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Abstract: This study presented a novel approach to investigating the existence, uniqueness, and stability of solutions for an initial
value problem involving fractional differential equations of variable order. In contrast to conventional methods in the literature, which
often utilized generalized intervals and piecewise constant functions, we introduced a new fractional operator that is more appropriate
for this problem. The existence and uniqueness of the solutions ware demonstrated through Leray-Schauder fixed point theorem and
Banach’s theorem, with an analysis of the uniform stability of the problem. The strength of our approach lies in its straightforwardness
and reliance on fewer restrictive assumptions. The study concluded with an application that features a practical example, accompanied
by visual illustrations.
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1. Introduction presented a model of hearing loss in children caused by

mumps, utilizing the Caputo-Fabrizio fractional-order

Fractional calculus and fractional differential equations derivative, which retains the system’s historical memory.

have garnered significant attention due to the extensive Chdvez-Vizquez et al. [2] designed and developed a

fractional control strategy for trajectory tracking tasks of
This

applications of fractional derivative operators in

mathematical modelling. These operators often provide a the Stanford robot powered by induction motors.

more accurate representation of many real-world processes
compared to classical differential equations, particularly
when modeling fractional versions of phenomena in
nature and biology. For a comprehensive treatment of the
subject, refer to the relevant works. Mohammadi et al. [1]

strategy involves fractional proportional—integral controllers
for the actuators, utilizing the Atangana—Baleanu integral,
in combination with a fractional integral sliding-mode
control law generalized to an arbitrary order using the

Caputo—Fabrizio derivative and the Atangana—Baleanu
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integral. In their study, Khan et al. [3] explored the

existence, stability, and computational analysis of a
waterborne disease model using the fractal-fractional
version of the derivative. The existence results were
derived through techniques involving convergent iterative
sequences. Dehingia et al. [4] presented an epidemiological
model describing the within-host transmission dynamics of
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) influenced by the fractional-order derivative effect.
The study first discusses the existence, nonnegativity, and
boundedness of the model’s solution. Hussain et al. [5]
designed a new stochastic mathematical model for the
spread of COVID-19, incorporating environmental white
noise. The model was examined mathematically for the
existence of solutions, disease persistence, and extinction.
Aydogan et al. [6] studied the mathematical model of
rabies using the Caputo—Fabrizio fractional derivative.
The fractional differential equations were solved using the
Laplace-Adomian decomposition method. Ahmad et al. [7]
aimed to investigate the existence and Ulam-Hyers stability
(U-HS) of solutions for a nonlinear neutral stochastic
fractional differential system. Hussain et al. [8] developed
and analyzed a novel stochastic mathematical model for
the spread of COVID-19 with white noise. The model
was examined for solution existence and other factors,
including disease persistence and extinction. Tuan et al. [9]
investigated a mathematical model for the transmission of
COVID-19 using the fractional-order Caputo derivative.
They calculated the feasibility region, equilibrium points,
and Ry, and proved the existence of a unique solution
using fixed-point theory. = Approximate solutions for
System (1) were provided using the Adams-Bashforth
scheme. Khan et al. [10] presented a new mathematical
model for tuberculosis (TB) in fractal-fractional settings,
which describes the status of the disease in China based
on a case study. Baleanu et al. [11] extended the model
of epidemic childhood diseases using the Caputo-Fabrizio
fractional derivative. The fractional differential equations
were solved using the Laplace-Adomian decomposition
method, and the equilibrium points and conditions for
local asymptotic stability of the disease-free equilibrium
point were determined. Baleanu et al. [12] examined

the mathematical model that describes hematopoiesis
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(the Mackey—Glass model) using the Caputo operator.
The system displayed more complex behavior due to its
parameters and the delayed production rate of blood cells.
Baleanu et al. [13] investigated the existence of solutions
for a novel fractional multi-term boundary value problem,
modeling each edge of the graph representation of the
Glucose molecule, based on a new labeling method for
vertices of arbitrary graphs. Baleanu et al. [11] presented
a fractional-order epidemic model for childhood diseases
The

fractional differential equations were solved using the

using the Caputo—Fabrizio fractional derivative.

Laplace-Adomian decomposition method. In [14], a new
symmetric fractional-order discrete system was introduced.
The dynamics and symmetry of the proposed model
were analyzed under two initial conditions, focusing on a
comparison between commensurate and incommensurate
order maps, which highlights their impact on symmetry-
breaking bifurcations. Xu et al. [15], they explored the
impact of system initialization on the performance of
iterative learning control (ILC) for fractional-order systems
and investigated strategies to enhance system convergence.
Agarwal et al. [16] studied the following constant fractional

order problem

Dy, () = (¢, 1(0)), ¢ € 10,00), x €(1,2],
u(0) = 0, ubounded on [0, c0),

where Df,

derivative of order y, and 7 is a given continuous function.

stands for the Riemann-Liouville fractional

In all these contributions, the fractional operators of constant
order were considered and the conclusions were reached
using the appropriate hypotheses.

Recently, the concept and formal definition of variable-
order fractional operators have emerged. Unlike fixed-
order fractional operators, variable-order differentiation and
integration allow the order to vary continuously based on
This

approach offers greater flexibility than traditional fractional-

the dependent or independent variables involved.

order methods and serves as a natural progression in the
mathematical framework [17-19]. These operators have
proven effective in capturing the complexity of real-world
phenomena across multiple disciplines, including biology,
mechanics, control systems, and transport processes. Their

capacity to derive evolutionary governing equations has
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made them a focus of intense research. As a result, many
studies have explored their application in the modeling of
engineering and physical systems, as shown in some of the
foundational literature on the subject [20-22]. However,
there is relatively little research that studies the problems
for nonlinear differential equations of variable fractional
order (see [23-25]), and it is essential to highlight that
the study extensively employs the concept of a piecewise
constant function (PWCF), which plays a pivotal role. For
this reason, the interval of existence [0, p] is partitioned
as follows: M = {I, = [0,p1]1.[o = (o1.p2). 3 =
02,031, . Iy = (po-1,pl}, where o represents a given
natural number. Moreover, the PWCF ¢(¢) : [0,p] — (0, 1]
with respect to P is expressed as

o
9t = " quli(), 1€ [0,p],
k=1

where 0 < ¢ < 1, k = 1,2,---,0 are constants.
Here, pp = 0 and p, = p, meaning that I, = 1 for
t € [pr-1,pr], and I = O elsewhere. Most of the results
referenced are derived using this method, which initially
divides the interval of existence into subintervals, then
defines the differential and integral operators relative to
these subintervals. This approach enabled researchers to
transform fractional problems with variable order into their
corresponding conventional fractional problems of constant
order.

In this study, we propose an innovative method that
eliminates the need for the piecewise constant function and
partitioning of the existence interval. The cornerstone of our
approach is the development of a more flexible operator that
requires no extra steps. We apply this novel method to the

following initial value problem (IVP) with variable order

{ DEOu) = 1L, u)), L €A :=1[0,L] wn

u(0) =0,

where 0 < L < +c0oandy : A — (0,1),7: AXR - R
are continuous functions and D’éﬁo is the Riemann-Liouville
fractional derivative of variable-order y({).

The main purpose of this paper is to propose new criteria
on the uniqueness and existence for solutions of IVP (1.1).
Further, we study the uniform stability criterion of the

obtained solutions. Additionally, we also conducted an
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approximate numerical study of IVP (1.1). An example is

given at the end to illustrate the theoretical results.
2. Preliminaries

In this section, we introduce notations, definitions, and
preliminary facts that are used throughout this paper.

Note that the set E = C(A,R) is a Banach space of
continuous functions u from A into R, such that, u(0) = 0

with a norm defined as

llll = supilu(OI/{ € A}

Definition 2.1. [26-28] Let y : A — (0, 1) be a continuous
function, and the left Riemann Liouville fractional integral
of variable order x({) for function u({) is defined by

(7 _ (@)-1
o0 = [ ST, (>0, @)

where I'(+) is the gamma function.

Definition 2.2. [26-28] Let y : A — (1,2) be a continuous
function, and the left Riemann Liouville fractional derivative
of variable order x({) for function u(Z) is defined by

dy -
Dy u@) = (2 )6 @)

B i ,((év_w)—x(w
“\at) )y T( - x(w))

2.2)
w(@)dw, > 0.

Remark 2.1. [29,30] For general functions x({), v({), we

notice that the semi group property doesn’t hold, i.e.
]IZEOI[Z(E)#(() + H)ZJ(FHV(()/J(()

Lemma 2.1. Let y : A — (0,1) be a continuous function,
then for y € Cy(A,R) = {y({) € C(AR), {7¥¢) €
CA,R), (0 £ o £ mingey Y(OI)), the variable order
fractional integral I[)(gfoy(é’ ) exists V{ € A.

Lemma 2.2. Let y € C(A, (0, 1)) be a continuous function,
then T'9y({) € C(A,R) for y € C(A,R).

Theorem 2.1. [31] Let 3 be a banach spaceandp : 3 — 3
be a mapping such that, 9" is a contraction, for some n € N.

Then, ¢ has a unique fixed point in 3.
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Theorem 2.2. [32] Let 3 be a banach space with k C J
closed and convex. Assume U is a relatively open subset of

kwith0 € UandC : U — kis a compact map. Then, either
(1) C has a fixed point in U;
or

(2) there is a point u € 9U and A € (0, 1) with u = AC(w).
3. Main results

3.1. Existence criteria
Let us introduce the following hypothesis:

(HY) The function {?7 is a continuous function on A X R
and there exist constants 0 < o < minges | x(0) |,

p > 0, such that:

&7 &, (@) =&,y 1< p | @) = (D |,

R, € A.

Y,y €

Remark 3.1. (1) The function I'(1-x(Z)) is continuous as a
composition of two continuous functions, and we can

let Mr = maxgeo,z) | F(l—,v(()) ;

(2) By the continuity of the function x(¢), we let LX© <
l,if 1 <L<oco, L*)<LX if 0<L<I,
where x* = maxgeorn | x(§) | We conclude that
LY < max(1,L7) = L*.

We will need the following lemma to solve IVP (1.1).

Lemma 3.1. The function u € C(A,R) forms a solution of
IVP (1.1), if and only, if u solves the integral equation

4 ( - w)—nw)
o I'(l = x(@))

and u fulfills the initial condition u(0) =

¢
H(w) do = fo (@, u(w)) dw, (3.1)

Proof. By the definition of fractional derivative of variable
order defined by (2.2), the IVP (1.1) can be written in the
form:

s R

do = .
D[ & = (@) 4o =1,

Then,
4 ( - w)—)((w)
fo (T —x(@)”

Mathematical Modelling and Control

{
(w) dw = f (@, u(w@)) dw + c;.
‘ (3.2)

Evaluating Eq (3.2) at £ = 0, givesus ¢; = 0.
Thus,

4 ¢ - w)X™

o I'tl —x(@))

Conversely, by derivation of both sides of the Eq (3.1), we

Y4
p(@) dw = fo (@, (@) dw.

have

e - w)—)((w)
o I'l —x(@))
which means that y is a solution of IVP (1.1). ]

d
) w@) dw =n({, u@),

The first result is based on Theorem 2.2.

Theorem 3.1. Consider (HY). Then, the IVP (1.1) has at

least one solution on E.

Proof. We construct the following operator
C : E — E as follows,

~ e e = w)—x(ﬁ)
Cu(Q) =p(0) +f0 n(w, wW(@)) dw—fo T — (@)

Set E, = {u € E,|| u ||< r,r > 0}. Clearly, E, is nonempty,

w(w) dw.

bounded, closed, and convex subset of E.

Now, we will prove that the operator C satisfies the
hypotheses of Theorem 2.2.

Step 01: C is continuous.

To prove that C is continuous, we presume that the
sequence (i, ) en converges to u in E, and we show that Cy,
converges to Cu in E.

Then, we have

| Cun($) = Cu(d) |
e
<) =@ 1+ fo o '@’ | n(w, u,(w)) - n(w, (o)) | do
4 ({ _ w-)*)((ﬁ)
X F(l——)((w)) | p(@) — py(@) | dw

SII/Jn—/JII+P||/Jn—ﬂ|Ij\/w’”dw
0

e
+ Myl — el f (- o) " dw
0

é*—(r-*—l
< n + n
Slpn=pll+p Nl pn —pll = P
B * -\
+ MrL Ilun—ullf(— dw
0
—o+1 L* 1-
‘ '
< n = + n = + n
Sl =pll+p——— =l LX - )II —pll
—o+1 MLL
Slpn—pll +p Il ptn = /uII+ — [ — el
—o+1
M[‘LL* L*(r+1
<(1+ [ —ull,
<( = p——7) Il =l
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which implies that

I Cun() = Cu(Q) lI= 0,as n — co.

The above relation shows that the operator C is continuous
on E.

Step 02: C maps bounded sets into bounded sets in E.
Let " = supse4 | 1(£,0) |, then, for u € E,, we have

| Cu) |
e
Slﬂ({)|+|f (@, u(w)) do |
0

‘- m)
1y Td @™ 4!

e
<lu@ | +f | n(@, (@) — n(w,0) + n(w,0) | do
0

(¢~ @)
o T =x(@)

¢
<@+ ]{; @@’ | (@, u(@)) - n(w,0) | dw

(@) | dw

v v
. f | 1(@.0) | dw + Mr f ¢ - @) | (@) | dw
0 0
{
Slﬂ(é)l+fp|u(zU)IW’”dW+f n'dw
0 0

Y4
. [T T\x@
MrL — d
+ My j(:( T ) @) | do

—o+1 * e
MrL .
< + +n°¢+ . -w)*d
slhuli+plipll = +né+ 7 ||u||f0(§ @) dw
—o+1 * 1—x*
MyL "¢
< + +n'L+
slhali+p il ——— +n I 0 -x) Il
—o+1 *
MrL'L
< + +n'L+
slhuli+p il = +n T-x) el
MrL*L Lo+
<1+ 57— 7 Iul+rL,
X
which implies that
MFL*L L—0'+1
Cull<|1+ r+n°L.
I Culis[1+ T + Py lren

Hence, C(E,) is uniformly bounded.

Step 03: C maps bounded sets into equicontinuous sets in
E.

First,

we can remark that the function w, (@)

—\ X (@) _m\ X @) . . . .
(4‘ Lw) ({2 w) is decreasmg with respect to its

L
exponent —y(w), for 0 < 42 42 <1

Mathematical Modelling and Control

Then, for (1,5, € A, ¢ < &, and u € E,, we have

| Cu(dn) = Cu(dy) |

53
< u(d) = &) 1+ fo n(w, W(w)) do

4G - @)

4
_j(; n(w, u(w)) dw | + | . m_—X(w)),u(w) dw
¢ (G -m) M
- | S——uw) d
T — (@) "™ 4@
763
< 1@ ~u@) | +1 | (@ (@) do|
0 (G - @)@ (&1 - @)@
+|f T - (@ 5y H@) - (1 = @) @ dw |
) _ —x (@)
y f (31 @) (@ |

§2
o ‘@’ | n(w, (@) - n(w@,0) | do
&

63 {1 1
- - _ —x(@)
+L |n<w,0)|dw+f0 iy @

< u) —u) |+

— (& - @) || w(w) | dw
2 (L - )N @
e d
. T —x(@) | w(@) | dw

63 )
< () — 6 | +f Pl (@) | w‘”dw+f n'dw
& &

{1
+ Mr |l p ] ) (61 - & — (¢ - ) |der

763 42_13.7)(*
+Mr||u||L*f P
)
763

{2
Slﬂ(g’z)—ﬂ({l)Hf pl,u(W)Iw‘“dW+f n'dw
14 4]

+Mr||u||f LY@ g; )‘X(m) (§2zw)—x<w>]dw

* 42_ X"
+Mr||;1||LL (T) do
{2

)
Slu(éz)—u(§1)|+f pl,u(w)lw"’dW+f n'do

S| G
I S =
el [ O[S - (BE) iw
* 2 gz_w_)(*
+Mr||u||LL( 7 4

(52 o+1

é«l—o”rl)
+ 1

+ @) = @)™ 20 - mlw*]

G - 0)
Mr ||| L
Lr (1= x)

S Hu() —p) | +p il pll
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< @) - ) | + P

T -a e -
[ - @™ + 26 -0 |
Hence, | C,($) — Cu({1) 1= 0 as { — ;. It implies that
C(E,) is equicontinuous.

Consequently the operator C is compact.

Step 04: A priori bounds.

We now show there exists an open set U C E with p #
ACu, for A € (0,1) and u € JU.

Let u € E and £ € A, such that, for some 0 < 1 < 1, we
have

H(&) = ACu(),

and
Y
| ACu(Q) 1= | u(&) + fo (@, (@) dw

C (7 = ) X@)
_f =D (&) do |
0

(1 - x(@))
4
<A 101+ [ 1@ do
e (g_w)—)((w
~ )y Tty @1 4=l
Y4
<[ 1w 1+ fo | n(@,p(@)) | do
{ ((_w)—)((w)
) T i@y @1 4]
MrL*L Lot .
<[1+ — +p_0_+1] Il g || +7°L.
Thus,
MrL*L Lo _
Il ACu(&) II< ([1 + 11;)(* Ll 1] Il e +n*L) =M.

Let
U={ueE: lull<M+1}.

By our choice of U, there is no u € dU such that u = ACu,
for 4 € (0, 1). As a consequence of Theorem 2.2, we deduce
that C has a fixed point u in E which is solution to IVP(1.1).

O

3.2. Results of uniqueness

The next result is based on Theorem 2.1.

Theorem 3.2. Let (HY) be satisfied, then the ITVP (1.1) has

a unique solution on E.

Mathematical Modelling and Control

Proof. For u(¢), 1*({)e E, we may write

| Cﬂ(() - Cﬂ*(() |
@) -w @+ f o o’ | n(w, u(w)) - n(w, 1 (o)) | do
0

O B
o T'(l—-x(@)

e
SNpu—w I +pllp—y Ilf o 'dw
0

|1 (@) - p(@) | dw

e
+Mp =l f (-2 dw
0

{—(H—l
<Nu—u |+ ey
M= I +pllp—p |l m—
. . {—w\x
F ML - p ”f;(T) d
—o+1
<Nu—u |+ o
e —p |l p_o_+1||,u Hol
ML ('™ il
L~ -y H—H
X —o+1 X M]"LL* .
<llp=-p Il +p lp—p Il + D
—o+1 11—y
MI*LL* —o+1
<(1+ Em— P
<( T p——)lu=u
Weputo-=1+Afr_—f(f*+pf::1,andwehave

| Cu—CulISollp—p .

By induction, we can prove that
O_f’l
1€ = Cp i< M=

suchthat C" =CoCoCoCo---0o(C ntimes.
We have lim‘;—T = 0, so it tends to zero as n tends to
n—oo
infinity. Then, for n sufficiently large, we get 7+ < 1.
Accordingly to Theorem 2.1, the operator C has a unique

fixed point which is the unique solution of the IVP (1.1). O

3.3. Study of the uniform stability

Definition 3.1. The solution of the equation of IVP 1.1
is uniformly stable, if for Ye > 0 there Ay(e) > 0 such
that for any solution u({), i ({) corresponding to the initial
conditions of IVP 1.1, such that | ,u*(é’)—,u;(g) |< y(e), where
= maxgea p(Q); f, = mingea 4 (). one has || p—p' |I< e,
Theorem 3.3. Assume (HY) is satisfied, and if

L—o-+l

[MrLL*
1—x*
then the solution of IVP (1.1) is uniformly stable.

<1,
p—a’+1
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Proof.

@) =K @)
, 4
< uQ) —H O] + fo T | (@ u(@))

4 - w)—x(w)
o I'(l = x(@))

’ é’ ’
SI#(§)—ﬂ(§)|+f0pl,u(é)—ﬂ(é)lw‘”dw

* e
oL f - do
0

— (@, 1 (@) | dw + | u() -1 () | dw

=

L
, , —o+1 , MLL*
<T@ =L O 1 +plp—g |l o —p |
— 1 1-x
MLL* L—(r+l ,
<@ =K O+ (T +p Y e=w 1l
-X —o+1

Then,
, MrLL Lo+ - ,
— <(1- ¥ - .
= ud = ( [1—)(* =) 1K@ -H@]
Then, || 4 — i’ ||< €, which completes the proof. O

3.4. Numerical approximation

First, before starting calculation of the approximate
solution, it is worth noting that we will take a value of
x(©) as a constant, because when replacing a value of { in
[0, L], x(¢) become a constant. By the definition of fractional
derivative of variable order defined by (2.2) with 0 < y < 1,

so —1 < y <0, and we have:

D) ( )11‘”* @)

~ d o { (éf_w)0+)(—1
_(E) T+ y)

IO |
:L %n(m)dw.

n(w)dw

Let n0) € C(A),A = [0,L], A = L,n € N, and g, =
mAL,m=0,1,2,--- ,n—1.
Let 17(¢) be approximated by a certain function 7(¢).

Naturally, we come up with polynomial interpolation of
n(§) on [0, L].

Mathematical Modelling and Control

For ¢ = £,, we have x({,) = y,=constant, so:

D™ n()l¢=, ({n @) n(w)dw

F(X)[

‘ @
41

{3
(&
143

Ln

+ &= @) n(@)do]
(m+l

F(Xn WZ f - oY y(w)dw.

On each sub-interval [, (1], m =0,1,2,--- ,n
function 7(¢) is approximated by a constant.

- @) n(w)dw

- w)*"_ln(w)dw

—1, the

NNzt = TN znime) = 1Em)

n-1 (m+l
D™ (D=, f - @) n(w)dwo,
1Ol %) 2], Yo ()

with y,, = x({,,)= constant.
“AXm §m+l
D™=, = mm) Zn(gm)[ 2
Forn =1,
DM 0@le-es = oF — n(@)[@l — 0 = (G - )]
hX
= Top + 1)77((0)
since {1 —{p=hand I'(y; + 1) = x1T'(x1).

Ifn=2

D n(lg=, = Zn(zm)[(zz L)) = (G2 = &)

_)c F(X)

[7(o)(H* — (21)**) + n(£1)(0 — )]

F(X)

zFC\/ )[h“(l = 22)n() — Ken(d)]

e
= 2 -1 .
o) [7(51) +( (o))

Similarly,

D NDle=gy = o &)+ = Dn(&)+3 =2¢)()].
Following the above process, we have:

D™ (g, = [Tl(fn 1)+ 2 = Dn(g-2)

- 2*”)77(4,-3) +o (1 = (n = 1)),

r(x
+(3
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SO

© S ) &)
m n;[(m + DY —

Converting IVP (1.1) to the volterra integral equation, we

D¥Op() =

get
w(&) = p(0) + DXL, u(d)),

so, we have

_ O S © ©
MO = HO) + Foms ,,;)[(m + 1O — O,y

3.5. Examples

Example 3.1. Let the following IVP

DOy =n,u), LeA=10,41, (3.3)
u(@©0)=0 '
where () = 28€ _log({ + 1), and
&) = V72 eXp(O —log(¢+ 1) + [BXP(ex;;ﬁ(jﬁxm -0 + 1]’” ’

Clearly, x({) is a continuous function with 0 < x({) <

=

=x"<1,0< 0 <mingy | () |, and we get o = 0.

(¢, p) is a continuous function on A X R, and

7w =0,y |

=¢7] \/ ZDE logz + 1)

N [ 4exp(20)
exp(exp({ + 1)) — exp(={)

+ 1],u

- \/ OO tog(c + 1)
4exp()
~looener ) —encn TP |
_o 4 exp(2)
N Hexp(exp@ Rl G )
<] 4exp(29) . 1]' e |

exp(exp({ + 1)) — exp(=0)

4
(pepmy =1 * D=1

so (HY) satisfied with p = + 1, in addition to

4
explexp(1)—1

11
MrLL* Lo+t VR4 4 1
[ L —+p =[‘f1 +( +1)—]
1—x —o+1 3 exp(exp(1)) — 1 4

1 1
=|——=+1.2826-
[ + 12826
=0.2821 + 0.3206
=0.6027 < 1.
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According Theorem 3.2, the IVP (3.3) has a unique solution;
Theorem 3.3, the IVP (3.3) is uniform stable.

Example 3.2. Let the following IVP

leA=10,1],

(3.4)

D¥Ou) = n(¢, Q)
n0)=0

where x({) = §, and n(, 1) = N+ 1) + gooabeims-
Clearly, x({) is a continuous function on [0,1] with 0 <

X < 1

o = 0.n(, p) is a continuous function, and

=x" < 1,0 <0 < mingy | (&) | We get

s exp(—{)
i NGRS ooy i
_JZ+D- exp(=4)

(4exp2D) + D(1 +y)

ol exp(=0) 1 1

0 ldexp(20) + 1)(1 +u 1 +y)‘

< exp(=4) 1~y |

77 (dexp2) + DA+ (1 +y)
exp(—{)

(4exp(20) +1)

exp(—1)

T(dexp2)+1)

<7 =yl

lp=yl

. ; -1
so (HY) satisfied with p = MZ?;)(TL)'
By Theorem 3.2, the IVP (3.4) has a unique solution.

3.5.1. Numerical results

Now, we present our solution u({) for y({) = g with
¢ € [0,1] and p;(¢) for x(&) = %

Figure 1, we plot the solution u depending on ¢, and the

where ¢; is fixed. In

Figure 2 presents a plot of w;({) for different y({).
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Figure 1.
¢

5.

The solution (¢) in [0, 1] with y(¢) =

with  (2)=0.6/2=0.3 with x (0)=0.8/2=0.4 with x (2)=0.4/2=0.2

Figure 2. The solution y;({) in { € [0,1] for
different y(¢).

4. Conclusions and perspectives

The paper explores the existence, uniqueness, and
stability of solutions for an initial value problem involving
fractional differential equations with variable orders. Our
methodology differs significantly from earlier approaches,
offering a more straightforward and accessible alternative.
The findings present a practical solution that minimizes the
need for complex computations. This study also opens the
door for future research by extending the results using other
fractional order operators, such as the (k, y)-Hilfer operator

and modified Atangana—Baleanu—Caputo operator.
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