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ABSTRACT. In this contribution, we revisit multiple first order macroscopic
modelling approaches to pedestrian flows and computationally compare the re-
sults with a microscopic approach to pedestrian dynamics. We find that widely
used conservation schemes show significantly different results than microscopic
models. Thus, we propose to adopt on a macroscopic level a structured con-
tinuum model. The approach basically relies on fundamental diagrams - the
relationship between fluxes and local densities - as well as the explicit consid-
eration of individual velocities, thus showing similarities to generalised kinetic
models. The macroscopic model is outlined in detail and shows a significantly
better agreement with microscopic pedestrian models. The increased realism,
important for safety relevant real life applications, is underlined considering
several scenarios.

1. Introduction. Simulation of pedestrian streams is an emerging topic in the
early design phases of large buildings and infrastructure as well as the operation
of these. Typical questions range from those concerning convenience to security
concerns: Do people feel comfortable? Is the level of service adequate? What are
typical egress / evacuation times? Can dangerous situations be prevented by ac-
tively routing pedestrian flows? In this contribution, we shall focus on regional
evacuation as studied in the REPKA research project [41, 46]. Corresponding sim-
ulation studies involve the simulation of the same scenario with slightly modified
initial conditions, parameters, or geometries. Thus computational models that are
both efficient and realistic are required. In contrast to long studied traffic phenom-
ena (for a review see e.g. [4]), pedestrian dynamics are relatively new and more
complex, especially since pedestrians flows are usually not guided by lanes. For an
overview of the topic we refer e.g. to [2, 4, 23, 31, 42, 48].

Pedestrian flows are studied from an empirical as well as theoretical point of view.
From an empirical point of view, two important quantitative findings of pedestrian
flows have been obtained in the past (c.f. Figure 1): On the one hand, pedestrian
free flow velocities (the velocity a pedestrian takes if he can move freely) are not
constant but rather stochastically distributed, typically a Gaussian distribution is
assumed [51]. On the other hand, pedestrians adapt their velocity according to the
local density [4, 48, 49, 51], i.e. they tend to move slower in denser crowds. The
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FIGURE 1. Distribution of pedestrian velocities according to [51]:
(a) Free flow velocities vg of pedestrians are normally distributed
(vg = 1.34, ¢ = 0.26 in case of a local density of 0.0 ped./m?)
and (b) are adapted to the local density according to v(p, vg)
vg(1 — exp(—y(1/p — 1/pmax))) where v = 1.913 and ppax = 5.4.

latter relationship between velocity and density is referred to as the fundamental
diagram. The most popular is probably v(p, vg) = vg(1 — exp(—y(1/p — 1/pmax)))
given by [51] where «y is a parameter, pmax describes the maximum density which
can be realised, and vg is the free flow velocity. Thus any model should at least
reflect these two important empirical findings.

Conceptually, models of pedestrian flows can be distinguished between micro-
scopic and macroscopic models (for a classification c.f. Figure 2) [2, 4, 23, 31, 42, 48].
Microscopic models consider single pedestrians and their behaviour whereas macro-
scopic models consider the evolution of pedestrian densities. Microscopic models are
typically based on discrete cellular automaton descriptions [6, 7, 16, 19, 22, 33, 34,
40, 50, 54] or social force models [11, 14, 25, 37, 39, 43, 53]. The main advantage
of microscopic models is the detailed resolution of single pedestrian’s behaviour,
which provides reliable results. At the same time this implies that these models
are relatively complex from a computational point of view. Macroscopic models
can usually be computed much more efficiently. Two popular approaches are PDE-
based models [8, 12, 13, 20, 21, 28, 29, 30, 31, 52] in one or two dimensions which
model densities instead of single pedestrians, or discrete network models [18, 27].
The latter are even more efficient to solve and thus are often used when facing large
crowds or in optimisation frameworks. Furthermore, continuum models are very
useful for determining general principles for which microscopic models, with their
reliance on numerical methods, cannot be used. Although from a computational
point of view these models are much more attractive, their validity (and thus relia-
bility) is a priori not obvious, especially in extreme situations, and has to be proven
in each scenario separately.

Recently [2, 4] have proposed to use generalised kinetic theories, well established
in traffic models, for modelling pedestrian flows (c.f. also [20, 21]). In addition to
the idea of using a generalised kinetic theory for pedestrian flows, several works
adopting a multiscale perspective on pedestrian flows have been developed in the
literature. For example, [35, 36] have used a discrete network flow optimisation
approach to optimise egress times (using a constant velocity for all pedestrians
independent of the local density) of a virtual evacuation of a soccer stadium and
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FIGURE 2. Schematic classification of pedestrian flow models

compared these results with a microscopic model using exactly the same egress strat-
egy. Moreover, [12] has proposed a truly multiscale approach in the framework of
transport equations and measure theory. The approach explicitly considers funda-
mental relationships between pedestrian velocities and local densities but does not
explicitly account for different free flow velocities among individuals (as suggested
by empirical findings).

Inspired by these works, we shall investigate the detailed relationship between
well established microscopic models for pedestrian flows and classical macroscopic
PDE-based models in more detail on a computational basis. In the following, we
shall restrict ourselves to directed quasi one-dimensional flows (on networks), since
our main emphasis is regional evacuation (c.f. Figure 3, [41, 46]). On the micro-
scopic level, we shall rely on the well established cellular automaton model detailed
in [19, 33]. However the findings should also hold for most other models. On
the macroscopic level, we consider one-dimensional first order PDE-based models,
where the velocity of pedestrians is given by a fundamental diagram. These are
extended on networks following the approach of [10].

Our results show that the spatio-temporal dynamics between microscopic and
macroscopic models agree quite well if the free-flow velocities in the microscopic
model are constant among individuals. However, assuming a distribution of dif-
ferent free-flow velocities among individuals the spatio-temporal dynamics differ
significantly. Thus, we propose an extension of macroscopic transport models to
explicitly include differences in free-flow velocities among individuals. To do so,
we introduce an additional structure as suggested by a generalised kinetic theory
[2, 4] (c.f. also [20, 21]). When considering such structured transport models for
pedestrian flows a perfect agreement with detailed microscopic models is found on
a computational basis. Although the structured transport models are slightly more
complex from a computational point of view the increased reliability cannot be
overestimated with respect to real world applications.

The new contributions of our work are:

e systematic computational comparison of microscopic and macroscopic models,
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F1cURE 3. Snapshot of a microscopic simulation - regional evacu-
ation of 40 000 pedestrians leaving the Fritz-Walter soccer stadium
in Kaiserslautern, investigated in the REPKA project [41, 46]. Sin-
gle pedestrians are marked by dots coloured according to the local
density.

e realisation of a structured macroscopic model for pedestrian flows capturing
dynamics and egress times significantly more realistic than classical macro-
scopic models,

e detailed computational studies investigating the proposed model.

Furthermore, we outline in the Appendix an alternative microscopic discrete-in-
time model for pedestrian flows, which is as realistic as the proposed structured
macroscopic model and as efficient from a computational point of view.

The article is structured as follows: we shall shortly review first order classical
macroscopic models (where the velocity-density relation is determined via a fun-
damental diagram) as well as the microscopic model of [19, 33] and compare both
types of models by computational means in Section 2. In the next step, an exten-
sion of the macroscopic models to include an additional structure will be introduced
(Section 3). The extended model is investigated by computational means and shows
a significantly better match with microscopic models than classical models. In Sec-
tion 4, two more complex examples are investigated showing the advantages of the
new approach. The article closes with a conclusion in Section 5. An interpretation
of the proposed approach in terms of time-evolving measures, the applied numeri-
cal schemes, as well as an alternative discrete macroscopic multiscale approach are
outlined in the Appendix.

2. Classical microscopic and macroscopic models.

2.1. Continuous macroscopic models. The most fundamental property of pede-
strian flows is the balance of pedestrians. Adopting a one-dimensional continuum
point of view, i.e. considering pedestrian densities p rather than single pedestrians,
it thus holds in the most general case:

WD) s (o (pla i) plest) = Fet) Qx0T ()

ot oz
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where v(p(x,t); z,t) is the velocity of the pedestrians, f(z,t) models origins or des-
tinations of pedestrians, i.e. sources or sinks of pedestrians, and 2 C R is the
domain of interest. Here, we restrict ourselves to a one-dimensional approach but
a generalisation to two dimensions is straightforward. Within this work, we con-
sider the case f(x,t) = 0 and realize sources and sinks of pedestrians via boundary
conditions. Thus the balance equation (1) models the conservation of pedestrians.
Furthermore, we restrict ourselves to first order models [8] in the following, i.e.
models where the closure between velocity and density is obtained by an explicit
formula v(p; x,t) - the fundamental diagram. For higher order models, introducing
additional evolution equations for pedestrian velocities, we refer e.g. to the review
[4]. Although this restriction reduces the explanatory character of the model, we
believe that with respect to real world applications such a first order closure ap-
proach is more reliable. Experimental relationships are available [4, 48, 49, 51] and
more complex models are non trivial to parametrise. The balance equation (1)
is a classical equation in continuum mechanics with a long history in mathemat-
ical research [38]. Although within this work we concentrate on pedestrian flows
(2,4, 8, 12, 13, 20, 21, 28, 29, 30, 31, 42, 52], most of the aspects also hold for traffic
flows [4, 5] being very similar to pedestrian flows.

In this contribution, we shall restrict ourselves to directional flows on quasi one-
dimensional networks of streets. Considering regional evacuations [41, 46] this ap-
proach is clearly valid since streets are typically significantly longer than wide (c.f.
Figure 3). For simplicity, we shall concentrate first (in this Section as well as in
Section 3) on single streets to compare the different models - as it is suggested in the
majority of works considering PDE-based approaches [18]. In Section 4, we shall
then consider networks of streets. To map PDEs on networks, it is necessary to
define coupling conditions at nodes ensuring the balance of mass [18]. For instance,
this is done in traffic flow [3, 10, 24, 26] or supply chain modelling [17]. Here we
shall follow the approach of [13] maximising the gross flux at each node according to
a given distribution function while continuity of fluxes is ensured, i.e. pedestrians
are conserved.

This classical model (2) is based on a description in terms of continuous scalar
fields, i.e. densities. However an interpretation in terms of measure theory is
possible, c.f. [12] or Appendix A.

Macroscopic models with constant velocities. The balance equation (1) has been
considered in many works dealing with pedestrian flows. The simplest assumption
would be that all pedestrians move with the same constant velocity v [31]. Adopting
this assumption, equation (1) reduces to

Op(x,t

Oplant) 0

ot ox

i.e. a simple transport equation. In a recent work by [18], it has been shown that
under certain conditions the transport equation (1) coincides with discrete network
flow models - a classical approach to optimizing pedestrian dynamics.

(x,t) = f(x,t) inQx][0,T], (2)

Macroscopic models with density dependent velocities. Although models based on
the formulation (2) with constant pedestrian velocities are sometimes used, their
validity is questionable. According to empirical results, e.g. [49, 51], the assumption
of a constant velocity for all pedestrians does not hold in general. Following e.g. [51],
the velocity of pedestrian flows depends on the local pedestrian density according
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to

v(vg, p;x,t) = v(vg, p) = vg (1 — exp(_V(%_pmlax))) (3)

where 7 is a parameter, pyax describes the maximum density which can be realised
and vg is the so called free flow velocity. A classical choice for average European
pedestrian flows is v = 1.913, vg = 1.34 and pmax = 5.4 [51]. Although the exact
form of the fundamental diagram is under discussion in the community of pedestrian
flow experts and might even change from scenario to scenario, the existence of such
a relationship is a fundamental aspect in pedestrian flows [4, 48, 49, 51] as well
as in traffic flows [4, 15, 32, 44]. Thus most models, e.g. [8, 12, 13, 28, 29, 30,
52], explicitly include the fundamental diagram, i.e. rely on the balance equation
(1) with the velocity v given by a fundamental diagram, e.g. the relationship (3)
determined by Weidmann [51].

2.2. Discrete microscopic models. Most microscopic simulators share a com-
mon modelling approach of pedestrian behaviour. The different influences on each
pedestrian, e.g. repulsion from other pedestrians, are modelled via forces (respec-
tively potentials), i.e. models are inspired by simple Newtonian mechanics. Since
many approaches rely on conservative potentials, forces and potentials based de-
scriptions can be considered to be somewhat “equivalent”.

To be more precise, we consider in the following the efficient microscopic pedes-
trian simulator introduced in [19, 33]. The approach is based on a cellular automa-
ton using a hexagonal grid. At each time step every cell has a certain state: It is
either empty or occupied by a pedestrian or a fixed obstacle. Following [51] pedes-
trians move with individual velocities depending on the local density (velocities are
not discretised thus that in average “arbitrary” velocities can be realised). That
is, to each individual pedestrian p a constant free flow velocity vf;, which does not
change in time, is assigned. The velocities vf; are chosen according to a Gaussian
distribution as postulated by [51]. The actual velocity of the pedestrian v? is then
chosen according to (3) where the density p is determined by local sampling and
averaging within a radius R. It has been verified using the test case 4 of the RIMEA
consortium [47] that different sampling strategies with different sampling radii do
not affect the simulation results significantly.

The update scheme of the cellular automaton has to guarantee that pedestrians
with higher velocities are allowed to move more often than pedestrians with lower
velocities. In each time step of the simulation it is decided in a probabilistic fashion
which set of pedestrians is allowed to move: faster persons are chosen more often
such that, on average, pedestrians move with their prescribed velocity. The model’s
update rules are based on a potential description. Pedestrians are attracted by
targets modelled as long-range potentials [19] and they repel each other by a force
modelled through short-range potentials. In the simplest case, the movement rule
for a single pedestrian is purely deterministic: move to the unoccupied neighbouring
cell with the minimal total potential value. In general, the approach uses more
complex rules (c.f. [19, 33]) to reduce discretisation artefacts to a minimum.

The model is quite similar to the so-called static floor field cellular automaton
(cf. [7] and further references in [48]). However, compared with classical cellular
automaton models artefacts originating from spatial discretisations of the cellular
automaton lattice are reduced to a minimum by introducing appropriate correc-
tions within movement strategies [19, 33]. Still the computational efficiency is not



MODELS FOR PEDESTRIAN DYNAMICS 991

affected. The resulting movement can hardly be distinguished from continuum ap-
proaches that typically require significantly more computational effort. It reliably
captures typical crowd phenomena and could simulate up to 50 000 pedestrians, as
required for typical regional evacuation settings [41, 46]. A typical simulation of a
regional evacuation with 40 000 pedestrians in nearly real-time using the outlined
cellular automaton approach is shown in Figure 3. For more details on the approach
we refer to the original papers [19, 33].

2.3. Comparison of microscopic and macroscopic models. Let us now com-
pare the different modelling approaches introduced above, namely macroscopic den-
sity based models (Section 2.1) as well as the microscopic model (Section 2.2). Since
a rigorous mathematical treatment seems to be feasible only for relative simple cases,
e.g. [18], we shall compare the different models by computational means considering
a one-dimensional representation of a street with constant width. (We would like
to stress that the continuum models can often also be solved analytically, e.g. using
conformal mapping [28]). For completeness, we outline the first order finite volume
scheme used to discretise the macroscopic models of Section 2.1 in Appendix B. The
scheme differs from conventional upwind schemes to ensure important properties of
pedestrian flows, i.e. the existence of a maximum density. The computational ap-
proach to microscopic models is more or less evident from the outline in Section
2.2, for more details we refer to the original papers [19, 33].

In the following, let us consider a long street of length | = 200m and width
w = 10m for simplicity. Since w/l < 1, a one-dimensional approximation is valid.
Furthermore, we assume that people are standing together in a square pedestrian
block (10 m x 10 m) at the beginning of the street and move to the right during the
course of the simulation. Here, we restrict ourselves to one way pedestrian flows as
expected in a regional evacuation, but concepts for generalisations can be found in
the literature, e.g. [1].

A natural metric for comparing different pedestrian flow models are evacuation
times (one of the most common functional of interest). However, in a typical micro-
scopic model predictions can be obtained only in a statistical sense [34]. Microscopic
models include at least some randomness, such that the evacuation time depends
on the detailed realisation. Therefore, the evacuation time of 90% (or a different
proportion) of the pedestrians in the scenario is a better functional for the purposes
of comparing different approaches. This ensures that arbitrary slow pedestrians
which are likely to occur within the Gaussian distribution of free flow velocities
are neglected by the functional of interest. In the following, we shall furthermore
consider another metric for comparison which reflects information on the actual
dynamics better than evacuation times: namely snapshots of densities at different
time steps.

Balance equation vs. microscopic model with constant velocities. Let us consider
the transport equation (2) and the microscopic model outlined in Section 2.2 along
with the assumption that in the microscopic model all pedestrians p are walking
with the same velocity, i.e. v = 1.34 m/s. The results are shown in Figure 4. We
find that both approaches agree reasonably. Bearing in mind the accuracy of being
able to model real pedestrian behaviour at all, the agreement of the two types is
quite exact (at least from our point of view).

Balance equation vs. microscopic model using a fundamental relation. However,
following the observation of Weidmann the assumption of a constant velocity v? is
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FIGURE 4. Comparison of an individual based microscopic models
and density based macroscopic model (using a finite volume scheme
with A, = 0.1m for simulations) for pedestrian flows moving from
the left to the right in a street (length = 200m, width = 10m,
persons = 200). It is assumed that all pedestrians move with a
constant velocity v = 1.34 m/s. Snapshots at two different time-
steps are shown (20s and 70s).

not valid in general situations. In a second step, we therefore compare simulations
of the microscopic model with a behaviour mimicking Weidmann’s relationship,
ie. vP is given by relation (3) with constant v} = 1.34m/s and p determined
via local sampling and averaging (c.f. Section 2.2), and the macroscopic balance
equation (1) with the relation (3) as well as the same vg for all pedestrians, i.e.
variations among individuals are neglected. Results are shown in Figure 5. Again
the simulations agree reasonably with respect to the expected accuracy. Bumps in
the microscopic model are due to binning and the grid resolution of the microscopic
model. They depend on the detailed binning and discretisation chosen.

Balance equation vs. microscopic model with distributed velocities. The continuum
model considered in Figure 5 is a state-of-the-art model adopting a continuum
macroscopic point of view [2, 4, 8, 31]. However, the microscopic model considered
in Figure 5 does not include velocity variations among individuals, e.g. pedestrians
of different sizes, ages or mobility, as state-of-the-art microscopic models do (c.f.
e.g [48]). The variation of individual velocities is a fundamental and empirically
well established property. Thus, we further compare the balance model (1) with
a microscopic model reflecting variations of velocity among individuals as well as
adapting velocities of pedestrians according to the local density, i.e. the velocity
of a pedestrian v? is given by (3) with vf; given by a Gaussian distribution and p
determined by local sampling and averaging (c.f. Section 2.2). Again, we chose the
same setup as above. The results are shown in Figure 6. One can clearly observe that
the macroscopic continuum model and the microscopic individual based model show
a different qualitative behaviour - at least on the length scales regional evacuation
is interested in.

Since the reliability of prediction of evacuation simulations depends on the re-
alism of the simulation approaches [41], it is thus questionable whether typical
macroscopic models outlined in Section 2.1 could be used instead of more realistic
microscopic models. Thus an open question is whether there exists some type of



MODELS FOR PEDESTRIAN DYNAMICS 993

15
1 classical macroscopic model
1 I\ T ~ microscopic model
§_ 1'0__ direction of movement
T N
s ] AN —_—
g‘ i .
[7)
S 0.5
T - 2
i \
00 - . — , . : :
0 60 80 100 120 140 160 180 200

distance [m]

FIGURE 5. Comparison of an individual based microscopic model
and density based macroscopic model (using a finite volume scheme
with A, = 0.1m for simulations) for a pedestrian flow in a street
(length = 200m, width = 10m, persons = 200) moving from the
left to the right. It is assumed that all pedestrians move with a
velocity according to Weidmanns fundamental relation (3) with the
same vg = 1.34m/s for all pedestrians. Snapshots at two different
time-steps are shown (20s and 70s).
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F1GURE 6. Comparison of an individual based microscopic and
density based macroscopic model for a pedestrian flow in a street
(length = 200m, width = 10m, persons = 200) assuming that all
pedestrians move with a velocity according to Weidmanns funda-
mental relation (3) with vg = 1.34m/s, v = 1.913 and ppax =
5.4Ped/m?. Snapshots at two different time-steps are shown (20s
and 70s). The macroscopic model uses a spatial discretisation of
A, = 0.1m.

macroscopic model that better mimics the behaviour of the microscopic model, i.e.
realism. Finding an appropriate model is a rewarding task, for those interested in
regional evacuation. However, computational efficiency is a crucial factor.
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3. Structured macroscopic transport model. The drawback of the balance
model (1) with the velocity given by relation (3) is the assumption that all pedes-
trians at a given point x and time ¢ move with the same velocity v = v(p(z,t)).
However, in general the velocities of the pedestrians differ among individuals. To
increase the realism of current macroscopic models we therefore propose to include
an additional structure - similar to generalised kinetic concepts recently suggested
for pedestrian flows [2, 4] (c.f. also [20, 21]).

Therefore, we introduce in the following the additional variable vg modelling
different free flow velocities among pedestrians in model (1). Thus, we consider
densities p depending on space, time as well as the free velocity of individuals, i.e.
p(vg; x,t) is the density of pedestrians with free flow velocity vg at position = at
time t. Hence, the total density of pedestrians at a point x at time ¢ is given by

max

Vge
plat) = [ izt (1)
0

where v§*?* is the maximum free flow velocity any pedestrian can have. The free flow
velocity is an individual property of pedestrians, i.e. a macroscopic state variable
attached to each individual which does not change with time (not to be confused
with the actual velocity used in kinetic models). Thus for modelling pedestrian
flows the following balance equation holds

Op(vg;z,t) 0

SDE o (0 (o (e, 0) plos 2, ) = f (v, 1) (5)

in [0,vf*] x Q x [0,T[, where p(x,t) is given by (4). That is, (5) is an integro-
differential equation and fundamental relation (3) is adapted accordingly, i.e.
v(vg; p) = va(l —exp(—y(1/p—1/pmax))). Furthermore, f(vg;x,t) models a source
respectively sink term. An interpretation of the model in terms of time-evolving
measures is given in Appendix A.

In the case of a single free flow velocity among individuals, model (5) reduces to
the classical balance model (1), c.f. Appendix A. As in Section 2.1, we rely here on
a first order closure, i.e. use experimental relationships for the velocity depending
on the density rather than providing an additional model.

Structured macroscopic model vs. microscopic model. Considering the same setup
as in Section 2.3, the structured balance equation (5) modelling pedestrian flows
on a macroscopic level is compared with the microscopic model of Section 2.2 by
computational means. To do so, we adopt a piecewise constant approximation with
respect to vg. This corresponds to the introduction of different velocity classes of
pedestrians (c.f. also [20]), each evolving according to equation (5), i.e. a system
of n equations. For more details on the discretisation of the free flow velocity state
we refer to Appendix A. The evolution of each velocity class is computed using the
finite volume scheme outlined in Appendix B.

In Figure 7, the comparison of the structured macroscopic model with the de-
tailed microscopic model using the same setup as in Section 2.3 is shown. One can
clearly observe that both models agree quite well. Comparing this model with the
macroscopic models outlined in Section 2.1, we find that the structured macroscopic
model is expected to yield the most realistic results (c.f. Figure 8).

At the same time the structured macroscopic model is still relatively efficient
from a computational point of view. To compare the different methods, the compu-
tation times for three different scenarios - streets of lengths 200m, 400m and 600m -



MODELS FOR PEDESTRIAN DYNAMICS 995

12
- . structured macroscopic model
1.0 4 R I ~ _microscopic model
= ] \
£ 0.8 \ R
3 ] L direction of movement
[
£ 06
2 J
(7]
$ 0.4
T -
0.2
0.0 y Y T T T T — T T
0 20 40 60 80 100 120 140 160 180 200

distance [m]

FI1GURE 7. Comparison of an individual based microscopic and
density based structured macroscopic model for a pedestrian flow in
a street (length = 200m, width = 10m, persons = 200). Snapshots
at two different time-steps are shown. The macroscopic model uses
a spatial discretisation of A, = 1m and uses 10 velocity classes for
a discretisation of the velocities.

25
b fixed velocity
4 e - Weidmann
20 b — — — structured
NE ]
35 157
[ -
2 ]
£ 104
S ]
o° T [RREEN
- . ~
0.5 |
] L T T .
00 _ Moo~
~ 0 20 40 60 80 100 120 140 160 180 200
distance [m]

FI1GURE 8. Comparison of different microscopic models simulating
pedestrian flows in a street (c.f. Figures 4, 5,7). A snapshot at
time 70 s is shown.

are compared in Table 1. 2000 pedestrians move from the left hand side to the right
hand side of the street and the simulation stops when 50% of the pedestrians have
left the street. Since the predicted evacuation time tevacuation, 1-€. the time it takes
for 50% of the pedestrians to be evacuated, depends on the considered model, we
believe that relative computation times relative = tcomputation/tevacuation 8r€ an ap-
propriate measure for computational efficiency. Here tcomputation is the time which
has been spent on computations by the processor. Furthermore, we compare differ-
ent discretisations of the macroscopic models (A, =1m, A, =10m). Additionally,
the computational efficiency depends on the number of pedestrians considered. The
microscopic model has roughly a linear dependence of relative computational times
on the number of considered pedestrians, whereas the macroscopic models should
not depend significantly on the number of pedestrians since they consider continu-
ous densities. However, the evacuation time depends in both cases on the number
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’ 2000 persons \ 200m \ 400m \ 600m ‘
Microscopic Model 0.049 0.044 0.047
Classical Macroscopic Model Az = 1m 0.002 0.008 | 0.020

Classical Macroscopic Model Az = 10m 0.00006 | 0.00009 | 0.0002

Structured Macroscopic Model Az = 1m 0.007 0.039 0.082

Structured Macroscopic Model Az = 10m | 0.0002 0.002 | 0.002
TAaBLE 1. Computational efficiency of the microscopic, classi-
cal macroscopic and structured macroscopic model for pedestrian
flows. Streets of three different length are considered and the com-
putation is stopped after 50% of the pedestrians have left the street.
The computational efficiency is measured in terms of relative com-

pUtatlonal times, 1.e. frelative = tcomputation/tevacuation-

of pedestrians since higher densities typically imply slower velocities according to
the fundamental diagrams.

4. Examples. Let us now investigate the newly introduced structured macroscopic
model in more detail considering two test cases: a narrowing street (Section 4.1)
and a simple egress scenario, i.e. a network of one-dimensional streets (Section 4.2).

4.1. Narrowing street. So far, we have considered only streets of constant width,
but frequently real scenarios include streets with narrowing passages causing con-
gestions. Here we consider such an example. We assume a street of length 200m
which has a width of 10m for the first 100m and a width of 4m for the rest of the
street. 200 persons are moving from the left to the right. The street is split up into
two parts of constant width and both parts are coupled according to [13] (c.f. also
Section 2.1). Having only one incoming and one outgoing edge, the coupling condi-
tions corresponds to a continuity of fluxes, i.e. folflm vopTdy = fé;n vt pTdy, where
* indicate limits from the left hand and right hand sides respectively. A comparison
of the classical macroscopic model using the fundamental diagram (3), the newly
introduced structured model as well as the microscopic model is shown in Figure
9. Snapshots of densities at different time steps show a good agreement between
the newly introduced structured macroscopic model and the microscopic models,
whereas the comparison of the classical macroscopic model and the microscopic
model shows significant qualitative differences.

4.2. A simple egress scenario. Before building or operating public infrastruc-
ture, typically detailed evacuation studies have to be performed to ensure minimum
evacuation times - often legally required. Here, we consider a regional evacuation
scenario. Given a scenario with an egress strategy the macroscopic models can
be used to predict evacuation times. Furthermore, using optimisation algorithms
in combination with efficient macroscopic simulation techniques corresponding op-
timal egress strategies can be developed. Such strategies are in many situations
not obvious. Most pedestrians have multiple egress routes they could choose from.
Furthermore, congestions might occur leading to highly non-linear relationships be-
tween the travelled distance and the required time [51].

In this section we shall investigate the small fictitious evacuation scenario shown
in Figure 10 build up by a network of streets. Edges of the network are discretised
as before and at the nodes we follow the approach of [10] prescribing explicitly the
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structured macroscopic model
""""" ~ microscopic model
— — — classical macroscopic model

density [ped./m2]

0.0

distance [m]

FIGURE 9. Comparison of a structured macroscopic model (using
a finite volume scheme with A, = 1m for simulations) and an indi-
vidual based microscopic model for a pedestrian flow in a narrowing
street (length = 200m, width = [10m for the first 100m, 4m for the
second 100m], persons = 200) moving from the left to the right.
Snapshot at three different time steps of the simulation time are
shown (20s, 90s, 180s).

100;10 50:10 100;1 100:10
s —> N3 —> N5 NG — M T3
l 100;20 T 100:20
100;10 150;20 100;5
s2id —_— N4 — N7| > m Tg

FIGURE 10. Fictive scenario with two sources (S1, S2) with 2000
persons per source (4000 total) entering the scenario as fast as
possible. At the two targets (T8, T9) the persons leave the scenario.
For the microscopic model the scenario is considered as a two-
dimensional arrangement of streets, for the macroscopic model it
is a graph with nodes (S1, S2, N3, ..., N7, T8, T9). The dimensions
of the streets are shown above.

distribution of pedestrians (c.f. Section 2.1). At two sources with 2000 persons
per source (4000 total) pedestrians enter the scenario as fast as possible on the
left hand side. They try to leave the scenario at the two exits on the right hand
side. Because of narrowing of streets an optimal evacuation strategy is not obvious.
As a first guess pedestrians are routed according to street widths. That is, at the
crossing N3 33.3% of the pedestrians are routed to the vertex N5 and 66.6% to the
vertex N4. Similarly at the vertex N7 80.0% are routed to N6 and 20.0% to T9.
This routing strategy corresponds to an evacuation of 80% of the pedestrians in
647 seconds (c.f. also Table 2). Again, we consider not the full evacuation since
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’ \ Initial Distributions \ Optimised Distributions ‘

N3 — N4 0.6666 0.8316
N3 — Nb 0.3333 0.1684
N7 — N6 0.800 0.5667
N7 — T9 0.200 0.4333
’ 80% evacuation time \ 647 s \ 584 s

TABLE 2. Routing of pedestrians at nodes N3 and N7 in the fictive
scenario shown in Figure 10. The initial routing of pedestrians
according to width is not optimal as underlined by the optimised
distribution.

4500
4000
3500
3000
2500
2000 -
1500
1000

500

structured macroscopic model
>~. e - . =
N microscopic model

persons

0 200 400 600 800 1000 1200
time[s]

FiGURE 11. Population of our fictive evacuation scenario. Com-
parison of the structured macroscopic model and the microscopic
model.

Gaussian distributions allow arbitrarily slow pedestrians, although in the structured
macroscopic approach the discretisation of velocities defines of course a lower bound.

Because of the highly non-linear relationship of pedestrian velocities and densi-
ties, it is likely that this is not an optimal egress strategy. Therefore, we use in
the following an optimisation approach to determine an optimal egress strategy.
Here, we use the Nelder Mead method [45] but other methods work as well. The
functional of interest is again the evacuation time when 80% of the pedestrians have
left the scenario, i.e. an egress strategy is optimal if this time is minimal. Using the
structured model an optimised egress strategy (c.f. Table 2) yields an egress time
of 584 seconds, i.e. the egress time is improved by 10% compared with our naive
strategy proposed above. Of course this might eventually be only a local minimum,
although we have checked various other strategies to start the optimisation with,
i.e. various starting points of the optimisation.

Using the same egress strategy for the microscopic model, we compare both
approaches. The results are presented in Figure 11 and show a good agreement.
Especially at the tail a good agreement is important since this is the critical region
with respect to egress.
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5. Conclusions. In this article, we have introduced a new PDE-model for the
macroscopic description of pedestrian flows. This new macroscopic model is mo-
tivated by a computational comparison of classical macroscopic models and a mi-
croscopic model resolving single pedestrian behaviour. Comparing the dynamics,
e.g. snapshots of density distributions at certain time steps, shows a significant
difference between the microscopic model and classical macroscopic models.

In comparison to classical models the proposed macroscopic model introduces an
additional structure, namely individual velocities of pedestrians (similar to gener-
alised kinetic theories). Velocities are again adapted to the local density according
to given fundamental diagrams. Thus the empirically observed distributions of in-
dividual free-flow velocities among pedestrians is resolved by the model. Dynamics
of this improved model show nearly a perfect agreement with a detailed microscopic
model, on single quasi-one-dimensional streets as well as on networks of streets.

The improved realism is extremely important for safety-relevant real life applica-
tions [41] - we are mainly concerned with regional evacuation [46]. The validation
of egress strategies or identification of optimisation potentials depends critically on
the reliability of the considered models. Thus, the realism in combination with
the computational efficiency makes the developed macroscopic approach an ideal
computational tool for the investigation of regional evacuation.

So far, we have considered only directed flows in one dimension, which is a
reasonable assumption when studying regional evacuation. The extension of clas-
sical models to two-way flows in one dimension has been suggested by [1] and can
be adopted accordingly. Furthermore, we have restricted ourselves to simple one-
dimensional geometries or networks composed of these. Of course a generalisation
to two dimensions, e.g. as in [8, 12, 30, 52|, is principally feasible. Considering a
two-dimensional set-up, velocity density relations alone are not sufficient to provide
a closure of the model but need to be combined with information on the direction.
One option could be the use of the Eikonal equation with the velocity given by
the velocity density relation used here, e.g. [19]. For other possibilities see e.g.
[8, 12, 30, 52]. However, a comparison with the two-dimensional cellular automaton
approach shows that in many cases a one-dimensional approach is sufficient.

For convenience, we have chosen a single microscopic model for the comparison
of microscopic and macroscopic approaches to pedestrian flows. Nevertheless, the
same results should also hold for most other microscopic pedestrian simulators.
Although paths of individual pedestrians can differ significantly, the dynamics of the
overall pedestrian density distribution are very similar among different microscopic
approaches.

Acknowledgments. The authors would like to thank the German Federal Min-
istry of Education and Research who funded our research through the priority pro-
gram Schutz und Rettung von Menschen within the project REPKA - Regional
Evacuation: Planning, Control and Adaptation.

Appendix A. Interpretation in terms of time-evolving measures. Follow-
ing the work of [12], a derivation of macroscopic pedestrian models can be obtained
from a measure theory point of view. Taking a different view point allows us to
systematically derive classical transport equations as a limit as well as a natural
discretisation in terms of speed classes of the additional state variables.
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Let p: be a positive Radon measure defined on the Borel o-algebra B(R) ®
B([0, Vinax]) modelling pedestrian densities. For notational convenience we will con-
sider B(R) ® B(R) and extend the measure outside [0, Vipax] with zero. That is, for
any F € B(R) ® B(R) the number p;(E) gives the mass of pedestrians contained in
FE, i.e. pedestrians with a certain free flow velocity at a certain region. In contrast
to kinetic models we work here with the free flow velocity rather than the actual
velocity as used in models using phase-space variables. Following [9, 12] the balance
of mass transported by a velocity field v(vg, x,t) = vgv(x,t) is expressed as

8,Ut 0

E_Fa—( w) =0 for (vg,z,t) e R xR x[0,T] (6)

with 7' > 0 and along with some given initial distribution pg. All derivatives in (6)
are interpreted in the functional sense of measures. The detailed relation v could be
taken e.g. on the basis of Weidmanns fundamental relation, but any other relation
would work as well, c.f. [12]. The formulation (6) is equivalent to the following
weak formulation

//(/l)a: )@ (ver)dpse (ver, // Uff,ﬂﬁt %( )bo (vi)dpe (v, ). (7)

for all ¢, (+), ¢u(+) € C(R). Under the assumption that the measure p; is absolutely
continuous w.r.t. to the Lebesgue measure, Radon-Nikodym’s theorem ensures the
existence of a corresponding density, i.e. du; = p(-,t)dL with p(-,;t) € £ and
p(-,t) > 0 almost everywhere. We thus obtain

G | ot 000, 0oy
(8)
://p(vﬁ’x’t7)U(Uﬁ’x’t))gﬁbm(xﬁ%(vﬁ)dmdz}ﬁ,
R JR ox

On the basis of this measure theoretic formulation, the classical model (1) as well
as the corresponding numerical discretisation can be recovered as shown below.

Classical model. Considering only one single free flow velocity, i.e. du; = p(z,t)
O35 dL, we recover

d 0
o Rp(ﬂff,x7t)¢w(m)dx:/p(f)ﬂr,x,t)v(ﬂff,w,t)%%(x)dx. (9)

R
The equivalent strong formulation is the classical model (1).

Numerical discretisation. For simulations of model (5) a corresponding discretisa-
tion of the space as well as the free flow velocities is required. With respect to the
velocity space, we adopt a classical Galerkin approximation. Since p(vg, z,t) € L,
we can choose the following representation with respect to the infinite dimensional
basis ;(v) of the velocity space

p(vg, x,t) Zm x, ) (ve). (10)

Introducing a discretisation of the ve1001ty space 0 =vg < v < ... <V, = Vinax, &
corresponding finite n-dimensional basis is given by the piecewise constant orthonor-
mal functions ¢;(v) = \/ﬁX[viq,vi](v)- The densities p; can be interpreted as
densities corresponding to a certain velocity class, namely pedestrians with a free
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flow velocity between v;_1 and v;. Adopting this finite dimensional basis and using
v(vg, z,t)) = vgd(z,t), (8) reduces to

Z % /]R /]R pj (I, t)wj (Uﬂ>¢$ (I)¢1J(Uﬁ)d$d’[}g

(11)
:Z /R /]R pj(x,t)wj(vff)vfff/(x,t)%d)x(x)(bv(vg)dxdvff

for all ¢;. Using the fact that we work with an orthonormal basis we obtain

;Apj(x,t)¢(x)dxdvﬁ:%:/Rpj(x,t)z‘;ffﬁ(x,t)aaxgb(x)dx (12)

for all vg. Here, we use the notation that the index vg corresponds to the index
i with average velocity og = [, vath; = (v; — v;—1)/2. Thus we have recovered
separate evolution equations for each velocity class (in total n).

Since the strong formulation of(12) corresponds more or less classical structure
(1), they can easily be discretised using the concepts introduced in Appendix B.

Appendix B. Numerical discretisation. Simulations of the balance equation
(1) in one dimension are typically based on finite volume schemes. Considering first
order approximations typically upwind schemes are used [38]. However, since these
classical schemes rely solely on upwind information, in case of congestions (e.g. the
example of a narrowing street presented in Section 4.1) they could lead to densi-
ties higher than py.x. Thus the evident assumption of an existence of a maximal
density (c.f. e.g. [51]) is violated. Therefore, we shall introduce a non-standard
mixed upwind-downwind scheme for the simulation of pedestrian flows. Here, we
shall restrict ourselves to a PDE on a single street. Following [10] corresponding
discretisations can be mapped on a network of streets (c.f. Section 2.1).

For simplicity, let us consider in the following a street of constant width with
a directed flow of pedestrians (an assumption typically valid in an evacuation).
Furthermore, we assume that space and time are discretised equidistantly, i.e. xg,
Z1, ..., Zn such that ; — z;_1 = A, and t°, ¢!, ..., t™ such that / — /71 = A,.
Let p{ be a piecewise (cell wise) constant approximation of the density at position
x; at time t7, i.e. p{ = p(x;,t7). Adopting a first order discretisation we rely on the
following scheme

plT =0l = A [dTFS +dFy] (13)

with the discretised fluxes
piv((1 — a)pi + apit1) — pim1v((1 — a)pi—1 + api)

Fr =
A Az

— pit10((1 = a)piy1 +ap;) — piv((1 — a)p; + api—1)
AT A

and direction indicators

d+_{0 v>0 (=) - {o v>0 (=)

1 <0 (+) T\ v<0(v)

(the direction of movement is indicated by arrows). In the case v = const., the
scheme is a classical first order upwind scheme [38]. Considering a non-constant v,
e.g. as given by (3), the scheme (13) differs from classical upwind schemes by the
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error - comparision with CrowdControl
350 — — — 15*deltaX

error [s]

0 20 40 60 80 100 120 140 160 180 200
deltaX [m]
FIGURE 12. Error in evacuation time of 80% of 2000 pedestrians

in a street of length 200m and width 10m, where the exact solution
has been determined using a discretisation of A, =0.1m.

introduction of the parameter 0 < o < 1. Choosing a = 0 the scheme is a classical
first order upwind scheme. Choosing o = 1, i.e. evaluating densities / velocities
downwind, the scheme mimics central properties of the balance equation (1) in
combination with a fundamental diagram like (3). On the one hand, the scheme
is conservative by construction. On the other hand it guarantees that p is always
bounded by pmax as required by (3) or any other fundamental diagram. Above
a certain density ppax pedestrians cannot move any more and thus the density
cannot increase further. In the following we shall always set & = 1 to guarantee
boundedness of densities by pmax-

The parameter « also allows for a different interpretation, namely the measure
of how far pedestrians look ahead to adjust their velocity according to the density.
In case of a relatively fine discretisation A, = 1m « = 1 would imply that pedes-
trians look roughly 1m ahead to adjust their velocities and in the case of a coarse
discretisation A, = 10m « = 0 would imply that pedestrians look less than 10m
ahead to adjust velocities.

The spatial discretisation A, is chosen manually according to the required ac-
curacy (c.f. also Figure 12). The temporal discretisation A; is then chosen auto-
matically accordingly to the CFL condition [38], i.e. Ay = 0.1v/A,. In Figure 12 a
detailed convergence study with respect to evacuation times is shown. Here, we con-
sider a street of length 200m and width 10m with 2000 pedestrians and determine
the evacuation of 80% of the pedestrians. Errors for different spatial discretisation
levels are shown, where the exact solution has been determined with the solution
of the microscopic model. The same relationship for the error is found using a very
small A, to determine the exact solution. One can clearly observe the discretisa-
tion is of first order as expected (c.f. also the experimental order of convergence
determined in Table 3).

Appendix C. Efficient microscopic discrete-in-time model. The structured
hyperbolic macroscopic model outlined in Section 3, shows significantly more real-
istic dynamics than classical macroscopic models and is still significantly faster to
solve than exact microscopic models. In this Appendix, we shall further introduce
an alternative simple one-dimensional microscopic discrete-in-time model aimed at



MODELS FOR PEDESTRIAN DYNAMICS 1003

(A, [05m | 1m [ 5m [ 10m | 50m | 100m |
Error £ Os 2.1s | 10.2s | 18.9s | 82.0s | 169.7s
EOC 0 09 | 0.85 | 1.03 | 0.61 2.19

TABLE 3. Experimental order of convergence (EOC= (InE’ —
In E“M1)/(In AL — In ASFY)) with respect to evacuation of 80% of
2000 pedestrians in a street of length 200m and width 10m, where
the exact solution has been determined using a discretisation of

A, =0.1m.
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i—-1 i i+1 i+ 2 Discret. interval Dp

FIGURE 13. Schematic sketch of the projected dynamics scheme:
each pedestrian is characterised by its one-dimensional position
and the discretisation interval D, corresponding to its position.
Pedestrian densities p are discretised piecewise constantly on the
discretisation intervals.

faster computations with the requirement that it reproduces exactly the dynamics
of the microscopic model presented in Section 2.2. It is as realistic and computa-
tionally efficient as the structured macroscopic model. Again we restrict ourselves
to a single street, but a generalisation to networks is straightforward because of the
microscopic nature of the model.

The central idea of this simple multiscale approach is to couple a microscopic
model projected to one dimension with a macroscopic estimation of pedestrian den-
sities using a proper macroscopic discretisation (piecewise constant). These macro-
scopic estimates are then used to determine the velocities of microscopic pedestrians
via fundamental relations, e.g. (3). The proposed approach is shown schematically
in Figure 13.

The one-dimensional representation of the street is discretised into discrete inter-
vals and each pedestrian p is characterised by a position x, and the discrete interval
D, the pedestrian resides in. Adopting a temporal discretisation with time steps
Ay, in each time step all pedestrians are moved according to Algorithm 1. First,
the velocity of each pedestrian V), is evaluated on the basis of the actual position
x, and the density of pedestrians in the current discretisation interval D, and the
next discretisation interval D), in the direction of movement. Second, the detailed
weight is chosen by a parameter « , i.e. p = (1 — a)p(Dp) + ap(Dpi1) is used to
determine corresponding velocities, where p(D,) is the density in the interval D,
given by the number of pedestrians on that interval divided by the corresponding
area. The interpretation of « is analogous to Appendix B. Again o = 1 ensures a
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maximal density of pmax. The speed V), is then given by a fundamental diagram,
e.g. v(vg; p) = va(l —exp(—y(1/p—1/pmax))) as given by relation (3) and vg vary-
ing among pedestrians. In the next step, the position of the pedestrian is updated
according to z, + V,A;. If this position would be in the next discretisation inter-
val, i.e. zp 4+ VpAr > Dyyq, the pedestrian is moved to the beginning of the next
discretisation interval and the movement step is repeated for the remaining time.
Otherwise, the pedestrian is simply moved to the new position in the same interval
and the algorithm proceeds with the next pedestrian.

Algorithm 1 Projected dynamics scheme - update pedestrian p in interval D, with
free flow velocity vfy and position z, in a time step of length A,.

initialise time to move 6, = A,
while §, > 0 do
determine density p = (1 — a)p(Dp) + ap(Dp+1)
determine velocity V, = vg(1 — exp(—y(1/p — 1/ pmax)))
determine distance d, = VpA;
if z, +d, < (D, + 1)A, then
Tp =xp +dp
0p=0
else
8p = 0p = (Dp + 3)As — 2)/(Vp)
zp = (Dp + %)Aw
end if
end while

A comparison of this new multiscale algorithm with the detailed microscopic
model (Section 2.2) and the newly introduced structured macroscopic model (Sec-
tion 3) is shown in Figure 14 for the simple scenario outlined in Section 2.3. We
find that qualitatively the model reproduces the microscopic models as well as the
structured macroscopic model. Considering different macroscopic discretisations
analogous to the structured macroscopic model (c.f. Figure 12), we also recover
a linear relationship for the discretisation error (Figure 15). That is, the newly
introduced simple multiscale model is a first order approximation, as expected.
Compared with classical microscopic approaches this multiscale approach shows a
significant computational speed up. It is as efficient as the structured macroscopic
model introduced in Section 3 and dynamics are of the same realism. Thus it is a
proper alternative.
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