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Abstract. This paper is devoted to the asymptotic analysis of simple models
of fluid-structure interaction, namely a system between the heat and wave
equations coupled via some transmission conditions at the interface. The heat
part induces the dissipation of the full system. Here we are interested in the
behavior of the model when the thickness of the heat part and/or the heat
diffusion coefficient go to zero or to infinity. The limit problem is a wave
equation with a boundary condition at the interface, this boundary condition
being different according to the limit of the above mentioned parameters. It
turns out that some limit problems are dissipative but some of them are non
dissipative or their behavior is unknown.

1. Introduction. This paper is concerned with the asymptotic analysis of a simple
model of fluid-structure interaction. More precisely we consider a coupled system
between the heat equation and the wave equation, the coupling being made through
some transmission conditions along the interface. It is well known that the heat
component induces the dissipation of the full system, see [25, 30, 31, 32], where it is
shown that the energy of the system decays polynomially under some geometrical
conditions between the heat and wave parts. Such a system is a simplified and
linearized version of a fluid-structure interaction. More realistic models should
consist in the coupling between the Navier-Stokes (or Stokes) and the elasticity
systems, but for such systems some basic mathematical questions remain open [5,
8, 9, 10, 13, 14, 15, 29]. Furthermore in a first attempt we have preferred to analyze
the simplest model.

A complete analysis of a system which couples at the interface the linear version
of the Navier-Stokes equations with the equations of linear elasticity (wave-like) has
been recently done by Avalos and Triggiani [2, 3]. Probably our approach could be
extended to such a model. This will be investigated in the future.

Here we are interested in the behavior of the system when the thickness of the
heat component and/or the heat diffusion coefficient go to zero or to infinity. To our
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knowledge, such an analysis is not yet done (for stationary heat problem, we refer to
[12]). The main question is to see if the limit problem inherits the decay property
of the family of coupled systems. We actually show that the limit problem is a
wave equation with a boundary condition at the interface. Four types of boundary
conditions are obtained according to the limit of the above mentioned parameters.
Namely we find either a Dirichlet boundary condition, or a Neumann boundary
condition, or a standard dissipative boundary condition or a non standard boundary
condition of memory type. Hence, for the first two boundary conditions the limit
problem is not dissipative, while for the third one, it is dissipative. Finally for the
non standard boundary condition of memory type, we do not know if the system is
dissipative or not.

Our main idea is to use the Neumann to Dirichlet and a variant of the Dirichlet
to Neumann operators in the heat part in order to transform the transmission
condition into a boundary condition with memory for the wave unknown. Hence, in
a second step, we are able to analyze the limit procedure in this boundary condition
with memory.

Our paper is clearly connected with the problem of perfectly matching layers.
The absorbing boundary conditions, introduced by Engquist and Majda [11] and
Bayliss and Turkel [4] to truncate infinite domains in order to carry out computa-
tions of wave propagation phenomena in acoustic and fluid dynamics, are almost
always nonlocal. Thus, they are difficult to deal with and require pseudodifferential
analysis. It is then interesting to substitute absorbing boundary conditions with a
partial differential equation on a close domain, easier to analyse and especially to
use numerically (see [7]).

The paper is mainly divided in two parts. The first part treats the one-dimensional
situation, while the second one is devoted to the multidimensional case. Even if some
similarities exist between these two parts, we have kept this subdivision because the
one-dimensional case is more simple to treat and then allows to understand the un-
derlying ideas.

The paper is organized as follows. In section 2, we first recall the model problem,
transform it by using a standard scaling argument and then show that it is well
posed using semi-group theory. In section 3, in the one-dimensional case we give
explicit expressions for the Neumann to Dirichlet and the variant of the Dirichlet
to Neumann operators. Hence the limit process is made in section 4 in the one-
dimensional case. We go on with the multidimensional case, with a similar scheme.
Namely the Dirichlet to Neumann and Neumann to Dirichlet operators are given in
section 5 and we end up with the limit process.

In the whole paper, we will use the following notations. As usual, we denote by
L2(.) the Lebesgue space and by Hs(.), s ≥ 0, the standard Sobolev space. The
usual norm and seminorm of Hs(D) are denoted by ‖ · ‖s,D and | · |s,D. Hence the
L2(D)-norm will be denoted by ‖ · ‖0,D.

2. The problem. We consider the following hyperbolic-parabolic problem. We
suppose that the heat equation is set in

Ωh(ǫ) = (0, ǫ) ×O,

where O is a bounded domain of R
n−1, n ≥ 1 with a Lipschitz boundary (in the case

n = 1, this means that Ωh(ǫ) = (0, ǫ)). We further assume that the wave equation
holds in a domain Ωw of R

n with a Lipschitz boundary such that its boundary
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contains
I = {0} ×O,

called the interface (between Ωh(ǫ) and Ωw). If n = 1, we simply take Ωw = (−1, 0).
Finally the two equations are coupled through the interface I leading to the following
system

ytt − ∆y = 0 in Ωw × (0,+∞) (1)

zt − c2∆z = 0 in Ωh(ǫ) × (0,+∞) (2)

yt(0, x
′, t) = z(0, x′, t) x′ ∈ O, t ∈ (0,+∞) (3)

yx1(0, x
′, t) = c2zx1(0, x

′, t) x′ ∈ O, t ∈ (0,+∞) (4)

y(x, t) = 0 x ∈ ∂Ωw \ I, t ∈ (0,+∞) (5)

z(x, t) = 0 x ∈ ∂Ωh(ǫ) \ I, t ∈ (0,+∞) (6)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in Ωw (7)

z(x, 0) = z0(x) in Ωh(ǫ), (8)

where ǫ > 0 is the thickness of the heat component and c > 0 is the heat diffusion
coefficient, which are two variable parameters.

Our main goal is to analyze the limit problem obtained as ǫ and/or c go to zero
or to infinity.

As mentioned in the introduction, this system is a simplified and linearized model
for a fluid-structure interaction. The unknown z corresponds to the velocity of
the fluid, while y and yt represent the displacement and velocity of the structure
respectively. We refer to [31, 32] for the long time behavior of this system for fixed
parameters ǫ and c, see also [25, 30] for a variant of this system.

For the sake of simplicity x ∈ Ωh(ǫ) will be often written x = (x1, x
′), with

x1 ∈ (0, ǫ) and x′ ∈ O (if n = 1, the variable x′ has to be ignored). We further
write

Ωh = Ωh(1).

By the change of variables x1 = ǫx̂1, x̂1 ∈ (0, 1) and the change of unknown

ẑ(x̂1, x
′, t) = z(x1, x

′, t),

the above problem is equivalent to

ytt − ∆y = 0 in Ωw × (0,+∞) (9)

ẑt − (k2∂x̂1x̂1 +
1

α2
∆x′)ẑ = 0 in Ωh × (0,+∞) (10)

yt(0, x
′t) = ẑ(0, x′t) x′ ∈ O, t ∈ (0,+∞) (11)

yx1(0, t) =
k

α
ẑx̂1(0, x

′, t) x′ ∈ O, t ∈ (0,+∞) (12)

y(x, t) = 0 x ∈ ∂Ωw \ I, t ∈ (0,+∞) (13)

ẑ(x, t) = 0 x ∈ ∂Ωh \ I, t ∈ (0,+∞) (14)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in Ωw (15)

ẑ(x̂, 0) = z0(ǫx̂) in Ωh, (16)

where k = c/ǫ > 0 will be one of our new parameters that may tend to zero or to
infinity. The second parameter will be α = 1

c = 1
kǫ that may also tend to zero or

to infinity. Note further that in the case n = 1, the variable x′ and the operator
1

α2 ∆x′ disappear.
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For shortness from now on, we write z instead of ẑ and assume that z0 ≡ 0,
therefore the above problem depends only on the parameter k and α. We are
interested in the behavior of the problem as k and α go to 0 or to infinity.

Now we give existence and regularity results for the system (9) to (16). We
further give a priori bounds that will be useful for our limit processes. Denoting by

U = (y, yt, z) ,

we see that (9) and (10) imply that

Ut = (yt, ytt, zt) =

(

yt,∆y, k
2zx1x1 +

1

α2
∆x′z

)

= A(k,α)U, (17)

where we set (formally)

A(k,α) (u, v, z) =

(

v,∆u, k2zx1x1 +
1

α2
∆x′z

)

. (18)

From these considerations, we introduce

H = V × L2(Ωw) × L2(Ωh),

where
V = {u ∈ H1(Ωw) : u = 0 on ∂Ωw \ I}.

The space H is a Hilbert space for the inner product

((u, v, z) , (ũ, ṽ, z̃))H =

∫

Ωw

(∇u(x) · ∇ũ(x) + v(x)ṽ(x)) dx +
1

kα

∫

Ωh

z(x)z̃(x) dx.

We further introduce the domain of the operator A(k,α) as

D(A(k,α)) = {(u, v, z) ∈ H : v ∈ V ; ∆u ∈ L2(Ωw); k2zx1x1 +
1

α2
∆x′z ∈ L2(Ωh);

z = 0 on ∂Ωh \ I;

v = z, ux1 =
k

α
zx1 on I}.

Finally for U ∈ D(A(k,α)), A(k,α)U is defined by (18).
Note that if n = 1, then

D(A(k,α)) = {(u, v, z) ∈ H2(−1, 0) ×H1(−1, 0)×H2(0, 1) :

u(−1) = v(−1) = z(1) = 0, v(0) = z(0), ux(0) =
k

α
zx(0)}.

On the contrary if n ≥ 2, if (u, v, z) belongs to D(A(k,α)), then we only have
u ∈ E(∆, L2(Ωw)) where

E(∆, L2(Ωw)) :=
{

u ∈ H1(Ωw) : ∆u ∈ L2(Ωw)
}

, (19)

which does not guarantee that u ∈ H2(Ωw). Nevertheless by Theorem 1.5.3.10

of [16], we deduce that ux1(0, x
′) = ∂u

∂x1
(0, x′) belongs to H̃1/2(I)′ (see below).

Similarly for z, one get zx1(0, x
′) ∈ H̃1/2(I)′.

Above H̃1/2(I)′ is the dual space of

H̃1/2(I) := {u ∈ H1/2(I) : ũ ∈ H1/2({0} × IRn−1)} (20)

where ũ is the extension of u defined by

ũ :=

{

u on I
0 on ({0} × IRn−1) \ I. (21)



ASYMPTOTIC ANALYSIS OF A SIMPLE MODEL 791

The operator A(k,α) is dissipative since ∀ U = (u, v, z) ∈ D(A(k,α)),

(A(k,α)U,U) = − k

α

∫

Ωh

z2
x1
dx− 1

kα3

∫

Ωh

|∇x′z|2 dx ≤ 0.

Moreover the operator A(k,α) has domain dense in H and is surjective (see Theorem
1 of [31]). Then it generates a C0-semigroup of contraction in H and therefore one
deduces the following results (using the fact that, for smooth initial data, U =
(y, y2, z) is solution of (17) if and only if y2 = yt and (y, z) is solution of (9) to
(16)):

Theorem 2.1. For all (y0, y1, z0) ∈ H, problem (9) to (16) has a unique weak
solution (y, z) with the regularity y ∈ C([0,∞);H1(Ωw)) ∩ C1([0,∞);L2(Ωw)) and
z ∈ C([0,∞);L2(Ωh)). If moreover (y0, y1, z0) ∈ D(A(k,α)), then problem (9) to
(16) has a unique strong solution (y, z) that satisfies

y ∈ C([0,∞);E(∆, L2(Ωw))) ∩ C1([0,∞);H1(Ωw)) ∩ C2([0,∞);L2(Ωw))

and

z ∈ C1([0,∞);L2(Ωh)) ∩C([0,∞);E(k2∂x1x1 +
1

α2
∆x′ , L2(Ωh))),

where

E(k2∂x1x1 +
1

α2
∆x′ , L2(Ωh)) := { z ∈ L2(Ωh) : k2zx1x1 +

1

α2
∆x′z ∈ L2(Ωh) }.

(22)
If (y0, y1, z0) ∈ D((A(k,α))2), then problem (9) to (16) has a unique strong solution
(y, z) that satisfies

y ∈ C([0,∞);E(∆, H1(Ωw))) ∩ C1([0,∞);E(∆, L2(Ωw))) ∩ C2([0,∞);H1(Ωw))

and

z ∈ C1([0,∞);L2(Ωh)) ∩ C([0,∞);E2(k2∂x1x1 +
1

α2
∆x′ , L2(Ωh))),

where
E(∆, H1(Ωw)) := { u ∈ H1(Ωw) : ∆u ∈ H1(Ωw) } (23)

and

E2(k2∂x1x1 +
1

α2
∆x′ , L2(Ωh)) :=

{

z ∈ L2(Ωh) : k2zx1x1 +
1

α2
∆x′z ∈ L2(Ωh),

k2 ∂
4z

∂x4
1

+
1

α2
∆x′(∆x′z) + 2

k2

α2
(∆x′z)x1x1 ∈ L2(Ωh)

}

.

(24)

Note that the solution of the system (9) to (16) has a poor regularity if n ≥ 2,
this lack of regularity was already pointed out in [32] and seems to be responsible
of a weaker decay of the energy than in dimension 1 (see Remarks 7.2 and 7.3 of
[32]). This lack of regularity also renders our analysis below more delicate if n ≥ 2
than in the one-dimensional case.

Let us now define the standard energy of our system (9)–(16):

E(t) =
1

2
‖(y, yt, z)‖2

H =
1

2

(
∫

Ωw

(|∇y|2 + y2
t )dx +

1

kα

∫

Ωh

z2(x, t)dx

)

. (25)

Next, for U0 = (y0, y1, z0) ∈ D((A(k,α))l), l = 1, 2, from the previous theorem we
know that U = (y, yt, z) ∈ C([0,∞);D((A(k,α))l)) and therefore we can define the
modified energy
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Ẽ(l)(t) =
1

2
‖(A(k,α))l(y, yt, z)‖2

H, (26)

explicitly given by

Ẽ(1)(t) =
1

2

(
∫

Ωw

(|∇yt|2 + (∆y)2)dx+
1

kα

∫

Ωh

(k2zx1x1 +
1

α2
∆x′z)2dx

)

,

and

Ẽ(2)(t) =
1

2

(
∫

Ωw

(|∇(∆y)|2 + (∆yt)
2)dx

+
1

kα

∫

Ωh

(

k4zx1x1x1x1 +
1

α2
∇2

x′z + 2
k2

α2
(∆2

x′z)
)2

dx

)

.

Lemma 1. For all (y0, y1, z) ∈ H, the energy E(t) of the weak solution (y, z) of
problem (9) − (16) is decreasing, i.e.,

E(t) ≤ E(s), ∀ t ≥ s ≥ 0. (27)

If moreover (y0, y1, z) ∈ D((A(k,α))l), l = 1, 2, then the modified energy Ẽ(l)(t) of
the strong solution (y, z) of problem (9) − (16) is decreasing, i.e.,

Ẽ(l)(t) ≤ Ẽ(l)(s), ∀ t ≥ s ≥ 0. (28)

Proof. The first assertion follows from the dissipativeness of A(k,α) since for strong
solution U , we have

E′(t) = (Ut, U)H = (A(k,α)U,U)H ≤ 0. (29)

This last estimate implies (27) for strong solutions and then for weak solutions by
the density of D(A(k,α)) into H.

For the second assertion, we first take U0 ∈ D((A(k,α))l+1), then the solution
U = (y, yt, z) of (17) has the regularity

U ∈ C1([0,∞);D((A(k,α))l)) ∩C([0,∞);D((A(k,α))l+1)).

Therefore
d

dt
Ẽ(l)(t) = ((A(k,α))lUt, (A(k,α))lU)H = (A(k,α)((A(k,α))lU), (A(k,α))lU)H,

and the conclusion follows from (29). As before this last estimate implies (28) by
the density of D((A(k,α))l+1) into D((A(k,α))l).

If n = 1, problem (9) and (10) reduces to (with the previous notations)

ytt − yxx = 0 in (−1, 0)× (0,+∞) (30)

zt − k2zxx = 0 in (0, 1)× (0,+∞) (31)

yt(0, t) = z(0, t) t ∈ (0,+∞) (32)

yx(0, t) =
k

α
zx(0, t) t ∈ (0,+∞) (33)

y(−1, t) = z(1, t) = 0 t ∈ (0,+∞) (34)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in (−1, 0) (35)

z(x, 0) = z0(ǫx) in (0, 1). (36)

Since the domain of D(A(k,α)) is more regular than in the case n ≥ 2, its limit
process is simpler to consider. We then start by considering this problem first and
postponed to the end of the paper the analysis of the case n ≥ 2.
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3. The Neumann to Dirichlet and Dirichlet to Neumann operators in

the case n = 1. Let us denote by Gk the following Neumann to Dirichlet operator
associated with the heat equation in (0, 1). Namely for h ∈ H1

0 (0,∞), let w be the
unique solution of (see below)

wt − k2wxx = 0 in (0, 1) × (0,+∞) (37)

wx(0, t) = h(t) t ∈ (0,+∞) (38)

w(1, t) = 0 t ∈ (0,+∞) (39)

w(x, 0) = 0 in (0, 1), (40)

then Gkh is the function defined by

Gkh(t) = w(0, t) t ∈ (0,+∞). (41)

The introduction of this operator is motivated by the fact that if (y(k,α), z(k,α))
is solution of (30) to (36) with z0 ≡ 0, then

y
(k,α)
t (0, t) = z(k,α)(0, t) = Gk(z(k,α)

x (0, t)) =
α

k
Gk(y(k,α)

x (0, t)) t ∈ (0,+∞). (42)

Let us first give explicitly the solution of problem (37)–(40):

Lemma 2. The solution w of problem (37) − (40) is given by

w(·, t) =
√

2k2
∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)h(s) ds(sin λM,l)ϕl, (43)

where for all l ∈ N, we have set λM,l = π
2 + lπ and ϕl(x) =

√
2 sin(λM,l(x −

1)) (−λ2
M,l are the eigenvalues with eigenfunction ϕl of the Laplace operator with

Dirichlet boundary condition at 1 and Neumann boundary condition at 0). Therefore
we get

Gk(h)(t) = −k
∫ t

0

Fk(s)h(t− s) ds, (44)

where the kernel Fk is defined by

Fk(s) = 2k

∞
∑

l=0

e−k2λ2
M,ls, ∀s > 0, (45)

and satisfies for all s > 0

0 ≤ Fk(s) ≤ C√
s
, (46)

Fk(s) → 0 as k → +∞, (47)

Fk(s) → 1√
πs

as k → 0, (48)

for some C > 0 independent of k and s.

Proof. Setting
w̃(x, t) = w(x, t) − h(t)(x − 1),

we see that w̃ is solution of (reminding that h(0) = 0)

w̃t − k2w̃xx = −ht(t)(x − 1) in (0, 1) × (0,+∞) (49)

w̃x(0, t) = 0 t ∈ (0,+∞) (50)

w̃(1, t) = 0 t ∈ (0,+∞) (51)

w̃(x, 0) = 0 in (0, 1). (52)
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As {ϕl}l∈N forms an orthonormal basis of L2(0, 1) and reminding that ϕl is an
eigenvector of the operator k2w̃xx with eigenvalue −k2λ2

M,l, we can write

w̃(·, t) = −
∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)ht(s) dsαlϕl, (53)

where

αl =

∫ 1

0

(x− 1)ϕl(x) dx =
√

2
sinλM,l

λ2
M,l

.

An integration by parts in the time yields (43).
From the expansion (43) we can say that

w(0, t) =
√

2k2
∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)h(s) ds sinλM,lϕl(0)

= −2k2
∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)h(s) ds.

By the dominate convergence theorem of Lebesgue, the above identity implies
that (44) holds.

It then remains to consider the asymptotic behavior of Fk. For that purpose

introduce the function fk(x) = e−k2sx2

, for x ≥ 0. This function is decreasing on
[0,∞) and therefore

fk(λM,l) ≥ fk(x) ≥ fk(λM,l+1) for λM,l ≤ x ≤ λM,l+1, l ∈ IN

These estimates allow to say that

0 ≤ Fk(s) = 2k
∞
∑

l=0

fk(λM,l)

= 2kfk(λM,0) + 2k

∞
∑

l=1

fk(λM,l)

≤ 2kfk(λM,0) +
2k

π

∞
∑

l=0

∫ λM,l+1

λM,l

fk(x) dx

= 2kfk(
π

2
) +

2k

π

∫ ∞

λM,0

fk(x) dx

= 2ke−k2sπ2/4 +
2

π
√
s

∫ ∞

πk
√

s
2

e−y2

dy.

This last estimate directly implies (47) because each term of this right-hand side
tends to zero as k goes to infinity. It also proves (46) because there exists C > 0
such that

√
xe−x ≤ C, ∀x > 0,

and
∫ ∞

πk
√

s
2

e−y2

dy ≤
∫ ∞

0

e−y2

dy =

√
π

2
.
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For the case k → 0, we need a lower bound for Fk, namely we write

Fk(s) = 2k

∞
∑

l=0

fk(λM,l)

≥ 2k

π

∞
∑

l=0

∫ λM,l+1

λM,l

fk(x) dx

=
2k

π

∫ ∞

λM,0

fk(x) dx

=
2

π
√
s

∫ ∞

πk
√

s
2

e−y2

dy.

These two estimates lead to (48).

Similarly we denote by Hk the Dirichlet to Neumann operator associated with
the heat equation in (0, 1). Namely for g ∈ H1

0 (0,∞), let w be the unique solution
of (see below)

wt − k2wxx = 0 in (0, 1) × (0,+∞) (54)

w(0, t) = g(t) t ∈ (0,+∞) (55)

w(1, t) = 0 t ∈ (0,+∞) (56)

w(x, 0) = 0 in (0, 1), (57)

then Hkg is the function defined by

Hkg(t) = wx(0, t) t ∈ (0,+∞). (58)

As before if (y(k,α), z(k,α)) is solution of (30) to (36) with z0 ≡ 0, then

y(k,α)
x (0, t) =

k

α
Hk(y

(k,α)
t (0, t)) t ∈ (0,+∞). (59)

Unfortunately this operator seems to have a bad behaviour as k goes to infinity,
therefore we use the following approach.

Lemma 3. Assume that g ∈ H1
0 (0,∞) ∩ H2(0,∞). The solution w of problem

(54) − (57) is given by

w(·, t) = −
√

2

∞
∑

l=1

∫ t

0

e−k2λ2
D,l(t−s)gt(s) ds

1

λD,l
ϕl − g(t)(· − 1), (60)

where for all l ≥ 1, we have set λD,l = lπ and ϕl(x) =
√

2 sin(λD,lx) (−λ2
D,l are the

eigenvalues with eigenfunction ϕl of the Laplace operator with Dirichlet boundary
condition at 0 and 1). Moreover we have

wx(0, t) =

∫ t

0

Kk(t− s)gt(s) ds− g(t), (61)

where the kernel Kk satisfies

k|Kk(s)| ≤ C√
s
, ∀ s > 0, (62)

for some C > 0.
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Proof. As before we set

w̃(x, t) = w(x, t) + g(t)(x− 1),

and see that w̃ is solution of

w̃t − k2w̃xx = gt(t)(x − 1) in (0, 1) × (0,+∞) (63)

w̃(0, t) = 0 t ∈ (0,+∞) (64)

w̃(1, t) = 0 t ∈ (0,+∞) (65)

w̃(x, 0) = 0 in (0, 1). (66)

As {ϕl}l∈N is the sequence of eigenfunctions of the operator k2w̃xx with eigenvalues
−k2λ2

D,l, we can write

w̃(·, t) = −
√

2

∞
∑

l=1

∫ t

0

e−k2λ2
D,l(t−s)gt(s) ds

1

λD,l
ϕl. (67)

This expansion and the expression of w̃ directly give (60).
Differentiating in x the expansion (60) we can say that

wx(0, t) = −2

∞
∑

l=1

∫ t

0

e−k2λ2
D,l(t−s)gt(s) ds− g(t)

=

∫ t

0

Kk(t− s)gt(s) ds− g(t)

where

Kk(s) = −2
∞
∑

l=1

e−k2λ2
D,ls,

the above identity being meaningful by the dominate convergence theorem of
Lebesgue.

The estimate (62) follows from the fact that

k|Kk(s)| ≤ F̃k(s),

where F̃k(s) = 2k
∑∞

l=1 e
−k2l2π2s and is bounded by C√

s
as in the proof of the

previous lemma.

4. The limit problems in the case n = 1. In this section, we consider the limit
problems of (30) to (36) as k, α go to zero or to ∞.

Coming back to the solution (y(k,α), z(k,α)) of (30) to (36) with z0 ≡ 0, and
making use of (42), we can say that y(k,α) satisfies the boundary condition with
memory:

y
(k,α)
t (0, t) =

α

k
Gk(y(k,α)

x (0, ·))(t) t ∈ (0,+∞). (68)

The problem consists in justifying the passage to the limit in (68). We first treat
the case α tending to 0 or α0:

Theorem 4.1. Assume that y0 ∈ H2(−1, 0) and y1 ∈ H1(−1, 0) are such that

y0(−1) = y0x(0) = y1(−1) = y1(0) = 0.

Let (y(k,α), z(k,α)) be the strong solution of (30) to (36) with initial data y0, y1 and
z0 ≡ 0. For all T > 0, let us set QT = (−1, 0) × (0, T ). Then for all T > 0, there
exist y ∈ H2(QT ) and a subsequence of y(k,α), still denoted by y(k,α) for the sake of
shorthness, such that y(k,α) tends to y weakly in H2(QT ) as k → k0, α→ α0, with
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k0 ∈ [0,∞], α0 ∈ [0,∞). Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition at −1:

ytt − yxx = 0 in (−1, 0) × (0, T ), (69)

y(−1, t) = 0 t ∈ (0, T ), (70)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in (−1, 0). (71)

For the boundary condition at 0, we distinguish the following cases:
1. If α→ 0, then y satisfies the Dirichlet boundary condition at 0 :

y(0, t) = y0(0) t ∈ (0,+∞). (72)

2. If α→ α0 ∈ (0,∞), then the boundary condition at 0 depends on the limit on k:
a. If k → ∞, then y satisfies the Dirichlet boundary condition (72).
b. If k → k0 ∈ (0,∞), then y satisfies the boundary condition with memory

yt(0, t) = −α0

∫ t

0

Fk0(s)yx(0, t− s) ds, t ∈ (0,+∞), (73)

c. If k → 0, then y satisfies the boundary condition with memory

yt(0, t) = K(yx(0, t)) t ∈ (0,+∞), (74)

where K is the integral operator defined by

Kh(t) = − 1√
π

∫ t

0

1√
s
h(t− s) ds. (75)

Proof. The assumptions on the data guarantee that the triple (y0, y1, 0) belongs to
D(A(k,α)). Therefore by Theorem 2.1 and Lemma 1 the strong solution (y(k,α), z(k,α))
of (30) to (36) satisfies for all t ≥ 0

∫ 0

−1

(|y(k,α)
x (x, t)|2 + |y(k,α)

t (x, t)|2) dx+
1

kα

∫ 1

0

|z(k,α)(x, t)|2 dx

≤
∫ 0

−1

(|y0x(x)|2 + |y1(x)|2 dx,
(76)

∫ 0

−1

(|y(k,α)
tx (x, t)|2 + |y(k,α)

xx (x, t)|2) dx +
k3

α

∫ 1

0

|z(k,α)
xx (x, t)|2 dx

≤
∫ 0

−1

(|y1x(x)|2 + |y0xx(x)|2 dx.
(77)

As the right-hand sides of these two estimates are independent of t, we deduce that
there exists C > 0 such that

|y(k,α)|2,QT ≤ CT, (78)

|y(k,α)|1,QT ≤ CT, (79)

reminding that y
(k,α)
tt = y

(k,α)
xx . Since the seminorm H1(QT ) is a norm on H1(QT )

due the Dirichlet boundary condition on {−1}×(0, T ), we deduce that the sequence
(y(k,α))k,α is bounded in H2(QT ). Consequently there exists y ∈ H2(QT ) such that

y(k,α) → y weakly in H2(QT ) as k → k0 and α→ α0. (80)

Moreover from the compact embedding of H2(QT ) into H2−η(QT ) for any η > 0,
we further have

y(k,α) → y strongly in H2−η(QT ) as k → k0 and α→ α0. (81)
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for any η > 0.
From the first property (80), we see that y satisfies (69) in the distributional

sense. On the other hand from the second property we see that y fulfils the boundary
condition (70) and the initial condition (71). It then remains to prove the boundary
condition at 0. For that purpose, we recall that the identity (42) showed that

y
(k,α)
t (0, t) = Gk(

α

k
y(k,α)

x (0, t)) = −α
∫ t

0

Fk(s)y(k,α)
x (0, t− s) ds, t ∈ (0,+∞),

(82)
owing to (44). We therefore need to justify the passage to the limit in the above
identity.

First if α tends to 0, since (81) and a trace theorem lead to

y(k,α)
x (0, ·) → yx(0, ·) in H1/2−η(0, T ),

we deduce that

y
(k,α)
t (0, t) → 0,

which yields

yt(0, ·) = 0. (83)

and then (72).
Secondly assume that α tends to α0, then we distinguish the cases k → 0, k → k0

and k → ∞.
If k → +∞, then by the dominate convergence theorem of Lebesgue, we see that

∫ t

0

Fk(s)y(k,α)
x (0, t− s) ds→ 0,

and by (82) we conclude the boundary condition (83) and then (72).
If k → k0, then by (82) applying the dominate convergence theorem we directly

get (73).
Finally if k → 0, writing F (s) = 1√

πs
, we readily see that

− 3k ≤ F (s) − Fk(s) ≤ k. (84)

Consequently we write
∫ t

0

Fk(s)y(k,α)
x (0, t− s) ds =
∫ t

0

(Fk(s) − F (s))y(k,α)
x (0, t− s) ds+

∫ t

0

F (s)y(k,α)
x (0, t− s) ds.

As y
(k,α)
x (0, ·) is uniformly bounded in L2(0, T ), we directly deduce that

∫ t

0

(Fk(s) − F (s))y(k,α)
x (0, t− s) ds→ 0 as k → 0.

On the other hand, since the sequence (y(k,α))k,α is bounded in H2(QT ), by a trace

theorem we deduce that (y
(k,α)
x (0, ·))k,α is bounded in H1/2(0, T ), and therefore

y(k,α)
x (0, ·) → yx(0, ·) weakly in H1/2(0, T ),

and by the compact embedding of H1/2(0, T ) into Lr(0, T ), for all r > 1, we deduce
that

y(k,α)
x (0, ·) → yx(0, ·) strongly in Lr(0, T ), ∀r > 1.
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α→ ∞
k → 0 k

α → 0

k → k0
k
α → 0

k → ∞ k
α →?

Table 1. Limit cases for the ratio k
α

As F belongs to Lp(0, T ), ∀p ∈ [1, 2), by Hölder’s inequality we deduce that
∫ t

0

F (s)y(k,α)
x (0, t− s) ds→

∫ t

0

F (s)yx(0, t− s) ds as k → 0.

All together we have shown that
∫ t

0

Fk(s)y(k,α)
x (0, t− s) ds →

∫ t

0

F (s)yx(0, t− s) ds as k → 0.

This property and the fact that y
(k,α)
t (0, ·) tends to yt(0, ·) weakly in H1/2(0, T )

allow to pass to the limit in the identity (82) and to obtain (74).

It remains to consider the case when α tends to ∞. In that case the ratio k
α has

different behaviors according to the limit on k, see table 1. From this table, we see
that in the case k → ∞, the limit of k

α is undetermined. Therefore in that case,
we distinguish two cases. Either the ratio admits a limit in [0,∞], or not. But in
that last case, we can always assume that a subsequence admits a limit in [0,∞].
Indeed, if the ratio is uniformly bounded, then we can subtract a subsequence that
converges to κ0 ∈ [0,∞); on the other hand, if the sequence is not bounded, then we
can subtract a subsequence that converges to ∞. So from now on, we work either
with the convergent sequence or with such a convergent subsequence.

Theorem 4.2. Assume that y0 ∈ H3(−1, 0) and y1 ∈ H2(−1, 0) are such that

y0(−1) = y0xx(−1) = y0x(0) = y0xx(0) = y1(−1) = y1(0) = y1x(0) = 0.

Let (y(k,α), z(k,α)) be the strong solution of (30) to (36) with initial data y0, y1 and
z0 ≡ 0. For all T > 0, let us set QT = (−1, 0) × (0, T ). Then for all T > 0,
there exist y ∈ H2(QT ) and a subsequence of y(k,α), still denoted by y(k,α) for the
sake of shorthness, such that y(k,α) tends to y weakly in H2(QT ) as k → k0 and
α → ∞, with k0 ∈ [0,∞]. Moreover y is the weak solution of the wave equation
with Dirichlet boundary condition at −1, namely satisfies (69), (70) and (71). For
the boundary condition at 0, we distinguish the following cases:
1. If k

α → 0, then y satisfies the Neumann boundary condition at 0 :

yx(0, ·) = 0. (85)

2. If k
α → ∞, then y satisfies the Dirichlet boundary condition (72).

3. If k
α → κ0 ∈ (0,∞), then y satisfies the dissipative boundary condition

yx(0, ·) + κ0yt(0, ·) = 0. (86)

Proof. The proof starts as the one of Theorem 4.1. Namely, the estimates (78) and
(79) being valid there exists y ∈ H2(QT ) weak limit in H2(QT ) and strong limit in
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H2−η(QT ) of y(k,α) as k → k0 and α → ∞. As before these properties imply that
y satisfies (69) to (71). It remains to analyze the boundary condition at 0.

First we use the fact that the initial datum (y0, y1, 0) belongs to D((A(k,α))2),
that yields by Lemma 1

Ẽ(2)(t) ≤ Ẽ(2)(0), ∀t > 0,

or equivalently
∫ 0

−1

(|y(k,α)
txx (x, t)|2 + |y(k,α)

xxx (x, t)|2) dx+
k7

α

∫ 1

0

|z(k,α)
xxxx(x, t)|2 dx

≤
∫ 0

−1

(|y1xx(x)|2 + |y0xxx(x)|2) dx

From this estimate and the estimate (77) we see that the sequence (y
(k,α)
tt )k,α is

bounded in H1(QT ) (recalling that y
(k,α)
tt = y

(k,α)
xx ) and therefore by the Sobolev

embedding theorem it admits a subsequence, still denoted by y
(k,α)
tt , that converges

to ytt in H1−η(QT ). By a standard trace theorem, we conclude that

y
(k,α)
tt (0, ·) → ytt(0, ·) in H1/2−η(0, T ). (87)

Now we make use of Lemma 3. Indeed from this lemma we may write

z(k,α)
x (0, t) =

∫ t

0

Kk(t− s)y
(k,α)
tt (0, s) ds− y

(k,α)
t (t). (88)

Now since

y(k,α)
x (0, t) =

k

α
z(k,α)

x (0, t),

we deduce that

y(k,α)
x (0, t) =

k

α

∫ t

0

Kk(t− s)y
(k,α)
tt (0, s) ds− k

α
y
(k,α)
t (0, t). (89)

Now, using the estimate (62) and the fact that

‖y(k,α)
tt (0, s)‖Lr(0,T ) ≤ CT, ∀ r > 1,

consequence of the property (87), we deduce that

k

α

∫ t

0

Kk(t−s)y(k,α)
tt (0, s) ds =

1

α

∫ t

0

kKk(t−s)y(k,α)
tt (0, s) ds→ 0 as α→ ∞. (90)

If k
α → 0, then the property (90) and the identity (89) lead to

y(k,α)
x (0, ·) → 0 as α→ ∞,

and then to the boundary condition (85).
On the contrary in the case k

α → ∞, if we note that identity (89) may be
equivalently written as

y
(k,α)
t (0, t) = −α

k

(

y(k,α)
x (0, t) − k

α

∫ t

0

Kk(t− s)y
(k,α)
tt (0, s) ds

)

, (91)

then property (90) leads to

y
(k,α)
t (t) → 0,

and then to the boundary condition

yt(0, ·) = 0,
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α→ 0 α→ α0 α→ ∞
k → 0 Dirichlet bc memory bc Neumann bc
k → k0 Dirichlet bc memory bc Neumann bc

k → ∞ Dirichlet bc Dirichlet bc k
α → 0:Neumann bc

k → ∞ k
α → κ0: dissipative bc

k → ∞ k
α → ∞: Dirichlet bc

Table 2. Summary of the limit problems

which leads to the Dirichlet boundary condition

y(0, ·) = y0(0).

It remains to consider the case k
α → κ0. In that case, from (89) and (90) and

passage to the limit we get (86). Note that this boundary condition leads to an
exponential decay of the energy.

Remark 1. The different limit problems are summarized in Table 2. When Dirich-
let or Neumann boundary condition appear at 0, then the limit problem is not
dissipative. The only cases where we can guarantee that the limit problem is dissi-
pative is the two following cases:
1. when α tends to infinity and k

α tends to a positive real number, then the limit
problem is the wave equation with the standard dissipative law (86) at 0, and the
exponential decay of this system was proved for instance in [19, 20, 21].
2. when α tends to a real number α0 and k tends to a positive real number k0, then
the limit problem is still the starting problem with the parameters α0 and k0, and
its polynomial dissipativeness follows from the considerations from [30].

Finally in the case when α tends to a real number α0 and k tends to zero, then
the limit problem is the following one

ytt − yxx = 0 in (−1, 0) × (0,+∞) (92)

y(−1, t) = 0 t ∈ (0,+∞) (93)

yt(0, t) = K(yx(0, t)) t ∈ (0,+∞), (94)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in (−1, 0). (95)

Actually the dissipation law (94) is a boundary condition with memory but is not a
standard one and seems not studied in the literature. For different stability results
of the wave equation with memory boundary conditions we refer to the papers
[1, 26, 6, 17, 18, 24, 27, 28, 23].

The stability of the system (92) to (95) is not clear at all. Nevertheless if we
denote by

Y (·, s) = (Ly)(s) =

∫ ∞

0

e−sty(·, t) dt,

the Laplace transform of y. Then Y is solution of

s2Y − Yxx = sy0 + y1 in (−1, 0) (96)

y(−1, s) = 0 (97)

sY (0, s) + y0(0) = −
√
π√
s
Yx(0, s). (98)
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The eigenvalues associated with this problem (corresponding to y0 = y1 = 0) are
the complex numbers s, roots of

√
s sinh s+

√
π cosh s = 0.

This equation has complex roots approaching the imaginary axis (s ∼ ilπ), so
we can expect a polynomial decay for the system (92) to (95).

5. The Neumann to Dirichlet and Dirichlet to Neumann operators for

the case n ≥ 2. Now we pass to the general case n ≥ 2 (the case n = 1 is not
relevant since it was treated in the previous sections). Let us denote by Gk the
following Neumann to Dirichlet operator associated with the heat equation in Ωh.
Namely for h ∈ H1

0 (O × (0,∞)), let w be the unique solution of

wt − (k2∂x̂1x̂1 +
1

α2
∆x′)w = 0 in Ωh × (0,+∞) (99)

wx1(0, x
′, t) = h(x′, t) x′ ∈ O, t ∈ (0,+∞) (100)

w(x, t) = 0 x ∈ ∂Ωh \ I, t ∈ (0,+∞) (101)

w(x, 0) = 0 in Ωh, (102)

then Gkh is the function defined by

Gkh(x
′, t) = w(0, x′, t) x′ ∈ O, t ∈ (0,+∞). (103)

In order to give explicitly the solution of problem (99)–(102) we recall that the
operator −∆x′ with Dirichlet boundary condition on ∂O is a positive selfadjoint
operator with a discrete spectrum {µ2

j}∞j=1 (repeated according to their multiplic-
ity). For all j ≥ 1 we denote by ψj the eigenfunction of −∆x′ associated with the
eigenvalue µ2

j .

For shortness for all s > 0 we denote by Ψh(·, s, x′), the function

Ψh(t, s, ·) = e(t−s) 1
α2 ∆x′h(s, ·), ∀ t ≥ s.

This function exists (and is unique) since ∆x′ is the infinitesimal generator of a
contraction semigroup et∆x′ . Note that this function Ψh(·, s) is the unique solution
of

∂tΨh − 1

α2
∆x′Ψh = 0 in O × (s,+∞),

Ψh = 0 on ∂O × (s,+∞),

Ψh(s, s, x′) = h(s, x′), x′ ∈ O.

Lemma 4. The solution w of problem (99) − (102) is given by

w(x1, x
′, t) =

√
2k2

∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)Ψh(t, s, x′) ds(sinλM,l)ϕl(x1), (104)

where for all l ∈ N, we have set λM,l = π
2 + lπ and ϕl(x1) =

√
2 sin(λM,l(x1 − 1)).

Therefore we get

Gk(h)(x′, t) = −k
∫ t

0

Fk(s)Ψh(t, s, x′) ds, (105)

where the kernel Fk is the same as the one from Lemma 2.
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Proof. Setting

w̃(x1, x
′, t) = w(x1, x

′, t) − h(t, x′)(x1 − 1),

we see that w̃ is solution of

w̃t − (k2∂x̂1x̂1 +
1

α2
∆x′)w̃ = −(x1 − 1)g in Ωh × (0,+∞) (106)

w̃x1(0, x
′, t) = 0 x′ ∈ O, t ∈ (0,+∞) (107)

w̃(x1, x
′, t) = 0 x1 ∈ (0, 1), x′ ∈ ∂O, t ∈ (0,+∞) (108)

w̃(x, 0) = 0 in Ωh, (109)

where g = ht − 1
α2 ∆x′h. As {ϕlψj}l∈N,j≥1 forms an orthonormal basis of L2(Ωh)

and recalling ϕlψj is an eigenvector of the operator k2∂x̂1x̂1 + 1
α2 ∆x′ with eigenvalue

−k2λ2
M,l − 1

α2µ
2
j , we can write

w̃(·, t) = −
∞
∑

l=0

∞
∑

j=1

∫ t

0

e−(k2λ2
M,l+

1
α2 µ2

j)(t−s)(g(s, ·), ψj) dsαlϕlψj , (110)

where (g(s, ·), ψj) means the L2-inner product in O of g(s, ·) with ψj (or the duality
bracket), i.e.

(g(s, ·), ψj) =

∫

O

g(s, x′)ψj(x
′)dx′,

and αl =
∫ 1

0 (x − 1)ϕl(x) dx =
√

2
sin λM,l

λ2
M,l

. Integrations by parts in time and space

yield (104).
From the expansion (104) we can say that

w(0, x′, t) = −2k2
∞
∑

l=0

∫ t

0

e−k2λ2
M,l(t−s)Ψh(t, s, x′) ds.

The end of the proof is similar to the one of Lemma 2.

Similarly for g ∈ H1
0 ((0,∞);L2(O)), let w be the unique solution of

wt − (k2∂x̂1x̂1 +
1

α2
∆x′)w = 0 in Ωh × (0,+∞) (111)

w(0, x′, t) = g(x′, t) x′ ∈ O, t ∈ (0,+∞) (112)

w(x, t) = 0 x ∈ ∂Ωh \ I, t ∈ (0,+∞) (113)

w(x, 0) = 0 in Ωh. (114)

Due to the lack of regularity, we slightly modify the arguments from Lemma 3.

Lemma 5. Assume that g ∈ H1
0 ((0,∞);L2(O)). The solution w of problem (111)−

(114) satisfies

∆−1
x′ wx1(0, x

′, t) = −
∫ t

0

Kk(t− s)Ψh(t, s, x′) ds− ∆−1
x′ g(t), (115)

where the kernel Kk is the one from Lemma 3 and h = ∆−1
x′ ∂tg − 1

α2 g.

Proof. First assume that g ∈ H1
0 (O × (0,∞)) ∩H2(O × (0,∞)). Then setting

w̃ = w + (x1 − 1)g,
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and using a Fourier expansion, we get

w̃(x, t) = −
√

2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j )(t−s)(h1(s, ·), ψj) ds
1

λD,l
ϕlψj ,

where h1 = ∂tg − 1
α2 ∆x′g, λD,l = lπ and ϕl(x1) =

√
2 sin(λD,lx) (see Lemma 3).

Differentiating with respect to x1, we obtain

w̃x1(0, x
′, t) = −2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j )(t−s)(h1(s, ·), ψj) dsψj .

As a consequence, we obtain

∆−1
x′ w̃x1(0, x

′, t) = −2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j)(t−s)µ−2
j (h1(s, ·), ψj) dsψj .

Since −∆−1
x′ ψj = µ−2

j ψj , we obtain

∆−1
x′ w̃x1(0, x

′, t) = 2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j )(t−s)(h1(s, ·),∆−1
x′ ψj) dsψj

= 2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j )(t−s)(∆−1
x′ h1(s, ·), ψj) dsψj

= 2

∞
∑

l=1

∞
∑

j=1

∫ t

0

e−(k2λ2
D,l+

1
α2 µ2

j )(t−s)(h(s, ·), ψj) dsψj .

Since H1
0 (O × (0,∞)) ∩ H2(O × (0,∞)) is dense in H1

0 ((0,∞);L2(O)), the last
identity remains valid for g ∈ H1

0 ((0,∞);L2(O)).
The remainder of proof is similar to the one of Lemma 3.

6. The limit problems for the case n ≥ 2. In this section, we consider the limit
problems of (9) to (16) as k, α go to zero or to ∞.

Coming back to the solution (y(k,α), z(k,α)) of (9) to (16) with z0 ≡ 0, and making
use of (12) and (103), we can say that y(k,α) satisfies the boundary condition with
memory:

y
(k,α)
t (0, x′, t) =

α

k
Gk(y(k,α)

x1
)(x′, t) x′ ∈ O, t ∈ (0,+∞). (116)

As before we need to justify the passage to the limit in (116). We first treat the
case α tending to 0 or α0:

Theorem 6.1. Assume that the triple (y0, y1, 0) ∈ D(A(k,α)) or equivalently that
y0 ∈ E(∆, L2(Ωw)) and y1 ∈ H1(Ωw) with

y0 ≡ y1 ≡ 0 on ∂Ωw \ I, y0x1 ≡ y1 ≡ 0 on I.

Let (y(k,α), z(k,α)) be the strong solution of (9) to (16) with initial data y0, y1 and
z0 ≡ 0. For all T > 0, let us set QT = Ωw × (0, T ). Then for all T > 0, there
exist y ∈ H1(QT ) and a subsequence of y(k,α), still denoted by y(k,α) for the sake of
shorthness, such that y(k,α) tends to y weakly in H1(QT ) as k → k0, α→ α0, with
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k0 ∈ [0,∞], α0 ∈ [0,∞). Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition on ∂Ωw \ I

ytt − ∆y = 0 in Ωw × (0, T ), (117)

y(x, t) = 0 x ∈ ∂Ωw \ I, t ∈ (0, T ), (118)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in Ωw. (119)

For the boundary condition on I, we distinguish the following cases:
1. If α→ 0, then y satisfies the Dirichlet boundary condition on I :

y(0, x′, t) = y0(0, x
′) x′ ∈ O, t ∈ (0, T ). (120)

2. If α→ α0 ∈ (0,∞), then the boundary condition on I depends on the limit on k:
a. If k → ∞, then y satisfies the Dirichlet boundary condition (120).
b. If k → k0 ∈ (0,∞), then y satisfies the boundary condition with memory

yt(0, x
′, t) = −α0

∫ t

0

Fk0(s)Ψyx1
(t, s, x′) ds, x′ ∈ O, t ∈ (0, T ), (121)

c. If k → 0, then y satisfies the boundary condition with memory

yt(0, t) = K(Ψyx1
(t, s, x′) ds) t ∈ (0,+∞), (122)

where K is the integral operator defined by (75).

Proof. The assumptions on the data guarantee that the triple (y0, y1, 0) belongs to
D(A(k,α)). Therefore by Theorem 2.1 and Lemma 1 the strong solution (y(k,α), z(k,α))
of (9) to (16) satisfies for all t ≥ 0

∫

Ωw

(|∇y(k,α)(x, t)|2 + |y(k,α)
t (x, t)|2) dx+

1

kα

∫

Ωh

|z(k,α)(x, t)|2 dx

≤
∫

Ωw

(|∇y0(x)|2 + |y1(x)|2 dx,
(123)

∫

Ωw

(|∇y(k,α)
t (x, t)|2 + |∆y(k,α)(x, t)|2) dx

+
1

kα

∫

Ωh

|(k2∂x̂1x̂1 +
1

α2
∆x′)z(k,α)(x, t)|2 dx

≤
∫

Ωw

(|∇y1(x)|2 + |∆y0(x)|2 dx.

(124)

As the right-hand side of these two estimates are independent of t, we deduce that
there exists C > 0 such that

|y(k,α)|1,QT + |y(k,α)
t |1,QT ≤ CT, (125)

reminding that y
(k,α)
tt = ∆y(k,α). Unfortunately (contrary to the 1d-case), we cannot

deduce that the sequence is bounded in H2(QT ). But we can say that

‖∆y(k,α)‖0,QT ≤ CT. (126)

Now we recall that Theorem 1.5.3.10 of [16] shows that if u ∈ E(∆, L2(Ωw)), then
∂u
∂x1

(0, ·) belongs to H̃1/2(O)′ with the estimate

‖ ∂u
∂x1

(0, ·)‖H̃1/2(O)′ ≤ C(‖u‖1,Ωw + ‖∆u‖0,Ωw). (127)
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By the estimates (125), (126) and (127), we deduce that

‖∂y
(k,α)

∂x1
‖L∞(0,T ;H̃1/2(I)′) ≤ C. (128)

Now as H̃1/2(I) = D(∆
1/4
x′ ) (because Corollary 2.7.2 of [22] yields H̃1/2(I) =

[H1
0 (I), L2(I)]1/2 and hence H̃1/2(I) = [D(∆

1/2
x′ ), D(∆0

x′)]1/2 = D(∆
1/4
x′ )), we can

say that

‖Ψ
y
(k,α)
x1

(t, s)‖2
H̃1/2(I)′

∼
∞
∑

j=1

e−
1

α2 µ2
j (t−s)µ

−1/2
j | < y(k,α)

x1
(s);ψj > |2

≤ C

∞
∑

j=1

µ
−1/2
j | < y(k,α)

x1
(s);ψj > |2 = ‖y(k,α)

x1
(s)‖2

H̃1/2(I)′
.

By the estimate (128) we conclude that

‖Ψ
y
(k,α)
x1

(t, s, x′)‖H̃1/2(I)′ ≤ C, ∀ t ≥ s. (129)

Since the seminorm H1(QT ) is a norm on H1(QT ) due the Dirichlet boundary
condition on ({−1}×O)×(0, T ), from (125) we deduce that the sequences (y(k,α))k,α

and (y
(k,α)
t )k,α are bounded inH1(QT ). Consequently there exists y ∈ H1(QT ) such

that

y(k,α) → y weakly in H1(QT ) as k → k0 and α→ α0, (130)

y
(k,α)
t → yt weakly in H1(QT ) as k → k0 and α→ α0. (131)

Moreover from the compact embedding of H1(QT ) into H1−η(QT ) for any η > 0,
we further have

y(k,α) → y strongly in H1−η(QT ) as k → k0 and α→ α0, (132)

y
(k,α)
t → yt strongly in H1−η(QT ) as k → k0 and α→ α0, (133)

for any η > 0.
From the first property (130), we see that y satisfies (117) in the distributional

sense, while from the second properties we see that y fulfils the boundary condition
(118) and the initial condition (119). In order to obtain the boundary condition on
I, we recall that the identity (116) showed that

y
(k,α)
t (0, x′, t) = −α

∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds, x′ ∈ O, t ∈ (0,+∞), (134)

owing to (105). We therefore need to justify the passage to the limit in the above
identity.

First if α tends to 0, then as

Fk(s) ≤ C√
s
, (135)

and making use of the estimate (129), we deduce that

‖
∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds‖H̃1/2(I)′ ≤
∫ t

0

Fk(s)‖Ψ
y
(k,α)
x1

(t, s, x′)‖H̃1/2(I)′ ds

≤ C

∫ t

0

1√
s
ds.
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This shows that, for α→ 0,

y
(k,α)
t → 0 in L∞((0, T ); H̃1/2(I)′).

As (133) implies that y
(k,α)
t → yt in L2(I × (0, T )), we deduce that

yt(0, ·) = 0. (136)

and then (120).
As in 1 − d when α tends to α0, we distinguish the cases k → 0, k → k0 and

k → ∞.
If k → +∞, then we first have

Fk(s) → 0.

The estimate (135) and the dominate convergence theorem of Lebesgue yields
∫ t

0

Fk(s) ds → 0.

This property combined with the estimate (129) gives

‖
∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds‖H̃1/2(I)′ ≤ C

∫ t

0

Fk(s) ds→ 0,

and therefore
∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds→ 0 in H̃1/2(I)′ a. e. in (0, T ),

and by (134) we conclude the boundary condition (136) and then (120).
If k → k0, then by (134) we directly get (121).
Finally if k → 0, as before setting F (s) = 1√

πs
, we may write

∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds =
∫ t

0

(Fk(s) − F (s))Ψ
y
(k,α)
x1

(t, s, x′) ds+

∫ t

0

F (s)Ψ
y
(k,α)
x1

(t, s, x′) ds.

For the first term using the estimates (84) and (129), we directly deduce that
∫ t

0

(Fk(s) − F (s))Ψ
y
(k,α)
x

(t, s, x′) ds→ 0 in L∞((0, T ); H̃1/2(I)′).

On the other hand, by the estimate (128) and the Banach-Alaoglu theorem, we
deduce that

y(k,α)
x1

→ yx1 weakly in Lq(0, T ; H̃1/2(I)′), ∀ q > 1.

By the definition of Ψh, we deduce that

Ψ
y
(k,α)
x1

(t, s, x′) → Ψyx1
(t, s, x′) weakly in Lq(0, T ; H̃1/2(I)′).

Indeed for w ∈ Lp(0, T ; H̃1/2(I)), with 1
p + 1

q = 1, we have

< Ψ
y
(k,α)
x1

(t, s, x′) − Ψyx1
(t, s, x′);w >

=

∫ t

0

< e
1

α2 (t−s)∆x′ (y(k,α)
x1

− yx1)(s), w(s) > ds

=

∫ t

0

< (y(k,α)
x1

− yx1)(s), e
1

α2 (t−s)∆x′w(s) > ds→ 0.
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As F belongs to Lp(0, T ), ∀p ∈ [1, 2), we deduce that
∫ t

0

F (s)Ψ
y
(k,α)
x1

(t, s, x′) ds→
∫ t

0

F (s)Ψyx1
(t, s, x′) ds weakly in H̃1/2(I)′ as k → 0.

Indeed for any ϕ ∈ H̃1/2(I), we may write

<

∫ t

0

F (s)(Ψ
y
(k,α)
x1

(t, s, x′) − Ψyx1
(t, s, x′)) ds;ϕ >

=

∫ t

0

< Ψ
y
(k,α)
x1

(t, s, x′) − Ψyx1
(t, s, x′));F (s)ϕ > ds

=< Ψ
y
(k,α)
x1

(t, s, x′) − Ψyx1
(t, s, x′));F (s)ϕ >→ 0,

since F (·)ϕ belongs to Lp(0, T ; H̃1/2(I)).
Alltogether we have shown that

∫ t

0

Fk(s)Ψ
y
(k,α)
x1

(t, s, x′) ds →
∫ t

0

F (s)Ψyx1
(t, s, x′) ds weakly in H̃1/2(I)′ as k → 0.

This property and the fact that y
(k,α)
t (0, x′, t) tends to yt(0, x

′, t) weakly in H1/2(I×
(0, T )) allow to pass to the limit in the identity (134) and to obtain (122).

It remains to consider the case when α tends to ∞.

Theorem 6.2. Assume that (y0, y1, 0) belongs to D((A(k,α))2), or equivalently that
y0 ∈ E(∆, H1(Ωw)) and y1 ∈ E(∆, L2(Ωw)) with

y0 ≡ ∆y0 ≡ y1 = 0 on ∂Ωw \ I, y0x1
≡ ∆y0 ≡ y1 ≡ y1x1

≡ 0 on I.

Let (y(k,α), z(k,α)) be the strong solution of (9) to (16) with initial data y0, y1 and
z0 ≡ 0. Then for all T > 0, there exist y ∈ H1(QT ) and a subsequence of y(k,α), still
denoted by y(k,α) for the sake of shorthness, such that y(k,α) tends to y weakly in
H1(QT ) as k → k0 and α → ∞, with k0 ∈ [0,∞]. Moreover y is the weak solution
of the wave equation with Dirichlet boundary condition at the exterior boundary of
Ωw, namely satisfies (117), (118) and (119). For the boundary condition on I, we
distinguish the following cases:
1. If k

α → 0, then y satisfies the Neumann boundary condition on I:

yx1(0, ·) = 0 on I. (137)

2. If k
α → ∞, then y satisfies the Dirichlet boundary condition (120).

3. If k
α → κ0 ∈ (0,∞), then y satisfies the dissipative boundary condition

yx1 + κ0yt = 0 on I. (138)

Proof. As in Theorem 6.1, since the estimate (125) is still valid, there exists y ∈
H1(QT ) weak limit in H1(QT ) and strong limit in H1−η(QT ) of y(k,α) as k → k0

and α → ∞. As before these properties imply that y satisfies (117) to (119). It
remains to analyze the boundary condition on I.

Here we use the fact that the initial datum (y0, y1, 0) belongs to D((A(k,α))2),
that yields by Lemma 1

Ẽ(2)(t) ≤ Ẽ(2)(0), ∀t > 0,

which implies
∫

Ωw

(|∇∆y(k,α)(x, t)|2 + |∆y(k,α)
t (x, t)|2) dx ≤

∫

Ωw

(|∇∆y0(x)|2 + |∆y1(x)|2) dx.
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From this estimate and the estimate (124) we see that the sequence (y
(k,α)
tt )k,α is

bounded in H1(QT ) (reminding that y
(k,α)
tt = ∆y(k,α)) and therefore by the Sobolev

embedding theorem it admits a subsequence, still denoted by y
(k,α)
tt , that converges

to ytt in H1−η(QT ). By a standard trace theorem, we conclude that

y
(k,α)
tt (0, ·) → ytt(0, ·) in H1/2−η(I × (0, T )). (139)

By (133) and again a trace theorem we deduce that

hk,α := ∆−1
x′ y

(k,α)
tt − 1

α2
y
(k,α)
t → ∆−1

x′ ytt in Lq((0, T );L2(I)), (140)

for some q > 2, recalling that 1/α→ 0, since α→ ∞ and that H1/2−η(I×(0, T )) →֒
Lq(I × (0, T )) →֒ Lq((0, T );L2(I)), for some q > 2 (close enough to 2). Note finally
that the definition of Ψh leads to

‖Ψh(k,α)(t, s, x′)‖0,I ≤ ‖h(k,α)(s, x′)‖0,I , for a.e. s ∈ (0, t),

and then, by (140)
∫ t

0

‖Ψh(k,α)(t, s, x′)‖q
0,I ds ≤

∫ t

0

‖h(k,α)(s, x′)‖q
0,I ds ≤ C. (141)

Now using Lemma 5, we may write

∆−1
x′ z

(k,α)
x1

(0, x′, t) = −
∫ t

0

Kk(t− s)Ψh(k,α)(t, s, x′) ds− ∆−1
x′ y

(k,α)
t (x′, t). (142)

Since

y(k,α)
x1

(0, x′, t) =
k

α
z(k,α)

x1
(0, x′, t),

we deduce that

∆−1
x′ (y(k,α)

x1
(0, x′, t) +

k

α
y
(k,α)
t (x′, t)) = − k

α

∫ t

0

Kk(t− s)Ψh(k,α)(t, s, x′) ds. (143)

Now using the estimates (62) and (141) we deduce that

k

α
‖

∫ t

0

Kk(t− s)Ψh(k,α)(t, s, x′) ds‖0,I ≤ C

α
t1−p/2 → 0 as α→ ∞, (144)

where 1/p+ 1/q = 1 (and then p < 2). Consequently we have obtained

‖∆−1
x′ (y(k,α)

x1
(0, x′, t) +

k

α
y
(k,α)
t (x′, t))‖0,I → 0 as α→ ∞. (145)

If k
α → 0, then the property (145) and the property (133) lead to

∆−1
x′ y

(k,α)
x1

(0, x′, t) → 0 in L∞(0, T ;L2(I)) as α→ ∞,

and then to

y(k,α)
x1

(0, x′, t) → 0 in L∞(0, T ;D(∆−1
x′ )) as α→ ∞.

As

y(k,α)
x1

(0, x′, t) → yx1(0, x
′, t) weakly in Lq(0, T ;D(∆

−1/4
x′ )) as α→ ∞,

we deduce that the boundary condition (137) holds.
On the contrary in the case k

α → ∞, then by the triangular inequality, we have

‖∆−1
x′ y

(k,α)
t (x′, t))‖0,I ≤ α

k
‖∆−1

x′ (y(k,α)
x1

(0, x′, t) +
k

α
y
(k,α)
t (x′, t))‖0,I

+
α

k
‖∆−1

x′ y
(k,α)
x1

(0, x′, t)‖0,I .
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Then the property (145) and the estimate (128) lead to

∆−1
x′ y

(k,α)
t (0, x′, t) → 0,

and then to the boundary condition

yt(0, x
′, t) = 0,

which leads to the Dirichlet boundary condition

y(0, x′, t) = y0(0, x
′).

It remains to consider the case k
α → κ0. In that case, from (145) and passage to

the limit we get (138). Note that this boundary condition leads to an exponential
decay of the energy.

Note that the different limit problems are analogous to the one-dimensional case
and are listed in Table 2. Furthermore the same comments than the ones from
Remark 1 can be made.

7. Coming back to the original problem. In this section we will state the limit
problems of (1)− (8) as c, ǫ go to zero, to infinity or to constant values. The proofs
of the theorems below follow from Theorems 4.1, 4.2, 6.1, 6.2, recalling that k = c/ǫ
and α = 1

c . For shorthness, we do not distinguish between the case n = 1 and the
case n ≥ 2.

Theorem 7.1. Assume that (y0, y1, 0) ∈ D(A(k,α)) or equivalently that

y0 ∈ E(∆, L2(Ωw)) and y1 ∈ H1(Ωw)

with
y0 ≡ y1 ≡ 0 on ∂Ωw \ I, y0x1 ≡ y1 ≡ 0 on I.

Let (y(ǫ,c), z(ǫ,c)) be the strong solution of (9) to (16) with initial data y0, y1 and
z0 ≡ 0. For all T > 0, let us set QT = Ωw × (0, T ). Then for all T > 0, there
exist y ∈ H1(QT ) and a subsequence of y(ǫ,c), still denoted by y(ǫ,c) for the sake of
shorthness, such that y(ǫ,c) tends to y weakly in H1(QT ) as c→ c0 and ǫ→ ǫ0, with
c0 ∈ (0,∞], ǫ0 ∈ [0,∞]. Moreover y is the weak solution of the wave equation with
Dirichlet boundary condition on ∂Ωw \ I

ytt − ∆y = 0 in Ωw × (0, T ), (146)

y(x, t) = 0 x ∈ ∂Ωw \ I, t ∈ (0, T ), (147)

y(x, 0) = y0(x) and yt(x, 0) = y1(x) in Ωw. (148)

For the boundary condition on I, we distinguish the following cases:
1. If c→ ∞, then y satisfies the Dirichlet boundary condition (120) on I.
2. If c→ c0 ∈ (0,∞), then the boundary condition on I depends on the limit on ǫ:
a. If ǫ→ 0, then y satisfies the Dirichlet boundary condition (120).
b. If ǫ→ ǫ0 ∈ (0,∞), then y satisfies the boundary condition with memory (121).
c. If ǫ→ ∞, then y satisfies the boundary condition with memory (122).

Theorem 7.2. Assume that (y0, y1, 0) belongs to D((A(k,α))2), or equivalently that
y0 ∈ E(∆, H1(Ωw)) and y1 ∈ E(∆, L2(Ωw)) with

y0 ≡ ∆y0 ≡ y1 = 0 on ∂Ωw \ I, y0x1
≡ ∆y0 ≡ y1 ≡ y1x1

≡ 0 on I.

Let (y(ǫ,c), z(ǫ,c)) be the strong solution of (9) to (16) with initial data y0, y1 and
z0 ≡ 0. Then for all T > 0, there exist y ∈ H1(QT ) and a subsequence of y(ǫ,c),
still denoted by y(ǫ,c) for the sake of shorthness, such that y(ǫ,c) tends to y weakly
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ǫ→ ǫ0 ǫ→ +∞ ǫ→ 0
c→ c0 memory bc memory bc Dirichlet bc

c→ +∞ Dirichlet bc Dirichlet bc Dirichlet bc

c→ 0 Neumann bc Neumann bc c2

ǫ → 0:Neumann bc

c→ 0 c2

ǫ → κ0: dissipative bc

c→ 0 c2

ǫ → ∞: Dirichlet bc

Table 3. Summary of the limit problems

in H1(QT ) as c → 0 and ǫ → ǫ0, with ǫ0 ∈ [0,∞]. Moreover y is the weak solution
of the wave equation with Dirichlet boundary condition at the exterior boundary of
Ωw, namely satisfies (117), (118) and (119). For the boundary condition on I, we
distinguish the following cases:

1. If c2

ǫ → 0, then y satisfies the Neumann boundary condition (137) on I.

2. If c2

ǫ → ∞, then y satisfies the Dirichlet boundary condition (120).

3. If c2

ǫ → κ0 ∈ (0,∞), then y satisfies the dissipative boundary condition (138).

The results of these theorems are summarized in Table 3. The interpretations of
these results are the following ones:

• If the diffusion coefficient becomes very large (i.e., c→ ∞), then the solution
of the heat equation becomes too small in order to influence the wave part.
Hence the limit problem is no more dissipative.

• If the diffusion coefficient tends to some c0 ∈ (0,∞), then the limit process
depends on the limit of the thickness. If the thickness tends to zero, again
the solution of the heat equation becomes too small in order to influence the
wave part. On the contrary if the thickness tends to infinity, we may expect
a decay of the limit problem, but as said in Remark 1, the decay in this case
is an open problem.

• If the diffusion coefficient becomes very small (i.e., c → 0), then in order to
have a decay in the wave part, the thickness of the heat part has to be of the
order of c2; in the other cases, the limit problem is no more dissipative.
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mémoire, Afrika Math., 10 (1999), 14–25.
[18] M. Kirane and N. E. Tatar, A memory type boundary stabilization of a midly damped wave

equation, E. J. Qual. Theory Diff. Eq., 6 (1999), 1–7.

[19] V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim.,
29 (1991), 197–208.

[20] V. Komornik, “Exact Controllability and Stabilization, The Multiplier Method,” volume 36

of “RMA”, Masson, Paris, 1994.
[21] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave

equation, J. Math. Pures Appl., 69 (1990), 33–54.
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