
Mathematical Modelling 

and Control

https://www.aimspress.com/journal/mmc

Editors in Chief:
Xiaodi Li & Sabri Arik

Mathematical
Modelling and Control

ISSN: 2767-8946Volume 1 January 2021 MMC, 5(4): 390–399.
DOI: 10.3934/mmc.2025027
Received: 29 June 2024
Revised: 02 December 2024
Accepted: 07 February 2025
Published: 21 November 2025

Research article

Positive radial solutions for a p-Monge-Ampère problem

Keyu Zhang1 and Houyu Zhao2,*

1 School of Mathematics, Qilu Normal University, Jinan 250013, China
2 School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

* Correspondence: Email: cqnuwork123@163.com.

Abstract: In this paper, by virtue of fixed point theory, we investigate a p-Monge-Ampère problem and establish several existence
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1. Introduction

In this paper, we study the p-Monge-Ampère problem: det
(
D

(
|Du|p−2Du

))
= f (|x|,−u), x ∈ B,

u = 0, x ∈ ∂B,
(1.1)

where p ≥ 2, B := {x ∈ Rn : |x| < 1}, and n ≥ 2 is an
integer. Let |x| = t and v = −u. Then, from [1, 2] we can
transform (1.1) into the following boundary value problem t1−n

(
1
n (−v′)(p−1)n

)′
= f (t, v), 0 < t < 1,

v′(0) = v(1) = 0.
(1.2)

Consequently, we obtain

v(t) =
∫ 1

t

(∫ τ

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

dτ, t ∈ [0, 1]. (1.3)

In this paper, we always assume that the nonlinearity f

satisfies the following condition:
(H1) f : [0, 1] × R+ → R+ is continuous, R+ := [0,+∞).
A new operator introduced in [3] is p-Monge-Ampère

operator, which is denoted by det(D(|Du|p−2Du)), and when
p = 2, this operator is just the Monge-Ampère operator.
We refer the reader to some related results [1–20] and the
references therein. For example, in [6] the authors used

the method of moving planes to study the monotonicity of
positive solutions for the parabolic equation

ut(x, t) − Dθsu(x, t) = f (u(x, t)), (x, t) ∈ Rn
+ × R,

where Dθs is called the Monge-Ampère operator, and it is
defined by

Dθsu(x, t) = inf
A∈A

P.V.
∫
Rn

u(x, t) − u(y, t)∣∣∣A−1(y − x)
∣∣∣n+2s dy

 ,
where t > 0, 0 < s < 1, P.V. is the Cauchy principal value,
and A = {A | A is n × n symmetric positive definite matrix,
det A = 1, λmin(A) ≥ θ > 0}. Here, λmin(A) is the smallest
eigenvalue of matrix A.

In [13], the authors studied the uniqueness of nontrivial
convex solutions for a system of Monge-Ampère equations

det D2u = γ|v|p, in Ω,

det D2v = µ|u|n
2/p, in Ω,

u = v = 0, on ∂Ω,

where γ, µ are parameters, Ω ⊂ Rn is a bounded, smooth,
and uniformly convex domain, and p is close to n ≥ 2.

Fixed point theory is an important method to find the
existence of solutions for nonlinear problems, see for
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example [2, 4, 8–12, 16–18, 22] and the references therein.
In [11], the authors used eigenvalue theory to study the
singular p-Monge-Ampère problem det

(
D

(
|Du|p−2Du

))
= µh(|x|) f (−u) in Ω,

u = 0 on ∂Ω,

where µ is a parameter, and Ω is the open unit ball in
Rn. They not only obtained the nontrivial solutions for this
equation, but considered the dependence of these solutions
on the parameter µ. Some more related works, please refer
to [2, 8, 9].

In [17], the authors studied the k-Hessian type system
with the gradients S k

(
σ

(
D2ui + α |∇ui| I

))
= φi (|x|,−u1,−u2, . . . ,−un) , inΩ,

ui = 0, on ∂Ω, i = 1, 2, . . . , n.

They used Rn
+-monotone matrices and fixed point theory,

combining some basic inequality techniques, to obtain
several existence results regarding the existence of negative
k-convex radial solutions.

Motivated by the aforementioned works, in this paper we
use fixed point theory to study the existence and multiplicity
of positive radial solutions for (1.1). We obtain the following
results: when the nonlinearity f grows (p−1)n-superlinearly
at ∞, at least one solution is obtained, and when f grows
(p − 1)n-sublinearly at ∞, at least one solution and at least
three solutions are derived.

2. Preliminaries

In this section, we first provide some basic notations and
lemmas, which are used in the following section. Define two
functions as follows:

G(t, s) =

n
1

(p−1)n s
n−1

(p−1)n (1 − s), 0 ≤ t ≤ s ≤ 1,

n
1

(p−1)n s
n−1

(p−1)n (1 − t), 0 ≤ s ≤ t ≤ 1,
(2.1)

and

G(t, s) =

n
q

(p−1)n s
q(n−1)
(p−1)n (1 − s), 0 ≤ t ≤ s ≤ 1,

n
q

(p−1)n s
q(n−1)
(p−1)n (1 − t), 0 ≤ s ≤ t ≤ 1,

(2.2)

where q ≥ (p − 1)n. Then, we have the following lemma:

Lemma 2.1. Let φ(s) = G(s, s), and φ(s) = G(s, s), s ∈
[0, 1]. Then, there exist κ1 :=

∫ 1
0 (1 − t)φ(t)dt and κ2 :=∫ 1

0 φ(t)dt such that∫ 1

0
G(t, s)φ(t)dt ≥ κ1φ(s),

∫ 1

0
G(t, s)φ(t)dt ≤ κ2φ(s), s ∈ [0, 1].

Proof. We can easily prove that

G(t, s) ≥ (1 − t)G(s, s), G(t, s) ≤ G(s, s), t, s ∈ [0, 1].

Hence, we have∫ 1

0
G(t, s)φ(t)dt ≥

∫ 1

0
(1 − t)φ(s)φ(t)dt = κ1φ(s),

and∫ 1

0
G(t, s)φ(t)dt ≤

∫ 1

0
φ(s)φ(t)dt = κ2φ(s), s ∈ [0, 1].

This completes the proof. □

Let E := C[0, 1]. Then, E is a real Banach space with
the norm ∥v∥ = maxt∈[0,1] |v(t)|. Moreover, let a set be P0 =

{v ∈ E : v(t) ≥ 0, t ∈ [0, 1]}. Then, P0 is a cone on E. Note
that (1.3), we can define an operator A : P0 → P0 as follows:

(Av)(t) =
∫ 1

t

(∫ τ

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

dτ, t ∈ [0, 1].

We easily find that if there exists v∗ ∈ P0\{0} such that Av∗ =

v∗, then this v∗ is a positive radial solution for (1.1).

Lemma 2.2. Assume that v is a nonnegative, concave,

decreasing function on [0, 1]. Then, there exists κ3 :=∫ 1
0 (1 − t)φ(t)dt such that∫ 1

0
v(t)φ(t)dt ≥ κ1∥v∥,

∫ 1

0
v(t)φ(t)dt ≥ κ3∥v∥.

Proof. Noting that v is concave and it reaches its maximum
at t = 0, we can obtain∫ 1

0
v(t)φ(t)dt =

∫ 1

0
v(1 × t + 0 × (1 − t))φ(t)dt

≥

∫ 1

0
[tv(1) + (1 − t)v(0)]φ(t)dt

≥ ∥v∥
∫ 1

0
(1 − t)φ(t)dt,
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and ∫ 1

0
v(t)φ(t)dt =

∫ 1

0
v(1 × t + 0 × (1 − t))φ(t)dt

≥

∫ 1

0
[tv(1) + (1 − t)v(0)]φ(t)dt

≥ ∥v∥
∫ 1

0
(1 − t)φ(t)dt.

This completes the proof. □

Lemma 2.3. (see [21]). Suppose that Ω ⊂ E is a bounded

open set, P is a cone on E, and A : Ω∩P→ P is a completely

continuous operator. If there exists v0 ∈ P \ {0} such that

v − Av , λv0 for all λ ≥ 0, v ∈ ∂Ω ∩ P, then the fixed point

index i(A,Ω ∩ P, P) = 0.

Lemma 2.4. (see [21]). Suppose that Ω ⊂ E is a bounded

open set with 0 ∈ Ω, P is a cone on E, and A : Ω∩P→ P is a

completely continuous operator. If v , λAv for all v ∈ ∂Ω ∩

P, 0 ≤ λ ≤ 1, then the fixed point index i(A,Ω ∩ P, P) = 1.

Lemma 2.5. (see [22]). Let γ be nonnegative and

continuous on [0, 1]. Then,

(i)
(∫ b

a γ(t)dt
)α
≥ (b − a)α−1

∫ b
a γ
α(t)dt, 0 < α ≤ 1,

(ii)
(∫ b

a γ(t)dt
)α
≤ (b − a)α−1

∫ b
a γ
α(t)dt, α ≥ 1.

Let E be a real Banach space with a cone P. A map
β̃ : P → R+is said to be a nonnegative continuous concave
functional on P if β̃ is continuous and

β̃(tu + (1 − t)v) ⩾ tβ̃(u) + (1 − t)̃β(v) u, v ∈ P, t ∈ [0, 1].

Let ã, b̃ be two numbers with 0 < ã < b̃, and β̃ be a
nonnegative continuous concave functional on P. We define
the following convex sets:

Pã = {v ∈ P : ∥v∥ < ã}, ∂Pã = {v ∈ P : ∥v∥ = ã},

Pã = {v ∈ P : ∥v∥ ⩽ ã},

P(̃β, ã, b̃) = {v ∈ P : ã ⩽ β̃(v), ∥v∥ ⩽ b̃}.

Lemma 2.6. (see [23]). Let A : Pc̃ → Pc̃ be

completely continuous, and β̃ a nonnegative continuous

concave functional on P such that β̃(v) ⩽ ∥v∥ for v ∈ Pc̃.

Suppose that there exist 0 < d̃ < ã < b̃ ⩽ c̃ such that

(i) {v ∈ P(̃β, ã, b̃) : β̃(v) > ã} , ∅ and β̃(Av) > ã for

v ∈ P(̃β, ã, b̃),

(ii) ∥Av∥ < d̃ for ∥v∥ ⩽ d̃,

(iii) β̃(Av) > ã for v ∈ P(̃β, ã, c̃) with ∥Av∥ > b̃.

Then, A has at least three fixed points v1, v2, v3 in Pc̃ such

that

∥v1∥ < d̃, ã < β̃ (v2) and ∥v3∥ > d̃, β̃ (v3) < ã.

3. Main results

We now list our assumptions for f .

(H2) There exists d1 > κ
(1−p)n
1 such that

lim inf
v→+∞

f (t, v)
v(p−1)n ≥ d1

uniformly on t ∈ [0, 1];

(H3) There exists d2 ∈

(
0, κ

(1−p)n
q

2

)
(q is as in (2.2)) such

that

lim sup
v→0+

f (t, v)
v(p−1)n ≤ d2

uniformly on t ∈ [0, 1];

(H4) There exists d3 > κ
(1−p)n
1 such that

lim inf
v→0+

f (t, v)
v(p−1)n ≥ d3

uniformly on t ∈ [0, 1];

(H5) There exists d4 ∈

(
0, 2

(p−1)n
q −1κ

(1−p)n
q

2

)
(q is as in (2.2))

such that

lim sup
v→+∞

f (t, v)
v(p−1)n ≤ d4

uniformly on t ∈ [0, 1].

Theorem 3.1. Suppose that (H1)–(H3) hold. Then, (1.1)
has at least one positive radial solution.

Proof. From (H2), there exists e1 > 0 such that

f (t, v) ≥ d1v(p−1)n − e1, v ∈ R+, t ∈ [0, 1]. (3.1)

Noting that 1
(p−1)n ≤

1
2 , we have

(d1v(p−1)n)
1

(p−1)n ≤ [ f (t, v) + e1]
1

(p−1)n ≤ f
1

(p−1)n (t, v) + e
1

(p−1)n

1 ,

and thus

f
1

(p−1)n (t, v) ≥ d
1

(p−1)n

1 v − e
1

(p−1)n

1 , v ∈ R+, t ∈ [0, 1]. (3.2)
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We now shall prove that the set

W1 = {v ∈ P0 : v = Av + λv0, λ ≥ 0}

is bounded in P0, where v0 ∈ P0 is concave and decreasing
on [0, 1], i.e.,

v′0(t) ≤ 0, v′′0 (t) ≤ 0, t ∈ [0, 1]. (3.3)

Indeed, if v ∈ W1, then we have

v(t) ≥ (Av)(t), t ∈ [0, 1].

This, together with Lemma 2.5, implies that

v(t) ≥
∫ 1

t

(∫ τ

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

dτ

≥

∫ 1

t
τ

1
(p−1)n−1

∫ τ

0
n

1
(p−1)n s

n−1
(p−1)n f

1
(p−1)n (s, v(s))dsdτ

≥

∫ 1

t

∫ τ

0
n

1
(p−1)n s

n−1
(p−1)n f

1
(p−1)n (s, v(s))dsdτ

=

∫ 1

0
G(t, s) f

1
(p−1)n (s, v(s))ds,

(3.4)

where G is defined in (2.1). Multiplying by φ(t) on both
sides of (3.4) and integrating over [0, 1], from Lemma 2.1
and (3.2), we have∫ 1

0
v(t)φ(t)dt ≥

∫ 1

0
φ(t)

∫ 1

0
G(t, s) f

1
(p−1)n (s, v(s))dsdt

≥ κ1

∫ 1

0
φ(s) f

1
(p−1)n (s, v(s))ds

≥ κ1

∫ 1

0
φ(s)

[
d

1
(p−1)n

1 v(s) − e
1

(p−1)n

1

]
ds.

Noting that κ1d
1

(p−1)n

1 > 1, we have

∫ 1

0
v(t)φ(t)dt ≤

κ1e
1

(p−1)n

1

∫ 1
0 φ(s)ds

κ1d
1

(p−1)n

1 − 1
. (3.5)

From (H1), we have

(Av)′(t) = −
(∫ t

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

≤ 0, t ∈ [0, 1],

(3.6)
and

(Av)′′(t) = −
1

p − 1

(∫ t

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n−1

tn−1 f (t, v(t))

≤ 0, t ∈ [0, 1].
(3.7)

Note that v ∈ W1, (3.3), and (3.6)-(3.7) imply that this v ∈ P0

is concave, decreasing on [0, 1], and reaches its maximum at
t = 0. Therefore, from Lemma 2.2 and (3.5), we have

∥v∥ ≤
1
κ1

∫ 1

0
v(t)φ(t)dt

≤
(ne1)

1
(p−1)n(

κ1d
1

(p−1)n

1 − 1
) (

n−1
(p−1)n + 1

) (
n−1

(p−1)n + 2
) .

This proves that W1 is a bounded set in P0, as required. If
we choose a sufficiently large R1 > sup W1, then we have

v , Av + λv0, v ∈ ∂BR1 ∩ P0, λ ≥ 0, (3.8)

where BR1 = {v ∈ E : ∥v∥ < R1}. Therefore, Lemma 2.3
implies that

i(A, BR1 ∩ P0, P0) = 0. (3.9)

From (H3), there is a sufficiently small r1 ∈ (0,R1) such
that

f (t, v) ≤ d2v(p−1)n, v ∈ [0, r1], t ∈ [0, 1]. (3.10)

In what follows, we prove that

v , λAv, v ∈ ∂Br1 ∩ P0, λ ∈ [0, 1], (3.11)

where Br1 = {v ∈ E : ∥v∥ < r1}. Arguing by contradiction,
there exist v1 ∈ ∂Br1 ∩ P0 and λ1 ∈ [0, 1] such that

v1 = λ1Av1. (3.12)

Let q be as in (2.2). Then, we have

vq
1(t) ≤

∫ 1

t

(∫ τ

0
nsn−1 f (s, v1(s))ds

) 1
(p−1)n

dτ


q

≤

∫ 1

t
(1 − t)q−1

(∫ τ

0
nsn−1 f (s, v1(s))ds

) q
(p−1)n

dτ

≤

∫ 1

t
τ

q
(p−1)n−1

∫ τ

0
n

q
(p−1)n s

q(n−1)
(p−1)n f

q
(p−1)n (s, v1(s))dsdτ

≤

∫ 1

t

∫ τ

0
n

q
(p−1)n s

q(n−1)
(p−1)n f

q
(p−1)n (s, v1(s))dsdτ

=

∫ 1

0
G(t, s) f

q
(p−1)n (s, v1(s))ds,

(3.13)
and (3.10) enables us to obtain

vq
1(t) ≤ d

q
(p−1)n

2

∫ 1

0
G(t, s)vq

1(s)ds. (3.14)
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Multiplying by φ(t) on both sides of (3.14) and integrating
over [0, 1], from Lemma 2.1 we have∫ 1

0
vq

1(t)φ(t)dt ≤
∫ 1

0

∫ 1

0
G(t, s)d

q
(p−1)n

2 vq
1(s)dsφ(t)dt

≤ κ2d
q

(p−1)n

2

∫ 1

0
vq

1(s)φ(s)ds.

Noting that κ2d
q

(p−1)n

2 ∈ (0, 1), we have∫ 1

0
vq

1(t)φ(t)dt = 0. (3.15)

(3.6), (3.7), and (3.12), imply that v1 ∈ P0 is concave,
decreasing on [0, 1], and reaches its maximum at t = 0.
From (3.15) and Lemmas 2.2 and 2.5, we have

(κ3∥v1∥)q ≤

(∫ 1

0
v1(t)φ(t)dt

)q

≤

∫ 1

0
vq

1(t)φq(t)dt

=

∫ 1

0
vq

1(t)
[
φ(t)

n
q

(p−1)n

]q

n
q2

(p−1)n dt

≤

∫ 1

0
vq

1(t)
φ(t)

n
q

(p−1)n
n

q2

(p−1)n dt = 0.

(3.16)

Therefore, ∥v1∥ = 0 contradicts v1 ∈ ∂Br1 ∩ P0, and
thus (3.11) holds, as required. As a result, Lemma 2.4
implies that

i(A, Br1 ∩ P0, P0) = 1. (3.17)

Note that R1 > r1, and from (3.9) and (3.17), we have

i(A, (BR1\Br1 ) ∩ P0, P0)

= i(A, BR1 ∩ P0, P0) − i(A, Br1 ∩ P0, P0) = −1.

Therefore, the operator A has at least one fixed point in
(BR1\Br1 )∩P0. This means that (1.1) has at least one positive
radial solution. This completes the proof. □

Theorem 3.2. Suppose that (H1) and (H4)-(H5) hold.

Then, (1.1) has at least one positive radial solution.

Proof. From (H4), there is a sufficiently small r2 > 0 such
that

f (t, v) ≥ d3v(p−1)n, v ∈ [0, r2], t ∈ [0, 1]. (3.18)

Next, we prove that

v , Av + λ̃v0, v ∈ ∂Br2 ∩ P0, λ ≥ 0, (3.19)

where Br2 = {v ∈ E : ∥v∥ < r2} and ṽ0 ∈ P0 is a given
element. If the claim is not satisfied, then there exist v2 ∈

∂Br2 ∩ P0 and λ2 ≥ 0 such that

v2 = Av2 + λ2ṽ0.

Combining this, (3.4), and (3.18), we obtain

v2(t) ≥ (Av2)(t) ≥ d
1

(p−1)n

3

∫ 1

0
G(t, s)v(s)ds,

and ∫ 1

0
v2(t)φ(t)dt ≥

∫ 1

0

∫ 1

0
G(t, s)d

1
(p−1)n

3 v(s)dsφ(t)dt

≥ κ1d
1

(p−1)n

3

∫ 1

0
v(s)φ(s)ds.

Noting that κ1d
1

(p−1)n

3 > 1, we have∫ 1

0
v2(t)φ(t)dt = 0.

Noting that v2(t), φ(t) ≥ 0, φ(t) . 0, t ∈ [0, 1], we have

v2(t) ≡ 0, and ∥v2∥ = 0,

and this contradicts v2 ∈ ∂Br2 ∩ P0. Therefore, (3.19) holds,
as required. Lemma 2.3 implies that

i(A, Br2 ∩ P0, P0) = 0. (3.20)

From (H5), there exists e2 > 0 such that

f (t, v) ≤ d4v(p−1)n + e2, v ∈ R+, t ∈ [0, 1].

Let q be as in (2.2). Then,

f
q

(p−1)n (t, v) ≤ [d4v(p−1)n + e2]
q

(p−1)n

≤ 2
q

(p−1)n−1
(
d

q
(p−1)n

4 vq + e
q

(p−1)n

2

)
, v ∈ R+, t ∈ [0, 1].

(3.21)
Now, we shall prove that the set

W2 = {v ∈ P0 : v = λAv, λ ∈ [0, 1]}

is bounded in P0. If v ∈ W2, then by (3.13) and (3.21) we
obtain

vq(t) ≤
∫ 1

0
G(t, s) f

q
(p−1)n (s, v(s))ds

≤ 2
q

(p−1)n−1
∫ 1

0
G(t, s)

(
d

q
(p−1)n

4 vq(s) + e
q

(p−1)n

2

)
ds.

(3.22)
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Multiplying by φ(t) on both sides of (3.22) and integrating
over [0, 1], from Lemma 2.1 we have∫ 1

0
vq(t)φ(t)dt

≤2
q

(p−1)n−1
∫ 1

0

∫ 1

0
G(t, s)

(
d

q
(p−1)n

4 vq(s) + e
q

(p−1)n

2

)
dsφ(t)dt

≤2
q

(p−1)n−1κ2

∫ 1

0

(
d

q
(p−1)n

4 vq(s) + e
q

(p−1)n

2

)
φ(s)ds,

and

∫ 1

0
vq(t)φ(t)dt ≤

2
q

(p−1)n−1e
q

(p−1)n

2 κ2
∫ 1

0 φ(s)ds

1 − 2
q

(p−1)n−1d
q

(p−1)n

4 κ2

.

Note that v ∈ W2. Then, from (3.6)-(3.7) we obtain v ∈ P0 is
concave and decreasing on [0, 1], and reaches its maximum
at t = 0. Using (3.16), we obtain

(κ3∥v∥)q ≤

∫ 1

0
vq(t)

φ(t)

n
q

(p−1)n
n

q2

(p−1)n dt

≤
n

q2−q
(p−1)n 2

q
(p−1)n−1e

q
(p−1)n

2 κ2
∫ 1

0 φ(s)ds

1 − 2
q

(p−1)n−1d
q

(p−1)n

4 κ2

.

This implies that

∥v∥ ≤ κ−1
3

q

√√√√√n
q2−q

(p−1)n 2
q

(p−1)n−1e
q

(p−1)n

2 κ22

1 − 2
q

(p−1)n−1d
q

(p−1)n

4 κ2

,

and W2 is bounded in P0, as required. Hence, we can choose
a sufficiently large R2 > max{r2, sup W2} such that

v , λAv, v ∈ ∂BR2 ∩ P0, λ ∈ [0, 1],

where BR2 = {v ∈ E : ∥v∥ < R2}. As a result, Lemma 2.4
implies that

i(A, BR2 ∩ P0, P0) = 1. (3.23)

Then, from (3.20) and (3.23), we have

i(A, (BR2\Br2 ) ∩ P0, P0)

=i(A, BR2 ∩ P0, P0) − i(A, Br2 ∩ P0, P0)

=1.

Therefore, the operator A has at least one fixed point in
(BR2\Br2 )∩P0. This means that (1.1) has at least one positive
radial solution. This completes the proof. □

Theorem 3.3. Suppose that (H1) and (H5) hold with d4 ∈(
0, (2q+2)

(p−1)n
q

2n

)
. Then, (1.1) has at least one positive radial

solution if f satisfies the following conditions:

(H6) f is nondecreasing about v, i.e., f (t, u) ≥ f (t, v) if

u ≥ v, u, v ∈ R+, for all t ∈ [0, 1];
(H7) f (t, 0) . 0, t ∈ [0, 1].

Proof. Note that (H5) implies that (3.21) is still satisfied. If
we choose a sufficiently large

M ≥ q

√√√√√ (q + 1)2
q

(p−1)n−1n
q

(p−1)n e
q

(p−1)n

2

q + 1 − 2
q

(p−1)n−1n
q

(p−1)n d
q

(p−1)n

4

and let v0(t) = M(1 − t), t ∈ [0, 1]. Then, from (3.13)
and (3.22), we have

[(Av0)(t)]q

≤2
q

(p−1)n−1
∫ 1

0
(1 − t)q−1G(t, s)

(
d

q
(p−1)n

4 vq
0(s) + e

q
(p−1)n

2

)
ds

≤2
q

(p−1)n−1n
q

(p−1)n (1 − t)q
∫ 1

0

(
d

q
(p−1)n

4 [M(1 − s)]q + e
q

(p−1)n

2

)
ds

≤[M(1 − t)]q,

and thus
Av0 ≤ v0.

Now we establish a sequence {vn}
∞
n=0 with

vn+1 = Avn. (3.24)

Using (H6), we have

v1(t) = (Av0)(t) ≤ v0(t), t ∈ [0, 1],

and

v2(t) = (Av1)(t)

=

∫ 1

t

(∫ τ

0
nsn−1 f (s, v1(s))ds

) 1
(p−1)n

dτ

≤

∫ 1

t

(∫ τ

0
nsn−1 f (s, v0(s))ds

) 1
(p−1)n

dτ

= (Av0)(t) = v1(t), t ∈ [0, 1].

By means of the mathematical induction, for all n ∈ N+, we
obtain

vn+1 ≤ vn ≤ · · · ≤ v1 ≤ v0 ≤ M.
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Therefore, there exists v∗ ∈ P0 such that limn→∞ vn = v∗.
Letting n→ ∞, by (3.24) we have

v∗ = Av∗.

From (H7), 0 is not a fixed point of A, and thus this v∗ is a
positive radial solution for (1.1). This completes the proof.

□

Now we study the multiplicity of positive solutions
for (1.1). From [2, 11], we obtain

A(P0) ⊂ P1, (3.25)

where

P1 =

v ∈ P0 : min
1
4≤t≤ 3

4

v(t) ≥
1
4
∥v∥

 . (3.26)

Theorem 3.4. Suppose that (H1) and (H5) hold with

d4 ∈

0, [2(1+ (p−1)n
q(n−1)

)(
1+ 2(p−1)n

q(n−1)

)] (p−1)n
q

2n

. Then, (1.1) has at least

three positive radial solutions if f satisfies the following

conditions:

(H8) there exist d̃ > 0 and d5 ∈

0, [(1+ (p−1)n
q(n−1)

)(
1+ 2(p−1)n

q(n−1)

)] (p−1)n
q

n


such that

f (t, v) ⩽ d5d̃(p−1)n, v ∈ [0, d̃], t ∈ [0, 1];

(H9) there exist ã with ã > d̃ and d6 >
(

4(pn−1)
(p−1)n

)(p−1)n
⧸n

such that

f (t, v) ⩾ d6ã(p−1)n, v ∈
[̃
a, 4̃a

]
, t ∈ [0, 1].

Then, (1.1) has at least three positive solutions.

Proof. From (H5), we know that (3.21) holds. Then,
by (3.22), choosing

c̃ ≥
2

q
(p−1)n−1n

q
(p−1)n e

q
(p−1)n

2(
1 + (p−1)n

q(n−1)

) (
1 + 2(p−1)n

q(n−1)

)
− 2

q
(p−1)n−1n

q
(p−1)n d

q
(p−1)n

4

for ∥v∥ ≤ c̃ we have

[(Av)(t)]q

≤2
q

(p−1)n−1
∫ 1

0
G(t, s)

(
d

q
(p−1)n

4 vq(s) + e
q

(p−1)n

2

)
ds

≤2
q

(p−1)n−1
∫ 1

0
n

q
(p−1)n s

q(n−1)
(p−1)n (1 − s)

(
d

q
(p−1)n

4 c̃q + e
q

(p−1)n

2

)
ds

≤c̃q.

This implies that A : Pc̃ → Pc̃.
For v ∈ P1, define β̃(v) = min 1

4≤t≤ 3
4

v(t). Then, β̃ is a
nonnegative continuous concave functional on P1, and the
following inequality holds:

β̃(v) ⩽ max
t∈[0,1]

v(t) = ∥v∥, v ∈ P1.

If we let v(t) ≡ 2.5 ã > ã, then this v belongs to{
v ∈ P

(
β̃, ã, 4̃a

)
: β̃(v) > ã

}
:= W3, i.e., W3 , ∅. Moreover,

if v ∈ P
(
β̃, ã, 4̃a

)
and β̃(v) > ã, we have

4̃a ⩾ ∥v∥ ⩾ β̃(v) > ã.

From (H9) and (3.4), we obtain

β̃(Av)(t) ≥ min
1
4≤t≤ 3

4

∫ 1

0
G(t, s) f

1
(p−1)n (s, v(s))ds

≥ min
1
4≤t≤ 3

4

(1 − t)
∫ 1

0
n

1
(p−1)n s

n−1
(p−1)n (d6ã(p−1)n)

1
(p−1)n ds

≥
(p − 1)n
4(pn − 1)

(nd6)
1

(p−1)n ã

> ã,

and by this we find β̃(Av) > ã for v ∈ P
(
β̃, ã, 4̃a

)
.

Next, we claim that ∥Av∥ < d̃ for ∥v∥ ⩽ d̃. In fact, if
v ∈ Pd̃, from (H8) and (3.13) we have

[(Av)(t)]q ≤

∫ 1

0
G(t, s) f

q
(p−1)n (s, v(s))ds

≤ d
q

(p−1)n

5 d̃ q
∫ 1

0
n

q
(p−1)n s

q(n−1)
(p−1)n (1 − s)ds

< d̃ q.

This shows that ∥Av∥ < d̃, and

A : Pd̃ → Pd̃ for v ∈ Pd̃.

Finally, we show that if v ∈ P(β̃, ã, c̃) and ∥Av∥ > 4̃a, then
β̃(Av) > ã. To prove this, if v ∈ P(̃β, ã, c̃) and ∥Av∥ > 4̃a,
then we have

β̃(Av)(t)

= min
1
4≤t≤ 3

4

∫ 1

t

(∫ τ

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

dτ

≥ min
1
4≤t≤ 3

4

(1 − t)
∫ 1

0

(∫ τ

0
nsn−1 f (s, v(s))ds

) 1
(p−1)n

dτ

≥
1
4
∥Av∥.
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Consequently, we have

β̃(Av) ⩾
1
4
∥Av∥ >

1
4
× 4̃a = ã.

As a result, all the conditions of Lemma 2.6 are satisfied
by taking b̃ = 4̃a. Hence, A has at least three fixed points,
i.e., (1.1) has at least three positive solutions vi (i = 1, 2, 3)
such that

∥v1∥ < d̃, ã < β̃ (v2) , and ∥v3∥ > d̃ with β̃ (v3) < ã.

This completes the proof. □

In what follows, we provide some examples to verify our
main theorems. Let n = 2, p = 3, and q = 4. Then, κ1 =
0.26, κ2 = 1

3 , and κ3 = 1
6 .

Example 3.1. Let f (t, v) = v5, v ∈ R+, and t ∈ [0, 1]. Then,

lim inf
v→+∞

f (t, v)
v4 = +∞, lim sup

v→0+

f (t, v)
v4 = 0

uniformly on t ∈ [0, 1], and thus (H1)–(H3) hold. From

Theorem 3.1, (1.1) has a positive radial solution.

Example 3.2. Let f (t, v) = v3, v ∈ R+, and t ∈ [0, 1]. Then,

lim inf
v→0+

f (t, v)
v4 = +∞, lim sup

v→+∞

f (t, v)
v4 = 0

uniformly on t ∈ [0, 1], and thus (H1) and (H4)-(H5) hold.

From Theorem 3.2, (1.1) has a positive radial solution.

Example 3.3. Let f (t, v) = et + δv4, v ∈ R+, t ∈ [0, 1] and

δ ∈ (0, 2.5)(2.5 = (2q+2)
(p−1)n

q

2n ). Then, (H1) and (H6)-(H7)

hold. Note that

lim sup
v→+∞

f (t, v)
v4 = δ

uniformly on t ∈ [0, 1], and (H5) is also satisfied. From

Theorem 3.3, (1.1) has a positive radial solution.

Example 3.4. Let ã = 100, d̃ = 1, and

f (t, v) =



et

e + v4, v ∈ [0, 1], t ∈ [0, 1],
et

e + 3.13v5 − 2.13, v ∈ [1, 100], t ∈ [0, 1],
et

e + 3.13 × 1010 − 2.13, v ∈ [100, 400], t ∈ [0, 1],
et

e +
7825
16 v3 − 2.13, v ≥ 400, t ∈ [0, 1].

Then,

lim sup
v→+∞

f (t, v)
v4 = lim sup

v→+∞

et

e +
7825
16 v3 − 2.13

v4 = 0

uniformly on t ∈ [0, 1]. Moreover, we obtain that

(i) if v ∈ [0, 1], t ∈ [0, 1], then f (t, v) ≤ 2 ∈ (0, 3);
(ii) if v ∈ [100, 400], t ∈ [0, 1], then

f (t, v) ≥ 3.13 × 1010 − 2.13 ≈ 31299999997.87

≥ d6 × 108, d6 > 312.5.

Consequently, (H1), (H5), and (H8)-(H9) hold. Theorem 3.4

implies that (1.1) has at least three positive radial solutions.

4. Conclusions

In Theorems 3.1 and 3.2, we utilize the properties of the
operator A, combining some inequality techniques, such as
the Jensen inequality, to study problem (1.1). So, our work
space only needs to be P0. This is different from the related
works [2,8,9,11], where their work space is P1 (see (3.26)).
Moreover, in Theorem 3.3, when the nonlinearity f grows
(p − 1)n-sublinearly at ∞, we use the monotone bounded
principle to obtain at least one solution, and provide an
iterative sequence for the solution.

Finally, by means of the Leggett-Williams fixed point
theorem and the cone P1, in Theorem 3.4 we study the
multiplicity of positive radial solutions for our problem.
The method here is also different from the aforementioned
papers.
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