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Abstract: Anthrax is an acute infectious zonootic disease caused by Bacillus anthracis, a gram-positive, rod-shaped non-motile
bacterium. It is a disease that mainly affects herbivorous animals of both domestic and wildlife, and causes devastating spillover
infections into the human population. Anthrax epidemic results in serious and fatal infections in both animals and humans globally.
In this paper, a non-linear differential equation model is proposed to study the transmission dynamics of anthrax in both animal and
human populations taking into accounts saturation effect within the animal population and behavioural change of the general public
towards the outbreak of the disease. The model is shown to have two unique equilibrium points, namely; the anthrax-free and endemic
equilibrium points. The anthrax-free equilibrium point is globally asymptotically stable whenever the reproduction number is less than
unity (R0 < 1) and the endemic equilibrium point is locally asymptotically stable whenever R0 > 1. Sensitivity analysis suggests
that the most influential factors on the spread of anthrax are the infection force βa, pathogen shedding rate ξa, recruitment rate Λa,
natural death rate in animals µa and recovery rate in animals φa. Numerical simulations demonstrate that the saturation effect and
behavioural change of the general public towards the outbreak of the disease increase the size of the susceptible population, reduce the
size of the infective population and the pathogen levels in the environment. Findings of this research show that anthrax epidemic can
be controlled by reducing the rate of anthrax infection and pathogen shedding rate, while increasing the rate of pathogen decay through
proper environmental hygiene as well as increasing treatment to ensure higher recovery rate in infected animals. The results also show
that positive behavioural change of the general public through mass awareness interventions can help control the spread of the disease.
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1. Introduction

Anthrax is a zoonotic disease that remains a problem
in many countries worldwide [1]. It is caused by the
bacterium Bacillus anthracis. The disease primarily affects
herbivorous animals, but outbreaks in humans are largely
reported. The hosts of Bacillus anthracis include domestic
and wild animals such as sheep, goats, cattle, horses, pigs,
camels, antelope, deer and buffaloes [2]. Birds are rarely
infected with anthrax, but cats and dogs that feed on anthrax-
contaminated meat may become infected and often recover
from the disease without treatment [5, 6]. It is worth noting
that, not all infected animals die from anthrax. The survival
or otherwise of an anthrax-infected animal probably depends
on the dose of pathogens and the natural immunity of the
animal [5].

Bacillus anthracis is a gram-positive, rod-shaped non-
motile bacterium, the only obligate aerobic pathogen in the
genus Bacillus. The bacterium has both vegetative form
and a long-lasting, highly resistant spore form [3, 4]. The
bacterium exclusively remains in the vegetative form within
a low oxygen environment of the host [3]. The anthrax
Bacillus forms spores to protect itself when conditions are
unfavorable. Spores have a thick outer coating which shields
the bacteria from extreme conditions [5]. When an anthrax
spore enters into its host, it germinates and results into
a vegetative cell and replicates rapidly. The replicated
vegetative cells then enter the bloodstream and result in
septicemia and eventually lead to the sudden death of the
host [4]. Anthrax spores have long life span, capable of
persisting in the environment for decades before infecting
a new host. The spores are usually present at sites where
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anthrax-infected carcasses decomposed for many years. The
spores have been known to re-infect animals over 70 years
after burial sites of anthrax-infected animals were disturbed
[7]. Domestic and wild animals can become infected when
they breathe in or ingest spores in contaminated soil, plants,
or water [8]. Following inhalation or ingestion, the anthrax
bacteria spread rapidly throughout the entire body of the
animal. Dead animals that are opened and not burned or
buried provide an ideal source of new spores to contaminate
the soil [6]. The incubation period of Bacillus anthracis in
animals after exposure to spores is between 3 to 7 days, but it
may range from less than 1 day to 14 days or more. As soon
as clinical signs appear, the infected animals usually die
within 2 days [9]. Upon or near death, blood oozes from the
body openings of the infected animal into the environment.
This blood is heavily laden with anthrax organisms. The
carcass has a marked bloating and decomposes rapidly [6].

Anthrax infection in human population results from
accidental exposure [13], and is based on rural agricultural
activities or industrial processing [14]. The risk of humans
contracting anthrax is related to many factors including the
origin of infection [15]. The source of anthrax infection
includes cutaneous, gastrointestinal and inhalation anthrax
[16]. The cutaneous or skin infection occurs when anthrax
spores invade a cut or abrasion, this happens when a person
handles infected animals or contaminated animal products
like wool, hides, or hair [6, 8]. Symptoms of cutaneous
infection of anthrax include itching of the infected part,
followed by swelling and discoloration [8]. Cutaneous
anthrax has a mortality rate between 5%−20%, if infections
are not treated [17]. Cutaneous anthrax accounts for
approximately 95% of all reported human anthrax cases
[18].

Gastrointestinal anthrax occurs as a result of eating
the meat of animals infected with the vegetative Bacillus

anthracis, in addition, anthrax spores can also enter the body
via mucous membranes that line the mouth and intestines
[5,19]. The intestinal tract, mouth, or throat may be infected
[19]. Symptoms of gastrointestinal anthrax may include
nausea, vomiting, anorexia, mild diarrhoea and fever. The
incubation period is commonly 3–7 days [18]. The fatality
rate of gastrointestinal anthrax without treatment is ≥ 50%,
but < 40% with treatment [9].

Inhalation anthrax occurs as a result of breathing anthrax
spores into the lungs [19]. The incubation period reported
for inhalation anthrax in humans ranges from 1 to 43 days
[9]. Symptoms include fever or chills, sweats, fatigue
or malaise, non-productive cough, dyspnoea, changes in
mental state including confusion, and nausea or vomiting
[18]. The case-fatality rate of inhalation anthrax in humans
is > 85% [9].

Anthrax is global in its geographical distribution and
endemic in agricultural regions of Southern and Eastern
Europe, Central and Southwestern Asia, Sub-Saharan
Africa, North and South America, and Australia [4, 8–10].
It is estimated that there are 2, 000 to 20, 000 human
anthrax cases occurring annually worldwide [11]. Apart
from its natural occurrence, Bacillus anthracis is currently
considered one of the most serious bioterrorism threats
[10, 19]. Anthrax is still endemic in most African countries,
majority of which experience at least one human outbreak
per year [12].

The use of mathematical models to explore the spread
and control of infectious diseases has proved to be an
important tool for scientists and epidemiologists [20]. This
research seeks to use mathematical models to study the
transmission dynamics of anthrax in animal and human
populations. There are quite some number of mathematical
models proposed for the study of anthrax dynamics, these
include; [21–26] among others, but not so much is known
about the transmission dynamics of anthrax infection in both
animal and human populations using saturation incidence.
This work therefore seeks to study the infection dynamics of
anthrax using non-linear saturation incidence rate.

Incidence functions form a very important integral part
of research in mathematical epidemiology modeling. In
[27], incidence rate refers to the frequency with which a
disease occurs over a specified period of time, thus it is the
number of new cases of a disease within a time period, as
a proportion of the number of individuals who are at risk
of being infected with the disease. The most widely used
incidence functions in epidemic models include the bilinear
incidence β S I and standard incidence β S I

N [28]. According
to [29], the bilinear incidence is based on the law of mass
action, which requires a well-mixed population so that
each infected individual has equal probability of infecting
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each susceptible individual. In [30], the bilinear incidence
assumes that the disease transmission increases whenever
the susceptible population increases which is a limitation of
the function because of the intervention of control measures
during disease outbreak. [31] defines standard incidence as
the number of new cases per unit time due to infectious
individuals. The standard incidence is often used, due
to the fact that the number of contacts per individual is
approximately constant, the standard incidence may be more
suitable for human beings, or animals who live in groups
[32]. The standard incidence is more suitable than the
bilinear form [20].

The concept of saturation incidence was established by
Capasso and Serio. The saturation incidence is given by
βS I

1+αI where βI measures the infection force of the disease
and 1

1+αI measures the inhibition effect from the behavioural
change of the susceptible individuals when their number
increases. Thus, βI

1+αI tends to a saturation level when the
infective I gets large [28, 33]. Saturation incidence may
be mores suitable for our real world situations over bilinear
and standard incidence [28]. If a population is crowded or
saturated with infectives, then saturated incidence is a better
option [29]. The saturation incidence rate is nonmonotone, it
has the quality of first increasing and then decreasing when
the number of infective individuals reaches a critical value
[34].

2. Model formulation

In this section, a deterministic model is formulated from
the work of [35] for the study of anthrax transmission in
animal and human populations with much emphasis on
saturation and behavioural change within the animal and
human populations respectively, at the peak of the disease
spread. In formulating the model, it is assumed that anthrax
is spread through environmental contamination. Upon
infection, an infected animal shows clinical symptoms of the
disease and can be cured by treatment. It is further assumed
that there is no human to human route of infection.

Figure 1 presents a compartmental model for
the transmission of anthrax in animal and human
populations. The animal population is subdivided into
three compartments of susceptible animals S a, infective

animals Ia, and the class of animals who recovered from the
disease Ra. The human population consists of susceptible
humans S h, the infective humans Ih and the population of
infective individuals who recovered from the disease Rh due
to treatment or natural immunity. Compartment P consists
of the environmental reservoir contaminated with anthrax
spores or pathogens. Table 1 summarizes the definition of
parameters used in the model.

Table 1. Parameters used in the model.

Par. Description Value Ref.
βa Infection rate of susceptible animals 0.02 [35]
Λa The rate of inflow of animals 0.99 [24]
φa The recovery rate of infected animals 0.0025 [25]
µa Natural death rate in animals 0.0001 [24]
δa The saturation effect of the animal

population
0.6 Assumed

πa Rate at which recovered animals become
susceptibles

0.5 [24]

βh Infection rate of susceptible humans 0.0001 [35]
Λh Recruitment rate of humans 0.92 [24]
φh The recovery rate of infected humans 0.04 [25]
µh Natural death rate in humans 0.0001 [24]
ξa Pathogen shedding rate 0.45 [25]
δh Rate of behavioural change 0.6 Assumed
πh Rate at which recovered humans become

susceptible
0.5 Assumed

ε Rate of natural pathogens decay from the
environment

0.8 [24]

θ Rate of decay due to environmental hygiene 0.5 [24]

The susceptible animal population is increased by an
inflow rate of Λa. The susceptible animals in S a become
infected when they ingest anthrax contaminated feed or
breathe in spores in contaminated environment at a rate of
βaPS a which moves the newly infected population into the
infected class Ia with a saturation incidence of 1

1+δaIa
. The

saturation incidence of the animal population measures the
crowding effect of the infected animals. δa is the saturation
factor that measures the inhibitory effect due to protection
measures taken by farmers and the general public at large.
The animals that show clinical symptoms of the disease in
the infective class, Ia are treated and undergo recovery at
rate of φaIa. The treated animals then join a temporal class
of Ra for further monitory and other intensive care. Upon
full recovery, the recovered population confer temporary
immunity and join compartment S a at a rate of πaRa.
The Susceptible, Infected and Recovered animal population
reduce in population size by natural death rate of µa. ξa is
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the rate at which infective animals shed anthrax pathogens
into the environment. The anthrax pathogen level in the
environment P decays due to the practice of environmental
hygiene and by natural phenomenon at rates of θP and εP

respectively.

The human population suffers a spillover transmission of
anthrax from outbreaks of the disease within the animal
population.

The susceptible human population S h increases through
recruitment at a rate of Λh. Susceptible humans become
infected with anthrax through effective contact with
pathogen sources (P, Ia) at a constant rate of βh.

In the infective human class Ih, infected population
recover from the disease due to treatment or natural recovery
at a rate of φhIh and joins the recovery compartment Rh.
Individuals in Rh become susceptible at a rate of πhRh due
to waning of infection-acquired immunity. The Susceptible,
Infected and Recovered humans die naturally at rates µhS h,
µhIh and µhRh respectively. The infective human population
also suffer from anthrax related deaths at rate αhIh.

During an anthrax epidemic, the general public especially
farmers react behaviourally, psychologically, and socially
towards the disease spread. These attitudes may have an
impact on the overall infection rate or number of infectious
persons as well as the susceptible human population through
the incidence rate. As the number of infective individuals
increases, the susceptible human population may tend
to reduce the number of contacts with infective animal
population per unit time due to the behavioural effect.
The incidence rate which describes the behavioural change
towards the outbreak of the disease is given as βhS h(P+Ia)

1+δhIh
,

where δh > 0 is the behavioural parameter. This incidence
rate describes the transmission of the anthrax pathogen from
infective animals to susceptible humans taking into accounts
the behavioural effect of the general public towards the
spread of the disease.

The corresponding model is presented as a system of
differential equations indicated in equation (2.1).

P

Ia RaS a

S h

Ih

Rh

πaRa

βaPS a
1+δa Ia

Λa

(ε + θ)P

µaIa
µaRaµaS a

φaIa

Λh

µhS h

µhIhαhIh

µhRh
βhIa

ξaIa

βhP

βaP

βh(P+Ia)S h
1+δh Ih

φhIh

πhRh

Figure 1. Schematic Diagram of Anthrax
Epidemic in Animal and Human Populations.



dS a
dt = Λa + πaRa −

βaPS a
1+δaIa

− µaS a,

dIa
dt =

βaPS a
1+δaIa

− (µa + φa)Ia,

dRa
dt = φaIa − (µa + πa)Ra,

dP
dt = ξaIa − (ε + θ)P,
dS h
dt = Λh + πhRh −

βh(P+Ia)S h
1+δhIh

− µhS h,

dIh
dt =

βh(P+Ia)S h
1+δhIh

− (µh + αh + φh)Ih,

dRh
dt = φhIh − (πh + µh)Rh.

(2.1)

with non-negative initial conditions;
S a(0) > 0, Ia(0) ≥ 0, Ra(0) ≥ 0, S h(0) > 0,
Ih(0) ≥ 0, Rh(0) ≥ 0, P(0) ≥ 0.

For convenience, the following variables will be
substituted where appropriate;

ca1 = (µa + φa), ca2 = (µa + πa), ca4 = (ε + θ),
ch1 = (µh + αh + φh), ch2 = (µh + πh), ga = 1 + δaIa,

gh = 1 + δhIh, ka = 1
1+δaIa

, and kh = 1
1+δhIh

.

The total population size of the system (2.1) is given by:
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Na(t) = Λa − Naµa,

Nh(t) = Λh − Nhµh − αhIh,
dP
dt = ξaIa − (ε + θ)P(t).

(2.2)

where Na(t) = S a + Ia + Ra and Nh(t) = S h + Ih + Rh

represent the total population size of animals and humans
respectively. The animal and human populations can be
simplified as follows: dNa

dt ≤ Λa − Naµa,
dNh
dt ≤ Λh − Nhµh.

(2.3)

In the next section, basic properties of the model system
(2.1) are discussed. These properties are useful for stability
analysis.

3. Qualitative analysis

3.1. Invariant region

The study of the invariant region is carried-out to
determine whether the solutions of the model system (2.1)
make biological sense.

Recall that,
dNa

dt
≤ Λa − Naµa. (3.1)

dNh

dt
≤ Λh − Nhµh. (3.2)

The closed set

Ω =

{
X ∈ R7

+|Na ≤
Λa

µa
, ,Nh ≤

Λh

µh
, P ≤

ξaΛa

ca4µa

}
is a feasible region to the model (2.1), where X =

(S a, Ia,Ra, P, S h, Ih,Rh).

Lemma 3.1. Let (S a, Ia,Ra, P, S h, Ih,Rh) be the solution of

the model system (2.1) with non-negative initial conditions.

The closed set Ω is bounded and positively invariant.

Proof. We construct the proof by applying the theorem on
the differential inequality [36] to equation (3.1). Solving the
first equation of (3.1) gives:

Na ≤
1
µa

[
Λa

(
1 − e−µat

)
+ Na0µae−µat

]
. (3.3)

Thus, the size of the animal population Na approaches Λa
µa

as
t → ∞.
Similarly, as t → ∞, then Nh →

Λh
µh

.
Hence, all solutions of the system (2.1) are contained in

the region Ω. Thus, Ω is bounded and positively invariant
region for the model. �

3.2. Positivity and boundedness of model solution

This section presents a proof that all state variables
of the model system (2.1) remain non-negative for all
non-negative initial conditions for t ≥ 0 and that the
model equations are continuous and locally Lipschitz in
(S a, Ia, Ra, P, S h, Ih, Rh) ∈ R7

+, hence solutions of the
system exist for all positive time. This is necessary since
the model is a biological system representing populations of
animals and humans.

The model system (2.1) can be written in the form

x
′

= F(t, x) = F(x),

with x = (S a, Ia, Ra, P, S h, Ih, Rh) and F(x) =

(F1(x), F2(x), ..., F7(x)). Thus,

F(x) =



Λa + πaRa −
βaPS a
1+δaIa

− µaS a
βaPS a
1+δaIa

− (µa + φa)Ia

φaIa − (µa + πa)Ra

ξaIa − (ε + θ)P
Λh + πhRh −

βh(P+Ia)S h
1+δhIh

− µhS h
βh(P+Ia)S h

1+δhIh
− (µh + αh + φh)Ih

φhIh − (πh + µh)Rh.


.

Proposition 3.2. For any

S a(0), Ia(0), Ra(0), P(0), S h(0), Ih(0), Rh(0) ≥ 0 there

exists a unique solution S a0, Ia0, Ra0, P0, S h0, Ih0, Rh0

respectively, defined on R7
+ = [0,∞)7. Also, F j(x, t) ≥ 0 for

every j = 1, 2, ..., 7 if x ∈ [0,∞)7 and x j = 0 for t ≥ 0. In

addition x(0) ∈ [0,∞).

Theorem 3.3. ( [39]). Let Rn
+ = [0,∞)n be the cone of

nonnegative vectors in Rn
+. Let F : Rn+1

+ → Rn be locally

Lipschitz and

F j(x, t) ≥ 0 whenever t ≥ 0, x ∈ R7
+, x j = 0 for j =

1, 2, ..., 7.

Then, for every x0 ∈ R
7
+ there exist a unique solution of

x
′

= F(x, t), x(0) = x0, with values in R7
+ which is defined on
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some interval [0, b), b > 0. If b < ∞. Then lim sup
t↗b

7∑
j=1

x j =

∞.

Proof. From the first equation of the model system (2.1) if
S a = 0 then

dS a

dt
= Λa + πaRa ≥ 0.

It follows that dIa
dt ≥ 0 if Ia = 0, dRa

dt ≥ 0 if Ra = 0, dP
dt ≥ 0 if

P = 0, dS h
dt ≥ 0 if S h = 0, dIh

dt ≥ 0 if Ih = 0, dRh
dt ≥ 0 if Rh = 0

where S a, Ia, Ra, P, S h, Ih, Rh ∈ R
7
+.

Also,

lim sup
t↗b

(S a(t)+ Ia(t)+Ra(t)+ P(t)+S h(t)+ Ih(t)+Rh(t)) = ∞.

Lemma 3.4 (Lipschitz condition). The system equations

F j(x) for j = 1, 2, ..., 7 satisfy Lipschitz’s conditions and are

contraction mappings, if the following condition holds,

0 < b = max(b1, b2, b3, b4, b5, b6, b7) < ∞.

Applying the Lipschitz condition in Lemma (3.2) on the
first equation of system (2.1) where S a, S

′

a ∈ R
7
+ gives

‖F1(S a) − F1(S
′

a)‖ = ‖
[
Λa + πaRa −

βaPS a
1+δaIa

− µaS a

]
−

[
Λa + πaRa −

βaPS
′

a
1+δaIa

− µaS
′

a

]
‖,

≤ ||(− βaPS a
1+δaIa

− µaS a) − (− βaPS
′

a
1+δaIa

− µaS
′

a)||,
≤ | − 1|‖( βaP

1+δaIa
+ µa)S a − ( βaP

1+δaIa
+ µa)S

′

a‖,

≤ ( βaP
1+δaIa

+ µa)||S a − S
′

a||,

≤ b1||S a − S
′

a||.

where b1 =
βaP

1+δaIa
+ µa thus, F1(t, S a) satisfies the Lipschitz

condition. Similarly, it can be shown that F j(x) for j =

2, ..., 7 also satisfy the Lipschitz condition for

0 < max {b2, b3, b4, b5, b6, b7} < ∞.

Next, it is important to show that F j(x), ∀ j are continuously
differentiable and bounded in R7

+, by first determining the
norm of the partial derivatives of the system equations in
(2.1). From the first equation of system (2.1) gives∣∣∣∣ ∂F1

∂S a

∣∣∣∣ =
∣∣∣∣− (

βaP
1+δaIa

+ µa

)∣∣∣∣ < ∞,∣∣∣∣ ∂F1
∂Ia

∣∣∣∣ =
∣∣∣∣ βaPS aδa

(1+δaIa)2

∣∣∣∣ < ∞,∣∣∣∣ ∂F1
∂Ra

∣∣∣∣ = |πa| < ∞,∣∣∣ ∂F1
∂P

∣∣∣ =
∣∣∣∣− βaS a

1+δaIa

∣∣∣∣ < ∞,∣∣∣∣ ∂F1
∂S h

∣∣∣∣ =
∣∣∣∣ ∂F1
∂Ih

∣∣∣∣ =
∣∣∣∣ ∂F1
∂Rh

∣∣∣∣ = 0 < ∞.

By extending the same analogy to the remaining equations in
system (2.1), it can be established that ∂F j(t,x)

∂xi
< ∞ for i, j =

2, ..., 7. Therefore, all the partial derivatives are continuous
and bounded. Hence, there exist a unique solution for the
model system (2.1) for all positive time. Thus the model
system is well posed.

�

3.3. Equilibrium and stability analysis

Two types of equilibrium points are studied in this
section, the anthrax-free equilibrium point and the endemic
equilibrium point. The equilibrium points of the model
system are obtained by first setting the differential equations
in (2.1) to zero as given in (3.4).



0 = Λa + πaRa − βakaPS a − µaS a,

0 = βakaPS a − ca1Ia,

0 = φaIa − ca2Ra,

0 = ξaIa − ca4P,

0 = Λh + πhRh − βhkh(P + Ia)S h − µhS h,

0 = βhkh(P + Ia)S h − ch1Ih,

0 = φhIh − ch2Rh.

(3.4)

The anthrax-free equilibrium point is a steady state
solution where there is no disease spreading in the
populations. Thus, disease-free equilibrium point of the
system is attained when all the variables and parameters
related to anthrax infection are zero. Thus, Ia = 0, P = 0
and Ih = 0.

From the first equation of (3.4), S a = 1
µa

(Λa + πaRa),
plugging in Ra = 0 gives S a = 1

µa
Λa. Also, from the fifth

equation of (3.4), S h = 1
µh

(Λh+πhRh) and substituting Rh = 0
gives S h = 1

µh
Λh. Therefore, the anthrax-free equilibrium

point is given as E0 = {S a0, 0, 0, 0, S h0, 0, 0}, where S a0 = Λa
µa

and S h0 = Λh
µh

.
Next the basic reproduction number is determined using

the method described in [37]. The basic reproduction
number is defined as the average number of secondary
anthrax infections a single infected animal causes during its
infectious life, if it is introduced into an initially anthrax-free
human-animal system [35]. The basic reproduction number
R0 is the dominant eigenvalue of ρ(FV−1) corresponding
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to the spectral radius of the next generation matrix FV−1,
where F and V−1 are the transmission and the inverse of
transition matrices respectively. For this model, the F and
V−1 matrices are defined as follows

F =


−

βa PS aδa

(Ia δa+1)2
βa S a

Ia δa+1 0

0 0 0

βhS h
Ih δh+1

βhS h
Ih δh+1 −

βh(P+Ia)S hδh

(Ih δh+1)2

,

V−1 =


1

ca1
0 0

ξa
ca1 ca4

1
ca4

0

0 0 1
ch1

.
Evaluating FV−1 at the anthrax-free equilibrium point

E0 and solving give

the reproduction number of the model system as

R0 =
βaΛaξa

µa(µa + φa)(ε + θ)

.
It is noticed that the infection force of the human

population βh does not contribute to the reproduction
number R0, this shows that the stability of anthrax epidemic
within the animal-human system is strongly influenced by
the spread of the disease within the animal population.
Thus, controlling the anthrax transmission within the animal
population will lead to a reduction in the spread of the
disease within the human population.

The endemic equilibrium point is a non-disease free state
of the model, it is the point at which the anthrax persist in
the populations. It is obtained by setting the derivatives in
the model system (2.1) equal to zero and solving for the
state variables. The endemic equilibrium point is given by
E∗ =

{
S ∗a, I

∗
a ,R

∗
a, P

∗, S ∗h, I
∗
h ,R

∗
h

}
, where the elements of E∗ are

defined by equation (3.5).

S ∗a =
R′(πaφa(R′−1)+Λaδaca2)ca4
(βaξa(R′−1)+R′µaδaca4)ca2

,

I∗a = R′−1
δa
,

R∗a =
(R′−1)φa
δaca2

,

P∗ =
(R′−1)ξa
δaca4

,

S ∗h =
ch1I∗h(1+δhI∗h)
βh(P∗+I∗a ) ,

R∗h =
φhI∗h
ch2
.

(3.5)

where Ih satisfies the function H(Ih) = 0, defined by

H(Ih) = µhch1ch2δh I2
h + Ψ1Ih − Λhβhch2

(
P∗ + I∗a

)

where Ψ1 =
[
ch2

(
βhch1

(
P∗ + I∗a

)
+ µhch1

)
− πhβh

(
P∗ + I∗a

)
φh

]
.

It can be verified that H(0) < 0 and also that H(Ih) → +∞

as Ih → +∞.

3.4. Local stability of anthrax free equilibrium

This section presents a study that investigates the local
stability of the anthrax free equilibrium point using the
indirect Lyapunov method. By this method, the local
asymptotically stability of a model system is proofed by
showing that all eigenvalues of the Jacobian matrix J ,
evaluated at anthrax-free equilibrium have negative real
parts, otherwise the anthrax-free equilibrium is unstable.

Theorem 3.5 (Local stability of anthrax-free equilibrium).
The anthrax-free equilibrium, E0 is locally asymptotically

stable whenever R0 < 1 and unstable otherwise.

Proof. The Jacobian matrix of the model system (2.1) is
given as,

JE0 =



−µa 0 πa −
βaΛa
µa

0 0 0

0 −ca1 0 βaΛa
µa

0 0 0

0 φa −ca2 0 0 0 0
0 ξa 0 −ca4 0 0 0
0 −

Λhβh
µh

0 −
Λhβh
µh

−µh 0 πh

0 Λhβh
µh

0 Λhβh
µh

0 −ch1 0

0 0 0 0 0 φh −ch2


.

From the Jacobian matrix JE0 , it is easy to show that
µh, µa, ch1 and ch2 are the negative eigenvalues of the
Jacobian of the model evaluated at E0 and the remaining
two eigenvalues can be shown to be negative if R0 <

1. Therefore, the anthrax-free equilibrium is locally
asymptotically stable when ever R0 < 1, concluding the
proof. �

3.5. Local stability of endemic equilibrium points

The local stability of the endemic equilibrium is
determined by linearizing the system evaluated at the
endemic equilibrium points using the Jacobian matrix
approach. The characteristic equation of the Jacobian matrix
of the system is obtained by the equation

∣∣∣JE∗ − λI
∣∣∣ = 0.

Theorem 3.6 (Local stability of the endemic equilibrium).
The endemic equilibrium, E∗ is locally asymptotically stable

whenever R0 > 1 and unstable otherwise.
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Proof. Using the Jacobian matrix of the system evaluated
at endemic equilibrium points the characteristic equation is
given in (3.6).

λ7 +λ6A6 +λ5A5 +λ4A4 +λ3A3 +λ2A2 +λA1 + A0 = 0 (3.6)

where,

A6 =
βhR0(R0−1)ξa+ca4βhR0(R0−1)+βagh(R0−1)ξa+k1 δaca4

δaca4
,

A5 =
R0ghδa

2ca4
2k2+[βaβh(R0−1)ξa

2+R0ca4](R0−1)
R0ghδa

2ca4
2

+
[(δa(βagh+βh)ca4+(βaghk5+βhk6)δa+βaβh(R0−1))ca4ξa](R0−1)

R0ghδa
2ca4

2 ,

A4 =
R0δaca4

2(k15 δagh+βhk13)+(R0−1)2βhβak8 ξa(1+ca4)
R0ghδa

2ca4
2

+
[(k10 βagh+k14 R0βh)δaξaca4+R0k9δaβh]ca4(R0−1)

R0ghδa
2ca4

2 ,

A3 =
(R0−1)(βhβaξak23ca4(R0−1)+1+k17+ca4k29+δaca4k19)+δa

2ca4
2k26R0

R0ghδa
2ca4

2 ,

A2 =
βa(βh(R0−1))2k40+(R0−1)(βhR0k39+βak31ξa+βhk30ξa)δaca4+δa

2ca4
2k38

R0ghδa
2ca4

2 ,

A1 =
βa(βh(ca1ca4+ca2ca4)(R0−1))2ξa

2k43+(R0−1)k51

R0gh(δaca4)2 ,

A0 =
(R0−1)2k52+(R0−1)βaca4

3ch1ch2ghµhk43δa

R0ghδa
2ca4

2

It can be noticed that Ai > 0∀i, if R0 > 1. By Descartes’
rule of signs, the characteristic equation in (3.6) has all its
roots in the left half of the real plane. Thus, the eigenvalues
of the Jacobian matrix of the model evaluated at the endemic
equilibrium point have all it’s real parts negative whenever
R0 > 1. Hence, theorem (3.6) is satisfied. �

3.6. Global stability of anthrax-free equilibrium points

[48] outlined two conditions for determining the global
asymptotic stability of anthrax-free equilibrium of a system
which is rewritten in the form:

dQ
dt = F(Q,W),
dW
dt = G(Q,W), G(Q, 0) = 0,

(3.7)

where Q ∈ Rm represents the number of uninfected
individuals W ∈ Rn denotes the number of infected
population and E0 = (Q∗, 0) represents the anthrax-free
equilibrium. The following assumptions must be satisfied
for anthrax-free equilibrium of a system to be globally
asymptotically stable:
H1 = dQ

dt = F(Q, 0), Q∗ is globally asymptotically stable.
H2 = G(Q,W) = AW−G∗(Q,W), where
G∗(Q,W) ≥ 0 for (Q,W) ∈ Ω, and A = DWG(Q∗, 0) is an
M–matrix (the off diagonal elements are nonnegative).

Theorem 3.7. The equilibrium point E0 of the system

(2.1) is globally asymptotically stable if R0 < 1(locally

asymptotically stable ) and the assumptionsH1 andH2 are

satisfied.

Proof. Let Q(S a,Ra, S h,Rh) ∈ R4 and Q(Ia, P, Ih, ) ∈ R3

F(Q,W) =


Λa + πaRa −

βaPS a
1+δaIa

− µaS a

φaIa − ca2Ra

Λh + πhRh −
βh(P+Ia)S h

1+δhIh
− µhS h

φhIh − ch2Rh

 ,

G(Q,W) =


βaPS a
1+δaIa

− ca1Ia

ξaIa − ca4P
βh(P+Ia)S h

1+δhIh
− ch1Ih

 .
The reduced system is given as dQ

dt = F(Q, 0)

dQ
dt

=


dS a
dt = Λa − µaS a,

dS h
dt = Λh − µhS h.

(3.8)

The reduced system dQ
dt = F(Q, 0) is globally

asymptotically stable at the anthrax-free equilibrium point
E0 =

(
Λa
µa
, 0, Λh

µh

)
. It can be shown from the first equation

of (3.8) that S a(t) = Λa
µa

+ (S a(0) − Λa
µa

)e−µat, this implies
that S a(t) → Λa

µa
as t → ∞. Similarly, from the second

equation of (3.8), S h(t) → Λh
µh

as t → ∞. It can be observed
that this particular dynamics does not depend on the initial
conditions. Hence, the convergence of the solutions of the
reduced system in (3.8) is global in Ω.

DWG =


−

βa PS aδa

(Ia δa+1)2 − ca1
βaS a

(Ia δa+1) 0

ξa −ca4 0
βhS h

(Ih δh+1)
βhS h

(Ih δh+1) −
βh (P+Ia)S hδh

(Ih δh+1)2 − ch1

.
From the second assumptionH2, G(Q,W) can be expressed
as G(Q,W) = DWG(Q∗, 0)W−G∗(Q,W).

G∗(Q,W) =


βa

(
Λa
µa
−S a

)
P

1+δaIa

0
βh(P+Ia)

(
Λh
µh
−S h

)
1+δhIh

.
Clearly, since S a and S h are bounded above by Λa

µa
and Λh

µh

respectively, it implies that Λa
µa
≥ S a and Λh

µh
≥ S h. Therefore,

G∗(Q,W) ≥ 0,∀Q,W ∈ Ω. This conclude the proof that
anthrax-free equilibrium is globally asymptotically stable
when R0 < 1. �

3.7. Sensitivity analysis

In this section, sensitivity analysis is performed to
study the impact of individual parameters on the basic
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reproduction number (R0). Here, the Normalized Forward
Sensitivity Index is used for this study. The normalized
forward sensitivity index of model output y relative to
parameter x is given by Υx

y =
∂y
∂x ×

x
y . Thus, the sensitivity

indexes in Table 2 were evaluated using the base line
parameter values in Table 1 with respect to the reproduction
number expressed in the form Υ

pi
R0

=
∂R0
∂pi
×

pi
R0

, where pi are
the parameters in R0.

Similarly, the sensitivity indexes of E∗ of the animal
sub-population were computed and the results presented
in Table 3. The impact of each parameter on both
E∗ and R0 are presented in Table 4. The partial rank
correction coefficient(PRCC) is presented in Figure 2 which
further highlighted the contributions of each parameter value
towards the overall reproduction number. The length of each
bar suggests the statistical influence of each parameter on
R0.

Table 2. Sensitivity Indexes of the Reproduction
Number.

R0

Par. Λa βa ξa µa θ φa ε

Indexes 1.0000 1.0000 1.0000 −1.0000 −0.9996 −0.6000 −0.4000

Table 3. Local Sensitivity Indexes of E∗.

Sensitivity Indexes

Par. S ∗a I∗a R∗a P∗

Λa 1.0000 1.0000 1.0000 1.0000
βa −1.0879e − 05 1.000 1.0000 1.0000
µa −1.0386 −1.0385 −1.0386 −1.0385
θ 1.0701e − 05 0.0000 0.0000 0.0000
ε 1.7835e − 07 −0.8000 −0.8000 −1.6000
φa 0.0385 −1.1615 −01615 −1.3615
πa 1.4280e − 04 0.0000 −0.9999 0.0000
δa 0.0467 −1.0000 −1.0000 −1.0000
ξa −1.0879e − 05 1.0000 1.0000 2.0000

4. Numerical simulation

The numerical simulation of the model system (2.1) was
performed using the fourth order Runge-Kutta scheme. The
simulation shows the impact of parameters on the entire
model as well as demonstrate the influence of parameters

Table 4. Ordering of parameters in terms of
impact on variables.

R0 RankR0 S ∗a RankS ∗a I∗a RankI∗a R∗a RankR∗a P∗ RankP∗

µa 1 µa 1 φa 1 µa 1 ξa 1
βa 1 Λa 2 µa 2 Λa 1 ε 2
Λa 1 φa 3 Λa 3 βa 2 φa 3
ξa 1 πa 4 βa 3 δa 2 µa 4
φa 2 βa 5 δ 3 ξa 2 Λa 5
θ 3 δa 5 ξa 3 π 3 βa 5
ε 4 ξa 5 ε 4 ε 4 δa 5
πa 5 θ 6 θ 5 φa 5 θ 7
δa 5 ε 6 πa 5 θ 6 πa 7

a a a a a
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Figure 2. Plot of PRCC of R0 with respect to
model parameters.

on individual state variables. The parameter values in Table
1 were used for running the simulations.
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Figure 3. Contour plots of the basic reproduction
number R0 in terms of its parameters (µa, βa),
(µa,Λa), (φa, βa) and (θ, βa).

4.1. Findings

The following are the findings of the study:

(i) The anthrax-free equilibrium point is globally
asymptotically stable anytime the basic reproduction
number R0 is less than unity.

(ii) The most sensitive negative parameters on the
reproduction number are the natural death rate and
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Figure 4. Contour plots of the basic reproduction
number R0 in terms of its parameters (ξa, βa, ) and
(Λa, βa).
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Figure 5. Trajectories of susceptible human
population for varying rates of saturation effect
and behavioural change.
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Figure 6. Trajectories of susceptible animal
population for varying rates of saturation effect.
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Figure 7. Trajectories of various infective
populations for varying rates of saturation effect.

recovery rate of infected animals, whereas recruitment
rate, pathogen shedding rate and the rate of infection
of susceptible animals are the most positive sensitive
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Figure 8. Trajectories of infective human
population for varying rates of behavioural
change.
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Figure 9. Trajectories of infective humans and
infective animals for varying rates of behavioural
change and saturation effect respectively.
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Figure 10. Trajectories of pathogens for varying
rates of saturation effect and force of infection.
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Figure 11. Trajectories of infective populations
for varying rates of animals’ and humans’ force of
infection.

parameters.

(iii) Increase in behavioural change within the human
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population causes an increase in the susceptible human
population.

(iv) Increase in saturation effect causes an increase in the
susceptible animal population.

(v) The saturation effect of the animal population and
behavioural change within the human population
has the tendency to reduce the number of infective
population.

4.2. Results and discussion.

The contour plots in Figures 3 and 4 show the relationship
between the reproduction number and two of its parameters
(µa, βa), (φa, βa), (θ, βa), (µa,Λa), (ξa, βa) and (Λa, βa).
Figure 3 suggests that βa increases R0 while µa, φa and θ

reduce the R0. Figure 4 shows that βa, ξa and Λa increase
the reproduction number. These results show that it is
essential to reduce the infection force while increasing both
environmental hygiene and recovery of infected population
in other to control the spread of anthrax.

Figure 5 shows the impact of saturation effect of the
animal population and behavioural change of humans
towards the spread of anthrax on susceptible human
population. Increase in saturation effect or behavioural
change leads to an increase in the susceptible human
population, in addition, increasing the saturation effect also
causes an increase in the susceptible animal population as
shown in Figure 6.

In Figure 7, increase in saturation effect of the animal
population leads to a decrease in the infective populations of
both animals and humans in a time period. It can be noticed
in Figure 8 that behavioural change towards the spread of
the disease and infected human population are inversely
related. A decrease or negative behavioural change leads to
an increase in the infective population whereas an increase,
in other words, a positive behaviour towards the spread of
the disease as infective population gets higher leads to a
decrease in the infected population within a time period.
Similarly, an increase in saturation factor trigger a reduction
in the pathogen level within the environment in a long run as
shown in Figure 10.

Figure 9 shows the impact of behavioural change
and saturation effect on recovered humans and animals

respectively. Implementing attitudinal change towards
disease spread and saturation effect lead to a general
decrease in recovered population, but increasing these rates
further result in slightly increase in the recovered population
and finally declines in a short run. The slightly increment
may be as a result of many infective population recovering
faster at that point in time due to stringent treatment
measures resulting from the behavioural change.

It is noticed in Figure 10 and 11 that an increase in the
force of infection leads to a corresponding increase in the
level of pathogens in the environment as well as an increase
in the number of infective population.

5. Conclusions

In this paper, we proposed an Ordinary differential
equation (ODE) model to describe the transmission
dynamics of anthrax disease in both animal and human
populations taking into consideration the saturation effect
in the animal population as infective population gets higher.
The model also takes account of the behavioural changes
of the general public as the human infective increases. The
impact on the susceptible population as well as other state
variables are studied.

Qualitative analyses revealed that the model system has
two unique equilibrium points the anthrax-free and endemic
equilibrium points. It is proofed that the anthrax-free
equilibrium point is locally asymptotically stable if the
reproduction number is less than unity (R0 < 1) and the
endemic equilibrium point is locally asymptotically stable
whenever R0 > 1. A study of global stability shows that
the anthrax-free equilibrium point is globally asymptotically
stable anytime R0 < 1.

In other to reduce the spread of anthrax, it is essential
to reduce the levels of anthrax infection rate in animals
and pathogen shedding rate while increasing the rate of
environmental hygiene, recovery of infective animals and
decay rate of pathogens.

The numerical simulations demonstrate the importance
of saturation effect and behavioural change towards the
outbreak of the disease. These parameters have the potential
to control disease spread since an increase in their values
increase the number of susceptible population, reduce the
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number of infective population and also reduce the pathogen
level in the environment. The behavioural change of the
general public influences the recovery rate of infective
individuals, since health care personnel can change their
attitude towards the disease and improve in quality health
care in other to reduce anthrax related fatality.

The stability of anthrax epidemic within the animal-
human system is strongly influenced by the spread of the
disease within the animal population. It is worth noting
that, controlling the spread of anthrax within the animal
population will reduce the transmission of the disease in
human population.
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