above equivalent form Eqs (2.14)–(2.18) will be used only in calculation.

3. Solvability, stability and convergence of the L2 − 1σ scheme

We first introduce the following essential lemmas.

Lemma 3.1 ( [16]). Suppose α ∈ (0, 1) and C(n)
k is defined in Lemma 2.1. It holds that

C(n)
0 > C(n)

1 > C(n)
2 > · · · > C(n)

n−2 > C(n)
n−1, and C(n)

k >
1 − α

2
(k + σ)−α.

Lemma 3.2 ( [16]). Suppose u = {un | 0 ≤ n ≤ N} is a grid function defined on Ωτ. It holds that

(σun + (1 − σ)un−1)Dατ,σun ≥
1
2

Dατ,σ(un)2.

Lemma 3.3 ( [20, 21]). For any u ∈ V̊h, it holds that

∥u∥ ≤
L
√

6
∥δxu∥, ∥δxu∥ ≤

L
√

6
∥δ2

xu∥.

The following Lemma will be used in the analysis of the difference scheme.
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Lemma 3.4. For any u ∈ V̊h, it holds that

C1∥u∥2 ≤ ∥u∥2ω ≤ C2∥u∥2, C1∥δ
2
xu∥

2 ≤ ∥δ2
xu∥

2
ω ≤ C2∥δ

2
xu∥

2.

Proof. The proof is straightforward from the definition of || · || and || · ||ω. □

We next show the priori estimate of the scheme (2.10)–(2.13).

Theorem 3.5. Suppose {wn
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} and {zn

i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} satisfy the
following difference scheme

Dατ,σwn
i + δ

2
x(ωizn−1+σ

i ) + κwn−1+σ
i = pn−1+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.1)
zn−1+σ

i = δ2
xw

n−1+σ
i + qn−1+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.2)
wn

i = φ(xi), 0 ≤ i ≤ M, (3.3)
wn

0 = 0,wn
M = 0, zn

0 = 0, zn
M = 0, 1 ≤ n ≤ N. (3.4)

Then, it holds that

∥wn∥2 ≤ ∥w0∥2 + 2TαΓ(1 − α)(
L4

18C1
max
1≤n≤N

∥pn−1+σ∥2 + 2C2 max
1≤n≤N

∥qn−1+σ∥2). (3.5)

Proof. Taking the inner product of Eq (3.1) by wn−1+σ, we get

(Dατ,σwn,wn−1+σ) + (δ2
x(ωzn−1+σ),wn−1+σ) + κ∥wn−1+σ∥2 = (pn−1+σ,wn−1+σ). (3.6)

Taking the inner product of Eq (3.2) by ωzn−1+σ, we get

(zn−1+σ, ωzn−1+σ) = (δ2
xw

n−1+σ, ωzn−1+σ) + (qn−1+σ, ωzn−1+σ). (3.7)

From Eq (3.6) and Eq (3.7), it yields that

(Dατ,σwn,wn−1+σ) + (δ2
x(ωzn−1+σ),wn−1+σ) + κ∥wn−1+σ∥2 + (zn−1+σ, ωzn−1+σ)

= (pn−1+σ,wn−1+σ) + (δ2
xw

n−1+σ, ωzn−1+σ) + (qn−1+σ, ωzn−1+σ). (3.8)

Applying the discrete Green formula gives that

(δ2
x(ωzn−1+σ),wn−1+σ) = −(δx(ωzn−1+σ), δxwn−1+σ) = (δ2

xw
n−1+σ, ωzn−1+σ). (3.9)

Substituting Eq (3.9) into Eq (3.8), we obtain

(Dατ,σwn,wn−1+σ) + κ∥wn−1+σ∥2 + ∥zn−1+σ∥2ω = (pn−1+σ,wn−1+σ) + (qn−1+σ, zn−1+σ)ω. (3.10)

From Eq (3.2), we have

(zn−1+σ
i )2 = (δ2

xw
n−1+σ
i + qn−1+σ

i )2. (3.11)

Multiplying Eq (3.11) by hωi and summing up for i from 1 to M − 1, we get

||zn−1+σ||2ω = ||δ
2
xw

n−1+σ||2ω + 2(δ2
xw

n−1+σ, qn−1+σ)ω + ||qn−1+σ||2ω. (3.12)
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Substituting Eq (3.12) into Eq (3.10), we obtain

(Dατ,σwn,wn−1+σ) +
1
2
∥zn−1+σ∥2ω +

1
2
∥δ2

xw
n−1+σ∥2ω +

1
2
∥qn−1+σ∥2ω + κ∥w

n−1+σ∥2

= (pn−1+σ,wn−1+σ) + (qn−1+σ, zn−1+σ)ω − (δ2
xw

n−1+σ, qn−1+σ)ω. (3.13)

Using Cauchy-Schwarz inequality, we have

−(δ2
xw

n−1+σ, qn−1+σ)ω ≤
1
4
∥δ2

xw
n−1+σ∥2ω + ∥q

n−1+σ∥2ω, (3.14)

and

(qn−1+σ, zn−1+σ)ω ≤
1
2
∥zn−1+σ∥2ω +

1
2
∥qn−1+σ∥2ω, (3.15)

From Eq (3.14), Eq (3.15) and Eq (3.13), we obtain

(Dατ,σwn,wn−1+σ) +
1
4
∥δ2

xw
n−1+σ∥2ω ≤ (pn−1+σ,wn−1+σ) + ∥qn−1+σ∥2ω. (3.16)

Based on Lemma 3.3 and Lemma 3.4, we have

∥w∥2 ≤
L4

36C1
∥δ2

xw∥
2
ω, ∥q

n−1+σ∥2ω ≤ C2∥qn−1+σ∥2. (3.17)

Applying Cauchy inequality, we get

(pn−1+σ,wn−1+σ) ≤
9C1

L4 ∥w
n−1+σ∥2 +

L4

36C1
∥pn−1+σ∥2 ≤

1
4
∥δ2

xw
n−1+σ∥2ω +

L4

36C1
∥pn−1+σ∥2. (3.18)

Substituting Eq (3.18) into Eq (3.16) yields that

Dατ,σ∥w
n∥2 ≤

L4

18C1
∥pn−1+σ∥2 + 2C2∥qn−1+σ∥2.

where Lemma 3.2 has been used. That is,

C(n)
0 ∥w

n∥2 ≤

n−1∑
k=1

(C(n)
n−k−1 −C(n)

n−k)∥w
k∥2 +C(n)

n−1∥w
0∥2 + µ

( L4

18C1
∥pn−1+σ∥2 + 2C2∥qn−1+σ∥2

)
, (3.19)

where µ = Γ(2 − α)τα. According to Lemma 3.1, we have

C(n)
n−1 >

1 − α
2

(n − 1 −
α

2
)−α >

1 − α
2

(n −
α

2
)−α, 1 ≤ n ≤ N,

and

µ = ταΓ(2 − α) = TαN−αΓ(1 − α)(1 − α) < Tα(n −
α

2
)−αΓ(1 − α)(1 − α) < 2C(n)

n−1TαΓ(1 − α). (3.20)
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Substituting Eq (3.20) into Eq (3.19) gives that

C(n)
0 ∥w

n∥2 ≤

n−1∑
k=1

(C(n)
n−k−1 −C(n)

n−k)∥w
k∥2 +C(n)

n−1

[
∥w0∥2 + 2TαΓ(1 − α)(

L4

18C1
∥pn−1+σ∥2 + 2C2∥qn−1+σ∥2)

]
.

Denote

J = ∥w0∥2 + 2TαΓ(1 − α)
( L4

18C1
max
1≤n≤N

∥pn−1+σ∥2 + 2C2 max
1≤n≤N

∥qn−1+σ∥2
)
.

Now, we prove by the mathematical induction method that

∥wn∥2 ≤ J. (3.21)

It holds obviously when n = 0. Assuming Eq (3.21) is valid for n = 1, 2, · · · ,m − 1, then we have

C(m)
0 ∥w

m∥2 ≤

m−1∑
k=1

(C(m)
m−k−1 −C(m)

m−k)∥w
k∥2 +C(m)

m−1J ≤
m−1∑
k=1

(C(m)
m−k−1 −C(m)

m−k)J +C(m)
m−1J = C(m)

0 J.

This proof is completed. □

Applying the Theorem 3.5, we can immediately obtain the stability result.

Theorem 3.6 (Stability). The difference scheme (2.10)–(2.13) is unconditionally stable with respect to
the initial value φ and the source term f .

Similarly, from Theorem 3.5, we can easily prove the solvability of the proposed scheme.

Theorem 3.7 (Solvability). The difference scheme (2.10)–(2.13) is uniquely solvable.

Proof. It suffices to prove the homogeneous linear system

Dατ,σun
i + δ

2
x(ωivn−1+σ

i ) + κun−1+σ
i = 0, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

vn−1+σ
i = δ2

xu
n−1+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

u0
i = 0, 0 ≤ i ≤ M,

un
0 = un

M = 0, vn
0 = vn

M = 0, 1 ≤ n ≤ N,

has only a trivial solution. Applying Theorem 3.5, we have ||un||2 ≤ ||u0||2 = 0. So un
i ≡ 0 for 0 ≤ i ≤ M,

which completes the proof. □

Next, we focus on the convergence of the difference scheme (2.10)–(2.13). Denote

en
i = u(xi, tn) − un

i , ẽn
i = v(xi, tn) − vn

i , 0 ≤ n ≤ N, 0 ≤ i ≤ M.

Theorem 3.8 (Convergence). Assume that u(x, t) ∈ C6,3
x,t ([0, L] × [0,T ]) and {un

i } are solution of the
problem (1.1)–(1.4) and the difference scheme Eqs (2.10)–(2.13) respectively. Then there exists a
positive constant C such that

||en|| ≤ C(τ2 + h2), 0 ≤ n ≤ N. (3.22)
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Proof. From Eq (2.7), Eq (2.8) and Eqs (2.10)–(2.13), we have the error equations as

Dατ,σen
i + δ

2
x(ωẽn−1+σ)i + κen−1+σ

i = (R1)n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

ẽn−1+σ
i = δ2

xe
n−1+σ
i + (R2)n

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

e0
i = 0, 0 ≤ i ≤ M,

en
0 = 0, en

M = 0, ẽn
0 = 0, ẽn

M = 0, 1 ≤ n ≤ N.

Applying Theorem 3.5, we get

∥en∥2 ≤ 2TαΓ(1 − α)
( L4

18C1
max
1≤n≤N

∥Rn
1∥

2 + 2C2 max
1≤n≤N

∥Rn
2∥

2
)
, 1 ≤ n ≤ N.

Noticing Eq (2.9), we get

∥en∥2 ≤ 2TαΓ(1 − α)(
L4

18C1
+ 2C2)Cr

2(τ2 + h2)2, 1 ≤ n ≤ N,

which shows that Eq (3.22) is valid with

C = Cr

√
2TαΓ(1 − α)(

L4

18C1
+ 2C2).

This proof is completed. □

4. The FL2 − 1σ scheme

Although theL2−1σ scheme (2.10)–(2.13) has accuracy of second order in time, it is not conducive
to calculation due to it needs all history data to get the solution at current time point. Also, here we
present a fast scheme by applying the sum-of-exponentials approximation to the kernel function t−α.

The sum-of-exponentials approximation reads as:

Lemma 4.1 ( [22]). For the given α ∈ (0, 1), tolerance error ε, cut-off time step size τ̃ and final time
T , there are one positive integer Nexp, positive points s j and corresponding positive weights w j( j =
1, 2, · · · ,Nexp) satisfying

| t−α −
Nexp∑
j=1

w je−s jt |≤ ε, ∀ t ϵ [τ̃,T ],

and the number of exponentials needed is of the order

Nexp = O(log(
1
ε

(log log
1
ε
+ log

T
τ̃
+ log

1
τ̃

(log log
1
ε
+ log

T
τ̃

)).

The fast evaluation of Caputo derivative, FL2 − 1σ formula, is given as follows:

FDαt un+σ =

Nexp∑
j=1

w̃ jṼn
j + λa0(un+1 − un), (4.1)
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where λ = τ−α

Γ(2−α) , w̃ j =
1

Γ(1−α)w j, and Ṽn
j can be got form the following recursive relation

Ṽn
j = e−s jτṼn−1

j + A j(un − un−1) + B j(un+1 − un), j = 1, 2, · · · ,Nexp, n = 1, 2, · · · , (4.2)

with Ṽ0
j = 0, ( j = 1, 2, · · · ,Nexp) and

A j =
(2 + τs j)eτs j − (2 + 3τs j)

2(τs j)2e(τs j(σ+1)) , B j =
(τs j − 2)eτs j + (2 + τs j)

2(τs j)2e(τs j(σ+1)) , j ≥ 1.

The recursive relation (4.2) shows that theFL2−1σ formula reduces significantly the computational
complexity. Noticing that Eq (4.2) can be equivalently rewritten as the following summation form

Ṽn
j =e−(n−1)τs j A j(u1 − u0) +

n−1∑
i=1

(e−(n−i−1)τs j A j + e−(n−i)τs j B j)(ui+1 − ui) + B j(un+1 − un),

thus we have

FDαt un+σ =

n∑
k=0

F g(n+1,α)
k (uk+1 − uk), (4.3)

in which F g(1,α)
0 = λa0, and for n ≥ 1,

F g(n+1,α)
k =



Nexp∑
j=1

w̃ je−(n−1)s jτA j, k = 0,

Nexp∑
j=1

w̃ j(e−(n−k−1)s jτA j + e−(n−k)s jτB j), 1 ≤ k ≤ n − 1,

Nexp∑
j=1

w̃ jB j + λa0, k = n.

(4.4)

The equivalent expression (4.3) is more applicable in stability and convergence analysis.
With respect to the FL2 − 1σ formula, we have the following some results.

Lemma 4.2 ( [22]). For any α ∈ (0, 1), and u(t) ∈ C3[0,T ], it holds that

| C
0 Dαt u(t)|t=tn+σ −

FDαt un+σ |= O(τ3−α + ε).

Lemma 4.3 ( [22]). Suppose α ∈ (0, 1), F g(n+1,α)
k is defined by Eq (4.4), then it holds that

F g(n+1,α)
n > F g(n+1,α)

n−1 > · · · > F g(n+1,α)
0 ⩾ FC > 0, (2σ − 1)F g(n+1,α)

n − σF g(n+1,α)
n−1 ⩾ 0.

Lemma 4.4 ( [22]). Suppose u = {un | 0 ≤ n ≤ N − 1} is a grid function defined on Ωτ, then it holds
that

(σun+1 + (1 − σ)un)FDαt un+σ ≥
1
2
FDαt (un+σ)2.
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Similar to the derivation of the L2− 1σ scheme (2.10)–(2.13), it follows from Eq (2.1), Eq (2.2) we
have

FDαt Un+σ
i + δ2

x(ωiVn+σ
i ) + κUn+σ

i = f n+σ
i + F (R1)n

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.5)

Vn+σ
i = δ2

xU
n+σ
i + F (R2)n

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.6)

and there exists a constant FCr such that

| F (R1)n
i | + |

F (R2)n
i |≤

FCr(τ2 + h2 + ε), 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1. (4.7)

Omitting the small terms F (R1)n
i and F (R2)n

i in Eq (4.5) and Eq (4.6), from the boundary and initial
conditions (2.3)–(2.4), we obtain the FL2 − 1σ scheme for the problem (2.1)–(2.4) as follows

FDαt un+σ
i + δ2

x(ωivn+σ
i ) + κun+σ

i = f n+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.8)

vn+σ
i = δ2

xu
n+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.9)

u0
i = φ(xi), 0 ≤ i ≤ M, (4.10)

un
0 = α1(tn), un

M = α2(tn), vn
0 = β1(tn), vn

M = β2(tn), 1 ≤ n ≤ N. (4.11)

Next, we focus on the solvability, stability and convergence of the FL2 − 1σ scheme.
Before the discussion, we first prove the following priori estimate.

Theorem 4.5. Suppose {wn
i , z

n
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} satisfy the difference scheme

FDαt wn+σ
i + δ2

x(ωizn+σ
i ) + κwn+σ

i = pn+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.12)

zn+σ
i = δ2

xw
n+σ
i + qn+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (4.13)
wn

i = φ(xi), 0 ≤ i ≤ M, (4.14)
wn

0 = 0,wn
M = 0, zn

0 = 0, zn
M = 0, 1 ≤ n ≤ N. (4.15)

Then, we have

∥wn∥2 ≤ ∥w0∥2 +
1
FC

(
L4

18C1
max
1≤n≤N

∥pn−1+σ∥2 + 2C2 max
1≤n≤N

∥qn−1+σ∥2). (4.16)

Proof. Similar to the proof of the Theorem 3.5, we can obtain from Eq (4.12) and Eq (4.13) that

FDαt ∥w
n+σ∥2 ≤

L4

18C1
∥pn+σ∥2 + 2C2∥qn+σ∥2.

Noticing that

FDαt ||w
n+σ||2 = F g(n+1,α)

n ||wn+1||2 −

n∑
k=1

(F g(n+1,α)
k − F g(n+1,α)

k−1 )||wk||2 − F g(n+1,α)
0 ||w0||2, (4.17)

we get

F g(n+1,α)
n ∥wn+1∥2≤

n∑
k=1

(F g(n+1,α)
k −F g(n+1,α)

k−1 )∥wk∥2 + F g(n+1,α)
0 ∥w0∥2+(

L4

18C1
∥pn+σ∥2+2C2∥qn+σ∥2). (4.18)
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From Lemma 4.4, we can further obtain

F g(n+1,α)
n ∥wn+1∥2≤

n∑
k=1

(F g(n+1,α)
k −F g(n+1,α)

k−1 )∥wk∥2+F g(n+1,α)
0

[
∥w0∥2+

1
FC

(
L4

18C1
∥pn+σ∥2+2C2∥qn+σ∥2)

]
.

Denote

G = ∥w0∥2 +
1
FC

(
L4

18C1
max
1≤n≤N

∥pn+σ∥2 + 2C2 max
1≤n≤N

∥qn+σ∥2).

Now, we prove by the mathematical induction that

∥wn∥2 ≤ G. (4.19)

It holds obviously when n = 0. Assuming Eq (4.19) is valid for n = 1, 2, · · · ,m − 1, then we have

F g(m+1,α)
m ∥wm+1∥2 ≤

m∑
k=1

(F g(m+1,α)
k − F g(m+1,α)

k−1 )∥wk∥2 + F g(m+1,α)
0 G

≤

m∑
k=1

(F g(m+1,α)
k − F g(m+1,α)

k−1 )G + F g(m+1,α)
0 G = F g(m+1,α)

m G.

This proof is completed. □

Based on Theorem 4.5, we can obtain the following stability theorems.

Theorem 4.6 (Stability). The FL2 − 1σ scheme Eqs (4.8)–(4.11) is uniquely solvable, and
unconditionally stable with respect to the initial value φ and the source term f .

Theorem 4.7 (Convergence). Assume that u(x, t) ∈ C6,3
x,t ([0, L] × [0,T ]) and {un

i } are solutions of the
problem (1.1)–(1.4) and the FL2 − 1σ scheme (4.8)–(4.11), respectively. Then there exists a positive
constant C such that

||en|| ≤ C(τ2 + h2 + ε), 0 ≤ n ≤ N. (4.20)

Proof. From Eq (2.7), Eq (2.8) and Eqs (4.8)–(4.11), we have the error equations as
FDαt en+σ

i + δ2
x(ωẽn+σ)i + κen+σ

i = (R1)n
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,

ẽn+σ
i = δ2

xe
n+σ
i + (R2)n

i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,
e0

i = 0, 0 ≤ i ≤ M,

en
0 = 0, en

M = 0, ẽn
0 = 0, ẽn

M = 0, 1 ≤ n ≤ N.

Applying Theorem 4.5, we get

∥en∥2 ≤
1
FC

(
L4

18C1
max
1≤n≤N

∥FRn
1∥

2 + 2C2 max
1≤n≤N

∥FRn
2∥

2), 1 ≤ n ≤ N.

Noticing Eq (4.7), we get

∥en∥2 ≤
1
FC

(
L4

18C1
+ 2C2)FC

2
(τ2 + h2)2, 1 ≤ n ≤ N,

which shows that Eq (4.20) is valid with C = FC
√

1
FC ( L4

18C1
+ 2C2). □
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5. Numerical experiments

5.1. The nonuniform L1 approximation

It should be pointed out that the proposed difference schemes are based on assumptions that the
solution of problem is sufficiently smooth. But the singularity of the time fractional derivative may lead
to weak singularity near the initial time which may influence the accuracy of numerical method. Thus,
in order to overcome the possible singularity of the solution near t = 0, some related techniques have
been developed, such as the initial correction techniques, non-uniform discretization and so on [23–26].
Because of this, a analogously scheme for the problem (1.1)–(1.4) based on the uniform mesh in space
and graded mesh in time is first given as follows:

∆αNun
i + δ

2
x(ωivn

i ) + κun
i = f n

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (5.1)
vn

i = δ
2
xu

n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (5.2)

u0
i = φ(xi), 0 ≤ i ≤ M, (5.3)

un
0 = α1(tn), un

M = α2(tn), vn
0 = β1(tn), vn

M = β2(tn), 1 ≤ n ≤ N, (5.4)

where

∆αNun
i =

dn,1

Γ(2 − α)
un

i −
dn,n

Γ(2 − α)
un

0 +
1

Γ(2 − α)

n−1∑
k=1

un−k
i (dn,k+1 − dn,k), (5.5)

and

dn,k =
(tn − tn−k)1−α − (tn − tn−k+1)1−α

τn−k+1
, (5.6)

with xi = ih, tn = (n/N)rT, τn = tn − tn−1, where the constant mesh grading exponent r ≥ 1. It should be
noted that the graded mesh will be simplified to a uniform grid when r = 1.

5.2. Numerical results

In this subsection, we rely on two numerical examples to verify the availability of the proposed
methods.

Let

E(h, τ) = max
1≤n≤N

||un − Un||2, Ord = log2

(E(2h, 2τ)
E(h, τ)

)
.

Example 5.1. First, we consider the following problem

C
0 Dαt u(x, t) +

∂2

∂x2

(
ω(x)
∂2u(x, t)
∂x2

)
+ u(x, t) = f (x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = cos(πx), 0 < x < 1,
u(0, t) = t3+α + 1, u(1, t) = −(t3+α + 1), 0 ≤ t ≤ 1,

∂2u(0, t)
∂x2 = −π2(t3+α + 1),

∂2u(1, t)
∂x2 = π2(t3+α + 1), 0 ≤ t ≤ 1,

where ω(x) = x2 + 1 and f (x, t) = cos(πx)Γ(4+α)
6 t3 + (t3+α + 1)

[
cos(πx) − 2π2 cos(πx) + 4xπ3 sin(πx) +

(x2 + 1)π4 cos(πx)
]
.
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It is not difficult to verify that the exact solutions of the problems 5.1 is u(x, t) = cos(πx)(t3+α + 1),
which satisfies the smoothness requirement in Theorems 3.8 and 4.7.

The numerical accuracy of both schemes are tested with respect to α = 0.25, 0.5, 0.75, respectively.
In calculation, we take ε = 10−13, which is much less than τ2. The errors and convergence orders of the
suggested two schemes are showed in Table 1. We can observe that the values of Ord are always close
to 2, which means that the L2−1σ scheme and the FL2−1σ scheme have second order accuracy both
in space and time for different α ∈ (0, 1). Table 2 lists the convergence orders of both schemes when
τ = h and CPU time with α =0.5. Obviously, the FL2 − 1σ scheme is faster than the L2 − 1σ scheme,
especially for small τ.

Table 1. The errors and convergence orders for Example 5.1.

FL2 − 1σ scheme L2 − 1σ scheme
α h = τ Nexp E(h, τ) Ord E(h, τ) Ord
0.25 1/10 39 1.0510e-02 —— 1.0510e-02 ——

1/20 42 2.5986e-03 2.0160 2.5986e-03 2.0160
1/40 46 6.4786e-04 2.0040 6.4786e-04 2.0040
1/80 49 1.6185e-04 2.0010 1.6185e-04 2.0010

1/160 53 4.0456e-05 2.0002 4.0456e-05 2.0002
0.5 1/10 39 1.0500e-02 —— 1.0500e-02 ——

1/20 42 2.5959e-03 2.0161 2.5959e-03 2.0161
1/40 46 6.4719e-04 2.0040 6.4719e-04 2.0040
1/80 49 1.6169e-04 2.0010 1.6169e-04 2.0010

1/160 53 4.0416e-05 2.0002 4.0416e-05 2.0002
0.75 1/10 39 1.0472e-02 —— 1.0472e-02 ——

1/20 43 2.5911e-03 2.0149 2.5911e-03 2.0149
1/40 46 6.4598e-04 2.0040 6.4598e-04 2.0040
1/80 50 1.6139e-04 2.0009 1.6139e-04 2.0009

1/160 53 4.0340e-05 2.0003 4.0340e-05 2.0003

Table 2. The errors and convergence orders for Example 5.1 when α = 0.5 .

FL2 − 1σ scheme L2 − 1σ scheme
h = τ Nexp E(h, τ) Ord CPU(s) E(h, τ) Ord CPU(s)
1/250 55 1.6549e-05 —— 4.25 1.6551e-05 —— 49.93
1/500 58 4.1136e-06 2.0083 17.91 4.0771e-06 2.0213 208.36
1/1000 62 1.0772e-06 1.9331 91.50 1.0253e-06 1.9915 924.27

From the Tables 1,2, we can see that these numerical results are consistent with the previous
theoretical results. It shows the L2 − 1σ scheme (2.10)–(2.13) and the FL2 − 1σ scheme (4.8)–(4.11)
are convergent with second order accuracy in space and time, and the FL2 − 1σ scheme is more
practical.
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Example 5.2. Now, we consider the following problem

C
0 Dαt u(x, t) +

∂2

∂x2

(
ω(x)
∂2u(x, t)
∂x2

)
= f (x, t), 0 < x < π, 0 < t ≤ 1,

u(x, 0) = 0, 0 < x < π,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1,

∂2u(0, t)
∂x2 = 0,

∂2u(1, t)
∂x2 = 0, 0 ≤ t ≤ 1,

where κ = 0, ω(x) = ex and

f (x, t) = (Γ(1 + α) +
3Γ(3)t3−α

Γ(4 − α)
) sin x − 2e2(tα + t3) cos x.

The exact solution of the example 5.2 is u(x, t) = (tα + t3) sin x.

The error and numerical accuracy of scheme (5.1)–(5.6) are listed in Tables 3–5 with respect to
α = 0.4, 0.6, 0.8 and some values of grading exponent r, respectively. We keep M = 2N in calculation.
These results show that the scheme (5.1)–(5.6) has accuracy of order α when r = 1, and accuracy of
order 2 − α when r ≥ rc = (2 − α)/α. The reason for this result is that the smoothness requirement of
the solution in Theorems 3.8 and 4.7 is not satisfied.

Table 3. The errors and convergence orders for Example 5.2 when α = 0.5 .

r = 1 r = rc r = 2rc

N E(h, τ) Ord E(h, τ) Ord E(h, τ) Ord
32 3.3961e-02 —— 4.6082e-03 —— 1.3810e-02 ——
64 2.8987e-02 2.2847e-01 1.8881e-03 1.2873 5.6845e-03 1.2806
128 2.4345e-02 2.5178e-01 7.1277e-04 1.4054 2.1522e-03 1.4012
256 2.0108e-02 2.7586e-01 2.5719e-04 1.4706 7.7724e-04 1.4694
512 1.6354e-02 2.9813e-01 8.8456e-05 1.5398 2.7075e-04 1.5214

Table 4. The errors and convergence orders for Example 5.2 when α = 0.6.

r = 1 r = rc r = 2rc

N E(h, τ) Ord E(h, τ) Ord E(h, τ) Ord
32 2.2240e-02 —— 6.2089e-03 —— 1.6603e-02 ——
64 1.6383e-02 4.4096e-01 2.7026e-03 1.2001 7.1400e-03 1.2174
128 1.1717e-02 4.8360e-01 1.1103e-03 1.2832 2.9149e-03 1.2925
256 8.1872e-03 5.1716e-01 4.4202e-04 1.3288 1.1560e-03 1.3343
512 5.6228e-03 5.4208e-01 1.7147e-04 1.3662 4.5076e-04 1.3587
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Table 5. The errors and convergence orders for Example 5.2 when α = 0.8.

r = 1 r = rc r = 2rc

N E(h, τ) Ord E(h, τ) Ord E(h, τ) Ord
32 9.0995e-03 —— 1.0251e-02 —— 2.3075e-02 ——
64 5.6954e-03 6.7599e-01 4.8305e-03 1.0855 1.0763e-02 1.1003
128 3.5455e-03 6.8381e-01 2.1936e-03 1.1389 4.8645e-03 1.1457
256 2.1527e-03 7.1984e-01 9.7736e-04 1.1663 2.1620e-03 1.1699
512 1.2788e-03 7.5136e-01 4.3093e-04 1.1814 9.5272e-04 1.1822

Table 6. The errors and convergence orders for Example 5.3.

FL2 − 1σ scheme L2 − 1σ scheme
α h = τ Nexp E(h, τ) Ord E(h, τ) Ord
0.25 1/10 33 1.2114e-02 —— 1.2114e-02 ——

1/20 36 3.0215e-03 2.0033 3.0215e-03 2.0033
1/40 39 7.5667e-04 1.9975 7.5667e-04 1.9975
1/80 42 1.8946e-04 1.9978 1.8946e-04 1.9978

1/160 45 4.7412e-05 1.9986 4.7412e-05 1.9986
0.5 1/10 33 1.3545e-02 —— 1.3545e-02 ——

1/20 36 3.3864e-03 1.9999 3.3864e-03 1.9999
1/40 39 8.4892e-04 1.9961 8.4892e-04 1.9961
1/80 42 2.1266e-04 1.9971 2.1266e-04 1.9971

1/160 45 5.3229e-05 1.9983 5.3229e-05 1.9983
0.75 1/10 33 1.4683e-02 —— 1.4683e-02 ——

1/20 36 3.6621e-03 2.0034 3.6621e-03 2.0034
1/40 39 9.1663e-04 1.9983 9.1663e-04 1.9983
1/80 42 2.2943e-04 1.9983 2.2943e-04 1.9983

1/160 45 5.7401e-05 1.9989 5.7401e-05 1.9989

Example 5.3. Finally, we consider the following space-time variable coefficient problem

C
0 Dαt u(x, t) +

∂2

∂x2

(
((xt)2 + 1)

∂2u(x, t)
∂x2

)
+ u(x, t) = f (x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = cos(πx), 0 < x < 1,
u(0, t) = t3+α + 1, u(1, t) = −(t3+α + 1), 0 ≤ t ≤ 1,

∂2u(0, t)
∂x2 = −π2(t3+α + 1),

∂2u(1, t)
∂x2 = π2(t3+α + 1), 0 ≤ t ≤ 1,

where

f (x, t) = cos(πx)
Γ(4 + α)

6
t3+ (t3+α+1)

[
cos(πx)−2t2π2 cos(πx)+4xt2π3 sin(πx)+ (x2t2+1)π4 cos(πx)

]
.

Networks and Heterogeneous Media Volume 18, Issue 1, 291–309.



307

The exact solution of above problem is also u(x, t) = cos(πx)(t3+α+1), while the variable coefficient
function ω(x, t) = (xt)2 + 1 which depends on the variables x and t.

Similar to the spatially variable coefficient problem, we apply theL2−1σ scheme and the FL2−1σ
scheme to solve the problem in Example 5.3. Table 6 presents the numerical results. In calculation,
we take ε = 10−11. It is shown that the L2− 1σ scheme and the FL2− 1σ scheme are convergent with
second order accuracy in space and time.

6. Conclusion

In this paper, we propose two second order difference schemes in both space and time for solving
the variable coefficient fourth-order fractional sub-diffusion equation subject to the second Dirichlet
boundary conditions. The L2 − 1σ formula and FL2 − 1σ formula are applied to approximation the
time Caputo fractional derivative. Compared with L2 − 1σ scheme, the FL2 − 1σ scheme shows the
better computational efficiency. The unconditional stability, solvability and convergence of the two
schemes are strictly proved by the discrete energy method. The nonuniform L1 approximation for the
such problem is also given. Numerical examples are given to verify the effectiveness of both schemes.
It should be pointed out that the results in this paper can be directly extended to time-space variable
coefficient problems if we constrain the coefficient function ω(w, t) satisfying that
0 < C1 ≤ ω(w, t) ≤ C2.
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