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Abstract:

In this paper, by virtue of fixed point theory, we investigate a p-Monge-Ampere problem and establish several existence

results for positive radial solutions when the nonlinearity satisfies some (p — 1)n-superlinear and (p — 1)n-sublinear conditions.
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1. Introduction

In this paper, we study the p-Monge-Ampere problem:

u=0, xedB,

where p > 2, B := {xeR":|x|< 1}, and n > 2 is an

integer. Let |x| = f and v = —u. Then, from [1, 2] we can

transform (1.1) into the following boundary value problem

{ tl—n (% (_V/)(P—l)n)/ _ f(t’ V),O <i<l (1 2)

Vv'(0) =v(1) =0.

Consequently, we obtain

1 T ﬁ
v(t) = f (f ns”’lf(s, v(s))ds)( ) dr,t€[0,1]. (1.3)
' 0

In this paper, we always assume that the nonlinearity f
satisfies the following condition:
(H1) f: [0,1] x R* — R™ is continuous, R* := [0, +00).
A new operator introduced in [3] is p-Monge-Ampere
operator, which is denoted by det(D(|Du|”~2Du)), and when
p = 2, this operator is just the Monge-Ampere operator.
We refer the reader to some related results [1-20] and the

references therein. For example, in [6] the authors used

the method of moving planes to study the monotonicity of
positive solutions for the parabolic equation

u(x,t) — Dfu(x, 1) = f(u(x, 1), (x,1) € R} XR,

where DY is called the Monge-Ampere operator, and it is
defined by

Dlu(x, 1) = inf {P.V. f
AeA Rn

where t > 0,0 < s < 1, P.V. is the Cauchy principal value,

u(x,t) — u(y,t)
n+2s d ’
A~ (y - x)|

and A = {A | A is n X n symmetric positive definite matrix,
detA =1, A,in(A) > 6 > 0}. Here, Ayin(A) is the smallest
eigenvalue of matrix A.

In [13], the authors studied the uniqueness of nontrivial
convex solutions for a system of Monge-Ampere equations

det D’u = y|v”, in Q,
det D*v = plul'?, in Q,
u=v=0, onoQ,

where vy, i are parameters, 2 C R” is a bounded, smooth,
and uniformly convex domain, and p is close to n > 2.
Fixed point theory is an important method to find the

existence of solutions for nonlinear problems, see for


https://www.aimspress.com/journal/mmc
https://dx.doi.org/ 10.3934/mmc.2025027

391

example [2,4, 8-12, 16—-18,22] and the references therein.
In [11], the authors used eigenvalue theory to study the
singular p-Monge-Ampere problem

det (D (|DulP~2Du)) = ph(|x) f(~u) in Q,
u = 0on 0Q,

where yp is a parameter, and Q is the open unit ball in
R™. They not only obtained the nontrivial solutions for this
equation, but considered the dependence of these solutions
on the parameter u. Some more related works, please refer
to [2,8,9].

In [17], the authors studied the k-Hessian type system
with the gradients

Si (o (D?ui + @ Vuil 1) = @i (el —ur, =1, .. =), in2,
u;=0, onodQ, i=1,2,...,n.

They used R’-monotone matrices and fixed point theory,
combining some basic inequality techniques, to obtain
several existence results regarding the existence of negative
k-convex radial solutions.

Motivated by the aforementioned works, in this paper we
use fixed point theory to study the existence and multiplicity
of positive radial solutions for (1.1). We obtain the following
results: when the nonlinearity f grows (p—1)n-superlinearly
at oo, at least one solution is obtained, and when f grows
(p — 1)n-sublinearly at oo, at least one solution and at least

three solutions are derived.
2. Preliminaries

In this section, we first provide some basic notations and
lemmas, which are used in the following section. Define two

functions as follows:

1 n—1
ne-mnse-n(l —5),0<t<s<l1,

G(t,s) = - 2.1
neseti(l —7),0<s<t<1,
and
q q(n=1)
_ neDsei(] —5),0<r<s< 1,
G(t,s) = 0 ) 2.2)
71 (=D s(p—l)n(] — l‘),O <s<t< ]’

where g > (p — 1)n. Then, we have the following lemma:
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Lemma 2.1. Let ¢(s) = G(s,s), and @(s) = G(s,s),s €
[0,1]. Then, there exist k; = fol(l — He(t)dt and k, :=
fol @(1)dt such that

1
f G(t, $)p(D)dt > k19(s),
0

1
f G(t, )51yt < k:35(s), s € [0, 1].
0

Proof. We can easily prove that
G(t,5) > (1 —0)G(s,s), G(t,s) <G(s,s), 1,5 €[0,1].

Hence, we have

1 1
fo G(t, s)p(ndt = fo (I = De()e()dt = k1¢(s),

and

1 1
f G(1, )p(tdt < f p(s)e()dr = kap(s), s € [0, 1].
0 0
This completes the proof. O

Let E := C[0,1]. Then, E is a real Banach space with
the norm |[|v|]| = maxeo 17 [V(¢)|. Moreover, let a set be Py =
fve E:v(t) >20,t € [0,1]}. Then, Py is a cone on E. Note
that (1.3), we can define an operator A : Py — Py as follows:

1 T ﬁ
(Av)(F) = f ( f ns*! f(s,v(s))ds) )dT,te[O,l].
t 0

We easily find that if there exists v* € Py\{0} such that Av* =

v*, then this v* is a positive radial solution for (1.1).

Lemma 2.2. Assume that v is a nonnegative, concave,

decreasing function on [0,1]. Then, there exists k3 :=

(1= 05@(0)dt such that

1 1
f WOt > vl f VOBt > k3l
0 0

Proof. Noting that v is concave and it reaches its maximum

at t = 0, we can obtain
1 1
f v(He(t)dt = f v(I xXt+0x(1-1)()dt
0 0
1
> f [tv(1) + (1 — )v(0)](t)dt
0

1
> W fo (1= (s,
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and
1 1
f v(te(Hdt = f v xt+0x(1—1)p()dt
0 0
1
> f [tv(1) + (1 = Hv(0)Jp(t)dt
0
1
> IIVIIf0 (I = De(r)dr.
This completes the proof. O

Lemma 2.3. (see [21]). Suppose that Q C E is a bounded
open set, Pisaconeon E, and A : QNP - Pisa completely
continuous operator. If there exists vo € P\ {0} such that
v—Av # Avg forall 1 > 0, v € 0Q N P, then the fixed point
index i(A,QNP,P)=0

Lemma 2.4. (see [21]). Suppose that Q C E is a bounded
open setwithQ € Q, PisaconeonE, and A : QNP > Pisa

completely continuous operator. If v # AAv for all v € 0Q N
P, 0 < A< 1, then the fixed point index i(A,QN P,P) = 1.

Lemma 2.5. (see [22]).

continuous on [Q}, 1]. Then,
(i) (fa” y(t)dt) > (b-a) [Ty, 0<a <1,

(ii) ( K y(t)dt)a <b-ar ! [Ty @d, @z 1.

Let 'y be nonnegative and

Let E be a real Banach space with a cone P. A map
,E : P — R*is said to be a nonnegative continuous concave

functional on P if Eis continuous and

Bltu + (1 =) = 1Bu) + (1 — )BV) u,v € Pt € [0,1].

Let @, b be two numbers with 0 < @ < b, and B be a
nonnegative continuous concave functional on P. We define

the following convex sets:

Pi={veP:|Ivl<a), OP;={veP:|vl=a),
Pz={veP:|pl<a,
PB,a,b) = {ve P:a<Bw),IVl < b

Lemma 2.6. (see [23]). Let A P- > P- be
completely continuous, and ,E a nonnegative continuous
IVl for v € P=
Suppose that there exist 0 < d <a < b <7 such that

(i) {(v € PB,a,b) : B(v) > a} # 0 and B(Av) > T for
vE P(,E,E,Z),

concave functional on P such that E(v) <
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(ii) |Av]| < d for |vl| < d

(iii) B(Av) > @ for v € P(B,a, ) with || Av]| > b.

Then, A has at least three fixed points vi,v,, V3 in P=such
that

Ivill<d, @<B(v) and |vsll>d, B(vs)<a.

3. Main results

We now list our assumptions for f.
(H2) There exists d; > K(ll_p ™ such that

lim inf M

V—+00 V( p—n

>d1

uniformly on ¢ € [0, 1];
(I-p)n

(H3) There exists d, € (0, Ky
that

) (g is as in (2.2)) such

f@v)

p—)n

lim sup <d,

v—0* V(
uniformly on ¢ € [0, 1];
(H4) There exists d3 > K(llf” " such that

Sty

m inf y(p—bn

v—>0*

3

uniformly on ¢ € [0, 1];
(1-p)n

! ) (g is asin (2.2))

(p=bn _

(H5) There exists d4 € (0 270

such that

pp—bn = 4

uniformly on ¢ € [0, 1].

Theorem 3.1. Suppose that (HI)—(H3) hold. Then, (1.1)

has at least one positive radial solution.

Proof. From (H2), there exists e; > 0 such that

ft,v) = dv'P " —e, veR 1€ [0,1]. (3.1
Noting that —~— = 1)n < 2, we have
(VPO < (1) + e T < [T () + P
and thus
FEm (L) > d]‘”']””v e;"-l"", veR*te[0,1]. (3.2
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We now shall prove that the set
Wi={vePy:v=Av+ Avy, 4> 0}

is bounded in Py, where vy € Py is concave and decreasing
on [0,1],1.e.,

vy(1) <0,vy (1) <0, t€[0,1]. (3.3)
Indeed, if v € W, then we have

v(t) = (Av)(1), t € [0, 1].

This, together with Lemma 2.5, implies that

1/ pr =i
v(t) zf (f ns"’lf(s, v(s))ds) ’ dr
t 0
f T(p l)n f n(p 1>n Ky
f f N S nnfw o (s, v($))dsdt

—f G(t, s)f - 1>"(s,v(s))ds,
0

o= l)nf(ll l)n (s, v(s))dsdt
(3.4)

where G is defined in (2.1). Multiplying by ¢(#) on both
sides of (3.4) and integrating over [0, 1], from Lemma 2.1
and (3.2), we have

1 1 1
‘fvwﬂthJNﬂnjﬁGuﬂﬂﬁW&W@th
0 0 0
1
zkhf¢uvﬁmmwst
1
> K f w(s) [d(” Dr v(s) — (,, ”"]ds.

1
Noting that k1d,""”" > 1, we have

1
= el
(p—Dhn
Kie; fo @(s)ds
- .
adT 1

1
f v(He(Hdt < (3.9)
0

From (H1), we have

Av)'(r) = —(f ns" ' f(s, v(s))ds)(p_m <0, te[0,1],
0

Note that v € Wy, (3.3), and (3.6)-(3.7) imply that this v € Py
is concave, decreasing on [0, 1], and reaches its maximum at

t = 0. Therefore, from Lemma 2.2 and (3.5), we have

] ]
wm—fmmm
K1 0
(ney) T
- 1
p-Dn n—1
(Kldl(p - 1)((p—1)n +1) (55

This proves that W, is a bounded set in Py, as required. If

+2)

we choose a sufficiently large R; > sup W, then we have

v#Av+ vy, vEOBg NPy, 420, (3.8)

where Bg, = {v € E : |v|| < R;}. Therefore, Lemma 2.3
implies that

i(A’BRl N P05P0) =0 (39)

From (H3), there is a sufficiently small r; € (0, R;) such
that

F(t,v) <doyP™ D"y e [0, 11,1 € [0, 1]. (3.10)
In what follows, we prove that
v# AAv, v € 8B, N Py, A€ [0, 1], (3.11)

where B,, = {v € E :
there exist v; € dB,, N Py and 4; € [0, 1] such that

IVl < r1}. Arguing by contradiction,

Vi = A Av,. (3.12)

Let g be as in (2.2). Then, we have

1 T s ]n q
vl < [f (f (s, vl(s))ds) ) d‘r]
0
f (1 =07 l(f ns" ' f(s, vl(s))ds)w dr

g(n=1)

<f T lf N s ””f‘” T (5, v (5))dsdT

f f n-oa '"s<ﬂ' N)"(s,vl(s))dsd‘r

(3.6)
and = f G(t, $)f T (s, v1(s))ds,
0
” 1 ' n—1 ﬁ71 -1 (313)
(Av)"(1) = R (fo ns" f(s, V(S))ds) ! f(6 V) and (3.10) enables us to obtain
<0, 1€[0,1]. ¢ &5 (5, o
3.7) vi(t) < dj j(; G(t, s)vi(s)ds. (3.14)

Mathematical Modelling and Control
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Multiplying by @(f) on both sides of (3.14) and integrating
over [0, 1], from Lemma 2.1 we have

1 1 1 q
f viig(tydr < f f G(t, )dy ™" vI(s)dsip(t)dt
0 0 0

. 1
< kody ™" f vi(9)p(s)ds.
0

q

Noting that k,d,”"" € (0, 1), we have

1
j(; vimp(ndr = 0. (3.15)

(3.6), (3.7), and (3.12), imply that v; € Py is concave,
decreasing on [0, 1], and reaches its maximum at ¢t = O.
From (3.15) and Lemmas 2.2 and 2.5, we have

1 q
(sl < ( fo " (t)g_o(t)dt)

1
< fo Vg (nde
| a0 1 e (3.16)
:f v‘{(t) - n-mn dt
0 7 (=Dn
l —
t 2
sf V(02D 555 dr = 0,
0 n(pf])n
Therefore, ||vi]| = O contradicts vi{ € 8B, N Py, and

thus (3.11) holds, as required. As a result, Lemma 2.4
implies that

i(A, B, N Py, Py) = 1. (3.17)

Note that R; > rq, and from (3.9) and (3.17), we have
i(A, (Bg,\By,) N Py, Py)
=i(A, Bg, N Py, Py) — i(A, B;, N Py, Py) = —1.

Therefore, the operator A has at least one fixed point in
(Bg, \E,] )N Py. This means that (1.1) has at least one positive

radial solution. This completes the proof. O

Theorem 3.2. Suppose that (Hl) and (H4)-(H5) hold.

Then, (1.1) has at least one positive radial solution.

Proof. From (H4), there is a sufficiently small », > 0 such
that

f(t,v) > dsvP D" v e [0,r], 1 €[0,1]. (3.18)
Next, we prove that
v#Av+ vy, vEIB,, N Py,1 =0, (3.19)

Mathematical Modelling and Control

where B,, = {v € E : ||| < rp} and vy € Py is a given
element. If the claim is not satisfied, then there exist v, €
0B,, N Py and A, > 0 such that

V) = AV2 + /12’\7().

Combining this, (3.4), and (3.18), we obtain

1

1
va(1) = (Avy)(1) > d™™" j(; G(t, s)v(s)ds,

and

1 1 1 1
f v (Dp)dt > f f G(t, )dy " v(s)dse(t)dt
0 0o Jo

1l
ZKld;H)"f v($)p(s)ds.
0

1
Noting that k;d;""" > 1, we have

1
f w(He(H)dt = 0.
0
Noting that v,(1), (f) > 0, ¢(t) £ 0,1 € [0, 1], we have
vo(f) = 0, and [jv;]| = 0,

and this contradicts v, € dB,, N Py. Therefore, (3.19) holds,
as required. Lemma 2.3 implies that

i(A, B, N Py, Py) = 0. (3.20)
From (HS5), there exists e; > 0 such that
Ft,v) <dpP D" 4 e, veRT 1€ [0, 1].
Let g be as in (2.2). Then,
[T (L) < [dyP ™" + e 75

P P
< 2w ! (djf"”‘ v+ eg'”"), veR,1e[0,1].
(3.21)
Now, we shall prove that the set

Wo={vePy:v=AAv, 1€ [0, 1]}

is bounded in Py. If v € W,, then by (3.13) and (3.21) we
obtain

1
V() < f G(t, s) [T (5,v(s))ds
0 (3.22)

1
—L_ ] ~ (p—q])n q ([I—qI)"
<20 G, s)|d, " Vi(s) + e, ds.
0
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Multiplying by @(f) on both sides of (3.22) and integrating

over [0, 1], from Lemma 2.1 we have

1
f vi(t)e(t)dt

<2(p T~ f f G(l S) d(ﬁ l)n Vq(S‘) + e(p ””)dS(,_O(t)dt

SZ(P n 1K2f (d(l} Dn Vq(S) + e(h ”")g&(s)ds,
0
and

25! <1’-1>"K fo go(s)ds

1

f vi(De(t)dt <
0 1= 2(p T ld([} I)n

Note that v € W,. Then, from (3.6)-(3.7) we obtain v € Py is

concave and decreasing on [0, 1], and reaches its maximum

atr = 0. Using (3.16), we obtain

1
(il < f () 2D 5 gy
0 n - l)n

(p I)l(2(p l)n -1 (” ”” K2f ga(s)ds
< 0
1 — 25 ]d‘” D
This implies that
Z,q -
| | nE20 =7 ey "”Kg
IVl < &3 )

4| o
1 =25 a7 7 kg

and W, is bounded in Py, as required. Hence, we can choose

a sufficiently large R, > max{r,, sup W,} such that
v # AAv, v € dBg, N Py, 1 €[0,1],

where Bg, = {v € E : |v]| < Rp}. As aresult, Lemma 2.4
implies that

i(A, Bg, N Py, Py) = 1. (3.23)

Then, from (3.20) and (3.23), we have
i(A, (Br,\B,,) N Pg, Py)

=i(A, Bg, N Py, Py) — i(A, B,, N Py, Py)
=1.

Therefore, the operator A has at least one fixed point in
(Bg, \E,.Z)OPO. This means that (1.1) has at least one positive
radial solution. This completes the proof. O

Mathematical Modelling and Control

Theorem 3.3. Suppose that (H1) and (H5) hold with d, €

—Dn
(2q+2) 7
0’ 2n

. Then, (1.1) has at least one positive radial
solution if f satisfies the following conditions:

(H6) f is nondecreasing about v, i.e., f(t,u) > f(t,v) if
u>v, u,veR" forallte0,1];

(H7) f(t,0) 20,1 € [0, 1].

Proof. Note that (HS) implies that (3.21) is still satisfied. If

we choose a sufficiently large

(p=-Dn l)»t

9
(q + 1)2([)—1)n n(p l)n 62

g _4q
=1 (p—1>n
(p=Dn

h

4 _
qg+1-20-n 'n

and let vo(t) = M —1),t € [0,1].
and (3.22), we have

Then, from (3.13)

[(Avo)(®)]?

1 q
SZW”[(l—r)q“é(t,s)(dg*”" 45) + e ”")ds
0

1 q q
QT T (1 - 1y f (d;;’-”" [M(1 = 5)) +e2‘”"’”)ds
0
<[M(1 - 1],

and thus

Avg < vp.

Now we establish a sequence {v,} , with

= Av,. (3.24)

Vn+l
Using (H6), we have
vi(®) = (Avp)(@) < vo(1), t € [0, 1],

and

va(t) = (Avi)(1)

1 T = l)n
:f (f (s, vl(s))ds) dr
t 0
1 T ﬁ
Sf (f ns"' (s, vo(s))ds) ) dr
t 0

= (Av)(t) = vi(1), t € [0, 1].

By means of the mathematical induction, for all n € N*, we
obtain
Vpgl SV S-Sy Sy S M.
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Therefore, there exists v € Py such that lim,_,. v, = V.

Letting n — oo, by (3.24) we have
V= Av'.

From (H7), O is not a fixed point of A, and thus this v* is a
positive radial solution for (1.1). This completes the proof.
O

Now we study the multiplicity of positive solutions
for (1.1). From [2,11], we obtain

A(Py) C Py, (3.25)
where
1
P, = {v €Py: min3 v(t) > ZIIvII}. (3.26)
psi<3
Theorem 3.4. Suppose that (HI) and (HS5) hold with
ds € 10, [P0+ )0 ) Then, (1.1) has at least

2n

three positive radial solutions if f satisfies the following

(p=Dn
+2(pfl)n)] - ]
4(n=1)

conditions:

1+

n

(HS8) there exist d>0and ds € (O, I
such that

f(t,v) < dsd?™", v e [0,d],t € [0,1];

T —1\-D
(H9) there exist a with'a > d and dgs > (%)p " n

such that
f@t,v) > dga?™"", v e [a,4a), tel0,1].

Then, (1.1) has at least three positive solutions.

Proof. From (H5), we know that (3.21) holds.
by (3.22), choosing

Then,

_4__1 4 7(,,(11),1
2 =Tn n(p—l)nez[

(1+ &) (1+

for ||v]] <¢ we have

(=

9q
_ a__ _ q T
Zq((pn—ll))n ) — 2 (p—Dn ln (p—Dn dip*l)ﬂ

[(Av) D]

1 q q
q_ _ - —Dn p—)n
<2G-mn lf G(t,s) (di” DY) + eé’ E )ds
0

1 q 9q
—4_ _] _4_ go-) G-Dn—q o-Dn
<2 @=Dn 7 =n s([)—])n(l — S) d4 c? + e ds
0

<c.

Mathematical Modelling and Control

This implies that A : P-— P-.

For v € P, define E(v) = min%gs% v(t). Then, E is a
nonnegative continuous concave functional on Pj, and the
following inequality holds:

B() < max v(t) = V||, v € P;.
1€[0,1]

If we let v(r) =
{v € P(ﬁ,?i, 45) :,E(v) >2i} = Wi, ie., W3 # 0. Moreover,
ifveP (E, a, 421') and E(v) > a, we have

25 a > a, then this v belongs to

44 > ||| = BOv) > a.

From (H9) and (3.4), we obtain

B(AV)(f) > min

3
<i<3

1
f G(t, 5)fT (s, v(s))ds
0

1
1 n-1 1
1 @=Dn g (p=Tin (d6a([’—l)n) o-Dnds

1
7

\%

min (1 — 1)

1 3
1=i<3 0

(p—Dn Ll
A= 1) o) a

>,

and by this we find S(Av) > @ for v € P (8., 4a).
Next, we claim that [JAv|| < d for V]| < d. In fact, if
S 1_3[7, from (H8) and (3.13) we have

1
[AVD) < f G(t, $)f 7% (s, v(5))ds
0
L — 1 q q(n=1)
<dS"d1 f neo s (1 = s)ds
0
<di.
This shows that ||Av]| < d, and

A P;— P(;forve Py

Finally, we show that if v € P(8,a,7) and ||JAv|| > 4@, then
B(Av) > a@. To prove this, if v € P(B,4,7) and ||AV|| > 44,

then we have

B(AV)(1)

L) e =
i f (f ns" ' f(s, v(s))ds) dr
i3 i 0

1 T ﬁ
> min (1 — t)f (f ns"' (s, v(s))ds) dr
<t<3 0 0
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Consequently, we have
B > vl > - xda=a
v) = —||Av|| > — X 4a =a.
4 4

As a result, all the conditions of Lemma 2.6 are satisfied
by taking b = 4d. Hence, A has at least three fixed points,
i.e., (1.1) has at least three positive solutions v; (i = 1,2,3)
such that

Ivill <d, @<B(v), and |v3|| >d with B(v3) <@

This completes the proof. O

In what follows, we provide some examples to verify our

main theorems. Letn = 2,p = 3, and ¢ = 4. Then, «; =

0.26, k; = 3, and k3 = ¢.

Example 3.1. Let f(t,v) =V°, v € R*, and t € [0, 1]. Then,

0

t,
= +co, limsup ft.v) =

. f@Y)
lim inf vy )
v—0* 4

Vv—+00 V

uniformly on t € [0,1], and thus (HI)-(H3) hold. From

Theorem 3.1, (1.1) has a positive radial solution.

Example 3.2. Let f(t,v) =3, v € R*, and t € [0, 1]. Then,

ts
—~ = 400, limsupM =0

y—+00 v

uniformly on t € [0, 1], and thus (HI) and (H4)-(H5) hold.

From Theorem 3.2, (1.1) has a positive radial solution.

Example 3.3. Let f(t,v) = e + 6v*, v € R*,t € [0,1] and

(=i
§ € (0,2.5)2.5 = 2" Then, (HI) and (H6)-(H7)
hold. Note that
5

! fv)
im sup =

y—+00 v
uniformly on t € [0,1], and (HS) is also satisfied. From

Theorem 3.3, (1.1) has a positive radial solution.
Example 3.4. Leta = 100, d = 1, and

!

Y

+v*, vel0,1],r€[0,1],
+3.13v° - 2.13, v € [1,100], ¢ € [0, 1],
+3.13x 109 - 2.13, v € [100, 4001, ¢ € [0, 1],

€ 4+ B8B,3 213, v > 400,1 € [0, 1].

e

o

t

ft,v)y=4°

LY RN

Y

Mathematical Modelling and Control

Then,

!

c+ BBV -213

e 16 _
e 1o — .

t
lim sup oA ;v)
%

Vv—+00

= lim sup
Vo400 v

uniformly on t € [0, 1]. Moreover, we obtain that
(i)ifvel0,1],¢ € [0, 1], then f(t,v) <2 € (0,3);
(ii) if v € [100,400], ¢ € [0, 1], then

F(t,v) > 3.13x 10'° — 2.13 ~ 31299999997.87
> dg x 108,dg > 312.5.

Consequently, (Hl1), (H5), and (H8)-(H9) hold. Theorem 3.4

implies that (1.1) has at least three positive radial solutions.
4. Conclusions

In Theorems 3.1 and 3.2, we utilize the properties of the
operator A, combining some inequality techniques, such as
the Jensen inequality, to study problem (1.1). So, our work
space only needs to be Py. This is different from the related
works [2,8,9, 11], where their work space is P (see (3.26)).
Moreover, in Theorem 3.3, when the nonlinearity f grows
(p — 1)n-sublinearly at co, we use the monotone bounded
principle to obtain at least one solution, and provide an
iterative sequence for the solution.

Finally, by means of the Leggett-Williams fixed point
theorem and the cone P;, in Theorem 3.4 we study the
multiplicity of positive radial solutions for our problem.
The method here is also different from the aforementioned

papers.
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