
http://www.aimspress.com/journal/nhm

NHM, 18(1): 29–47.
DOI: 10.3934/nhm.2023002
Received: 19 September 2022
Revised: 05 October 2022
Accepted: 11 October 2022
Published: 19 October 2022

Research article

Asymptotic flocking of the relativistic Cucker–Smale model with time delay

Hyunjin Ahn∗

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National
University, Seoul, Republic of Korea

* Correspondence: yagamelaito@snu.ac.kr.

Abstract: This paper presents various sufficient conditions for asymptotic flocking in the relativistic
Cucker–Smale (RCS) model with time delay. This model considers a self-processing time delay. We
reduce the time-delayed RCS model to its dissipative structure for relativistic velocities. Then, using
this dissipative structure, we demonstrate several sufficient frameworks in terms of the initial data and
system parameters for asymptotic flocking of the proposed model.
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1. Introduction

Collective behaviors are omnipresent in everyday life (i.e., the flocking of moving birds [11, 28],
herding of sheep and schooling of fish [12, 31], colonies of bacteria [32], and synchronization of
fireflies and pacemaker cells [33,34]). Among these phenomena, flocking refers to the phenomenon in
which all agents governed by an autonomous system move at the same velocity under simple rules
with the surrounding environmental information. In this paper, we are primarily interested in the
flocking dynamics. The Cucker–Smale (CS) model proposed in [11] is considered as a successful
model representing the flocking, see [7] for an introduction on the CS model. Moreover, the reader
may refer to the following papers for the CS model and its variants regarding flocking behavior [11],
on a general digraph [15], a temperature field extension [21], collision avoidance [27], bicluster
flocking [10], Riemannian manifold extension [17], mean-field limit [20, 22, 23], hydrodynamic
description [16, 25], unit-speed constraint [6], rooted leadership [24, 26, 29, 30], time-delay
setting [8, 9, 13], and time-delay setting in a temperature field [5, 14].

However, because the CS model is a flocking model proposed based on classical Newtonian
mechanics, the authors of [19] have focused on the situation that no relativistic correction to the CS
model exists. When the speeds of agents governed by a dynamical system are high, close to the speed
of light, classical mechanics is limited in explaining the motions of neutrinos, spacecrafts, and
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satellites, for example. Therefore, to ensure a suitable relativistic correction to the CS model, the
authors of [19] rigorously proposed the relativistic thermomechanical Cucker–Smale (RTCS) model
from the relativistic gas mixture equations with the theory of a principal subsystem. Thereafter, they
derived the relativistic Cucker–Smale (RCS) model by reducing the RTCS model using a suitable
ansatz. The RCS model in terms of position–relativistic velocity, (xi,wi), is given by Eq (1.1)

ẋi = vi, t > 0, i ∈ [N],

ẇi =
1
N

N∑
j=1

φ(‖xi − x j‖)
(
v j − vi

)
,

wi := Fivi, Fi := Γi

(
1 +

Γi

c2

)
, Γi :=

c√
c2 − ‖vi‖

2
,

(xi(0),wi(0)) = (xin
i ,w

in
i ) ∈ Rd × Rd,

(1.1)

where [N] := {1, · · · ,N}, ‖ · ‖ denotes the standard Euclidean `2-norm, N is the number of particles, c
is the speed of light, and Γi is the Lorentz factor. In addition vi and wi are called the ith velocity and the
ith relativistic velocity, respectively, and φ : R≥0 → R≥0 is a nonnegative communication weight that is
locally Lipschitz continuous and monotonically decreasing. For the well-definedness of Γi, and global
well-posedness, maxi∈[N] ‖vi‖ cannot exceed the speed of light c. For the detailed descriptions, refer to
Proposition 2.4 or previous papers [1, 3].

Subsequently, if we consider

g(x) :=
cx

√
c2 − x2

+
x

c2 − x2 , x ∈ (−c, c),

then the function g is a strictly increasing bijective odd function from (−c, c) to R, satisfying Eq (1.2),

‖wi‖ = Fi‖vi‖ = Γi

(
1 +

Γi

c2

)
‖vi‖ =

c‖vi‖√
c2 − ‖vi‖

2
+

‖vi‖

c2 − ‖vi‖
2 = g(‖vi‖). (1.2)

Using this, the authors of [3] demonstrated the existence of an odd and bijective function, ŵ : Bc(0) :=
{x ∈ Rd | ‖x‖ < c} → Rd, such that Eq (1.3),

ŵ(vi) = wi = Fivi =
cvi√

c2 − ‖vi‖
2

+
vi

c2 − ‖vi‖
2 , and we set v̂ = (ŵ)−1. (1.3)

Then, in terms of {(xi,wi)}Ni=1, Eq (1.1) can be represented by

ẋi = vi, t > 0, i ∈ [N],

ẇi =
1
N

N∑
j=1

φ(‖xi − x j‖)
(
v̂(w j) − v̂(wi)

)
,

wi := Fivi, Fi := Γi

(
1 +

Γi

c2

)
, Γi :=

c√
c2 − ‖vi‖

2
,

(xi(0),wi(0)) = (xin
i ,w

in
i ) ∈ Rd × Rd.
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In contrast, from the perspective of {(xi, vi)}Ni=1, Eq (1.1) can also be rewritten as:

ẋi = vi, t > 0, i ∈ [N],

˙̂w(vi) =
1
N

N∑
j=1

φ(‖xi − x j‖)
(
v j − vi

)
,

wi := Fivi, Fi := Γi

(
1 +

Γi

c2

)
, Γi :=

c√
c2 − ‖vi‖

2
,

(xi(0),wi(0)) = (xin
i ,w

in
i ) ∈ Rd × Rd.

Therefore, by the definition of v̂ and ŵ, Eq (1.1) is a second-order ODE system in terms of {(xi, vi)}Ni=1
or {(xi,wi)}Ni=1. However, due to the complexity of the explicit expressions of v̂ and ŵ, and the simple
relation,

vi =
wi

Fi
,

throughout the paper, we consider Eq (1.1) to be a system regarding {(xi,wi)}Ni=1 rather than {(xi, vi)}Ni=1
for convenience and ease of mathematical results.

As a CS model with a relativistic correction, the RCS model Eq (1.1) and its variants have received
increasing attention from the mathematical community. Examples include the derivation of RCS and
its flocking behavior [19], hierarchical leadership Riemannian manifold extension uniform-in-time
mean-field limit on Rd [3], mean-field limit on the Riemannian manifold bonding feedback force on
the Riemannian manifold collision avoidance [4], uniform-in-time nonrelativistic limit of particle and
kinetic models [2], and kinetic and hydrodynamic descriptions [18].

However, although Eq (1.1) is the dynamical system with a relativistic correction, this model still
neglects time-delayed interactions. Indeed, because the speed of light is always finite, c > 0, not
infinite, the delayed time due to information transfer between agents cannot be ignored. Hence, we
propose the following modified RCS model with time delay from Eq (1.1):

ẋi(t) = vi(t), t > 0, i ∈ [N],

ẇi(t) =
1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
v j(t − τi j(t)) − vi(t)

)
,

wi := Fivi, Fi := Γi

(
1 +

Γi

c2

)
, Γi :=

c√
c2 − ‖vi‖

2
,

(xi(s),wi(s)) = (xin
i (s),win

i (s)) ∈ Rd × Rd, s ∈ [−τ, 0],

(1.4)

where xin
i (s) and win

i (s) are continuously differentiable functions on [−τ, 0], and we define

C0 := sup
s∈[−τ,0]

max
i∈[N]
‖ẇin

i (s)‖.

We assume that τi j(t) is the time it takes for the ith agent to receive the information delivered from
the other jth agent at time t. To demonstrate global well-posedness and the mathematical results, we
suppose that

1. Nonnegativity and local Lipschitz continuity

τi j(t) ∈ C0,1
loc(R≥0;R≥0), i, j ∈ [N].
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2. Uniform boundedness
sup

t∈[0,∞)
max
i, j∈[N]

τi j(t) ≤ τ.

The second condition that τi j is uniformly bounded by τ is reasonable because, if any two agents are
sufficiently far apart, the time it takes to interact with each other is sufficiently long, so they may not
represent collective behavior. In addition, for i, j ∈ [N], i , j, we do not suppose that τi j is symmetric
and no self-processing delay; in other words, it can be asymmetric and self-processing:

For each time t ≥ 0, τi j(t) = τ ji(t) or τi j(t) , τ ji(t), and τii(t) ≥ 0.

These are reasonable, considering the time it takes for one agent to process and respond to information
on its own when receiving information from another agent. Next, concerning the well-definedness of
the Lorentz factor Γi and global well-posedness of Eq (1.4), we refer to Proposition 2.4.

Now, we provide basic concepts for the asymptotic flocking of Eq (1.4).

Definition 1.1. Suppose that Z = {(xi,wi)}Ni=1 is a global solution to Eq (1.4).

1. Configuration Z exhibits group formation if

sup
t∈[0,∞)

max
i, j∈[N]

‖xi(t) − x j(t)‖ < ∞.

2. Configuration Z exhibits asymptotic velocity alignment if

lim
t→∞

max
i, j∈[N]

‖v j(t) − vi(t)‖ = 0.

3. Configuration Z exhibits asymptotic relativistic velocity alignment if

lim
t→∞

max
i, j∈[N]

‖w j(t) − wi(t)‖ = 0.

4. Configuration Z exhibits asymptotic flocking if

sup
t∈[0,∞)

max
i, j∈[N]

‖xi(t) − x j(t)‖ < ∞, lim
t→∞

max
i, j∈[N]

‖v j(t) − vi(t)‖ = 0.

In fact, the velocity alignment and relativistic velocity alignment are equivalent under an appropriate
assumption. Therefore, it suffices to demonstrate the relativistic velocity alignment to reveal the
velocity alignment in Eq (1.4). For detailed descriptions, we refer to Proposition 2.1 and 2.4.

Throughout the paper, we are primarily concerned with the following issue:

• (Main issue): Can we determine a nonempty admissible set of initial data and system parameters
that cause asymptotic flocking in Eq (1.4)?

The rest of this paper is organized as follows. Section 2 introduces previous key estimates frequently
used to study the RCS type models. Subsequently, we provide a uniform upper bound for the maximum
speed of all agents and demonstrate basic estimates for three time-difference terms in Eq (1.4). Section
3 demonstrates a reduction from Eq (1.4) to its dissipative structure for relativistic velocities. Using this
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structure, we present a sufficient framework for the asymptotic flocking of Eq (1.4) under an admissible
set in terms of the initial data and system parameters. Section 4 briefly summarizes the main results
and future work.

Notation. Throughout this paper, we employ the following simple notation:

[N] := {1, · · · ,N}, ‖ · ‖ := the standard Euclidean norm,
X := (x1, · · · , xN), V := (v1, · · · , vN), W := (w1, · · · ,wN),
DZ := max

i, j∈[N]
‖zi − z j‖, for Z = (z1, · · · , zN) ∈ {X,V,W},

∆τ
Z(t) := max

i, j∈[N]
‖z j(t − τi j(t)) − z j(t)‖, for Z = (z1, · · · , zN) ∈ {X,V,W},

∆τ
Z is the time-difference term for Z, a.e.:=almost everywhere.

2. Preliminaries

This section introduces previous results studied in [2] and demonstrates the uniform boundedness of
maxi∈[N] ‖vi‖ using a physical constraint in terms of the initial data in Eq (1.4). In addition, it provides
several basic estimates to study the asymptotic flocking dynamics of Eq (1.4).

2.1. Previous estimates

This subsection presents two key estimates from [2]. The estimates perform an important role in
reducing Eq (1.4) to a dissipative structure regarding a diameter for relativistic velocities and obtaining
a velocity alignment from a relativistic velocity alignment.

Proposition 2.1. [2] Assume that w1 and w2 are two vectors in Rd such that, for a positive constant,
V0 > 0,

wi := ŵ(vi), ‖vi‖ = ‖v̂(wi)‖ ≤ V0 < c, i = [2],

where v̂ and ŵ are defined in (1.3). Then, we have that ‖v1−v2‖ and ‖w1−w2‖ are equivalent. Moreover,

c2 + 1
c2 ‖v1 − v2‖ ≤ ‖w1 − w2‖ ≤ (g′(V0)V0 + g(V0))‖v1 − v2‖,

where g is defined in Eq (1.2).

Next, we also give the following relationship between ‖wi − w j‖ and
∣∣∣∣ 1

Fi
− 1

F j

∣∣∣∣ in Eq (1.4):

Proposition 2.2. [2] Suppose that w1 and w2 are two vectors in Rd such that, for a positive constant,
V0 > 0,

wi := ŵ(vi), ‖vi‖ = ‖v̂(wi)‖ ≤ V0 < c, i = [2],

where v̂ and ŵ are defined in (1.3). Then, it follows that∣∣∣∣∣ 1
F1
−

1
F2

∣∣∣∣∣ ≤ Ω‖w1 − w2‖,

where Ω > 0 is a positive constant expressed by

Ω :=
c2(2V0 + cV0

√
c2 − (V0)2)

(c2 + 1)(c
√

c2 − (V0)2 + 1)2
.
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Before we finish this subsection, we provide a uniform upper bound for an operator norm of the
Jacobian ∇wv̂.

Proposition 2.3. [2] Let ‖ · ‖op be an operator norm of a matrix. Assume that v and w are two vectors
in Rd such that

v := v̂(w), ‖v‖ < c,

where v̂ is defined in Eq (1.3). Then, we attain

‖∇wv̂‖op =

 c√
c2 − ‖v‖2

+
1

c2 − ‖v‖2

−1

≤
c2

c2 + 1
.

Remark 2.1. Although not used in this paper, the authors of [2] also obtained the following estimate:

‖∇vŵ‖op =
c‖v‖2

(c2 − ‖v‖2)
3
2

+
2‖v‖2

(c2 − ‖v‖2)2 +
c√

c2 − ‖v‖2
+

1
c2 − ‖v‖2

≤ g′(‖v‖)‖v‖ + g(‖v‖),

where g is defined in Eq (1.2).

2.2. Preparatory estimates

This subsection demonstrates that the maximum speed of all agents is uniformly bounded by a
physical constraint regarding the initial data based on the idea used in and provides several estimates
for time-difference terms ∆τ

X, ∆τ
V , and ∆τ

W in Eq (1.4). These are crucially used to study the asymptotic
flocking behavior of Eq (1.4) in Section 3.

Proposition 2.4. (Uniform upper bound of maximum speed) Assume that {(xi,wi)}Ni=1 is a solution to
Eq (1.4) such that, for a positive constant, V0 > 0,

sup
t∈[−τ,0]

max
i∈[N]
‖vin

i (t)‖ ≤ V0 < c.

Then, we obtain
sup

t∈[−τ,∞)
max
i∈[N]
‖vi(t)‖ ≤ V0 < c.

Proof. For a fixed positive number ε > 0, for notational simplicity, we set:

V in,τ := sup
t∈[−τ,0]

max
i∈[N]
‖vin

i (t)‖ and V in,τ,ε := sup
t∈[−τ,0]

max
i∈[N]
‖vin

i (t)‖ + ε.

We also define the following set:

Tε := {t > 0 : LV(s) < V in,τ,ε , ∀s ∈ [0, t)}, where LV(s) := max
i∈[N]
‖vi(s)‖.

Further, we observe that Tε is nonempty because, from LV(0) < V in,τ,ε and the continuity of LV , there
exists a positive number ε′ such that

LV(s) < V in,τ,ε , ∀s ∈ [0, ε′).
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Next, we set:
supTε := T∞ε > 0.

For the proof by contradiction, we suppose that T∞ε < ∞. Then, we obtain

lim
s→T∞ε −

LV(s) = V in,τ,ε , LV(s) < V in,τ,ε , ∀s ∈ [−τ,T∞ε ).

For a.e. t ∈ (0,T∞ε ), using (1.4)2, we demonstrate that

1
2

d‖wi(t)‖2

dt
= ‖wi(t)‖ ·

d‖wi(t)‖
dt

= 〈wi(t), ẇi(t)〉

=

〈
wi(t),

1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
v j(t − τi j(t)) − vi(t)

) 〉
=

1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
〈wi(t), v j(t − τi j(t))〉 − 〈wi, vi〉

)
=

1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
〈wi(t), v j(t − τi j(t))〉 − ‖vi(t)‖‖wi(t)‖

)
≤

1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
‖wi(t)‖‖v j(t − τi j(t))‖ − ‖vi(t)‖‖wi(t)‖

)
≤

1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)(V in,τ,ε − ‖vi(t)‖)‖wi(t)‖

≤
φ(0)

N

N∑
j=1

(V in,τ,ε − ‖vi(t)‖)‖wi(t)‖ = φ(0)(V in,τ,ε − ‖vi(t)‖)‖wi(t)‖,

due to wi = Fivi and LV(s) ≤ V in,τ,ε , ∀s ∈ (−τ,T∞ε ). Therefore, this implies that, for a.e. t ∈ (0,T∞ε ),

d‖wi(t)‖
dt

≤ φ(0)(V in,τ,ε − ‖vi(t)‖).

From the following relation, for a.e. t ∈ (0,T∞ε ):

d‖wi‖

dt
=

d(Fi‖vi‖)
dt

=
d‖vi‖

dt
Fi + ‖vi‖

dFi

dt

=
d‖vi‖

dt

 c√
c2 − ‖vi‖

2
+

1
c2 − ‖vi‖

2


+ ‖vi‖

d‖vi‖

dt

(
2‖vi‖

(c2 − ‖vi‖
2)2 +

c‖vi‖

(c2 − ‖vi‖
2)

3
2

)
=

d‖vi‖

dt

 c√
c2 − ‖vi‖

2
+

1
c2 − ‖vi‖

2 +
2‖vi‖

2

(c2 − ‖vi‖
2)2 +

c‖vi‖
2

(c2 − ‖vi‖
2)

3
2

 ,
it follows that, for a.e. t ∈ (0,T∞ε ),
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d‖vi(t)‖
dt

≤
φ(0)(V in,τ,ε − ‖vi(t)‖) c√

c2 − ‖vi‖
2

+
1

c2 − ‖vi‖
2 +

2‖vi‖
2

(c2 − ‖vi‖
2)2 +

c‖vi‖
2

(c2 − ‖vi‖
2)

3
2


≤

c2φ(0)(V in,τ,ε − ‖vi(t)‖)
c2 + 1

,

because x 7→ c
√

c2−x2
+ 1

c2−x2 + 2x2

(c2−x2)2 + cx2

(c2−x2)
3
2

is strictly increasing on [0, c). Hence,

c
√

c2 − x2
+

1
c2 − x2 +

2x2

(c2 − x2)2 +
cx2

(c2 − x2)
3
2

≥
c2 + 1

c2 .

Applying the Grönwall lemma yields that, for t ∈ [0,T∞ε ),

‖vi(t)‖ ≤ (‖vi(0)‖ − V in,τ,ε) exp
(
−

c2φ(0)t
c2 + 1

)
+ V in,τ,ε ,

leading to the following estimate for t ∈ [0,T∞ε ):

LV(t) ≤ (LV(0) − V in,τ,ε) exp
(
−

c2φ(0)t
c2 + 1

)
+ V in,τ,ε .

Accordingly,

lim
t→T∞ε −

LV(t) ≤ (LV(0) − V in,τ,ε) exp
(
−

c2φ(0)T∞ε
c2 + 1

)
+ V in,τ,ε < V in,τ,ε .

This result causes a contradiction to the definition of T∞ε . In conclusion, T∞ε = ∞. Finally, by taking
ε → 0, we demonstrate the desired result. �

Remark 2.2. From the standard Cauchy–Lipschitz theory with Proposition 2.4, the local Lipschitz
continuity and uniform boundedness of φ, and the locally Lipschitz continuity of τi j, the global well-
posedness of Eq (1.4) can be guaranteed.

Subsequently, we study three time-difference estimates for the position–velocity–relativistic
velocity, that is, ∆τ

X, ∆τ
V , and ∆τ

W .

Proposition 2.5. (Crucial estimates for ∆τ
X, ∆τ

V , and ∆τ
W) Let {(xi,wi)}Ni=1 be a solution to Eq (1.4) such

that, for a positive constant, V0 > 0,

sup
t∈[−τ,0]

max
i∈[N]
‖vin

i (t)‖ ≤ V0 < c.

Then, we have the following assertions:

1. (Estimate of ∆τ
X) For t ∈ [0,∞),

∆τ
X(t) ≤ V0τ.

2. (Estimate of ∆τ
V) For t ∈ [0,∞),

∆τ
V(t) ≤

c2

c2 + 1
∆τ

W(t).
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3. (Estimate of ∆τ
W) For t ∈ [τ,∞),

∆τ
W(t) ≤ 2V0φ(0)τ, ∆τ

W(t) ≤ φ(0)
∫ t

t−τ
(∆τ

V(s) + DV(s))ds.

Proof. • (Proof of the first assertion) We apply Proposition 2.4 and the second property for τi j to obtain

‖x j(t − τi j(t)) − x j(t)‖ =

∥∥∥∥∥∥
∫ t

t−τi j

v j(s)ds

∥∥∥∥∥∥ ≤
∫ t

t−τ

∥∥∥v j(s)
∥∥∥ ds ≤ V0τ.

• (Proof of the second assertion) We employ Proposition 2.3 to yield the following relations:

‖v j(t − τi j(t)) − v j(t)‖ = ‖v̂(w j(t − τi j(t))) − v̂(w j(t))‖ ≤
c2

c2 + 1
‖w j(t − τi j(t)) − w j(t)‖.

• (Proof of the third assertion) From Eq (1.4)2 and the monotonicity of φ, we observe that, for t ∈ [τ,∞),

‖w j(t − τi j(t)) − w j(t)‖

≤
1
N

∫ t

t−τi j

∥∥∥∥∥∥∥
N∑

k=1

φ(‖x j(s) − xk(s − τ jk(s))‖)
(
vk(s − τ jk(s)) − v j(s)

)∥∥∥∥∥∥∥ ds

≤
1
N

∫ t

t−τ

∥∥∥∥∥∥∥
N∑

k=1

φ(‖x j(s) − xk(s − τ jk(s))‖)
(
vk(s − τ jk(s)) − v j(s)

)∥∥∥∥∥∥∥ ds

≤
1
N

∫ t

t−τ

N∑
k=1

φ(0)
∥∥∥vk(s − τ jk(s)) − v j(s)

∥∥∥ ds

≤
1
N

∫ t

t−τ

N∑
k=1

φ(0)(‖vk(s − τ jk(s))‖ + ‖v j(s)‖)ds

≤ 2V0φ(0)τ.

In contrast, we use the following relation for i, j ∈ [N]:

‖v j(s − τi j(s)) − vi(s)‖
= ‖v j(s − τi j(s)) − v j(s) + v j(s) − vi(s)‖
≤ ‖v j(s − τi j(s)) − v j(s)‖ + ‖v j(s) − vi(s)‖
≤ ∆τ

V(s) + DV(s),

to demonstrate that, for t ∈ [τ,∞),

‖w j(t − τi j(t)) − w j(t)‖

≤
1
N

∫ t

t−τi j

∥∥∥∥∥∥∥
N∑

k=1

φ(‖x j(s) − xk(s − τ jk(s))‖)
(
vk(s − τ jk(s)) − v j(s)

)∥∥∥∥∥∥∥ ds

≤
1
N

∫ t

t−τ

N∑
k=1

φ(0)
∥∥∥vk(s − τ jk(s)) − v j(s)

∥∥∥ ds
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≤
1
N

∫ t

t−τ

N∑
k=1

φ(0)(∆τ
V(s) + DV(s))ds

≤ φ(0)
∫ t

t−τ
(∆τ

V(s) + DV(s))ds.

Therefore, we obtain the desired assertions. �

Remark 2.3. The third result of Proposition 2.5 holds for t ∈ [τ,∞) because we did not define the
velocity coupling equation, (1.4)2, in terms of ẇi on t ∈ (−τ, 0) for each i ∈ [N].

3. Asymptotic flocking result

This section first presents a reduction from Eq (1.4) to its dissipative structure. Then, we
demonstrate several sufficient frameworks for the asymptotic flocking of Eq (1.4) with this dissipative
structure and the previous results studied from Section 2. We begin with the following lemma,
deriving two dissipative differential inequalities for DX, DW , ∆τ

W , and the system parameters.

Lemma 3.1. (Dissipative inequalities) Let {(xi,wi)}Ni=1 be a solution to Eq (1.4) such that, for a positive
constant, V0 > 0,

sup
s∈[−τ,0]

max
i∈[N]
‖vin

i (s)‖ ≤ V0 < c.

We recall the function g and constant Ω defined in Eq (1.2) and Proposition 2.2, respectively,

g(x) :=
cx

√
c2 − x2

+
x

c2 − x2 on (−c, c), Ω :=
c2(2V0 + cV0

√
c2 − (V0)2)

(c2 + 1)(c
√

c2 − (V0)2 + 1)2
.

If we set the following four constants, Ci, i ∈ [4] :

C1 :=
c2

c2 + 1
, C2 :=

(
g(V0)

V0

)−1

, C3 := 2φ(0)g(V0)Ω, C4 := 2C1φ(0),

then we have that, for a.e. t ∈ (0,∞),

1. (Differential inequality for DX) ∣∣∣∣∣ d
dt

DX(t)
∣∣∣∣∣ ≤ DV(t) ≤ C1DW(t).

2. (Differential inequality for DW)

d
dt

DW(t) ≤
(
−C2φ(DX(t) + V0τ) + C3

)
DW(t) + C4∆

τ
W(t).

Proof. To verify the first assertion, we use Propositions 2.1 and 2.4 to obtain, for i, j ∈ [N] and a.e.
t ∈ (0,∞),

1
2

d‖xi − x j‖
2

dt
=

d‖xi − x j‖

dt
‖xi − x j‖ = 〈xi − x j, vi − v j〉
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≤ ‖xi − x j‖‖vi − v j‖ ≤ C1‖xi − x j‖‖wi − w j‖.

Then, it follows that, for a.e. t ∈ (0,∞),

d‖xi − x j‖

dt
≤ ‖vi − v j‖ ≤ C1‖wi − w j‖.

By selecting two maximal indices, it, jt ∈ [N], dependent on time t, such that

DX(t) = ‖xit(t) − x jt(t)‖,

we obtain the following first assertion for a.e. t ∈ (0,∞):∣∣∣∣∣ d
dt

DX(t)
∣∣∣∣∣ ≤ DV(t) ≤ C1DW(t).

To verify the second assertion, we choose two maximal indices, it, jt ∈ [N], depending on time t,
satisfying

DW(t) = ‖wit(t) − w jt(t)‖.

Then, from Eq (1.4)2, we demonstrate, for a.e. t ∈ (0,∞), that

1
2

d
dt

D2
W(t)

= 〈wit(t) − w jt(t), ẇit(t) − ẇ jt(t)〉
= 〈wit(t) − w jt(t), ẇit(t)〉 − 〈wit(t) − w jt(t), ẇ jt(t)〉

=
1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t − τitk(t)) − vit(t)

) 〉
−

1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖x jt(t) − xk(t − τ jtk(t))‖)
(
vk(t − τ jtk(t)) − v jt(t)

) 〉
:= I +J .

• (Estimate of I) To estimate I,

I =
1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t − τitk(t)) − vit(t)

) 〉
=

1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t) − vit(t)

) 〉
+

1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t − τitk(t)) − vk(t)

) 〉
≤

1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t) − vit(t)

) 〉
+
φ(0)

N
DW(t)

N∑
k=1

‖vk(t − τitk(t)) − vk(t)‖
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≤
1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t) − vit(t)

) 〉
+ φ(0)∆τ

V(t)DW(t)

≤
1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t) − vit(t)

) 〉
+ C1φ(0)∆τ

W(t)DW(t),

where we applied the second assertion of Proposition 2.5 to the last estimate, equivalently,

∆τ
V(t) ≤

c2

c2 + 1
∆τ

W(t) = C1∆
τ
W(t).

From the relation,
vk − vit =

wk

Fk
−

wit

Fit
,

we observe that

〈wit(t) − w jt(t), vk(t) − vit(t)〉

=

〈
wit(t) − w jt(t),

wk(t)
Fk(t)

−
wit(t)
Fit(t)

〉
=

〈
wit(t) − w jt(t),

1
Fit(t)

(wk(t) − wit(t)) + wk(t)
( 1
Fk(t)

−
1

Fit(t)

)〉
=

〈
wit(t) − w jt(t),

1
Fit(t)

(wk(t) − wit(t))
〉

+

〈
wit(t) − w jt(t),wk(t)

( 1
Fk(t)

−
1

Fit(t)

)〉
:= I1 + I2.

• (Estimate of I1) Employing the following relation:

〈wit(t) − w jt(t),wk(t) − wit(t)〉 ≤ 0
⇐⇒ 〈wit(t) − w jt(t),wk(t) − w jt(t)〉 ≤ D2

W(t),

we attain

I1 ≤

 c√
c2 − (V0)2

+
1

c2 − (V0)2

−1 〈
wit(t) − w jt(t),wk(t) − wit(t)

〉
=

(
g(V0)

V0

)−1 〈
wit(t) − w jt(t),wk(t) − wit(t)

〉
= C2

〈
wit(t) − w jt(t),wk(t) − wit(t)

〉
≤ 0,

because the definition of Fit and Proposition 2.4 yield

Fit = Γit

(
1 +

Γit

c2

)
=

c√
c2 − ‖vit‖

2
+

1
c2 − ‖vit‖

2 ≤
c√

c2 − (V0)2
+

1
c2 − (V0)2 .
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• (Estimate of I2) Propositions 2.2 and 2.4, with the strict monotonicity of g in Eq (1.2), lead to

I2 ≤ DW‖wk‖

∣∣∣∣∣ 1
Fk(t)

−
1

Fit(t)

∣∣∣∣∣ = DWg(‖vk‖)
∣∣∣∣∣ 1
Fk(t)

−
1

Fit(t)

∣∣∣∣∣ ≤ Ωg(V0)D2
W .

Therefore, combining I1 and I2 with I induces

I ≤
1
N

〈
wit(t) − w jt(t),

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)
(
vk(t) − vit(t)

) 〉
+ C1φ(0)∆τ

W(t)DW(t)

=
1
N

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)I1 +
1
N

N∑
k=1

φ(‖xit(t) − xk(t − τitk(t))‖)I2

+ C1φ(0)∆τ
W(t)DW(t)

≤
C2φ(DX(t) + V0τ)

N

N∑
k=1

〈
wit(t) − w jt(t),wk(t) − wit(t)

〉
+ φ(0)g(V0)ΩD2

W + C1φ(0)∆τ
W(t)DW(t),

because I1 ≤ 0 and the monotonicity of φ and the first assertion of Proposition 2.5 derive

φ(‖xit(t) − xk(t − τitk(t))‖) ≥ φ(‖xit(t) − xk(t)‖ + ‖xk(t) − xk(t − τitk(t))‖)
≥ φ(DX(t) + ∆τ

X(t)) ≥ φ(DX(t) + V0τ).

Similar to the method above, we can also demonstrate that

J ≤
C2φ(DX(t) + V0τ)

N

N∑
k=1

〈
wit(t) − w jt(t),w jt(t) − wk(t)

〉
+ φ(0)g(V0)ΩD2

W + C1φ(0)∆τ
W(t)DW(t).

Hence, we sum I and J to obtain, for a.e. t ∈ (0,∞),

1
2

d
dt

D2
W(t) ≤ −C2φ(DX(t) + V0τ)D2

W(t)

+ 2φ(0)g(V0)ΩD2
W + 2C1φ(0)∆τ

W(t)DW(t)

=
(
−C2φ(DX(t) + V0τ) + C3

)
D2

W(t) + C4∆
τ
W(t)DW(t).

This outcome implies, for a.e. t ∈ (0,∞), that

dDW(t)
dt

≤
(
−C2φ(DX(t) + V0τ) + C3

)
DW(t) + C4∆

τ
W(t).

Consequently, we prove the desired assertions. �

Accordingly, with two differential dissipative inequalities of Lemma 3.1, we can construct an
admissible set in terms of the initial data and system parameters for the asymptotic flocking estimate
of Eq (1.4). To do this, we apply continuous arguments to derive the desired results.
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Theorem 3.1. (Flocking dynamics) Let {(xi,wi)}Ni=1 be a solution to Eq (1.4) satisfying, for a positive
constant, V0 > 0,

sup
s∈[−τ,0]

max
i∈[N]
‖vin

i (s)‖ ≤ V0 < c.

We recall the definition of C0 as follows.

C0 := sup
s∈[−τ,0]

max
i∈[N]
‖ẇin

i (s)‖.

Suppose that

C1 :=
c2

c2 + 1
, C2 :=

(
g(V0)

V0

)−1

, C3 := 2φ(0)g(V0)Ω, C4 := 2C1φ(0).

Assume that there exist positive constants D∞X > 0, α > 0, β > 0, and γ ∈ (0, 1) such that

α := C2φ(D∞X + V0τ) −C3 > 0, DX(0) +
C1DW(0)

α
+

C1C4β

α2γ(1 − γ)
≤ D∞X ,

C1φ(0)
(
β + DW(0) +

C4β

α(1 − γ)

) (
exp (αγτ) − 1

)
≤ β,

exp(αγτ)τ < min
(

C1β

C4V0 ,
β

max
(
C0, 2V0φ(0)

)) , τ <
1

2V0

(
C1DW(0)

α
+

C1C4β

α2γ(1 − γ)

)
.

(3.1)

Then, we demonstrate the following asymptotic flocking result for t ∈ [0,∞) :

1. (Group formation)
DX(t) ≤ D∞X .

2. (Exponential decay of the time-difference for relativistic velocity)

∆τ
W(t) ≤ β exp(−αγt).

3. (Relativistic velocity alignment)

DW(t) ≤ DW(0) exp (−αt) +
C4β

α(1 − γ)
exp (−αγt) .

Proof. If DW(0) = 0, then there is nothing to prove using the standard Cauchy–Lipschitz theory. Thus,
we assume that

DW(0) > 0.

Now, we define the set S1 and number S∗1 by

S1 := {t > 0 | (1) is true, ∀s ∈ [τ, t)}, S ∗1 := supS1.

Then, S1 , ∅ because DX is continuous and for the following inequality holds using the second and
fifth conditions of Eq (3.1) and Proposition 2.4:

DX(τ) ≤ DX(0) +

∫ τ

0
DV(s)ds ≤ DX(0) + 2V0τ
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< DX(0) +
C1DW(0)

α
+

C1C4β

α2γ(1 − γ)
≤ D∞X .

Hence, S ∗1 > τ. Next, we define the set S2 and number S∗2 by

S2 := {t > 0 | (2) is true, ∀s ∈ [τ, t), where t ∈ (τ, S ∗1]}, S ∗2 := supS2.

Here, S2 , ∅ because ∆τ
W is continuous and the following inequality holds due to the third assertion of

Proposition 2.5 and the fourth condition of Eq (3.1):

∆τ
W(τ) ≤

C4

C1
V0τ < β exp (−αγτ) .

Then, we obtain S ∗2 > τ. Subsequently, we assume that S ∗2 < S ∗1 ≤ ∞. From the definition of S ∗2, it
follows that

∆τ
W(t) ≤ β exp(−αγt), ∀t ∈ [τ, S ∗2), ∆τ

W(S ∗2) = β exp(−αγS ∗2).

In addition, using the fourth condition of (3.1), definitions of C0 and τ, and the following relation for
t ∈ (0,∞):

‖ẇi(t)‖ =

∥∥∥∥∥∥∥ 1
N

N∑
j=1

φ(‖xi(t) − x j(t − τi j(t))‖)
(
v j(t − τi j(t)) − vi(t)

)∥∥∥∥∥∥∥
≤

1
N

N∑
j=1

φ(0)
(
‖v j(t − τi j(t))‖ + ‖vi(t)‖

)
≤

1
N

N∑
j=1

2V0φ(0) = 2V0φ(0),

we obtain, for t ∈ [0, τ],

∆τ
W(t) = max

i, j∈[N]
‖w j(t − τi j(t)) − w j(t)‖

≤ max
(
C0, 2V0φ(0)

)
τ < β exp (−αγτ) ≤ β exp (−αγt) ,

we can demonstrate that

∆τ
W(t) ≤ β exp(−αγt), ∀t ∈ [0, S ∗2), ∆τ

W(S ∗2) = β exp(−αγS ∗2).

This outcome and the second assertion of Lemma 3.1 yield, for a.e. t ∈ (0, S ∗2),

d
dt

DW(t) ≤ (−C2φ(DX(t)) + C3) DW(t) + C4∆
τ
W(t)

≤
(
−C2φ(D∞X ) + C3

)
DW(t) + C4β exp(−αγt)

= −αDW(t) + C4β exp(−αγt).
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Therefore, the Grönwall lemma leads to the following estimate for t ∈ [0, S ∗2]:

DW(t) ≤ DW(0) exp (−αt) +
C4β

α(1 − γ)
exp (−αγt) .

We combine this estimate, the third condition of Eq (3.1), the definition of S ∗2, the first assertion of
Lemma 3.1, and the second assertion of Proposition 2.5 to get the following inequalities for t ∈ [τ, S ∗2]:

∆τ
W(t) ≤ φ(0)

∫ t

t−τ
(∆τ

V(s) + DV(s))ds

≤ C1φ(0)
∫ t

t−τ
(∆τ

W(s) + DW(s))ds

< C1φ(0)
∫ t

t−τ

(
β + DW(0) +

C4β

α(1 − γ)

)
exp(−αγs)ds

= C1φ(0)
(
β + DW(0) +

C4β

α(1 − γ)

) (
exp (αγτ) − 1

)
exp (−αγt)

≤ β exp(−αγt).

This result yields a contradiction to the definition of S ∗2. Therefore, S ∗1 = S ∗2 ≤ ∞. To prove that
S ∗1 = S ∗2 = ∞, we suppose that S ∗1 = S ∗2 < ∞ for the proof by contradiction. Then, the definition of S ∗1
deduces that

DX(t) ≤ D∞X , ∀t ∈ [τ, S ∗1), DX(S ∗1) = D∞X .

Indeed, using the following estimate for t ∈ [0, τ]:

DX(t) ≤ DX(0) +

∫ τ

0
DV(s)ds

≤ DX(0) + 2V0τ < DX(0) +
C1DW(0)

α
+

C1C4β

α2γ(1 − γ)
≤ D∞X ,

we obtain

DX(t) ≤ D∞X , ∀t ∈ [0, S ∗1), DX(S ∗1) = D∞X .

We apply the first assertion of Lemma 3.1 and the estimate for DW to attain

DX(S ∗1) ≤ DX(0) +

∫ S ∗1

0
DV(s)ds

≤ DX(0) + C1

∫ S ∗1

0
DW(s)ds

≤ DX(0) + C1

∫ S ∗1

0

(
DW(0) exp (−αs) +

C4β

α(1 − γ)
exp (−αγs)

)
ds

< DX(0) + C1

∫ ∞

0

(
DW(0) exp (−αs) +

C4β

α(1 − γ)
exp (−αγs)

)
ds
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= DX(0) +
C1DW(0)

α
+

C1C4β

α2γ(1 − γ)
≤ D∞X .

This outcome contradicts the definition of S ∗1. Finally, we demonstrate that

S ∗1 = S ∗2 = ∞,

and conclude the desired results. �

Remark 3.1. The admissible data, Eq (3.1), is reasonable by taking τ and V0 to be smaller and smaller,
and β and φ(D∞X + V0τ) to be larger and larger with a suitable φ.

4. Conclusion

This paper demonstrates several sufficient frameworks for the asymptotic flocking of the relativistic
Cucker–Smale (RCS) model with time delay that allows for self-processing time delays. We first
derived dissipative inequalities for position–relativistic velocity diameters to do this. Subsequently, we
employed the double continuous argument with these inequalities to prove the asymptotic flocking of
the proposed model under an admissible set in terms of the initial data and system parameters. Some
topics remain to study in the future, which include the mean-field limit of Eq (1.4), extension Eq (1.4)
to a Riemannian manifold setting, and generalization of Eq (1.4) to a general digraph.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (2022R1C12007321).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. H. Ahn, S.Y Ha, M Kang, W Shim, Emergent behaviors of relativistic flocks on Riemannian
manifolds, Physica. D., 427 (2021), 133011. https://doi.org/10.1016/j.physd.2021.133011

2. H. Ahn, S.Y Ha, J Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its
kinetic counterpart, J. Math. Phys., 63 (2022), 082701. https://doi.org/10.1063/5.0070586

3. H. Ahn, S.Y Ha, J Kim, Uniform stability of the relativistic Cucker–Smale model and
its application to a mean-field limit, Commun. Pure Appl. Anal., 20 (2021), 4209–4237.
http://dx.doi.org/10.3934/cpaa.2021156

4. J Byeon, S.Y Ha, J Kim, Asymptotic flocking dynamics of a relativistic Cucker–Smale flock under
singular communications, J. Math. Phys., 63 (2022), 012702. https://doi.org/10.1063/5.0062745

5. H Cho, J.G Dong, S.Y Ha , Emergent behaviors of a thermodynamic Cucker–Smale flock
with a time delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196.
https://doi.org/10.1002/mma.7771

Networks and Heterogeneous Media Volume 18, Issue 1, 29–47.

http://dx.doi.org/https://doi.org/10.1016/j.physd.2021.133011
http://dx.doi.org/https://doi.org/10.1063/5.0070586
http://dx.doi.org/http://dx.doi.org/10.3934/cpaa.2021156
http://dx.doi.org/https://doi.org/10.1063/5.0062745
http://dx.doi.org/https://doi.org/10.1002/mma.7771


46

6. S.H Choi, S.Y Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale flocking,
J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788

7. Y.P Choi, S.Y Ha, Z Li , Emergent dynamics of the Cucker–Smale flocking model and its
variants, In N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol.I Theory, Models,
Applications (tentative title), Series: Modeling and Simulation in Science and Technology,
Birkhauser: Springer, 2017, 299-331.

8. Y.P Choi, J Haskovec, Cucker–Smale model with normalized communication weights and time
delay, Kinet. Relat. Models, 10 (2017), 1011–1033. http://dx.doi.org/10.3934/krm.2017040

9. Y.P Choi, Z Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time
delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018

10. J Cho, S.Y Ha, F Huang, C Jin, D Ko, Emergence of bi-cluster flocking for
the Cucker–Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191–1218.
https://doi.org/10.1142/S0218202516500287

11. F Cucker, S Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–
862. https://doi.org/10.1109/TAC.2007.895842

12. P Degond, S Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior,
J. Stat. Phys., 131 (2008), 989–1022. https://doi.org/10.1007/s10955-008-9529-8

13. J.G Dong, S.Y Ha, D Kim, Interplay of time delay and velocity alignment in the Cucker–
Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569–5596.
http://dx.doi.org/10.3934/dcdsb.2019072

14. J.G Dong, S.Y Ha, D Kim , J Kim, Time-delay effect on the flocking in an ensemble
of thermomechanical CuckerSmale particles, J. Differ. Equ., 266 (2019), 2373–2407.
https://doi.org/10.1016/j.jde.2018.08.034

15. J.G Dong, L Qiu, Flocking of the Cucker–Smale model on general digraphs, IEEE Trans. Automat.
Control, 62 (2017), 5234–5239. https://doi.org/10.1109/TAC.2016.2631608

16. A Figalli, M.J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to
the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866.
https://doi.org/10.2140/apde.2019.12.843
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