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Abstract: This paper studies the continuous Cucker–Smale model with time-varying topological structures and reaction-type delay.
The goal of this paper is to establish a sufficient framework for flocking behaviors. Our method combines strict Lyapunov design with
the derivation of an appropriate persistence condition for multi-agent systems. First, to prove that position fluctuations are uniformly
bounded, a strict and trajectory-dependent Lyapunov functional is constructed via reparametrization of the time variable. Then, by
constructing a global Lyapunov functional and using a novel backward-forward estimate, it is deduced that velocity fluctuations converge
to zero. Finally, flocking behaviors are analyzed separately in terms of time delays and communication failures.

Keywords: Cucker–Smale model; time-varying topological structures; time delay; flocking; persistence of excitation

1. Introduction

In nature, the collective migration of bird flocks, the
gathering migration of fish and cooperation of ant colonies
are relatively common. The movement of biological groups
has shown that, under conditions of limited environmental
information and simple rules, the group system organizes
itself into an orderly movement in which all individuals
move at the same speed and maintain cohesion or geometric
formation. Since the second half of the 20th century,
the flocking behavior of multi-agent systems has attracted
the attention of a large number of biologists, physicists
and mathematicians. They take bird flocks as research
objects and establish various flock models by observing and
analyzing the activities of flock groups in real time (see
[1–4]). The most influential and well-studied model is the
Cucker–Smale model proposed by Cucker and Smale [1, 2]
in 2007. It is described as follows:

ẋi = vi,

v̇i = K
N

N∑
j=1
φ
(∥∥∥x j − xi

∥∥∥) (v j − vi

)
,

i = 1, 2, . . . ,N, (CS)

where xi ∈ R
d denotes the position of the i-th particle

and vi ∈ R
d stands for velocity. The parameter K > 0

measures the alignment strength. The communication rate
φ(·) : [0,∞) → (0,∞) quantifies the influence between the
i-th and j-th particles, and ‖·‖ denotes the Euclidean norm in
Rd. The communication rate is represented as

φ(r) =
1

(1 + r2)β
. (1.1)

Note that unconditional flocking occurs if β < 1
2 , and

conditional flocking occurs if β ≥ 1
2 . For more in-depth

discussions, refer to [5, 6]. Furthermore, unconditional
flocking can also be obtained in the case of β = 1

2 (see [7]).
Recently, various modifications of the classical Cucker–
Smale model have been proposed. For example, the Cucker–
Smale model with hierarchical leadership (see [8–13], etc.),
finite time and fixed time (see [14, 15], etc.), random noise
(see [9–12, 16–19], etc.), communication failure (see [10–
12,19–21], etc.), switching topologies (see [22,23], etc.) and
time delay (see [5,17,24–32], etc.), and, for contributions in
an overview, one can refer to [33, 34].

In practical applications, time delays and communication
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failures are important factors that influence the dynamical
behavior and stability of the system (see [35, 36], etc.). This
paper introduces some studies on the flocking of Cucker–
Smale models with time delays. Liu and Wu first introduced
the time-delay factor into the Cucker–Smale model in [30].
Based on this, Choi and Haškovec [27] studied the Cucker–
Smale model with fixed transmission delay. However,
their analysis is only valid for some re-normalized systems.
Furthermore, the Cucker–Smale model with time-varying
delays was studied in [31], where a strictly positive lower
bound is assumed for φ. Erban, Haškovec and Sun [17]
considered the randomness or imperfection of individual
behavior and the delayed response of individuals to signals
in the environment of the Cucker–Smale model. The
numerical simulation results reveal that the introduction of
time delays contributes to collective behaviors. Moreover,
Haškovec and Markou [29] studied Cucker–Smale models
with processing delays. They used the Lyapunov functional
method, where the general communication function φ is
considered and some assumptions are given. For other
flocking results of delay Cucker–Smale systems, see [5, 24–
26, 28, 32], etc. In particular, Chen and Yin [25] studied
the non-flocking and flocking behaviors of the Cucker–
Smale model with time-varying delays and a short-range
interaction rate. The model is as follows: ẋi = vi,

v̇i = 1
N

∑
j6=i
φ
(∥∥∥x̃ j − x̃i

∥∥∥) (̃v j − ṽi

)
, (1.2)

where N ∈ N is the number of agents, (xi, vi) ∈ Rd × Rd

denotes the phase-space coordinates of the i-th agent at the
time t and d ≥ 1 is the physical space dimension. Here,
x̃i := xi(t − τ(t)) and ṽi := vi(t − τ(t)), and the variable time
delay τ(t) ≥ 0 is uniformly bounded, i.e., τ̄ := supt≥0 τ(t) <
+∞. The authors of [25] generalized the results of [29] and
obtained a flocking result for a more general communication
rate, which also depends on the initial data in the short-range
communication. This paper will present the application of
some key inequalities and lemmas in [25] (see Lemma 2.1–
2.2).

The agent’s movement can be affected by obstacles,
interference, noise, etc., so interaction failures are common.
Martin et al. addressed interaction failures due to a limited
communication range in [21]. The authors of [10] and

[19] considered the hierarchical Cucker–Smale model under
random interactions and the Cucker–Smale model with a
random failure under root leadership. In these two studies,
the random failures are independent and the probability
of the interaction failure is fixed. Meanwhile, the overall
leader or root leader of the group moves at a constant
rate. Moreover, Mu and He presented a hierarchical
Cucker–Smale model with time-varying failure probability
under a random interaction and a Cucker–Smale model
with random failures on a general graph in [11] and [12],
respectively. Both [11] and [12] demonstrate that flocking
behaviors often occur under certain conditions that depend
exclusively on the initial state. However, the models
with communication failures in the above literature are all
discrete Cucker–Smale models and not continuous Cucker–
Smale models. Recently, Bonnet and Flayac [20] studied
continuous Cucker–Smale models with interaction failures.
They emphasized that communication failures in the system
are represented by time-varying interaction topologies,
which differ from several other known contributions in the
literature, such as [16, 18, 37]. The Cucker–Smale-type
system with time-varying topological structures in [20] is
shown below.

ẋi = vi

v̇i = 1
N

N∑
j=1
ξi j(t)φ

(∥∥∥xi − x j

∥∥∥) (v j − vi

)
.

(1.3)

where (x1, . . . , xN) ∈
(
Rd

)N
and (v1, . . . , vN) ∈

(
Rd

)N

respectively represent the positions and velocities of the
agents, while φ(·) is a positive nonlinear kernel representing
the extent of their mutual interactions. The functions
ξi j(·) ∈ L∞ (R+, [0, 1]) are communication weights that
may lead to potential interaction failures in the system
(e.g., when ξi j(t) = 0). The authors of [20] formulated a
suitable persistence condition for the system (1.3), and they
pointed out that a collection of weights (ξi j(·)) satisfies the
persistence condition (PE) (see Definition 2.3). The authors
of [20] proved that the system (1.3) exhibits non-uniform
exponential flocking with the strong fat tail condition (see
Hypotheses (K)) in [20]) by constructing time-varying
trajectory-based strict Lyapunov functions. In this paper, the
strong fat tail condition of φ is improved, and the strong fat

tail condition (1.6) is presented.
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This paper focuses on the Cucker–Smale model with
time-varying topological structures and reaction-type delay.
Let xi(t) ∈ Rd and vi(t) ∈ Rd respectively be time-dependent
position and velocity vectors of the i-th agent for i =

1, 2, . . . ,N. Let ˜ signify the value of a variable at time
t − τ(t). For example, x̃i = xi(t − τ(t)) and ṽi := vi(t − τ(t)),
where the variable time delay τ(t) ≥ 0 is uniformly bounded,
i.e., τ̄ := supt≥0 τ(t) < +∞. Then, the delayed Cucker–
Smale-type model studied in this paper is described by

ẋi = vi,

v̇i = 1
N

N∑
j=1
ξ̃i j(t)φ

(∥∥∥x̃ j − x̃i

∥∥∥) (̃v j − ṽi

)
.

(1.4a)

The initial position and velocity trajectories are prescribed
for i = 1, 2, . . . ,N:

(xi, vi) ≡
(
x0

i (t), v0
i (t)

)
, ∀ t ∈ [−τ̄, 0] , (1.4b)

with
(
x0

i (t), v0
i (t)

)
∈ C

(
[−τ̄, 0] ;R2d

)
. The communication

rate φ quantifies the influence between the i-th particle and
the j-th particle. The same as [20], the communication
weight is no longer a fixed constant, but is represented
by a time-varying communication weight ξ̃i j(t). The
communication weights ξi j(t) : [−τ̄,+∞) → [0, 1] are
symmetric about the subscript, i.e., ξi j(t) = ξ ji(t) for any
i, j ∈ {1, 2, . . . ,N}. Obviously, ξi j(t) = 0 indicates that the
communication between agent j and agent i is disconnected
at time t.

This paper aims to provide sufficient conditions for the
flocking behavior of Cucker–Smale systems with time-
varying topological structures and reaction-type delay (see
Theorem 3.1). For the case where no-delay occurs (i.e.,
τ̄ = 0), the critical exponent of unconditional flocking in
[20] is raised from β = 1

4 to β = 1
2 by replacing the strong fat

tail condition with the weak light tail condition (1.6). For the
case where no communication fails (i.e., ξi j(t) ≡ 1 for any
i, j ∈ {1, 2, . . . ,N}), our result has a wider upper bound on
the time delay than that in [25] (see Remark (3.1)). Finally,
it is found that the introduction of time delay can deal with
the problem of a low flocking convergence rate caused by
the time-varying topology structure.

Below, the assumptions for φ = φ(r) and ξi j(t) are
presented.

Assumption 1.1. φ is bounded, positive, non-increasing and

Lipschitz continuous on R+ . Without loss of generality, we

have

φ(r) ≤ 1, ∀ r ≥ 0. (1.5)

Assumption 1.2. φ satisfies the weak light tail condition if

there are two constants σ, κ > 0 and a parameter η > 1
2 such

that

φ(r) ≥
κ

(σ + r)2η , ∀ r ≥ 0. (1.6)

Assumption 1.3 (Haškovec and Markou [29]). Assume φ(r)
is differentiable on R+; then, there is a constant α > 0 such

that

φ′(r) ≥ −αφ(r), ∀ r ≥ 0. (1.7)

For the classical communication rate (1.1) in (CS), if σ =

1, β ≤ η is chosen, Assumption 1.2 is verified; if α = 2β,
Assumption 1.3 is satisfied for all β ≥ 0.

Remark 1.1. Assumption 1.2 implies two cases, namely,

φ ∈ L1 (
R+,R+

∗

)
if β = η > 1

2 and φ /∈ L1 (
R+,R+

∗

)
if

β ≤ 1
2 , i.e., long-range communication weight and short-

range communication weight.

Assumption 1.4. The communication weights (ξi j(t)) are

continuously differentiable over the interval [0,+∞), and

there exists a constant γ > 0 such that

ξ′i j(t) ≥ −γ (1.8)

for any t ≥ 0 and i, j ∈ {1, 2, . . . ,N}.

Based on the above arguments, this paper mainly studies
the asymptotic behavior of the model (1.4). The structure
of the paper is as follows. In Section 2, some preliminary
properties of the model (1.4) are established. Given
important inequalities for position and velocity fluctuations,
it is proved that the set of velocity fluctuations is uniformly
bounded. In Section 3, the local time-dependent and global
strict Lyapunov methods are respectively applied to prove
the existence of a critical time delay for asymptotic flocking
in the system (1.4). Finally, some numerical simulations are
presented in Section 4.
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2. Preliminaries

In this section, the main tools and propositions used in
this paper are introduced. For convenience, two notations of
φ are given as follows:

φi j(t) := φ
(∥∥∥xi(t) − x j(t)

∥∥∥) , φ̃i j(t) := φ
(∥∥∥x̃i(t) − x̃ j(t)

∥∥∥) .
Below, the model (1.4) is rewritten in a matrix form asẋ = v,

v̇ = −L̃(t, x̃)̃v,
∀ t ≥ 0. (2.1a)

(x(t), v(t)) ≡ (x0(t), v0(t)), ∀ t ∈ [−τ̄, 0] , (2.1b)

where x = (x1, x2, . . . , xN) and v = (v1, v2, . . . , vN). x̃ and ṽ
are similar. In addition, L : R×(Rd)N → RdN×dN is called the
graph-Laplacian operator of the system (2.1). For almost
every t ≥ 0 and any v ∈ (Rd)N ,

(L(t, x)v)i :=
1
N

N∑
j=1

ξi j(t)φi j(t)
(
vi − v j

)
, (2.2)

(
L̃(t, x̃)̃v

)
i

:=
1
N

N∑
j=1

ξ̃i j(t)φ̃i j(t)
(̃
vi − ṽ j

)
. (2.3)

Further, for almost every t ≥ 0 and any v ∈ (Rd)N , the partial

graph-Laplacian operator Lξ : R → RdN×dN related to the
weights (ξi j(t)) is defined as

(
Lξ(t)v

)
i
=

1
N

N∑
j=1

ξi j(t)
(
vi − v j

)
. (2.4)

This reformulation of multi-agent dynamics in terms
of semi-linear ordinary differential equations in the phase
space is fairly general and allows a comprehensive study of
flocking problems via the Lyapunov method. With this goal,
the so-called bilinear form of variance is introduced below.

Definition 2.1 (see section 1.2 in [38]). For any x, v ∈
(Rd)N , the variance bilinear form B : (Rd)N × (Rd)N → R is

defined as :

B(x, v) :=
1

2N2

N∑
i, j=1

〈
xi − x j, vi − v j

〉
=

1
N

N∑
i=1

〈xi, vi〉 −
〈
x, v

〉
,

where

x̄ =
1
N

N∑
i=1

xi, v̄ =
1
N

N∑
i=1

vi.

Obviously, it is symmetric positive semi-definite and
supports the following Cauchy-Schwarz inequality

B(x, v) ≤
√

B(x, x)
√

B(v, v). (2.5)

For simplicity, this paper defines the position and velocity
fluctuations as (t ≥ −τ̄):

X(t) :=
√

B(x(t), x(t)); V(t) := B(v(t), v(t)), (2.6)

which can be evaluated based on the solutions of the system
(2.1).

Note that any solution (x, v) of the model (2.1) satisfies

˙̄x = v̄, ˙̄v = 0.

This in turn implies that v̄(t) = v̄(0) and x̄(t) = x̄(0) + v̄(0)t
for any t ≥ 0. Since the model (1.4a) is Galilean invariant,
without loss of generality, it is assumed that x̄ = v̄ ≡ 0;
otherwise, xi − x̄ and vi − v̄ are replaced with xi and vi,
respectively. The lead-up to this work has been to follow the
above assumptions, no longer described. Note that it does
not hold for t ∈ [−τ̄, 0) generally. Hence, for any t ≥ 0,

X(t) =

 1
N

N∑
i=1

‖xi(t)‖2


1
2

, V(t) =
1
N

N∑
i=1

‖vi(t)‖2. (2.7)

Now, this paper gives the definition of the asymptotic
flocking behavior of the model (1.4) and our notion of
presistence of excitation for the system (2.1), subject to
multiplicative communication failures, respectively.

Definition 2.2. System (1.4) exhibits asymptotic flocking

if the position and velocity fluctuations along the classical

solution {(xi, vi)}Ni=1 of System (1.4) satisfy

sup
t≥0

X(t) < ∞, and lim
t→∞

V(t) = 0.

Definition 2.3 (see Definition 3 in [20]). The weight

functions
(
ξi j(·)

)
satisfy the presistence of excitation

condition if there exists a pair (T, µ) ∈ R+
∗ × (0, 1] such that,

for all times t ≥ 0 and every v ∈ (Rd)N ,

B
((

1
T

∫ t+T

t
Lξ(s)ds

)
v, v

)
≥ µB(v, v). (PE)

Mathematical Modelling and Control Volume 2, Issue 4, 200–218
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Remark 2.1. (PE) can be interpreted as a lower bound
on the so-called algebraic connectivity (see [3, 39, 40])
of the average of the interaction graph with the weights
(ξi j(·)) over every time window of length T > 0, because
B(Lξv,v)

B(v,v) > µ > 0 cannot hold: set ξi j = 0; then, µ = 0,
which is a contradiction. The (PE) requires the system to
be persistently exciting in terms of the agents that have
not yet reached flocking. Meanwhile, it only involves the
communication weights (ξi j(·)), not the kernel φ(·). For
more characteristics and significance of the presistence of

excitation condition, see Remark 1 and Section 4 in [20].

Next, two lemmas are introduced (see Lemma 2.3 and
Remark 4 in [25]). To distinguish, this paper uses

V1(t) :=

 N∑
i=1

∑
j 6=i

∣∣∣vi(t) − v j(t)
∣∣∣2

1
2

=
√

2N2V(t).

For convenience, define that

k0 :=
maxs∈[−τ̄,0] V1(s)

V1(0)
, k = 2‖φ‖∞k0. (2.8)

c =

√
4 + 4τ̄3 max

{
4, k2

0

}
. (2.9)

Lemma 2.1 (see Lemma 2.3 in [25]). Let 0 ≤ φ ∈ Cb (R+)

and V(0) 6= 0. Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2. Then, the

classical solution {(xi, vi)}Ni=1 of the model (1.2) satisfies

V1(s) ≤ k0ek(t−s)V1(t), ∀t > 0, s ∈ [−τ̄, 0),

and

V1(s) ≤ ek|t−s|V1(t), ∀t, s ≥ 0.

Lemma 2.2 (see Remark 4 in [25]). Let 0 ≤ φ ∈ Cb (R+)

and V1(0) 6= 0. Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2; then, the

classical solution {(xi, vi)}Ni=1 of the model (1.2) satisfies that

V1(t) ≤ cV1(0), ∀t ≥ 0.

Lemma 2.3. Let V(0) 6= 0 and the communication φ satisfy

Assumption 1.1. Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2; then,

the classical solution {(xi, vi)}Ni=1 of the model (1.4) satisfies

that

V(s) ≤ e2k|t−s|V(t), ∀ t, s ≥ 0; (2.10a)

V(s) ≤ k2
0e2k(t−s)V(t), ∀ t ≥ 0, s ∈ [−τ̄, 0); (2.10b)

and

Ẋ(t)
a.e.
≤

√
V(t) and V(t) ≤ c2V(0), ∀ t ≥ 0, (2.11)

where k0, k and c are defined as in (2.8) and (2.9),
respectively.

Proof. This paper first proves the first part of (2.11). Taking
the derivative of X2(t) along the solution curve of System
(1.4), for almost every t ≥ 0, according to (2.5), we have

2X(t)Ẋ(t) =
dX2(t)

dt
= 2B(x(t), v(t)) ≤ 2X(t)

√
V(t).

Then, it is easy to obtain Ẋ(t) ≤
√

V(t) for almost every
t ≥ 0. Comparing our model (1.4) with the model (1.2),
ξi j(t)φ in the model (1.4) can be recorded as a whole, which
satisfies the condition 0 ≤ φ ∈ Cb (R+), and 2N2V(t) =

V2
1 (t). By Lemma 2.1 and Lemma 2.2, Lemma 2.3 is easy to

be obtained. �

For convenience, some notations are presented here. Most
of them come from [20] and will be used in subsequent
chapters.

Notation. The original function of φ(·) in [X(τ̄), X] is

defined as

Φ(X) :=
∫ X

X(τ̄)
φ(r) dr. (2.12)

This paper uses the rescaled interaction kernel defined by

φT (r) := φ
(√

2N
(
r + cT

√
V(0)

))
, (2.13)

where any r ≥ 0. Define ΦT (·) by its uniquely determined

primitive that vanishes at X(τ̄), i.e.,

ΦT (X) :=
∫ X

X(τ̄)
φT (r) dr. (2.14)

This paper introduces the time-state dependent family of

ψT (t) : R+ → RdN×dN , which is defined by

ψT (t) := 2T Id − IT (t), (2.15)

where

IT (t) =
1
T

∫ t+T

t

∫ s

t
L(σ, x(σ)) dσ ds

Mathematical Modelling and Control Volume 2, Issue 4, 200–218
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and Id denotes the identity matrix of (Rd)N . Its pointwise

derivative is given explicitly by

ψ̇T (t) = L(t, x(t)) −
1
T

∫ t+T

t
L(s, x(s)) ds.

This paper also gives some symbolic marks that will appear

in some conditions and conclusions, i.e.,

a1 :=
1
T

+ 4ekτ̄ + 4τ̄2e2kτ̄; (2.16a)

a2 := T + 2τ̄3Tk−2
0 e−4kτ̄; (2.16b)

a3 := 2T + 2τ̄3Tk2
0e4kτ̄. (2.16c)

At the end of this section, a critical lemma depending on
the (PE) is introduced, which is derived from [20].

Lemma 2.4. Let (x(·), v(·)) be a solution of the system (2.1).
Assume that τ̄ > 0 satisfies ekτ̄ ≤ 2. If (PE) holds with

(T, µ) ∈ R+
∗ × (0, 1], then, for any t ≥ 0, we have

B
((

1
T

∫ t+T

t
L(s, x(s))ds

)
v, v

)
≥ µφT (X(t))B(v, v), (2.17)

where φT (·) is defined by (2.13).

Proof. By the definition (2.2) of L : R+ × (Rd)N → RdN ×

RdN , we have

B
((

1
T

∫ t+T

t
L(s, x(s))ds

)
v, v

)
=

1
2N2

N∑
i, j=1

(
1
T

∫ t+T

t
ξi j(s)φi j(s) ds

) ∥∥∥vi − v j

∥∥∥2

≥
1

2N2

N∑
i, j=1

(
1
T

∫ t+T

t
ξi j(s)φ(

√
2NX(s)) ds

) ∥∥∥vi − v j

∥∥∥2
,

(2.18)

where φ(·) is non-increasing. As a consequence of (2.11) in
Lemma 2.3, for all s ∈ [t, t + T ], it further holds that

X(s) = X(t) +

∫ s

t
Ẋ(σ) dσ ≤ X(t) + cT

√
V(0).

According to (2.18) and the fact that φ(·) is non-increasing,
we have

B
((

1
T

∫ t+T

t
L(s, x(s))ds

)
v, v

)

≥
φT (X(t))

2N2

N∑
i, j=1

(
1
T

∫ t+T

t
ξi j(s) ds

) ∥∥∥vi − v j

∥∥∥2

= φT (X(t))B
((

1
T

∫ t+T

t
Lξ(s)ds

)
v, v

)
≥ µφT (X(t))B(v, v),

where the definitions of Lξ(·) in (2.4), φT (·) in (2.13) and
(PE) in the last inequality are used. �

Finally, some common inequalities that will be used in the
proofs of subsequent contents are presented as follows:

0 ≤ B(L(t, x(t))v, v) ≤ B(v, v); (2.19a)

0 ≤ B (IT (t)v, v) ≤ T B(v, v); (2.19b)

T B(v, v) ≤ B(ψT (t)v, v) ≤ 2T B(v, v); (2.19c)

0 ≤ B(L(t, x(t))v, L(t, x(t))v) ≤ 2B(L(t, x(t))v, v); (2.19d)

0 ≤ B (IT (t)v,IT (t)v) ≤ 2T 2B(v, v); (2.19e)

where (x, v) is the solution of the system (2.1) and all t ≥ 0.

Proof. The left-hand side of the inequality (2.19) obviously
holds, and it will be proved below that the right-hand side
also holds. By Definition (2.2) of L(t, x(t))v and Assumption
1.1, we have

B(L(t, x(t))v, v) =
1

2N2

N∑
i, j=1

ξi j(t)φi j(t)‖v j − vi‖
2

≤
1

2N2

N∑
i, j=1

‖v j − vi‖
2= B(v, v),

and, thereby, (2.19a) holds. Combining (2.19a) and the
linearity of the integral, the estimates (2.19b) can be easily
derived:

B (IT (t)v, v) =
1
T

∫ t+T

t

∫ s

t
B (L(σ, x(σ))v, v) dσ ds

≤ T B(v, v).

Then, according to the definition (2.15) of ψT (t), we have
(2.19c). Similarly, our estimate for the inequality (2.19d) is
as follows:

B (L(t, x(t))v, L(t, x(t))v)

≤
1

N2

N∑
i=1

N∑
j=1

ξi j
2(t)φ2

i j(t)‖vi − v j‖
2

≤
1

N2

N∑
i, j=1

ξi j(t)φi j(t)‖vi − v j‖
2
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= 2B(L(t, x(t))v, v),

where the discrete Cauchy-Schwarz inequality is used in
the first inequality, and 0 ≤ ξi j(t)φi j(t) ≤ 1 in the second
inequality. Next, by applying the integral Cauchy-Schwartz
inequality, we have

B (IT (t)v,IT (t)v)

≤

∫ t+T

t

∫ s

t
B (L(σ, x(σ))v, L(σ, x(σ))v) dσ ds

≤

∫ t+T

t

∫ s

t
2B(L(σ, x(σ))v, v) dσ ds

≤ 2T 2B(v, v),

where the second inequality uses (2.19d) and the third
inequality uses (2.19b). �

3. Emergent behavior

The previous section has shown some preparatory work.
In the following section, it will be argued that the asymptotic
flocking behavior for System (1.4) with both long-range and
short-range communication rates.

Theorem 3.1. Let V(0) 6= 0 and Assumptions 1.1–1.4

and (PE) be satisfied by the communication rate φ and the

communication weights (ξi j(·)), respectively. If

ekτ̄ ≤ 2 (3.1a)

and

c
√

V(0) <
µ

a3
ΦT (+∞), (3.1b)

then there exist a radius X̄M > 0 and two positive constants

αM , γM given by (3.51) such that the classical solutions

{(xi, vi)}Ni=1 of the system (1.4) satisfy

X(t) ≤ X̄M , ∀ t ≥ 0,

V(t) ≤ αMe−γM t, ∀ t ≥ τ̄,

where k, c, a3 and ΦT (·) are defined by (2.8), (2.9), (2.16c)
and (2.14), respectively.

Remark 3.1. It is worthy to note that there are very few
restrictions on the time delays, and that the convergence

rate of flocking is related to the communication weights
(ξi j(·)) and time delay τ(t). Besides, the (PE) condition
is independent of the initial configuration. When φ(r) =

(1 + r2)−β with β ∈
[
0, 1

2

]
, the second part of Condition (3.1)

is equivalent to c
√

V(0) < +∞, which obviously holds for
any initial data. When φ(r) = (1 + r2)−β with β = η > 1

2 , the
system (1.4) may exhibit flocking behavior if the initial data
satisfy Condition (3.1).

If ξi j(t) ≡ 1 for any i, j ∈ {1, 2, . . . ,N}, then the system
(1.4) degenerates into the system (1.2). However, the time-
delay in Theorem 3.1 requires only ekτ̄ ≤ 2, which weakens
the time delay requirement (see Theorem 3.1 in [25] ). If
τ̄ = 0, then the system (1.3) exhibits unconditionnal flocking
and β = 1

2 is a critical exponent, which improves the results
of [20] and is consistent with the observations of the classic
Cucker–Smale model (CS). Therefore, it is easy to get the
following corollary.

Corollary 3.1. Let V(0) 6= 0 and Assumptions 1.1–1.2

and (PE) be satisfied by the communication rate φ and the

communication weights (ξi j(·)), respectively. If the condition

(3.1b) is satisfied, then there exist a radius X̄M > 0 and

two positive constants αM , γM given by (3.51) such that the

classical solutions {(xi, vi)}Ni=1 of the system (1.3) satisfy

X(t) ≤ X̄M ,

V(t) ≤ αMe−γM t

for all times t ≥ 0. Additionally, k, c, a3 and ΦT (·) are

defined by (2.8), (2.9), (2.16c) and (2.14), respectively.

Remark 3.2. When τ̄ = 0, Assumptions 1.3–1.4
are unnecessary because the inequalities (3.27)–(3.28)
obviously hold.

To prove Theorem 3.1, it is split into a series of lemmas.

Let ψT (t) be defined as in (2.15), and consider the
candidate Lyapunov functional defined by

LT (t) := λ(t)B(ψT (t)v(t), v(t)) + 4τ̄Tλ(t)
∫ t

t−τ̄

∫ t

θ

Ṽ(s) ds dθ,

(3.2)
where t ≥ τ̄ and λ(t) is a smooth differentiable tuning curve.
λ(t) monotonically decreases with the positive lower bound,
i.e., λ̇(t) < 0, λ(t) ≥ 1.
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Lemma 3.1. Let V(0) 6= 0 and Assumption 1.1 and

(PE) be satisfied by the communication rate φ and the

communication weights (ξi j(·)), respectively. If the condition

(3.1a) is verified, then, for the solution (x(·), v(·)) of the

system (2.1) and every real number λτ̄ ≥ 1, there exists a

time horizon Tλτ̄ > 0 such that

L̇T (t) ≤ −µφT (X(t))V(t), (3.3)

where, for almost every time t ∈
[
τ̄, τ̄ + Tλτ̄

]
.

Proof. Taking the derivative of LT (t) along the solution
curve of System (2.1) on (τ̄,∞), we have

L̇T (t) ≤ λ̇(t)TV(t) + λ(t)V(t) − µλ(t)φT (X(t))V(t)

+ 4τ̄2Tλ(t)e2kτ̄V(t) − 4τ̄Tλ(t)
∫ t

t−τ̄
Ṽ(s) ds

− 2λ(t)B
(
ψT (t)v, L̃(t, x̃)̃v

)
,

(3.4)

where the first inequality holds because λ̇(t) < 0, and
(2.10a) and (2.19a) are used in the second inequality. Then,
go further to a more refined estimate. By (2.15) and the
definition of ψT (t), we have

− 2λ(t)B
(
ψT (t)v, L̃(t, x̃)̃v

)
= − 4Tλ(t)B

(
L̃(t, x̃)̃v, v

)
+ 2λ(t)B

(
IT (t)v, L̃(t, x̃)̃v

)
= I1 + I2.

Estimate I1 first:

I1 = − 4Tλ(t)B
(
L̃(t, x̃)̃v, v

)
= − 4Tλ(t)B

(
L̃(t, x̃)̃v, ṽ

)
− 4Tλ(t)B

(
L̃(t, x̃)̃v, v − ṽ

)
.

For the last term, this work uses (2.5), Young’s inequality
and Assumption 1.1, in turn,

|4Tλ(t)B
(
L̃(t, x̃)̃v, v − ṽ

)
|

≤ 4Tλ(t)
√

B
(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)√
B

(
v − ṽ, v − ṽ

)
≤ 2Tλ(t)

(
B

(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)
+ B(v − ṽ, v − ṽ)

)
≤ 2Tλ(t)

(
2B(L̃(t, x̃)̃v, ṽ) + B(v − ṽ, v − ṽ)

)
, (3.5)

where, following (1.4a) and the Hölder inequality, we have

B
(
v − ṽ, v − ṽ

)
=

1
N

N∑
i=1

‖vi − ṽi‖
2

=
1
N

N∑
i=1

∥∥∥∥∥∥
∫ t

t−τ(t)
v̇i(s) ds

∥∥∥∥∥∥2

=
1
N

N∑
i=1

∥∥∥∥∥∥∥∥
∫ t

t−τ(t)

1
N

N∑
j=1

ξi j(s)φ̃i j(s)
(̃
v j(s) − ṽi(s)

)
ds

∥∥∥∥∥∥∥∥
2

≤
τ̄

N3

N∑
i=1

∫ t

t−τ(t)

 N∑
j=1

ξi j(s)φ̃i j(s)
∥∥∥̃v j(s) − ṽi(s)

∥∥∥
2

ds

≤
τ̄

N2

∫ t

t−τ̄

 N∑
i, j=1

∥∥∥̃v j(s) − ṽi(s)
∥∥∥2

 ds

= 2τ̄
∫ t

t−τ̄
Ṽ(s) ds. (3.6)

Hence, combining (3.6) and (3.5), we have

I1 ≤ 4τ̄Tλ(t)
∫ t

t−τ̄
Ṽ(s)ds. (3.7)

Next, estimate I2, and, following from (2.5) and (2.10a), we
obtain that

I2 = 2λ(t)B
(
IT (t)v, L̃(t, x̃)̃v

)
≤ 2λ(t)

√
B (IT (t)v,IT (t)v)

√
B

(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)
≤ 4Tλ(t)

√
V(t)Ṽ(t)

≤ 4Tekτ̄λ(t)V(t), (3.8)

where (2.19d) and (2.19e) are used in the second inequality.
Combining (3.4) with (3.7) and (3.8), we have

L̇T (t) ≤
(
T λ̇(t) + λ(t) + 4Tekτ̄λ(t) + 4τ̄2Tλ(t)e2kτ̄

− µλ(t)φT (X(t))
)
V(t),

(3.9)

where t > τ̄. Choose the curve λ(·) as a solution of the ODE
for a given constant λτ̄ ≥ 1:

λ̇(t) = −a1λ(t), λ(τ̄) = λτ̄,

where a1 is defined as that in (2.16a). The latter is uniquely
determined and can be written explicitly as

λ(t) = λτ̄e−a1(t−τ̄) (3.10)

for any t ∈ [τ̄, τ̄ +
ln λτ̄
a1

]. Let Tλτ̄ =
ln λτ̄
a1

, and substituting the
analysis expression (3.10) for the curve λ(·) into (3.9) yields
that (3.3) holds for almost every time t ∈

[
τ̄, τ̄ + Tλτ̄

]
. �
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Note that (3.3) involves both the variance V(·) and the
Lyapunov functionalLT (·). However, to prove Theorem 3.1,
only the estimate of V(·) needs to be involved.

Lemma 3.2. Let V(0) 6= 0 and Assumption 1.1 and

(PE) be satisfied by the communication rate φ and

the communication weights (ξi j(·)), respectively. If the

conditions of (3.1) hold, then there is a mapping λτ̄ ∈

[1,∞) 7→ XM(λτ̄) ∈ R+ along the solution (x(·), v(·)) of the

system (2.1) such that

X(t) ≤ XM(λτ̄), ∀t ∈
[
τ̄, τ̄ + Tλτ̄

]
. (3.11)

In particular, for every λτ̄ ≥ 1, the following local, strictly

dissipative inequality holds:

V
(
τ̄ + Tλτ̄

)
≤

a3λτ̄
a2

V(τ̄) exp
(
−
µφT (XM(λτ̄))Tλτ̄

λτ̄a3

)
, (3.12)

where a1, a2 and a3 are positive constants defined as those

in (2.16), and Tλτ̄ is defined in Lemma 3.1.

Proof. Choose λτ̄ and let λ(·) denote the corresponding
tuning functions given by (3.10). By (2.19c) and (2.10), for
any solution (x(·), v(·)) of the system (2.1), we have

a2λ(t)V(t) ≤ LT (t) ≤ a3λ(t)V(t),

where t ∈
[
τ̄, τ̄ + Tλτ̄

]
. Because 1 ≤ λ(t) ≤ λτ̄, the following

inequality holds:

a2V(t) ≤ LT (t) ≤ a3λτ̄V(t), (3.13)

for any t ∈
[
τ̄, τ̄ + Tλτ̄

]
. Then, by (3.3), we have

L̇T (t) ≤ −
µ

a3λτ̄
φT (X(t))LT (t), ∀ t ∈

(
τ̄, τ̄ + Tλτ̄

)
. (3.14)

Now, this paper first proves the first part of Lemma 3.2. By
integrating (3.3) on [τ̄, t] for any t ∈

[
τ̄, τ̄ + Tλτ̄

]
, we have

LT (t) ≤ LT (τ̄) − µ
∫ t

τ̄

φT (X(s))V(s) ds,

which, together with (3.13), yields

V(t) ≤
a3λτ̄V(τ̄)

a2
−
µ

a2

∫ t

τ̄

φT (X(s))V(s) ds, (3.15)

where t ∈
[
τ̄, τ̄ + Tλτ̄

]
. Since Ẋ(s) ≤

√
V(s) and V(s) ≤

c2V(0) by (3.1a), applying the chance of variable r = X(s)

in (3.15), the integral estimate can be obtained for all times
t ∈

[
τ̄, τ̄ + Tλτ̄

]
:

V(t) ≤
a3λτ̄V(τ̄)

a2
−
µc

√
V(0)

a2

∫ X(t)

X(τ̄)
φT (r) dr

=
a3λτ̄V(τ̄)

a2
−
µc

√
V(0)

a2
ΦT (X(t)). (3.16)

Due to V(t) ≥ 0, according to (3.16), for any t ∈
[
τ̄, τ̄ + Tλτ̄

]
,

ΦT (X(t)) ≤
a3λτ̄

µc
√

V(0)
V(τ̄). (3.17)

Since φ(·) is a non-increasing positive function, its primitive
ΦT (·) is a strictly increasing map. Then, by (3.1b), there
exists a constant XM(λτ̄) with XM(λτ̄) > X(τ̄) such that

V(τ̄) =
µc

√
V(0)

a3λτ̄
ΦT (XM(λτ̄)). (3.18)

This paper claims that (3.11) holds. For contradiction,
assume that there exists t∗ ∈

[
τ̄, τ̄ + Tλτ̄

]
such that X(t∗) >

XM(λτ̄). By the strict monotonically increasing property of
ΦT (·), we have ΦT (X(t∗)) > ΦT (XM(λτ̄)). Combining this
with (3.17) and (3.18) implies

ΦT (XM(λτ̄)) < ΦT (X(t∗)) ≤
a3λτ̄

µc
√

V(0)
V(τ̄) = ΦT (XM(λτ̄)),

which is a contradiction. Consequently, (3.11) holds.
Finally, this paper proves that (3.12) holds. Applying the

Gronwall inequality to (3.14) with (3.11), we have

LT (t) ≤ LT (τ̄) exp
(
−

µ

a3λτ̄
φT (XM(λτ̄))(t − τ̄)

)
for all t ∈

[
τ̄, τ̄ + Tλτ̄

]
. This, together with (3.13), implies

V(t) ≤
a3λτ̄
a2

V(τ̄) exp
(
−

µ

a3λτ̄
φT (XM(λτ̄))(t − τ̄)

)
(3.19)

for all t ∈
[
τ̄, τ̄ + Tλτ̄

]
. According to t = τ̄ + Tλτ̄ in (3.19),

(3.12) holds immediately. �

Using the dissipative inequality (3.12) obtained in Lemma
3.2, an upper bound on the standard deviation X(·) can be
obtained with respect to λτ̄ ≥ 1.

Proposition 3.1. Let V(0) 6= 0 and Assumptions 1.1–1.2

and (PE) be satisfied by the communication rate φ and

the communication weights (ξi j(·)), respectively. If the

conditions of (3.1) are satisfied, then there is a radius X̄M >

0 such that X(t) ≤ X̄M along the classical solution (x(·), v(·))

of the system (2.1) for t ≥ 0.
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Proof. From the expression of (3.18), we have

φT (XM(λτ̄)) = φT ◦Φ
−1
T

 a3λτ̄

µc
√

V(0)
V(τ̄)

 ,
where “ ◦ ” denotes the standard composition operation
between functions. In addition, by integrating (1.6) with
respect to r ∈ [X(τ̄), X] for some X > X(τ̄), it also holds
that

Φ(X) ≥
κ

1 − 2η

(
(σ + X)1−η − (σ + X(τ̄))1−2η

)
,

which can be reformulated as

X ≤
(

1 − 2η
κ

Φ(X) + (σ + X(τ̄))1−2η
) 1

1−2η

− σ (3.20)

for every X ≥ X(τ̄). Φ(·) is defined in (2.12) to represent
the primitive function of φ(·). Next, applying variable
substitution to (2.14) yields

Φ(X) ≤
√

2NΦT (X) + Φ
(√

2N
(
X(τ̄) + cT

√
V(0)

))
,

(3.21)

so that X := XM(λτ̄) = Φ−1
T

(
a3λτ̄

µc
√

V(0)
V(τ̄)

)
. Recalling that

φT (·) is non-increasing, according to (3.20) and (3.21), and
together with Assumption 1.2, we have

φT (XM(λτ̄))

≥ φT

(1 − 2η
κ

Φ(XM(λτ̄)) + (σ + X(τ̄))1−2η
) 1

1−2η

− σ


≥ φT

(
1 − 2η
κ

(√
2NΦT (XM(λτ̄)) + Φ

(√
2N (X(τ̄)

+cT
√

V(0)
))

+
(
(σ + X(τ̄))1−2η

) 1
1−2η
− σ

)
≥ φT

1 − 2η
κ

( √2Na3λτ̄

µc
√

V(0)
V(τ̄) + Φ

(√
2N (X(τ̄)

+cT
√

V(0)
))

+
(
(σ + X(τ̄))1−2η

) 1
1−2η
− σ

)
≥ κ (C1 + C2λτ̄)

2η
2η−1 , (3.22)

where C1,C2 < 0 only depend on (N,T, µ, τ̄, k0, η, κ) .
Substituting the inequality in (3.22) into (3.12) while
recalling that Tλτ̄ =

ln λτ̄
a1

, we have

V(τ̄ + Tλτ̄ ) ≤ V(τ̄)
a3λτ̄
a2

exp
(
−
µκTλτ̄
a3λτ̄

(C1 + C2λτ̄)
2η

2η−1

)

≤ V(τ̄)
a3

a2
exp

(
a1Tλτ̄ −

µκTλτ̄
a3

e−a1Tλτ̄ (C1 + C2λτ̄)
2η

2η−1

)
≤ V(τ̄)

a3

a2
exp

((
a1 −C3e

a1Tλτ̄
2η−1

)
Tλτ̄

)
, (3.23)

where C3 =
µκ
a3

C
2η

2η−1

2 > 0. Observe that λτ̄ is free over
the interval [1,+∞) and Tλτ̄ is a continuous monotone
increasing function of λτ̄ ∈ [1,+∞). Since Tλτ̄ spans
[0,+∞), a time reparametrization can be defined by using
S := τ̄ + Tλτ̄ . Then, by (3.23) and (2.11), this new time
variable can be expressed as

X(t) ≤X(τ̄) +

∫ t

τ̄

√
V(S ) dS

≤X(τ̄) +

∫ t−τ̄

0

√
V(τ̄)

a3

a2
exp

((
a1 −C3e

a1S
2η−1

) S
2

)
dS

for any t ≥ τ̄. The integral on the right-hand side is
uniformly bounded because of η > 1

2 . Thus, there exists
a constant X̄M > 0 such that X(t) ≤ X̄M for all t ≥ 0, which
proves our claim. �

For convenience, it is defined that

D(t) = B (L(t, x(t))v(t), v(t)) , (3.24)

D̃(t) = B
(
L̃(t, x̃(t))̃v(t), ṽ(t)

)
, (3.25)

k̂ = γ + αcN
√

2V(0) + 2kekτ̄. (3.26)

Here α, γ and c are defined in (1.6), (1.8) and (2.11),
respectively. Now, this paper provides a mutual-direction
estimate for the quantum D(t) defined in (3.25).

Lemma 3.3. Let V(0) 6= 0 and Assumptions 1.1, 1.3

and 1.4 be satisfied by the communication rate φ and the

communication weights ξi j(t), respectively. If (3.1a) holds,

then the solution (x(·), v(·)) of the system (2.1) satisfies that

D(t) +
k̂

2k

(
1 − e2k(s−t)

)
V(t) ≤ D(s)

≤ D(t) +
k̂

2k

(
e2k(t−s) − 1

)
V(t)

(3.27)

for all t, s ≥ 0. In particular, we have

D(t) +
k̂
2k

(
1 − e−2kτ̄

)
V(t) < D̃(t) (3.28)

< D(t) +
k̂

2k

(
e2kτ̄ − 1

)
V(t)

for all t ≥ τ̄.
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Proof. The proof is completed in two steps. In the first step,
the inequality is proved:

dD(t)
dt
≥ −k̂V(t), ∀ t ≥ 0. (3.29)

For any t ≥ 0, D(t) is differentiated in time:

dD(t)
dt

=
d
dt

 1
2N2

N∑
i, j=1

ξi j(t)φi j(t)
∥∥∥vi − v j

∥∥∥2


=

1
2N2

N∑
i, j=1

ξ′i j(t)φi j(t)
∥∥∥vi − v j

∥∥∥2

+
1

N2

N∑
i, j=1

ξi j(t)φi j(t)
〈
vi − v j, v̇i − v̇ j

〉
+

1
2N2

N∑
i, j=1

ξi j(t)φ′i j(t)
〈

x j − xi

‖x j − xi‖
, v j − vi

〉 ∥∥∥vi − v j

∥∥∥2
.

(3.30)

By Assumption 1.1 and Assumption 1.4, ξ′i j(t) ≥ −γ for
t ≥ 0; for the first term on the right-hand side of (3.30), we
have

1
2N2

N∑
i, j=1

ξ′i j(t)φi j(t)
∥∥∥vi − v j

∥∥∥2
≥ −γV(t), (3.31)

where (2.6) is used in the last equality. For the second term
on the right-hand side of (3.30), the symmetrization trick is
applied:

N∑
i, j=1

ξi j(t)φi j(t)
〈
vi − v j, v̇i − v̇ j

〉
= 2

N∑
i, j=1

ξi j(t)φi j(t)
〈
vi − v j, v̇i

〉
.

Then, the term is estimated by using the Cauchy-Schwartz
inequality:

2
N2

N∑
i, j=1

ξi j(t)φi j(t)
〈
vi − v j, v̇i

〉
= −

2
N2

N∑
i=1

〈 N∑
j=1

ξi j(t)φi j(t)(v j − vi), v̇i

〉

≥ −
2

N3

N∑
i=1

∥∥∥∥∥∥∥∥
N∑

j=1

(v j − vi)

∥∥∥∥∥∥∥∥
∥∥∥∥∥∥∥∥

N∑
j=1

(̃vi − ṽ j)

∥∥∥∥∥∥∥∥

≥ −
2

N2

N∑
i=1


√√√ N∑

j=1

‖vi − v j‖
2



√√√ N∑

j=1

‖̃vi − ṽ j‖
2


≥ −

2
N2

√√√ N∑
i, j=1

‖vi − v j‖
2

√√√ N∑
i, j=1

‖̃vi − ṽ j‖
2

≥ − 4
√

V(t)Ṽ(t) ≥ −2kekτ̄V(t), (3.32)

where ξi j(t) ≤ 1, φ(t) ≤ 1 is used. In the last inequality,
(2.10a) and (2.10b) in Lemma 2.3 are applied. By
Assumption 1.3, for the third term on the right-hand side
of (3.30), we have

1
2N2

N∑
i, j=1

ξi j(t)φ′i j(t)
〈

x j − xi

‖x j − xi‖
, v j − vi

〉 ∥∥∥vi − v j

∥∥∥2

≥ −
α

2N2

N∑
i, j=1

ξi j(t)φi j(t)‖v j − vi‖
∥∥∥vi − v j

∥∥∥2

≥ −
αc

√
2V(0)

2N

N∑
i, j=1

∥∥∥vi − v j

∥∥∥2

= − αcN
√

2V(0)V(t), (3.33)

where, in the second inequality, the bound provided by
(2.11) in Lemma 2.3 is used:

‖v j − vi‖≤
√

2N2V(t) = N
√

2V(t).

By combining the estimates (3.31)–(3.33), we get (3.29).
In the second step, this paper proves (3.27) and (3.28).

Integrating (3.29) from s to t yields

D(s) ≤ D(t) + k̂
∫ t

s
V(σ) dσ, ∀ t, s ≥ 0. (3.34)

This paper claims that, for any t, s ≥ 0,∫ t

s
V(σ) dσ ≤

1
2k

(
e2k(t−s) − 1

)
V(t), (3.35)∫ t

s
V(σ) dσ ≤

1
2k

(
e2k(t−s) − 1

)
V(s). (3.36)

In fact, by (2.10a), we have∫ t

s
V(σ) dσ ≤

∫ t

s
e2k(t−σ)V(t) dσ ≤

1
2k

(
e2k(t−s) − 1

)
V(t),

∀ t ≥ s ≥ 0,
(3.37)∫ t

s
V(σ) dσ ≤

∫ t

s
e−2k(σ−t)V(t) dσ ≤

1
2k

(
e2k(t−s) − 1

)
V(t),
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∀ s ≥ t ≥ 0.
(3.38)

Combining (3.37) and (3.38) gives (3.35), and (3.36) can be
obtained in the same way. According to (3.35) and (3.36),
for any t, s ≥ 0, (3.34) can be scaled to

D(s) ≤ D(t) +
k̂
2k

(
e2k(t−s) − 1

)
V(t), (3.39)

D(s) ≤ D(t) +
k̂

2k

(
e2k(t−s) − 1

)
V(s), (3.40)

where (3.39) is the right-hand side of (3.27). Next,
exchanging s with t in (3.40), we have

D(s) ≥ D(t) +
k̂

2k

(
1 − e2k(s−t)

)
V(t), ∀ t, s ≥ 0. (3.41)

Combining (3.39) and (3.41), we obtain (3.27). In particular,
let s = t − τ(t) in (3.27), which gives (3.28). �

Based on the uniform estimate obtained in Proposition
3.1, we shall prove the second part of Theorem 3.1.

Proof of Theorem 3.1. Since X(·) is uniformly bounded in
Proposition 3.1, this paper only needs to prove that the
exponential convergence of V(·) is toward 0. Combining
(2.17) and Proposition 3.1, recalling that φT (·) is non-
increasing, we have

B
((

1
T

∫ t+T

t
L(s, x(s))ds

)
v, v

)
≥ µφT (X̄M)B(v, v) (3.42)

for any t ≥ 0, where φT (·) is defined by (2.13).
Let ψT (t) be defined as that in (2.15), and consider the

Lyapunov functional defined by

LT (t) :=λV(t) + B (ψT (t)v, v)

+ (4λ + 2T ) τ̄
∫ t

t−τ̄

∫ t

θ

D̃(s) ds dθ
(3.43)

for all times t ≥ τ̄, where λ > 0 is a tuning parameter and
(x(t), v(t)) solves (2.1). Note that, by (2.19) and (2.10), we
have

a4V(t) ≤ LT (t) ≤ a5V(t) (3.44)

for all times t ≥ τ̄, where a4 = λ+ T and a5 = λ+ 2T + (2λ+

T )τ̄3e4kτ̄. Now, this paper proves that the following strictly
dissipative inequality holds for t ≥ τ̄:

L̇T (t) ≤ −γMLT (t),

where γM > 0 is a given constant. With this goal in mind,
this paper takes the derivative of LT (t) along the solution
curve of the system (2.1) on (τ̄,∞):

L̇T (t) ≤ − (2λ + 4T )B
(
L̃(t, x̃)̃v, v

)
− µφT (X̄M)V(t)

+ 2B
(
IT (t)v, L̃(t, x̃)̃v

)
+ (4λ + 8T )τ̄2D̃(t)

+ D(t) − (4λ + 8T )τ̄
∫ t

t−τ̄
D̃(s) ds,

(3.45)

where (3.42) is used. This work uses Young’s inequality
with δ = 2 and the inequality (2.19d):

B
(
L̃(t, x̃)̃v, v

)
≥ D̃(t) −

∣∣∣∣B (
L̃(t, x̃)̃v, v − ṽ

)∣∣∣∣
≥ D̃(t) −

√
B

(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)√
B

(
v − ṽ, v − ṽ

)
≥ D̃(t) −

1
4

B
(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)
− B

(
v − ṽ, v − ṽ

)
≥

1
2

D̃(t) − 2τ̄
∫ t

t−τ̄
D̃(s) ds. (3.46)

The second inequality in (3.46) is the Cauchy-Schwartz
inequality (2.5), and the last term is given by (3.6).
According to (3.8), we have

B
(
IT (t)v, L̃(t, x̃)̃v

)
≤

√
B (IT (t)v,IT (t)v)

√
B

(
L̃(t, x̃)̃v, L̃(t, x̃)̃v

)
≤ 2T

√
V(t)D̃(t) ≤ T εV(t) +

T
ε

D̃(t),

(3.47)

where (2.19d) is used in the second inequality and Young’s
inequality with ε > 0 is used in the last inequality.
Substituting (3.46) and (3.47) into the inequality (3.45), we
have

L̇T (t) ≤ −
(
µφT (X̄M) − 2T ε

)
V(t) + D(t)

+

(
2T
ε

+ 4λτ̄2 − λ

)
D̃(t)

(3.48)

for any t ≥ τ̄ and given λ, ε > 0. Below, for the right side of
(3.48), this paper uses (3.1a) and (3.28):

L̇T (t) ≤ −
(
µφT (X̄M) − 2T ε +

k̂
2k

(
1 − e−2kτ̄

))
V(t)

+

(
2T
ε

+ 4λτ̄2 − λ + 1
)

D̃(t).

Therefore, the following parameters are chosen:

ε =
k̂
(
1 − e−2kτ̄

)
4Tk

+
µφT (X̄M)

4T
and λ =

2T
ε

+ 1
1 − 4τ̄2 . (3.49)
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According to the condition (3.1a) in Theorem 3.1, we
have ε, λ > 0. Using the inequality (3.44), the following
inequality can be obtained:

L̇T (t) ≤ −
µφT (X̄M)

2
V(t) ≤ −

µφT (X̄M)
2a5

LT (t),

for any t ≥ τ̄. By applying the Gronwall inequality together
with (3.44), we have

V(t) ≤ αMe−γM t (3.50)

for all times t ≥ τ̄, where αM , γM > 0 are given by

αM =
a5

a4
V(τ̄) exp

(
µτ̄φT (X̄M)

2a5

)
, γM =

µφT (X̄M)
2a5

, (3.51)

with λ > 0 as that in (3.49). By combining Proposition 3.1
and (3.50), it is concluded that the solution (x(·), v(·)) of the
system (2.1) converges to flocking with an exponential rate
in the velocity variable. �

Remark 3.3. Assumptions 1.3–1.4 cannot be removed
because it provides a key inequality (3.28) that is needed
in the time-delay system (1.4), which is a restriction of
Theorem 3.1. However, if τ̄ = 0, then Assumptions 1.3–
1.4 can be removed because the inequalities (3.27)–(3.28)
obviously hold.

4. Numerical experiments

In this section, numerical simulation examples of the
dynamic behavior are provided for the system (1.4) with
regard to particle positions and velocities under Condition
(3.1). The flocking behavior in Section 3 is simulated and
the effect of interaction failure and time lag on the flocking
convergence rate is analyzed.

First, for the convenience of the following discussion,
two functions and their respective images are given. These
two functions are inspired by the forced harmonic vibration
equation for any k ∈ N:

f (t) =

sin2 t, if t ∈ [2kπ, (2k + 1
k+1 )π);

0, if other.

g(t) =

sin2 t, if t ∈ [2kπ, (2k + 1)π);

0, if other.

The images are shown in Fig. 1, which shows that
the continuous zero set Ek (t : f (t) = 0, t ∈ [2kπ, 2(k + 1)π))

increases over time, while the continuous zero set
Fk (t : g(t) = 0, t ∈ [2kπ, 2(k + 1)π)) maintains π units over
time.
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(b) Function g(t)

Figure 1. Communication weight functions.

Example 4.1. Let N = 10, φ(r) = 1
(1+r)β , τ(t) = 1

4 sin t and
ξi j(t) = g(t) for any i, j ∈ {1, 2, . . . ,N}, which satisfies the
(PE) condition because T = 2π and µ ≤ 1

4 are chosen; we
have

1
T

∫ t+T

t
ξi j(s) ds =

1
T

∫ π

0
sin2 s ds ≥ µ

for any t ≥ 0 and i, j ∈ {1, 2, . . . ,N}. For the initial data, x(t)
and v(t) are set to be constant for t ∈ [−τ̄, 0]. By a direct
calculation, τ̄ = 1

4 , k0 = 1, c =
√

17/2, a3 = 4π + πe2

16

and ekτ̄ = e
1
2 ≈ 1.65 < 2 are obtained. Moreover, if β =

1
2 , then ΦT (+∞) = +∞, which implies that Condition (3.1)
in Theorem 3.1 holds. So, according to Theorem 3.1, the
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Figure 2. Long-time behavior of particle position
fluctuations and relative velocities in Example 4.1
for β = 1

2 (flocking).

flocking occurs. We set the initial position

x(0) ≡ (0.1,−0.2, 0.3,−0.4, 0.5,−0.6, 0.7,−0.8, 0.9,−1),

and the initial velocity

v(0) ≡ (−0.1, 0.2,−0.3, 0.4,−0.5, 0.6,−0.7, 0.8,−0.9, 1).

As described in Fig. 2, numerical simulations confirm that
position fluctuations are uniformly bounded and velocity
fluctuations converge exponentially to zero.

If β = 1, we set the initial position

x(0) ≡ (1,−2, 3,−4, 5,−6, 7,−8, 9,−10) × 10−4,

and the initial velocity

v(0) ≡ (−1, 2,−3, 4,−5, 6,−7, 8,−9, 10) × 10−4.
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(b) Velocity fluctuations

Figure 3. Long-time behavior of particle position
fluctuations and relative velocities in Example 4.1
for β = 1 (flocking).

Then, V(0) = X(0) = 3.825 × 10−7 and X(0) > X(τ̄), which
can be seen from Fig. 3(a). Thus, we have

c
√

V(0) ≈ 0.00127 < 0.00184 ≈
∫ +∞

X(0)
φT (r) dr < ΦT (+∞),

which implies that Condition (3.1) in Theorem 3.1 holds.
The numerical simulations are shown in Fig. 3. The results
confirm that position fluctuations are uniformly bounded,
and that velocity fluctuations converge exponentially to zero,
indicating that the system 1.4 exhibits flocking behavior.

It can be seen in Figs. 2 and 3 that the relative velocity
between particles is stepped attenuation, and that it finally
converges to zero, which is guaranteed by the selection of
communication weights satisfying the (PE) condition. Next,
another communication weight function is selected, which
does not meet the (PE) condition, to analyze the flocking
behavior of the system (1.4).
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Figure 4. Long-time behavior of particle position
fluctuations and relative velocities in Example 4.2
for β = 1

2 (non-flocking).

Example 4.2. Let ξi j(t) = f (t) for any i, j ∈ {1, 2, . . . ,N};
the remaining parameters and variables are the same as those
in Example 4.1. Obviously, ξi j(t) does not satisfy the (PE)
condition since limt→∞ f (t) = 0. The numerical simulations
are shown in Figs. 4 and 5. It can be seen that the relative
positions between the particles are unbounded. Although
the relative velocity also decreases in a step-like manner, it
does not converge to zero in the end but maintains a uniform
velocity. Therefore, when the system 1.4 encounters a
communication fault with the communication weight f (t),
the flocking behavior will fail.

Example 4.3. To analyze the influence of the time-varying
topological structure and time lag τ(t) on the flocking
convergence rate, this paper investigates the evolution of
velocity fluctuations with time for four different situations.
ξi j(t) = g(t) for any i, j ∈ {1, 2, . . . ,N} and τ(t) = 1

4 sin t
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(b) Velocity fluctuations

Figure 5. Long-time behavior of particle position
fluctuations and relative velocities in Example 4.2
for β = 1 (non-flocking).

is the first case; ξi j(t) ≡ 1 and τ(t) = 1
4 sin t is the second

case; ξi j(t) = g(t) for any i, j ∈ {1, 2, . . . ,N} and τ(t) = 0
is the third case; ξi j(t) ≡ 1 and τ(t) = 0 is the fourth
case. They are respectively represented in Fig. 6 by a
red solid line, a blue dashed line, a magenta dashed line
and a green dashed line. Other configurations were chosen
in the same way as in Example 4.1. Figure 6 illustrates
the numerical simulation, where (a) and (b) represent the
flocking convergence rate for long-range communication
and short-range communication, respectively. It can be seen
that the communication failure caused by the time-varying
topological structure slows down the flocking convergence
in both situations, whereas the small delay speeds up the
flocking convergence. So, it is advantageous to introduce
time delays to the general Cucker–Smale system with the
time-varying topological structure, which allows the system
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Figure 6. Convergence rate of velocity
fluctuations in Example 4.3.

to initiate flocking more quickly.

5. Conclusions

The phenomena of communication failure and time delay
are often observed in nature. This paper mainly studies
the influence of communication failures caused by a time-
varying topology and reaction-type delay on the flocking
behavior of multi-particle systems. Two main problems
are discussed in this paper. One is as follows: what
conditions do time-varying topologies need to meet to
avoid communication failure without affecting the final
flocking behavior? The other is the question of how the
influence of time delay affects the flocking behavior of
time-varying systems? This paper gives the corresponding
(PE) condition for the first problem. Under this condition,
the flocking behavior of the Cucker–Smale system (1.3)

with a time-varying topological structure will occur, which
proves that, when there is long-range interaction, the system
will have unconditional flocking behavior, and when there
is short-range interaction, the system will have flocking
behavior when the initial value satisfies certain conditions.
But, inevitably, communication failure slows down the
convergence rate of flocking behavior. In addition, it
was found in the numerical simulation that, if the (PE)
condition given in this paper is not satisfied, the flocking
behavior of the system will fail. For the second problem,
this paper gives the corresponding delay condition (3.1) to
maintain the stability of the system (1.4) flocking behavior,
and through numerical simulation analysis, it was found
that the delay is conducive to accelerating the convergence
rate of the flocking behavior, which improves the slow
convergence rate problem caused by communication failure.
In addition, it is worth mentioning that the Lyapunov
functional constructed in this paper is more refined than
that in [20], and that the conclusion obtained includes
and extends the conclusion in [20]. The assumption of
communication weight selected in this work is a fixed
function, but, in reality, the change of communication
weight is often random, which cannot be described by a
function. At this time, we need to introduce random time
variables and establish corresponding random persistent
excitation conditions, which is our next focus of study.
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