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ABSTRACT. This paper is devoted to the asymptotic analysis of simple models
of fluid-structure interaction, namely a system between the heat and wave
equations coupled via some transmission conditions at the interface. The heat
part induces the dissipation of the full system. Here we are interested in the
behavior of the model when the thickness of the heat part and/or the heat
diffusion coefficient go to zero or to infinity. The limit problem is a wave
equation with a boundary condition at the interface, this boundary condition
being different according to the limit of the above mentioned parameters. It
turns out that some limit problems are dissipative but some of them are non
dissipative or their behavior is unknown.

1. Introduction. This paper is concerned with the asymptotic analysis of a simple
model of fluid-structure interaction. More precisely we consider a coupled system
between the heat equation and the wave equation, the coupling being made through
some transmission conditions along the interface. It is well known that the heat
component induces the dissipation of the full system, see [25, 30, 31, 32], where it is
shown that the energy of the system decays polynomially under some geometrical
conditions between the heat and wave parts. Such a system is a simplified and
linearized version of a fluid-structure interaction. More realistic models should
consist in the coupling between the Navier-Stokes (or Stokes) and the elasticity
systems, but for such systems some basic mathematical questions remain open [5,
8,9, 10, 13, 14, 15, 29]. Furthermore in a first attempt we have preferred to analyze
the simplest model.

A complete analysis of a system which couples at the interface the linear version
of the Navier-Stokes equations with the equations of linear elasticity (wave-like) has
been recently done by Avalos and Triggiani [2, 3]. Probably our approach could be
extended to such a model. This will be investigated in the future.

Here we are interested in the behavior of the system when the thickness of the
heat component and/or the heat diffusion coefficient go to zero or to infinity. To our
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knowledge, such an analysis is not yet done (for stationary heat problem, we refer to
[12]). The main question is to see if the limit problem inherits the decay property
of the family of coupled systems. We actually show that the limit problem is a
wave equation with a boundary condition at the interface. Four types of boundary
conditions are obtained according to the limit of the above mentioned parameters.
Namely we find either a Dirichlet boundary condition, or a Neumann boundary
condition, or a standard dissipative boundary condition or a non standard boundary
condition of memory type. Hence, for the first two boundary conditions the limit
problem is not dissipative, while for the third one, it is dissipative. Finally for the
non standard boundary condition of memory type, we do not know if the system is
dissipative or not.

Our main idea is to use the Neumann to Dirichlet and a variant of the Dirichlet
to Neumann operators in the heat part in order to transform the transmission
condition into a boundary condition with memory for the wave unknown. Hence, in
a second step, we are able to analyze the limit procedure in this boundary condition
with memory.

Our paper is clearly connected with the problem of perfectly matching layers.
The absorbing boundary conditions, introduced by Engquist and Majda [11] and
Bayliss and Turkel [4] to truncate infinite domains in order to carry out computa-
tions of wave propagation phenomena in acoustic and fluid dynamics, are almost
always nonlocal. Thus, they are difficult to deal with and require pseudodifferential
analysis. It is then interesting to substitute absorbing boundary conditions with a
partial differential equation on a close domain, easier to analyse and especially to
use numerically (see [7]).

The paper is mainly divided in two parts. The first part treats the one-dimensional
situation, while the second one is devoted to the multidimensional case. Even if some
similarities exist between these two parts, we have kept this subdivision because the
one-dimensional case is more simple to treat and then allows to understand the un-
derlying ideas.

The paper is organized as follows. In section 2, we first recall the model problem,
transform it by using a standard scaling argument and then show that it is well
posed using semi-group theory. In section 3, in the one-dimensional case we give
explicit expressions for the Neumann to Dirichlet and the variant of the Dirichlet
to Neumann operators. Hence the limit process is made in section 4 in the one-
dimensional case. We go on with the multidimensional case, with a similar scheme.
Namely the Dirichlet to Neumann and Neumann to Dirichlet operators are given in
section 5 and we end up with the limit process.

In the whole paper, we will use the following notations. As usual, we denote by
L?(.) the Lebesgue space and by H*(.), s > 0, the standard Sobolev space. The
usual norm and seminorm of H*(D) are denoted by || - ||s,p and |- |s,p. Hence the
L?(D)-norm will be denoted by || - |

0,D-

2. The problem. We consider the following hyperbolic-parabolic problem. We
suppose that the heat equation is set in

Qn(e) = (0,€) x O,

where O is a bounded domain of R"~!, n > 1 with a Lipschitz boundary (in the case
n = 1, this means that Q,(e) = (0,€)). We further assume that the wave equation
holds in a domain £, of R™ with a Lipschitz boundary such that its boundary
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contains

I={0}x0,
called the interface (between Qy,(e) and ,,). If n = 1, we simply take Q,, = (—1,0).
Finally the two equations are coupled through the interface I leading to the following
system

yuu — Ay =0 in €, x (0,400) (1)
2z —c2Az=0 in Q(e) x (0,+00) (2)
y:(0,2',¢) = 2(0,2',t) 2’ € O,t € (0,+00) (3)
Yz, (0,2/,1) = ®2,,(0,27,1) 2’/ € O,t € (0, +00) (4)
y(x,t) =0 x €I \I,t € (0,+00) (5)
z(x,t) =0  x€d(e)\ I,t € (0,4+00) (6)
y(2,0) = yo(z) and y,(z,0) =yi(z) n Qy (7)
2(x,0) = zo(x) in Qp(e), (8)
where € > 0 is the thickness of the heat component and ¢ > 0 is the heat diffusion
coefficient, which are two variable parameters.

Our main goal is to analyze the limit problem obtained as e and/or ¢ go to zero
or to infinity.

As mentioned in the introduction, this system is a simplified and linearized model
for a fluid-structure interaction. The unknown z corresponds to the velocity of
the fluid, while y and y; represent the displacement and velocity of the structure
respectively. We refer to [31, 32] for the long time behavior of this system for fixed
parameters € and ¢, see also [25, 30] for a variant of this system.

For the sake of simplicity x € Q(¢) will be often written x = (z1,2), with
x1 € (0,¢) and 2’ € O (if n = 1, the variable 2’ has to be ignored). We further
write

Qn = Qp(1).
By the change of variables x; = €&y, &1 € (0,1) and the change of unknown
é(ila ZE/, t) = Z(xlv x/a t)v

the above problem is equivalent to

yuu — Ay =0 in €, x (0,400) (9)

. 1 . .

5 — (K*03,5, + gAml)z =0 in Qp x(0,400) (10)

ye(0,2t) = 2(0,2't) 2/ € O,t € (0,+00) (11)

k

Yz, (0,1) = aéil((),x’,t) ' € 0,t € (0,+x) (12)

y(x,t) =0 x€ 0\ I,t e (0,400) (13)

2, t) =0  xe€0Q,\I,t e (0,+0) (14)

y(x,0) = yo(z) and wy(z,0) =yi(z) in Q (15)

2(2,0) = zo(ex) in  Qp, (16)
where k = ¢/e > 0 will be one of our new parameters that may tend to zero or to
infinity. The second parameter will be o = 1 = ﬁ that may also tend to zero or

c

to infinity. Note further that in the case n = 1, the variable 2’ and the operator

%Aw/ disappear.
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For shortness from now on, we write z instead of Z and assume that zg = 0,
therefore the above problem depends only on the parameter & and . We are
interested in the behavior of the problem as k and « go to 0 or to infinity.

Now we give existence and regularity results for the system (9) to (16). We
further give a priori bounds that will be useful for our limit processes. Denoting by

U= (yv Yt, Z) )
we see that (9) and (10) imply that
2 1 (kya)
Ut = (ytayttazt) =\ Y, Ayu k Zrix + EAw’Z =AY U7 (17)
where we set (formally)
1
Alke) (u,v,2) = <’U, Au, k2zx1x1 + _QAI’Z) . (18)
a

From these considerations, we introduce
H =V x L*(Q,) x L*(Q),

where
V={uec H (Q):u=0o0ndQ, \I}.
The space ‘H is a Hilbert space for the inner product

(u,v,2),(0,0,2))y = /g (Vu(z) - Va(z) + v(z)o(x)) de + % ., z(x)z(x) d.

We further introduce the domain of the operator A% as
1
DA% = {(u,v,2) eH:  vEV;AuE L* () K’ 2ara, + —5Awz € L*();
o
z=0on o\ I;
k
U= 2, Uy = 2z ON I}.
Finally for U € D(A®®)), AR is defined by (18).
Note that if n = 1, then
D(A®)) = {(u,v,z) € H*(—1,0) x H*(—1,0) x H(0,1) :

u(—=1) =v(-1) = 2(1) =0, v(0) = 2(0), uz(0) = gzx(())}

On the contrary if n > 2, if (u,v,2) belongs to D(A%®) then we only have
u € E(A,L*(Qy)) where

E(AL*(Q)) = {ue H' (Q,) : Aue L*(Q,)}, (19)
which does not guarantee that u € H?(Q,). Nevertheless by Theorem 1.5.3.10
of [16], we deduce that wu,, (0,2') = 88—51(0,96’) belongs to H'/2(I)" (see below).
Similarly for 2, one get 2, (0,2') € HY2(I).

Above H'/2(I)" is the dual space of

HY2(I):={ue HY*(I) : ae H/*({0} x R" 1)} (20)

where @ is the extension of u defined by

- u on [

“::{ 0 on ({0} xIR")\TI.
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The operator A% is dissipative since ¥ U = (u,v, z) € D(A®),
k 1
(AT Uy = ——/ 22 dr — —3/ |V z|? dz < 0.
(6% Qn ka Qn
Moreover the operator A% has domain dense in H and is surjective (see Theorem
1 of [31]). Then it generates a Cy-semigroup of contraction in H and therefore one
deduces the following results (using the fact that, for smooth initial data, U =
(y,y2, ) is solution of (17) if and only if y2 = y; and (y, z) is solution of (9) to

(16)):

Theorem 2.1. For all (yo,vy1,20) € H, problem (9) to (16) has a unique weak
solution (y, z) with the regularity y € C([0,00); H*(Qy)) N CH([0,00); L?(,)) and
z € C([0,00); L2()). If moreover (yo,y1,20) € D(A®)) then problem (9) to
(16) has a unique strong solution (y, z) that satisfies

y € C([0,00); E(A, L*(Qw))) N CH([0, 00); H' (@) N C*([0, 00); L*(Q))

and
1
z € C*([0,00); L*(24)) N C([0,00); E(k* O, + ;Azu L*(Qn))),
where
1 1
E(k*0p, 0, + ;AI/,L%Q;L)) ={z2e L) : k’zp,2, + EAM e L*() }.

(22)
If (0, y1, 20) € D((A%)2), then problem (9) to (16) has a unique strong solution
(y,2) that satisfies

y € C([0,00); E(A, H' (2,))) N C([0,00); E(A, L*(Q))) N C*([0,00); H ()
and

2 € ([0, 00); L(O0)) N C([0,00) B (0,0, + 5 Aur, LA(0),

where
E(AH () :={ue H (Q,) : Auec H(Q,) } (23)
and
1 1
E*(k?0y, 0, + EAI/,L%Q;I)) = { ze LX) Kzpe, + EAM e L*(),
202 LA (A 42K (A € 12 }
a4 N et ' % ) ' Z)xizy .
oz a? a? 4
(24)

Note that the solution of the system (9) to (16) has a poor regularity if n > 2,
this lack of regularity was already pointed out in [32] and seems to be responsible
of a weaker decay of the energy than in dimension 1 (see Remarks 7.2 and 7.3 of
[32]). This lack of regularity also renders our analysis below more delicate if n > 2
than in the one-dimensional case.

Let us now define the standard energy of our system (9)—(16):

1 1 1
E®) = 5|y 217 = 5 (/Q (IVy[* + y7)de + — i ZQ(w,t)dw> . (25)

Next, for Uy = (o, 91, 20) € D((A%))!) 1 = 1,2, from the previous theorem we
know that U = (y,y:, 2) € C([0,00); D((A%®))!)) and therefore we can define the
modified energy
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EO(t) = H(A(k N s ye 2) 131, (26)
explicitly given by

. 1 1
E(l)(t) = (/Q (|vyt|2 + (Ay)Q)dCL' 4 E (k221111 + gAm/Z)de> ,

N =

Qp
and

ED(t) = % (/Q (IV(Ay)P + (Ayt)Q)dw
L

2
—l—m (k Zgrm1m12 —i— Vi,z + 2—(A2,z)) d:v) .

Qp
Lemma 1. For all (yo,y1,2) € H, the energy E(t) of the weak solution (y,z) of
problem (9) — (16) is decreasing, i.e.,

E(t) < E(s), Yt>s>0. (27

)
If moreover (yo,y1,2) € D((A®N), | = 1,2, then the modified energy ED(t) of
the strong solution (y, z) of problem (9) — (16) is decreasing, i.e.,

EO(t) <ED(s), Vt>s520. (28)
Proof. The first assertion follows from the dissipativeness of A®*®) since for strong
solution U, we have
E'(t) = (U, Uy = (ARDT, U < 0. (29)
This last estimate implies (27) for strong solutions and then for weak solutions by
the density of D(A®®) into H.

For the second assertion, we first take Uy € D((A®))*1) then the solution
U = (y,y, z) of (17) has the regularity

U € C1([0, 00); D((A®))) N C([0, 50); D((AF)H)).

Therefore

d -

7 PO @) = (AT T, (ABD) T = (AB (ARD)0), (AR V),
and the conclusion follows from (29). As before this last estimate implies (28) by
the density of D((A®®)H1) into D((AF)h). O

If n =1, problem (9) and (10) reduces to (with the previous notations)

Yt — Yz =0 in (—1,0) x (0, +00) (30)

— k%2, =0 in (0,1) x (0, +00) (31)
y:(0,t) = 2(0,t) t € (0,400) (32)

k

Y:(0,t) = azz (0,t) te€(0,+00) (33)
Y(—1,t) = 2(1,6) =0t € (0,+5) (34)
y(2,0) =yo(x) and y(2,0) =wi(x) in (=1,0) (35)

z(x,0) = zo(ex) in (0,1). (36)

Since the domain of D(A®)) is more regular than in the case n > 2, its limit
process is simpler to consider. We then start by considering this problem first and
postponed to the end of the paper the analysis of the case n > 2.
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3. The Neumann to Dirichlet and Dirichlet to Neumann operators in
the case n = 1. Let us denote by G, the following Neumann to Dirichlet operator
associated with the heat equation in (0,1). Namely for h € H}(0,00), let w be the
unique solution of (see below)

Wy — kK2wee =0 in (0,1) x (0, +00) (37)
wy(0,8) = h(t) € (0,+00) (38)
w(l,t)=0 te€(0,400) (39)
w(z,0) =0 in (0,1), (40)

then Gyh is the function defined by
Grh(t) =w(0,t) t € (0,+00). (41)

The introduction of this operator is motivated by the fact that if (y(F:®), z(k:a))
is solution of (30) to (36) with zg = 0, then

@ «a @ o [0
u" ) (0,8) = 20 (0,8) = Gi (2 (0,1)) = TGV (0,8) ¢ € (0,400). (42)
Let us first give explicitly the solution of problem (37)—(40):
Lemma 2. The solution w of problem (37) — (40) is given by

0ot
w(-,t) = V2k? Z/ e_k2’\?‘/f~l(t_s)h(s) ds(sin A ), (43)
1=0 /0

where for all I € N, we have set Ay = 5 + I and ¢(x) = ﬁsin(/\Mﬁl(a: —
1)) (—)\?\M are the eigenvalues with eigenfunction ¢; of the Laplace operator with
Dirichlet boundary condition at 1 and Neumann boundary condition at 0). Therefore
we get

t
Gu)(®) =~k [ Fu(o)hit - ) ds, (44)
0
where the kernel Fy is defined by
Fr(s) =2k Y e7F s s > 0, (45)
1=0

and satisfies for all s >0

0< B < = (46)
Fi(s) — 0 as k — +o0, (47)
Fi(s) — \/ir_s as k — 0, (48)

for some C' > 0 independent of k and s.

Proof. Setting
ﬁ)(.I,t) = ’LU(I, t) - h’(t)(x - 1)5
we see that w is solution of (reminding that i (0) = 0)

Wy — kP gy = —he(t)(x — 1) in (0,1) x (0, 400) (49)
W,(0,6) =0 t € (0,+00) (50)
B(1,t) =0 € (0,400) (51)
w(z,0) =0 in (0,1). (52)
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As {p;}1en forms an orthonormal basis of L?(0,1) and reminding that ¢; is an
eigenvector of the operator k21@,, with eigenvalue —kQA?\M, we can write

00 t
W) ==Y /O e N =), (5) dsoyr, (53)
=0

where
sin A
2
/\M,l

1
o = /0 (x — 1) (z) de = V2

An integration by parts in the time yields (43).
From the expansion (43) we can say that

0t
w(0,t) = \/§k22/ e_k2)‘ifvl(t_s)h(s)dssin)\MJcpl(O)
1=0 70

0o ot
= —2k22/ e_k2’\if’l(t_s)h(s)ds.
1=0 "0

By the dominate convergence theorem of Lebesgue, the above identity implies
that (44) holds.

It then remains to consider the asymptotic behavior of Fj. For that purpose
introduce the function fi(z) = e *5*" for 2 > 0. This function is decreasing on
[0,00) and therefore

Fearg) = felx) > fuAarger) for Mg <o < Aygp1, €N
These estimates allow to say that
0 S Fk(S) = Zkak()\M,l>

=0

= 2kfi(Ano) + 2k Z Jr(Aar)
=1

2% ol AM, 141
< Ufilaro)+ =3 / ful@) da
m 1—0 Y AM
T 2k [
= 2kfi(5) +— fr(@) da
T o

2 & 2
= 2ke‘k2”2/4+—/ e Y dy.
s Ja

This last estimate directly implies (47) because each term of this right-hand side
tends to zero as k goes to infinity. It also proves (46) because there exists C' > 0
such that

Vze ™t < C\Vx >0,

/ enydyS/ efyzdy:ﬁ.
ks o 2

LAVE)
P

and
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For the case k — 0, we need a lower bound for Fj, namely we write

Fe(s) = 2k fr(Aari)

1=0
2% AM,1+1
> B [
m 1=0 Y Am,
2k [
= — fr(z)dz
T S
2 e 2
— -y
— 7 /M e Y dy.
2
These two estimates lead to (48). O

Similarly we denote by Hj the Dirichlet to Neumann operator associated with
the heat equation in (0,1). Namely for g € HE(0,00), let w be the unique solution
of (see below)

w; — k*wee =0 in (0,1) x (0, +00) (54)
w(0,t) =g(t) te€(0,+00) (55)
w(l,t)=0 te (0,+00) (56)
w(z,0)=0 in (0,1), (57)
then Hjg is the function defined by
Hyg(t) = w,(0,t) t € (0,400). (58)
As before if (y(*@) z(%2)) is solution of (30) to (36) with 2o = 0, then
(k,c) _k (k)
W00 = CHu 0 0.0) 1 (0,40). (59)

Unfortunately this operator seems to have a bad behaviour as k goes to infinity,
therefore we use the following approach.

Lemma 3. Assume that g € H}(0,00) N H%(0,00). The solution w of problem
(54) — (57) is given by
w() = —VEY [y s ds - gl -1, (60)
=170 )\D,l

where for alll > 1, we have set \p; = Im and ¢;(z) = V/2sin(Ap 1) (—AD, are the
eigenvalues with eigenfunction p; of the Laplace operator with Dirichlet boundary
condition at 0 and 1). Moreover we have

t
w,(0,t) = / Ki(t — s)gi(s)ds — g(t), (61)
0
where the kernel Ky, satisfies

C
< —
k| Kk (s)| \/g,v s >0, (62)

for some C > 0.



796 SERGE NICAISE AND CRISTINA PIGNOTTI

Proof. As before we set

and see that @ is solution of

Wy — kg = gi(t)(x — 1) in (0,1) x (0, 400) (63)
w(0,t) =0 t € (0,+00) (64)
w(1,t) =0 t € (0,+00) (65)
w(z,0) =0 in (0,1). (66)

As {¢; }1en is the sequence of eigenfunctions of the operator k%w,, with eigenvalues
—k*)\% ,, we can write

—V2 Z / HNbg,(s) ds . (67)

D,l

This expansion and the expression of w directly give (60).
Differentiating in x the expansion (60) we can say that

0ot
= / b= g,(5) ds — 1)
=170

/O Ki(t — $)gi(s) ds — g(t)

wy (0, 1)

where
o0
242
s)=-2 E e K Abus,
=1

the above identity being meaningful by the dominate convergence theorem of
Lebesgue.
The estimate (62) follows from the fact that

k|Kx(s)| < Fi(s),
where F(s) = 2k30°, eI’ and is bounded by % as in the proof of the

previous lemma. O

4. The limit problems in the case n = 1. In this section, we consider the limit
problems of (30) to (36) as k, « go to zero or to oo.

Coming back to the solution (y*) z(F2)) of (30) to (36) with 2o = 0, and
making use of (42), we can say that y*%) gatisfies the boundary condition with
memory:

y " (0,8) = TGV (0,))(1) t € (0,400). (68)

The problem consists in Justlfylng the passage to the limit in (68). We first treat
the case a tending to 0 or «p:

Theorem 4.1. Assume that yo € H*(—1,0) and y1 € H'(—1,0) are such that

Yo(—1) = y02(0) = y1(=1) = 41 (0) = 0.
Let (y*) | 280 be the strong solution of (30) to (36) with initial data yo,y: and
20 =0. For all T > 0, let us set Qr = (—1 0) x (0,T). Then for all T > 0, there
exist y € H*(Qr) and a subsequence of y*®) | still denoted by y**) for the sake of
shorthness, such that y*®) tends to y weakly in H?(Qr) as k — ko, a — ag, with
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ko € [0,00], ag € [0,00). Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition at —1:

Yt —Yze =0 in  (—=1,0) x (0,7, (69)
y(=1,t) =0 te(0,7), (70)
y(z,0) =yo(z) and yi(z,0)=y1(z) in (—1,0). (71)

For the boundary condition at 0, we distinguish the following cases:
1. If a — 0, then y satisfies the Dirichlet boundary condition at 0 :

y(0,t) = y0(0) t € (0,+00). (72)

2. If &« — ap € (0,00), then the boundary condition at 0 depends on the limit on k:
a. If k — oo, then y satisfies the Dirichlet boundary condition (72).
b. If k — ko € (0,00), then y satisfies the boundary condition with memory
t
y:(0,1) = —ao/ Fr, (8)y.(0,t — s)ds, te€(0,400), (73)
0
c. If k — 0, then y satisfies the boundary condition with memory
yt(oat) = K(yz(oat)) te (0,—|—OO), (74)
where K is the integral operator defined by
IR ARS
Kh(t) = ——/ L= s)ds. (75)
VT Jo Vs

Proof. The assumptions on the data guarantee that the triple (yo, y1,0) belongs to
D(A¥2)). Therefore by Theorem 2.1 and Lemma 1 the strong solution (y @), (%))
of (30) to (36) satisfies for all t > 0

0 1
o 1
[ @ + 1 w0 o+ [ 1) @0 do
—1 ka 0

0
< / (@) + o (@)

(76)

0 3 1
k
/ (It @, ) + [y (@, 1)) do + — / | (@, 1) da
-1 0

0
< / (y10(@)? + [y0se (@) de.

—1

(77)

As the right-hand sides of these two estimates are independent of ¢, we deduce that
there exists C' > 0 such that

|y(k1a)|21QT < (T, (78)
|y(k)a)|l7QT < (T, (79)
reminding that y{F*) = 4% Since the seminorm H(Qr) is a norm on H(Qr)

due the Dirichlet boundary condition on {—1} x (0, T), we deduce that the sequence
(yF),. o is bounded in H?(Qr). Consequently there exists y € H?(Qr) such that

y &) sy weakly in H?(Qr) as k — ko and o — ap. (80)

Moreover from the compact embedding of H?(Qr) into H>~"(Qr) for any > 0,
we further have

yF) oy strongly in H*"(Qr) as k — ko and o — a. (81)
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for any n > 0.

From the first property (80), we see that y satisfies (69) in the distributional
sense. On the other hand from the second property we see that y fulfils the boundary
condition (70) and the initial condition (71). It then remains to prove the boundary
condition at 0. For that purpose, we recall that the identity (42) showed that

t
BE0.0 = GulGut0,0) = —a [ B0t - 5)ds. te (0,+00),

0
(82)
owing to (44). We therefore need to justify the passage to the limit in the above
identity.
First if « tends to 0, since (81) and a trace theorem lead to
yék,a) (Oa ) - ym(oa ) in H1/2777(0, T),
we deduce that
y "9 (0,t) — 0,
which yields
y:(0,-) = 0. (83)
and then (72).
Secondly assume that « tends to aq, then we distinguish the cases k — 0, k — ko

and k — o0.
If £ — +o00, then by the dominate convergence theorem of Lebesgue, we see that

/ Fr(s)ylFH(0,t — s)ds — 0,
0

and by (82) we conclude the boundary condition (83) and then (72).

If k — ko, then by (82) applying the dominate convergence theorem we directly
get (73).

Finally if k — 0, writing F(s) = \/%7 we readily see that

— 3k < F(s) — Fy(s) < k. (84)

Consequently we write
t
/ Fio(s)yl (0, — 5) ds =
0 t t
/ (Fr(s) — F(s)ylB(0,t — s) ds + / F(s)y{F(0,t — s) ds.
0 0
As (0, ) is uniformly bounded in L2(0,T'), we directly deduce that
t
/ (Fr(s) — F(s))y{F(0,t — s) ds — 0 as k — 0.
0

On the other hand, since the sequence (y**)); ,, is bounded in H?(Q7), by a trace
theorem we deduce that (3 (0,))s.q is bounded in H'/2(0,T), and therefore
yF9(0,-) = y,(0,-) weakly in HY/2(0,T),

and by the compact embedding of H'/2(0,T) into L"(0,T), for all » > 1, we deduce
that

yF9(0,-) = 9,(0,-) strongly in L"(0,T),¥r > 1.
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a — 00
k—0] £—-0
k—ko| £—0
k — o0 §—>7

TABLE 1. Limit cases for the ratio g

As F belongs to LP(0,T),Vp € [1,2), by Holder’s inequality we deduce that

t
/ F(s)yF)(0,t — s5)ds — / F(8)y.(0,t — s)ds as k — 0.
0 0

All together we have shown that

t
/Fk e ( t—s)ds—>/F(s)yw(O,t—s)dsaskHO.
0

This property and the fact that 3" (0,-) tends to y,(0,-) weakly in H/2(0,T)
allow to pass to the limit in the identity (82) and to obtain (74). O

It remains to consider the case when « tends to co. In that case the ratio § has
different behaviors according to the limit on &, see table 1. From this table, we see
that in the case k& — oo, the limit of g is undetermined. Therefore in that case,
we distinguish two cases. Either the ratio admits a limit in [0, 00|, or not. But in
that last case, we can always assume that a subsequence admits a limit in [0, oo].
Indeed, if the ratio is uniformly bounded, then we can subtract a subsequence that
converges to kg € [0,00); on the other hand, if the sequence is not bounded, then we
can subtract a subsequence that converges to co. So from now on, we work either
with the convergent sequence or with such a convergent subsequence.

Theorem 4.2. Assume that yo € H3>(—1,0) and y1 € H?(—1,0) are such that

3 )
Yo(=1) = Yoax (1) = %02(0) = Y022(0) = y1(=1) = y1(0) = %12(0) = 0.

Let (y*) | 2(F:0)) be the strong solution of (30) to (36) with initial data yo,y1 and
20 = 0. For all T > 0, let us set Qpr = (—1,0) x (0,T). Then for all T > 0,
there exist y € H*(Qr) and a subsequence of y*), still denoted by y**) for the
sake of shorthness, such that y*® tends to y weakly in H?*(Qr) as k — ko and
a — oo, with ko € [0,00]. Moreover y is the weak solution of the wave equation
with Dirichlet boundary condition at —1, namely satisfies (69), (70) and (71). For
the boundary condition at 0, we distinguish the following cases:

1. Ifg — 0, then y satisfies the Neumann boundary condition at 0 :

— 00, then y satisfies the Dirichlet boundary condition (72).
— ko € (0,00), then y satisfies the dissipative boundary condition

Yz (07 ) + KOyt(Ov ) =0. (86)

Proof. The proof starts as the one of Theorem 4.1. Namely, the estimates (78) and
(79) being valid there exists y € H?(Qr) weak limit in H?(Qr) and strong limit in

fﬁ
gk
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H?* Q1) of y*) as k — ko and o — co. As before these properties imply that
y satisfies (69) to (71). It remains to analyze the boundary condition at 0.

First we use the fact that the initial datum (yo,y1,0) belongs to D((A(kvo‘))Q),
that yields by Lemma 1

E@(t) < E@(0), vt > 0,

or equivalently

/(m“%ﬂfﬂﬂﬁ@t ar+ & [ e a

s/;umm<n + yosee(@)P) de

From this estimate and the estimate (77) we see that the sequence (y,gf ’O‘))k@ is
bounded in H'(Qr) (recalling that y{f"* = y{%)) and therefore by the Sobolev
embedding theorem it admits a subsequence, still denoted by y,gf ’a), that converges
to yy in H1="(Qr). By a standard trace theorem, we conclude that
i (0.) = yu(0,) in H'271(0,T), (87)
Now we make use of Lemma 3. Indeed from this lemma we may write
t
a ko k,a
A40,0) = [ Kl - 9yt 0.5 ds = (1) (58)
0

Now since )
y;k)a) (Oa t) = azék7a) (07 t)a
we deduce that
e k (03
g (0, ¢) / Kt — s)yF 0, 5)ds — Sy (0, 1). (89)
a
Now, using the estimate (62) and the fact that

i (0, ) ey < CT. Vr>1,
consequence of the property (87), we deduce that
o) L (k.0)
/ Ki(t—s)y;, " (0,5)ds = —/ kK (t—s)y;, " (0,8)ds — 0 as a — oo. (90)
@ Jo
If g — 0, then the property (90) and the identity (89) lead to

yik o)

and then to the boundary condition (85).

On the contrary in the case g — 00, if we note that identity (89) may be

equivalently written as

[e3% « k ! [e3
u"(0.) = E@&”mw—aéz@wﬂwﬁkm@@) (91)

then property (90) leads to

(0,-) — 0 as o — oo,

yF (1) = 0,

and then to the boundary condition
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a—0 o — o — 00

k — 0| | Dirichlet be | memory bc Neumann bc
k — ko| | Dirichlet bc | memory bc Neumann bc
k — ool | Dirichlet be | Dirichlet be g — 0:Neumann bc
k — o0 g — ko: dissipative bc
k— o0 g — o0: Dirichlet be

TABLE 2. Summary of the limit problems

which leads to the Dirichlet boundary condition

y(0,+) = 4o(0).

It remains to consider the case £ — k. In that case, from (89) and (90) and

passage to the limit we get (86). Note that this boundary condition leads to an
exponential decay of the energy. O

Remark 1. The different limit problems are summarized in Table 2. When Dirich-
let or Neumann boundary condition appear at 0, then the limit problem is not
dissipative. The only cases where we can guarantee that the limit problem is dissi-
pative is the two following cases:
1. when « tends to infinity and s tends to a positive real number, then the limit
problem is the wave equation with the standard dissipative law (86) at 0, and the
exponential decay of this system was proved for instance in [19, 20, 21].
2. when « tends to a real number ag and k tends to a positive real number kg, then
the limit problem is still the starting problem with the parameters oy and kg, and
its polynomial dissipativeness follows from the considerations from [30].

Finally in the case when o tends to a real number o and k tends to zero, then
the limit problem is the following one

92
93

94
95

Yt — Yz =0 in  (—1,0) x (0,400)

y(=1,t) =0 ¢t € (0,+00)

y:(0,t) = K(y2(0,¢)) € (0,+00),

y(z,0) =yo(z) and yi(z,0)=yi(x) in (-1,0).

Actually the dissipation law (94) is a boundary condition with memory but is not a
standard one and seems not studied in the literature. For different stability results
of the wave equation with memory boundary conditions we refer to the papers
[1, 26, 6, 17, 18, 24, 27, 28, 23].

The stability of the system (92) to (95) is not clear at all. Nevertheless if we
denote by

(
(
(
(

o — — ~—

Yoo = (Lo)ls) = [ ety
0
the Laplace transform of y. Then Y is solution of
Y — Yy =syo+y1 in (—1,0) (96)
y(=1,5) =0 (97)

ﬁYI(O, 5). (98)

sY(0,5) +yo(0) = _E
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The eigenvalues associated with this problem (corresponding to yo = y; = 0) are
the complex numbers s, roots of

V/ssinh s + /7 cosh s = 0.

This equation has complex roots approaching the imaginary axis (s ~ ilw), so
we can expect a polynomial decay for the system (92) to (95).

5. The Neumann to Dirichlet and Dirichlet to Neumann operators for
the case n > 2. Now we pass to the general case n > 2 (the case n = 1 is not
relevant since it was treated in the previous sections). Let us denote by Gy the
following Neumann to Dirichlet operator associated with the heat equation in €.
Namely for h € H}(O x (0,00)), let w be the unique solution of

1 .

EAI,)U} =0 in Qp x(0,400) (99
we, (0,2',t) = h(z',t) 2’ € O,t € (0,+00) (100
w(z,t) =0 xe€dQ\I,te (0,+00) (101
w(z,0) =0 in Qp, (102

wy — (k26j1j1 +

then Gh is the function defined by
Grh(2';t) = w(0,2",t) 2’ € O,t € (0,4+00). (103)

In order to give explicitly the solution of problem (99)-(102) we recall that the
operator —A,s with Dirichlet boundary condition on JO is a positive selfadjoint
operator with a discrete spectrum {u? 72, (repeated according to their multiplic-
ity). For all j > 1 we denote by v¢; the eigenfunction of —A, associated with the
eigenvalue u?.

For shortness for all s > 0 we denote by ¥y(-, s,2’), the function

U, (t,s,) = e(tfs)a_éAI'h(s, ),V t>s.

This function exists (and is unique) since A, is the infinitesimal generator of a
contraction semigroup e?®+". Note that this function Wy, (-, s) is the unique solution
of

1
o0y, — ?Ax/qjh =0 in OXx (s,—l—oo),

U, =0 on 00 x (s,+00),
Uy (s,s,2') =h(s,z’), 2’ €O.

Lemma 4. The solution w of problem (99) — (102) is given by
ot
w(zy, 2’ t) = V2k? Z/ efk?A?Vf’l(tfs)\I/h(t, s,2") ds(sin Ay )i (1), (104)
1=0 70

where for all | € N, we have set Ay = 5 +Im and oi(x1) = \/Qsin(/\Mﬁl(xl —1)).
Therefore we get

Gr(h)(2',t) = —k/o Fr(s)V(t,s,2") ds, (105)

where the kernel Fy is the same as the one from Lemma 2.
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Proof. Setting
w(wy, 2’ t) = w(xy, 2’ t) — h(t,2") (21 — 1),
we see that @ is solution of
1
Wy — (kK*03,5, + — A )0 = —(z1—1)g in Q, x (0,+00)  (106)
«
Wy, (0,2,8) =0 2’ €0, t e (0,+00) (107)
w(zy,2’',t) =0 x1 € (0,1), 2’ € 90, t € (0,+00) (108)
(z,0)=0 in Qp, (109

)
where g = hy — %Am,h, As {10 }ien j>1 forms an orthonormal basis of L?(Qy)
and recalling (1, is an eigenvector of the operator k%0;, 4, + % A, with eigenvalue
_k2)‘%\4,l — %u?, we can write

oo 00 t
(1222 A2 (t—s
wuw=-2§346““mﬁ““>@@%%Mmm%7 (110)
1=0 j=1

where (g(s,-),;) means the L2-inner product in O of g(s,-) with ¢; (or the duality
bracket), i.e.

@@JW&—A%&H%@M%

and o = fol(x — Dy (x)dx = V2ERAMLL Tntegrations by parts in time and space

A?\/I,l
yield (104).
From the expansion (104) we can say that

0 4t
w(0,2',t) = —2k22/ e N, (¢, 5, 2') ds.
1=0 "0

The end of the proof is similar to the one of Lemma 2. O

Similarly for g € Hg((0,00); L2(0)), let w be the unique solution of

w; — (k203,45 + %Am/)w =0 in Qp x(0,400) (111)
a

w(0,2',t) = g(a',t) 2’ € O0,t € (0,+00) (112)

w(z,t) =0 xe€d \I,te (0,+00) (113)

w(z,0) =0 in Q. (114)

Due to the lack of regularity, we slightly modify the arguments from Lemma 3.

Lemma 5. Assume that g € H}((0,00); L*(0)). The solution w of problem (111)—
(114) satisfies

t
Ay, (0,47, 8) = —/ Ku(t — $)Un(t,s,0')ds — Ag(t), (115
0

where the kernel Ky, is the one from Lemma 3 and h = A;,latg — %g.
Proof. First assume that g € H} (O x (0,00)) N H2(O x (0,00)). Then setting

w=w+ (x; —1)g,
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and using a Fourier expansion, we get

0o oo ¢

~ — —° —s 1

w(z,t) = —\/QZZ/ e~ F XDt ) (=9) (py (s, ')Wj)dsmsﬁﬂ/fj,
0 >

=1 j=1

where hy = 0;g — %Az/g, Ap, = lm and ¢i(z1) = ﬁsin(/\pﬁl:r) (see Lemma 3).
Differentiating with respect to x1, we obtain

oo 00 +
W, (0,2, 1) = —222/ e~ D+ 221 (=9) (1 (5,), 1)) dsa.
0

=1 j=1

As a consequence, we obtain

[e’olNe’e) +
A, (0,2, 1) = 23 ) / e~ B Aot =) 22 (B (5,), 4y) sy
0

=1 j=1

Since —A;,lz/Jj = u;zwj, we obtain

oo o0 t
Ao, (0,21 = 233 / o~ Dt =9 (1 (5,), AD ) dsiy
0

=1 j=1

[SSINe'S) t
A2 L 2)(t—s) s A —
= 233 [ b (A (5,0 s

=1 j=1

oo oo t
RN L2V (—s
= 2305 [ OB 0 o

=1 j=1

Since H}(O x (0,00)) N H*(O x (0,00)) is dense in Hg((0,00); L?(0)), the last
identity remains valid for g € H}((0,00); L*(0)).
The remainder of proof is similar to the one of Lemma 3. O

6. The limit problems for the case n > 2. In this section, we consider the limit
problems of (9) to (16) as k, « go to zero or to oo.
Coming back to the solution (y*®), 2(%:)) of (9) to (16) with 2o = 0, and making

use of (12) and (103), we can say that y*) satisfies the boundary condition with
memory:
y 0,2, 8) = TOWE) @, 1) @ € 0.t € (0,400). (116)

As before we need to justify the passage to the limit in (116). We first treat the
case a tending to 0 or ap:

Theorem 6.1. Assume that the triple (yo,y1,0) € D(A®)) or equivalently that
yo € E(A, L*(Qy)) and y1 € HY(Qy,) with

Yo=y1=0 on I, \I, Yoz, =y1=0 on .

Let (yF) () be the strong solution of (9) to (16) with initial data yo,y: and
20 = 0. For all T > 0, let us set Qr = Qy x (0,T). Then for all T > 0, there
exist y € H'(Qr) and a subsequence of y*®) | still denoted by y**) for the sake of
shorthness, such that y*®) tends to y weakly in HY(Q7) as k — ko, a — ag, with
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ko € [0,00], ag € [0,00). Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition on 98, \ T

ye — Ay =0 in Q, x (0,7T), (117)
y(x,t) =0 x€ I, \I,te (0,T), (118)
y(z,0) =yo(z) and y(x,0) =y1(z) in Q. (119)

For the boundary condition on I, we distinguish the following cases:
1. If a« — 0, then y satisfies the Dirichlet boundary condition on I :

y(0,2",t) = yo(0,2") 2’ € O,t € (0,T). (120)

2. If o — ag € (0,00), then the boundary condition on I depends on the limit on k:
a. If k — oo, then y satisfies the Dirichlet boundary condition (120).
b. If k — ko € (0,00), then y satisfies the boundary condition with memory

t
v (0,27, t) = —ao/ Fio(8)Wy, (t,s,2")ds, 2’ €O,te(0,T), (121)
0
c. If k — 0, then y satisfies the boundary condition with memory
y(0,t) = K(¥y,, (t,5,2")ds) t € (0,+00), (122)
where K is the integral operator defined by (75).

Proof. The assumptions on the data guarantee that the triple (yo,y1,0) belongs to
D(A%) Therefore by Theorem 2.1 and Lemma 1 the strong solution (y*®), z(k.))
of (9) to (16) satisfies for all t > 0

/ (Vg5 @, ) + [y (@, )2 de + — [ [ @, ) da
2 ko Ja, (123)
< /Q (V90(@)? + [y ()2 dz,

/ (V55 (@, )2 + |Ay* (2, 0)2) da
Qw

1 2 1 k,a 2
o 1000, 5802 ) e (124)
< / (V3 ()] + | Ay ()] .

As the right-hand side of these two estimates are independent of ¢, we deduce that
there exists C' > 0 such that
k,
" hgr + 15" lor < T, (125)
reminding that y,gf @) AyF9)  Unfortunately (contrary to the 1d-case), we cannot
deduce that the sequence is bounded in H?(Q7). But we can say that

[Ay** 0., < CT. (126)

Now we recall that Theorem 1.5.3.10 of [16] shows that if u € E(A, L?(Q,)), then
9u ((),.) belongs to H'/?(0)’ with the estimate

1
ou
||a—x1(07 W20y < Clul

1;Qw + HAU||O7Qw)' (127)
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By the estimates (125), (126) and (127), we deduce that

y (k-
H O ”Loo 0,T;H1/2(1 < C. (128)

Now as HY?(I) = D(A1/4) (because Corollary 2.7.2 of [22] yields HY/2(I) =
[H3 (1), L2(D)]1 /2 and hence HY2(I) = [D(A?), D(AY)]1j2 = D(A,/Y), we can
say that

o0

s —1 2 a
H\Py:(zkl,a)(t, 5)”%{1/2([)/ ~ Z "‘zﬂj(t ) / | < y (k, )( );1/)j > |2
j=1
1/2 o o
< CS < )y > P = 6 gy
Jj=1
By the estimate (128) we conclude that
H\ijé’i’o‘)(t7S"/L./)"Hl/?([)/ < C, Vit > s. (129)

Since the seminorm H'(Qr) is a norm on H!(Qr) due the Dirichlet boundary
condition on ({—1}x0)x (0,T), from (125) we deduce that the sequences (y**)) ,

and ("))« are bounded in H!(Q7). Consequently there exists y € H(Qr) such
that

y(k,a) — y weakly in Hl(QT) as k — ko and a — «p, (130)
yik’a) — ye weakly in H'(Qr) as k — ko and a — ag. (131)

Moreover from the compact embedding of H*(Qr) into H'="(Q7) for any n > 0,
we further have

y ) — g strongly in H'="(Qr) as k — ko and o — ay, (132)
y ")y, strongly in H'""(Qr) as k — ko and a — aq, (133)
for any n > 0.

From the first property (130), we see that y satisfies (117) in the distributional
sense, while from the second properties we see that y fulfils the boundary condition
(118) and the initial condition (119). In order to obtain the boundary condition on
I, we recall that the identity (116) showed that

t
T (1 —a/ Fk(s)\lfy(km(t,s,x’) ds, ' €0,te (0,+), (134)
0 o1
owing to (105). We therefore need to justify the passage to the limit in the above
identity.
First if « tends to 0, then as

Fr(s) < , (135)

Sl

and making use of the estimate (129), we deduce that

IN

t
| R gty s

C/—ds

t
I B 5.0 sl

IN



ASYMPTOTIC ANALYSIS OF A SIMPLE MODEL 807

This shows that, for @ — 0,
% 0 in L=((0,T); HY3(I)').
As (133) implies that y,gk’a) — 1y, in L2(I x (0,T)), we deduce that
v:(0,-) = 0. (136)

and then (120).

As in 1 — d when « tends to ag, we distinguish the cases k — 0, k — k¢ and
k — oo.

If £ — +o00, then we first have

Fi(s) — 0.

The estimate (135) and the dominate convergence theorem of Lebesgue yields

t
/ Fi(s)ds — 0.
0

This property combined with the estimate (129) gives

¢ t
||/ Fr(s)V o (t,5,2") ds| g2y < C/ Fi(s) ds — 0,
0 o1 0
and therefore
t
/ Fiu(s)¥ oo (L, 5, &')ds — 0 in HY*(I)" a. e. in (0,7T),
0 o1

and by (134) we conclude the boundary condition (136) and then (120).
If k — ko, then by (134) we directly get (121)

Finally if £ — 0, as before setting F(s) = F’ we may write

/Fk (ka)tsx)ds:
¢
/(Fk( )= F(8)¥ (ko (t,s,2") ds+/ F(s$)U (ka(t,s,2")ds.
0 Yaq 0 Yzq

For the first term using the estimates (84) and (129), we directly deduce that
¢
/ (Fi(s) = F(s))¥ o (¢, 5,2") ds — 0 in L>((0, T); HY2(1)).
0 v

On the other hand, by the estimate (128) and the Banach-Alaoglu theorem, we
deduce that
yg(alf @) — g, weakly in L4(0,T; HY/*(I)"), V q> 1.
By the definition of ¥j, we deduce that
\I/y:(rkl,a) (t,s,2") — W, (t s 2") weakly in L9(0, T} HY2(1).

Indeed for w € LP(0,T; H'/?(I)), with 1—17 + % =1, we have
< \I/y;;cl,a>(t, s,2') =Wy, (t,s,2');w >

t
:/ < ez (=B (k) _ oy (5) w(s) > ds

0

t

(ya(c]j ) = y)(5), 6‘*_12(t_S)Az/w(S) > ds — 0.

Il
o\>
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As F belongs to LP(0,T),Vp € [1,2), we deduce that
/OtF(s)\IJy;kl,a) t,s,2')ds —>/ W, (t,s,2")ds weakly in HY2(I) as k — 0.
Indeed for any ¢ € Hl/Q(I), we may write

t
< /0 F(s)(\I/y;kl,a) (t,s,2') =Wy, (t,s,2"))ds; o >

t
— [ <t v () Fls)e > ds
0 1
=< \I/y(k,a)(t, s, ') =Wy, (t,s,2'); F(s)p >— 0,
Yy

since F(-)p belongs to LP(0,T; H/?(I)).
Alltogether we have shown that

t t
/ Fi(s)¥ oo (£, 5, z')ds — / F(s)W,, (ts,2')ds weakly in H'/?(I) as k — 0.
0 Yy

This property and the fact that y(k ) (0,2/,t) tends to y;(0,2',t) weakly in H/?(Ix
(0,7)) allow to pass to the limit in the identity (134) and to obtain (122). O

It remains to consider the case when « tends to co.

Theorem 6.2. Assume that (yo,y1,0) belongs to D((A%)2) or equivalently that
Yo € E(A, HY(Q)) and y1 € E(A, L?(Qy,)) with

Y=A2Ay=y1=0 ond\I, Yo, =8%=y1=¥y, =0 onl.

Let (yF) () be the strong solution of (9) to (16) with initial data yo,y: and
20 = 0. Then for all T > 0, there existy € H(Qr) and a subsequence of y*) | still
denoted by y*®) for the sake of shorthness, such that y*® tends to y weakly in
HY(Qr) as k — ko and a — oo, with kg € [0,00]. Moreover y is the weak solution
of the wave equation with Dirichlet boundary condition at the exterior boundary of
Oy, namely satisfies (117),(118) and (119). For the boundary condition on I, we
distinguish the following cases:

1. Ifg — 0, then y satisfies the Neumann boundary condition on I:

Yo, (0,-) =0 on I. (137)

— 00, then y satisfies the Dirichlet boundary condition (120).
— ko € (0,00), then y satisfies the dissipative boundary condition

Yo, + Koye = 0 on I. (138)

fﬁ
it

Proof. As in Theorem 6.1, since the estimate (125) is still valid, there exists y €
H'(Qr) weak limit in H'(Qr) and strong limit in H*="(Qr) of y**) as k — ko
and @ — o0o. As before these properties imply that y satisfies (117) to (119). Tt
remains to analyze the boundary condition on I.

Here we use the fact that the initial datum (yo,y1,0) belongs to D((A*))2),
that yields by Lemma 1

E@(t) < E@(0), vt > 0,
which implies
/Q (IVAYED (@, 6) + | Ay (2, 1)) do < / (IV Ago(@)? + | Ay (2)]?) da.

w
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From this estimate and the estimate (124) we see that the sequence (yt(iC ’a))kya is

bounded in H'(Qr) (reminding that y " = Ay*)) and therefore by the Sobolev

embedding theorem it admits a subsequence, still denoted by ytf ’a), that converges

to yi in H*="(Q7). By a standard trace theorem, we conclude that
yir ™ (0,) = ur(0,-) in H'7(I % (0,7)). (139

y (133) and again a trace theorem we deduce that

x

— 6% 1 « — .
W= ALy = o = Alty in L(0.T): IA(I), (140)

for some ¢ > 2, recalling that 1/a — 0, since a — oo and that HY/2~"(I x (0,T)) —
L9(I x (0,T)) < Li((0,T); L*(I)), for some g > 2 (close enough to 2). Note finally
that the definition of ¥, leads to

190 (&, 5,2 o7 < [[RF) (s, 2")]o.1, for ae. s € (0,1),
and then, by (140)

¢
[t s < [ e lg as <o

Now using Lemma 5, we may write

AL z(k (0,27, 1) / Ki(t — 8)U.0 (t,8,2") ds — Am,ly,gk ) (2',t).  (142)

Since k:
k,a ka
y{F) 0,2/, 1) = - 2k (0,2 1),

we deduce that

t
AT 0,27, 1) + Ky @t 1)) = _S/ Kt — )W pmr (t,5,27) ds. (143)
0

x

Now using the estimates (62) and (141) we deduce that

k., [* C
—I / Ki(t — 8) Uy (t,5,2") ds|lo < —t'7P/2 = 0 as a — oo, (144)
« 0 «
where 1/p+1/g =1 (and then p < 2). Consequently we have obtained
— o k k,a
1AZH W 0,2, 0) + ~u™ @ )l — 0 as @ — oo (145)

If g — 0, then the property (145) and the property (133) lead to
AL yR)(0,27,1) — 0 in L*(0, T; LA(I)) as a — oo,
and then to
y{E) (0,27, ) — 0 in L=(0,T; D(AY)) as a — oo
As
yg(alj (0,2’ ) — ya, (0,2, ) weakly in LU0, T s D(A 1/4)) as a — 00,

we deduce that the boundary condition (137) holds.

On the contrary in the case ﬁ — 00, then by the triangular inequality, we have

k,a) a k k,a
1AZ B @ ) o < TIAZ S 0,07, 0) + =y (@' 1))l
|

t)
a (0%
E ‘ 1ygj (O,I 70”0,1'
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Then the property (145) and the estimate (128) lead to
ALy (0.2 1) — 0,
and then to the boundary condition
y:(0,2',t) = 0,
which leads to the Dirichlet boundary condition

y(0,2',t) = yo (0, 2").

It remains to consider the case g — Ko. In that case, from (145) and passage to

the limit we get (138). Note that this boundary condition leads to an exponential
decay of the energy. O

Note that the different limit problems are analogous to the one-dimensional case
and are listed in Table 2. Furthermore the same comments than the ones from
Remark 1 can be made.

7. Coming back to the original problem. In this section we will state the limit
problems of (1) — (8) as ¢, € go to zero, to infinity or to constant values. The proofs
of the theorems below follow from Theorems 4.1, 4.2, 6.1, 6.2, recalling that k = ¢/e
and a = % For shorthness, we do not distinguish between the case n = 1 and the
case n > 2.

Theorem 7.1. Assume that (yo,y1,0) € D(A®)) or equivalently that
yo € E(A,L*(Qy)) and vy € HY(Qy)
with
Yo=y1=0 on IV, \I, Yoz, =y1 =0 onlI.

Let (y(©9), 2(99) be the strong solution of (9) to (16) with initial data yo,y1 and
20 = 0. For all T > 0, let us set Qr = Qy x (0,T). Then for all T > 0, there
exist y € HY(Qr) and a subsequence of y'©°), still denoted by 3\ for the sake of
shorthness, such that y(&©) tends to y weakly in HY Q1) as ¢ — co and € — €q, with

¢o € (0,00], €g € [0,00]. Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition on 98, \ I

yuw — Ay =0 in Q, x (0,7), (146)
y(z,t) =0 x€ I, \I,te (0,T), (147)
y(z,0) =yo(z) and y(x,0) =y1(z) in Q. (148)

For the boundary condition on I, we distinguish the following cases:

1. If ¢ — oo, then y satisfies the Dirichlet boundary condition (120) on I.

2. If ¢ — ¢y € (0,00), then the boundary condition on I depends on the limit on e:
a. If € — 0, then y satisfies the Dirichlet boundary condition (120).

b. If e — €y € (0,00), then y satisfies the boundary condition with memory (121).
c. If € — oo, then y satisfies the boundary condition with memory (122).

Theorem 7.2. Assume that (yo,y1,0) belongs to D((A%®)2) or equivalently that
Yo € B(A, HY(Qy)) and y1 € E(A, L*(Qy)) with

Y=Ay=y1=0 ond\I, Yo, =Ayo=y1=%1,, =0 onl.
Let (y(©©), 2(¢9) be the strong solution of (9) to (16) with initial data yo,vy: and

20 = 0. Then for all T > 0, there exist y € HY(Qr) and a subsequence of y(),
still denoted by y'©©) for the sake of shorthness, such that y(©©) tends to y weakly
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€ — € € — 400 e—0

¢ — ¢g| | memory bc | memory bc Dirichlet be

¢ — +oo| | Dirichlet be | Dirichlet be Dirichlet be
¢ — 0] | Neumann bc | Neumann bc % — 0:Neumann bc
c—0 % — Ko dissipative bc
c— 0 < _, 5o: Dirichlet be

€

TABLE 3. Summary of the limit problems

in HY(Qr) as ¢ — 0 and € — €q, with €g € [0,00]. Moreover y is the weak solution
of the wave equation with Dirichlet boundary condition at the exterior boundary of
Oy, namely satisfies (117),(118) and (119). For the boundary condition on I, we
distinguish the following cases:

1. If é — 0, then y satisfies the Neumann boundary condition (137) on I.

2. If é — 00, then y satisfies the Dirichlet boundary condition (120).
3. If % — Ko € (0,00), then y satisfies the dissipative boundary condition (138).

The results of these theorems are summarized in Table 3. The interpretations of
these results are the following ones:

e If the diffusion coefficient becomes very large (i.e., ¢ — o), then the solution
of the heat equation becomes too small in order to influence the wave part.
Hence the limit problem is no more dissipative.

e If the diffusion coefficient tends to some ¢g € (0,00), then the limit process
depends on the limit of the thickness. If the thickness tends to zero, again
the solution of the heat equation becomes too small in order to influence the
wave part. On the contrary if the thickness tends to infinity, we may expect
a decay of the limit problem, but as said in Remark 1, the decay in this case
is an open problem.

o If the diffusion coefficient becomes very small (i.e., ¢ — 0), then in order to
have a decay in the wave part, the thickness of the heat part has to be of the
order of ¢?; in the other cases, the limit problem is no more dissipative.
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