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Abstract: This paper investigates the solvability of the Sylvester matrix equation AX−XB = C with respect to left semi-tensor product.
Firstly, we discuss the matrix-vector equation AX − XB = C under semi-tensor product. A necessary and sufficient condition for the
solvability of the matrix-vector equation and specific solving methods are studied and given. Based on this, the solvability of the matrix
equation AX − XB = C under left semi-tensor product is discussed. Finally, several examples are presented to illustrate the efficiency of
the results.
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1. Introduction

Matrix equations have become an important part of
matrix theory, and have been successfully applied in many
fields, such as control theory, physics, electronic technology,
sensing technology, cryptography, and so on [1–4]. The
main work of this paper is to study the solvability of
the Sylvester matrix equation with respect to left semi-
tensor product. As an important role in control theory, it
plays an important role in dynamic systems, neural network
systems, robust control, and other directions [5–7]. Many
mathematics professors and cybernetics experts from world-
renowned universities and scientific research institutions
have conducted in-depth research on the Sylvester matrix
equation. For example, Professor Roth [8] proved the
compatibility condition of the Sylvester matrix equation,
that is, the famous Roth theorem. Professor G. Golub
[9] studied the Sylvester equation by Hesenberg-Schur
method. Professor Varga of the German Aerospace Center
[10] considered the application of the Sylvester equation in
robust pole assignment. Professor Kågström [11] studied the

compatibility of matrix equations containing any Sylvester
and *-Sylvester by using the equivalence relationship of the
matrix.

Professor Cheng [12] proposed the semi-tensor product
of matrices to solve linearization problems in nonlinear
systems. It has been widely used in many fields, such
as physics in nonlinear systems, graphs [13], and Boolean
networks [14]. Recently, Yao and Feng [15] discussed the
solution of the matrix equation AX = B with respect to semi-
tensor product. Li [16] studied the solvability of the matrix
semi-tensor product AXB = C. Based on this, the solvability
of the famous Sylvester matrix equation AX − XB = C in
which the matrix multiplication is left semi-tensor product
is studied in this paper.

There are six sections in this paper. The remaining
five sections are structured as follows: we introduce some
fundamental definitions and properties in section 2. In
section 3, we study the solution of the Sylvester matrix
equation AX − XB = C by investigating the matrix-
vector equation in two cases. In section 4, we discuss the
solvability of the matrix equation AX−XB = C in two cases.
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We provide some examples to illustrate the results in section
5 and draw our conclusion in section 6.

Some notations are presented as follows:
(1). Cp : the vector space of complex p-tuples.
(2). Cm×n : the vector space of m × n complex matrices.
(3). lcm(r, s): the least common multiple of two positive
integers r and s.
(4). gcd(r, s): the greatest common divisor of two positive
integers r and s.
(5). Ai : the i-th column of A.

2. Preliminaries

In this section, we briefly review some fundamental
definitions and properties which will be used in the
following.

Definition 2.1. ([17]) The Kronecker product of two

matrices A = (ai j) ∈ Cm×r and B = (bi j) ∈ Cs×n is

A ⊗ B =


a11B a12B · · · a1rB

a21B a22B · · · a2rB
...

...
. . .

...

am1B am2B · · · amrB


,

where ⊗ is the Kronecker product.

Definition 2.2. ([17]) With each matrix A = (ai j) ∈ Cm×r,

denoted by Vc(A) is defined as

Vc(A) = (a11, . . . , a1r, a21, . . . , a2r, . . . , am1, . . . , amr)T.

Proposition 2.1. ([17]) Let A ∈ Cm×r, B ∈ Cr×s and C ∈

Cs×n. Then we have the following
Vc(ABC) = (CT ⊗ A)Vc(B),

Vc(ABC) = (In ⊗ AB)Vc(C) = (CTBT ⊗ Im)Vc(A),

Vc(AB) = (Is ⊗ A)Vc(B) = (BT ⊗ Im)Vc(A).

Lemma 2.1. ([17]) Let A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n.

X ∈ Cm×n is unknown. Then the solvability of the Sylvester

matrix equation AX−XB = C is equivalent to the solvability

of the matrix-vector equation

(In ⊗ A)Vc(X) − (BT ⊗ Im)Vc(X) = Vc(C).

Definition 2.3. ([12]) Let A = (ai j) ∈ Cm×r, B = (bi j) ∈
Cs×n. The left semi-tensor product of A and B is defined as

A n B = (A ⊗ I t
r
)(B ⊗ I t

s
) ∈ C

mt
r ×

nt
s ,

where t = lcm(r, s).

3. Solvability of the Sylvester matrix-vector equation
AX − XB = C

In this section, we discuss the solvability of the Sylvester
matrix-vector equation

AX − XB = C (3.1)

under left semi-tensor product, where A ∈ Cm×r, B ∈ Cs×n,
and C ∈ Ch×k are known. The problem is to find a
vector X satisfying matrix-vector equation (3.1). Firstly,
we investigate the simple case m = h, then we discuss the
general case.

3.1. The case m=h

In this subsection, we study the solvability of the
Sylvester matrix-vector equation (3.1) under left semi-tensor
product, where A ∈ Cm×r, B ∈ Cs×n, C ∈ Cm×k. X ∈ Cp×1

is an unknown vector. By Definition 2.3, we have the
following lemma.

Lemma 3.1. If the Sylvester matrix-vector equation (3.1)

exists a solution, then r
k and m

s are positive integers. In fact,
r
k = m

s = p.

Proof. By Definition 2.3, we have

C = AX − XB

= A n X − X n B

= (A ⊗ I t
r
)(X ⊗ I t

p
) − (Ip ⊗ B)X ∈ Cm×k,

A n X = (A ⊗ I t
r
)(X ⊗ I t

p
) ∈ C

mt
r ×

t
p ,

and

X n B = (Ip ⊗ B)X ∈ Csp×n,

where t = lcm(r, p). We obtain that m = mt
r = sp, k = t

p = n.
Then, t = r and k = t

p = r
p . Consequently, r

k and m
s are

positive integers. Furthermore, r
k = m

s = p. Hence, if the
solution of the matrix-vector equation (3.1) exists, r

k and m
s

are required to be positive integers and r
k = m

s = p. The
proof is completed. �

Remark 3.1. When p = m = r, k = n = s =

1, the solvability of the Sylvester matrix-vector equation

AX − XB = C under left semi-tensor product becomes

conventional case.
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Now we investigate the solvability of the Sylvester
matrix-vector equation (3.1). Suppose that

X =
[
x1 x2 · · · xp

]T
∈ Cp,D = Ip ⊗ B.

Then, the Sylvester matrix-vector equation (3.1) can be
rewritten as

AX − XB

=
[
Â1 Â2 · · · Âp

]

x1

x2
...

xp


−

[
D̂1 D̂2 · · · D̂p

]

x1

x2
...

xp


= x1Â1 + x2Â2 + · · · + xpÂp − x1D̂1 − · · · − xpD̂p

= x1(Â1 − D̂1) + x2(Â2 − D̂2) + · · · + xp(Âp − D̂p)

= C ∈ Cm×k,
(3.2)

where Â1, Â2, . . ., Âp are p equal-size blocks of matrix A,
D̂1, D̂2, . . . , D̂p are p equal-size blocks of matrix Ip ⊗ B.
Accordingly, we establish the following result.

Theorem 3.1. The Sylvester matrix-vector equation (3.1)

exists a solution if and only if Â1 − D̂1, Â2 − D̂2, . . .,

Âp − D̂p and C are linearly dependent in vector space Cm×k.

Moreover, if Â1 − D̂1, Â2 − D̂2, . . ., Âp − D̂p are linearly

independent, the solution would be unique.

Corollary 3.1. If the Sylvester matrix-vector equation (3.1)

exists a solution, the following rank condition holds:

rank(A) + rank(B) = rank

A C

0 B

 . (3.3)

Here, we have a necessary condition for the solvability
of the Sylvester matrix-vector equation (3.1). In particular,
when the Sylvester matrix-vector equation AX − XB = C

with respect to conventional matrix product, condition (3.3)
is a necessary and sufficient one. The following is an
example to illustrate it.

Example 3.1. (i) Let matrices A, B, C as following:

A =

1 2 1 1
0 1 0 2

 ,
B =

[
1 2

]
,

C =

 1 1
−1 1

 .
It is easy to verify that

X =

11


is a solution. Obviously, it satisfies condition (3.3).

(ii) Let

C =

 2 0
−1 1

 ,
and A, B are the same as (i). Clearly, it satisfies condition

(3.3), but the matrix-vector equation (3.1) has no solution.

It is easy to know that the equation (3.2) is equivalent to
the following equation:

x1Vc(Â1) + x2Vc(Â2) + · · · + xpVc(Âp)

− x1Vc(D̂1) − x2Vc(D̂2) − · · · − xpVc(D̂p)

=
[
Vc(Â1) Vc(Â2) · · · Vc(Âp)

]
X

−
[
Vc(D̂1) Vc(D̂2) · · · Vc(D̂p)

]
X

= Vc(C).

Next, we have the following equivalent form.

Theorem 3.2. The Sylvester matrix-vector equation AX −

XB = C under semi-tensor product is equivalent to the

following matrix-vector equation under conventional matrix

product:

ĀX − D̄X = Vc(C),

where
Ā =

[
Vc(Â1) Vc(Â2) · · · Vc(Âp)

]

=


A1 Ak+1 · · · A(p−1)k+1

A2 Ak+2 · · · A(p−1)k+2
...

...
. . .

...

Ak A2k · · · Apk


,

D̄ =
[
Vc(D̂1) Vc(D̂2) · · · Vc(D̂p)

]

=


D1 Dk+1 · · · D(p−1)k+1

D2 Dk+2 · · · D(p−1)k+2
...

...
. . .

...

Dk D2k · · · Dpk


.

Ai, Di are the i-th column of A and Ip ⊗ B, respectively.
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Corollary 3.2. The Sylvester matrix-vector equation (3.1)

exists a solution if and only if

rank(Ā) + rank(D̄) = rank

Ā Vc(C)
0 D̄

 .
Remark 3.2. Here D̄ = Ip ⊗ B̄T, then the Sylvester matrix-

vector equation (3.1) exists a solution if and only if

rank(Ā) + rank(B̄) = rank

Ā Vc(C)
0 B̄

 .
3.2. The general case

In this subsection, we study the solvability of the
Sylvester matrix-vector equation (3.1) with m , h. We give
the following lemma, which presents a necessary condition
for solvability of the Sylvester matrix-vector equation (3.1).

Lemma 3.2. If the Sylvester matrix-vector equation (3.1)

exists a solution, the orders of matrices A, B, and C

satisfy the following two conditions: (i) h
m and r

k are positive

integers. (ii)gcd(k, h
m ) = 1. Actually, rh

mk = p.

Proof. By Definition 2.3, we have

C = AX − XB

= A n X − X n B

= (A ⊗ I t
r
)(X ⊗ I t

p
) − (Ip ⊗ B)X ∈ Cm×k,

A n X = (A ⊗ I t
r
)(X ⊗ I t

p
) ∈ C

mt
r ×

t
p ,

and

X n B = (Ip ⊗ B)X ∈ Csp×n,

where t = lcm(r, p). We obtain that h = mt
r = sp,

k = t
p = n. Then, h

m = t
r and k = t

p . So, t = rh
m

and t
k = rh

mk = p. Consequently, h
m and k

r are positive
integers. Furthermore, t = rh

m = lcm(r, p) = lcm(r, rh
mk ).

Then lcm(r, rh
mk ) = r

k lcm(k, h
m ). Thus, lcm(k, h

m ) = k · h
m .

Therefore, gcd(k, h
m ) = 1. Hence, if the Sylvester matrix-

vector equation (3.1) exists a solution, the two conditions
are required. The proof is completed. �

Next, we study the solvability of the equation. Suppose
that i · k = li1 ·

h
m + li2, i = 1, . . . , h

m . We can rewrite them in

the following form:



x1

[
A1 − D1 · · · Al11+1 − Dl11+1

]
+ x h

m

[
Ak+1 − Dk+1 · · · Ak+l11+1 − Dk+l11+1

]
+ · · ·

+ x( r
k−1) h

m +1

[
Ar−k+1 − Dr−k+1 · · · Ar−k+l11+1 − Dr−k+l11+1

]
=

[
C̃1 C̃ h

m +1 · · · C̃(l11−1) h
m +1 C̃l11

h
m +1

]
,

x2

[
Al11+1 − Dl11+1 · · · Al21+1 − Dl21+1

]
+ x h

m +2

[
Ak+l11+1 − Dk+l11+1 · · · Ak+l21+1 − Dk+l21+1

]
+ · · ·+

x( r
k−1) h

m +2

[
Ar−k+l11+1 − Dr−k+l11+1 · · · Ar−k+l21+1 − Dr−k+l12+1

]
=

[
C̃k+l12

C̃ h
m−l12+1 · · · C̃(l12−l11−1) h

m−l12+1 C̃(l12−l11) h
m−l12+1

]
,

...

x h
m

[
Ak−l11

− Dk−l11
Ak−l11+1 − Dk−l11+1 · · · Ak − Dk

]
+ x 2h

m

[
A2k−l11

− D2k−l11
· · · A2k − D2k

]
+ · · ·

+ xp

[
Ar−l11

− Dr−l11
Ar−l11+1 − Dr−l11+1 · · · Ar − Dr

]
=

[
C̃k+ h

m−l12
C̃l12+1 · · · C̃(l11−2) h

m +l12+1 C̃k− h
m +1

]
,

where

C̃ =


c11 c21 · · · c p

m ,1

c h
m +1,1 c h

m +1,2 · · · c 2h
m ,1

...
...

. . .
...

ch− h
m +1,1 ch− h

m +1,2 · · · ch,1


,

and C̃ j is the j-th column of C̃. Therefore we obtain the
following result.

Theorem 3.3. The solvability of the Sylvester matrix-vector

equation (3.1) is equivalent to the solvability of the following

matrix-vector equations:[
Ǎ1 − Ď1 Ǎ h

m +1 − Ď h
m +1 · · · Ǎ (r/k−1)h

m +1 − Ď (r/k−1)h
m +1

]
X1 = Ĉ1,[

Ǎ2 − Ď2 Ǎ h
m +2 − Ď h

m +2 · · · Ǎ (r/k−1)h
m +2 − Ď (r/k−1)h

m +2

]
X2 = Ĉ2,

...[
Ǎ h

m
− Ď h

m
Ǎ 2h

m
− Ď 2h

m
· · · Ǎp − Ďp

]
X h

m
= Ĉ h

m
,

(3.4)
where

A =
[
A1 · · · Al11

Al11+1 · · · Ar−l11
· · · Ar

]
,

D =
[
D1 · · · Dl11

Dl11+1 · · · Dr−l11
· · · Dr

]
,
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and

Ĉ1 =

[
C̃1 C̃ h

m +1 · · · C̃ (l11−1)h
m +1

C̃ l11h

m +1

]
,

Ĉ2 =

[
C̃k+l12

C̃ h
m−l12+1 · · · C̃ (l21−l11−1)h

m −l12+1
C̃ (l21−l11)h

m −l12+1

]
,

...

Ĉp =

[
C̃k+ h

m−l12
C̃l12+1 · · · C̃ (l11−2)h

m +l12+1
C̃k− h

m +1

]
.

Consequently, if the Sylvester matrix-vector equations (3.4)

exist solutions

Y1 =
[
yi,1 yi,2 · · · yi, r

k

]T
,

where i = 1, . . . , h
m , then

X =
[
y1,1 y2,1 · · · y h

m ,1
y1,2 · · · y1, r

k
y2, r

k
· · · y h

m ,
r
k

]T

is the solution of the Sylvester matrix-vector equation (3.1).

Therefore, we obtain a necessary and sufficient condition for

the solvability of the Sylvester matrix-vector equation (3.1).

Denote

Ǎl =
[
A1 · · · Al11

Al11+1

]
,

Ǎ2 =
[
Al11+1 · · · Al21

Al21+1

]
,

...

Ǎp =
[
Ar−l11

Ar−l11+1 · · · Ar

]
,

Ďl =
[
D1 · · · Dl11

Dl11+1

]
,

Ď2 =
[
Dl11+1 · · · Dl21

Dl21+1

]
,

...

Ďp =
[
Dr−l11

Dr−l11+1 · · · Dr

]
.

A necessary and sufficient condition for the solvability of the
Sylvester matrix-vector equation (3.1) is obtained.

Corollary 3.3. The Sylvester matrix-vector equation AX −

XB = C exists a solution if and only if Ǎ j− Ď j, Ǎ h
m + j− Ď h

m + j,

. . . , Ǎ( r
k−1) h

m + j − Ď( r
k−1) h

m + j and C̃ j are linearly dependent,

j = 1, 2, . . . , h
m . Moreover, if Ǎ j − Ď j, Ǎ h

m + j − Ď h
m + j,

. . . , Ǎ( r
k−1) h

m + j − Ď( r
k−1) h

m + j are linearly independent, j =

1, 2, . . . , h
m , then the solution of Sylvester matrix-vector

equation AX − XB = C would be unique.

4. Solvability of the Sylvester matrix equation
AX − XB = C

In this section, we discuss the solvability of the Sylvester
matrix equation

AX − XB = C, (4.1)

under left semi-tensor product, where A ∈ Cm×r, B ∈ Cs×n,
and C ∈ Ch×k are known. The problem is to find a matrix X

satisfying matrix equation (4.1). Firstly, we investigate the
simple case m = h, then we discuss the general case.

4.1. The case m=h

In this subsection, we study the solvability of matrix
equation (4.1) under left semi-tensor product, where A ∈

Cm×r, B ∈ Cs×n, and C ∈ Cm×k. X ∈ Cp×q is an unknown
matrix. By Definition 2.3, we have the following lemma.

Lemma 4.1. If the Sylvester matrix equation (4.1) exists a

solution, then r
α

= mn
β

= p, k
α

= sk
β

= q, where α is a common

divisor of r and k, β is a common divisor of sk and mn.

Proof. By Definition 2.3, we have

C = AX − XB

= A n X − X n B

= (A ⊗ I t
r
)(X ⊗ I t

p
) − (X ⊗ I l

q
)(B ⊗ I l

s
) ∈ Cm×k,

A n X = (A ⊗ I t
r
)(X ⊗ I t

p
) ∈ C

mt
r ×

qt
p ,

and

X n B = (X ⊗ I l
q
)(B ⊗ I l

s
) ∈ C

pl
q ×

nl
s ,

where t = lcm(r, p), l = lcm(q, s). We obtain that m = mt
r =

pl
q , k =

qt
p = nl

s . Then, t = r and p =
qt
k =

qr
k = r

k · q.
Consequently, r

α
= p and k

α
= q, where α is a common

divisor of r and k. And l = ks
n , m

p = l
q . Moreover, m

p = l
q =

ks
nq , mn

sk q = p. Hence, sk
β

= q, mn
β

= p, where β is a common
divisor of sk and mn. Therefore, if the matrix equation (4.1)
exists a solution, then r

α
= mn

β
= p, k

α
= sk

β
= q. The proof is

completed. �

Remark 4.1. When the orders pi × qi satisfies Lemma 4.1,

we call them admissible orders, where i = 1, 2, . . . , u. And αi

are all the common divisor of r and k, βi are all the common
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divisor of mn and sk.

(i) When α = 1, β = n, we have p = r = m, q = k = s = n,

and the product becomes conventional product.

(ii) If α = gcd(r, k), β = gcd(mn, sk), the Sylvester matrix

equation (4.1) exists a solution for the minimum order p̄× q̄.

And the Sylvester matrix equation (4.1) exists a solution for

every admissible order.

Now we study the solvability of the Sylvester matrix
equation (4.1). Firstly, we consider the solutions for the
minimum order p̄ × q̄, then the matrix equation exists a
solution for other admissible order can be studied. By
Definition 2.3, the Sylvester matrix equation (4.1) can be
rewritten as

AX − XB =
[
Â1 Â2 · · · Âp̄

] [
X1 X2 · · · Xq̄

]
−

[
X1 X2 · · · Xq̄

] [
B̂1 B̂2 · · · B̂p̄

]
=

[
Ĉ1 Ĉ2 · · · Ĉq̄

]
,

(4.2)

where Â1, Â2, . . . , Âp̄ are p equal-size blocks of matrix
A, B̂1, B̂2, . . . , B̂p̄ are p̄ equal-size blocks of matrix
B, Ĉ1, Ĉ2, . . . , Ĉq̄ are q̄ equal-size blocks of matrix C.
Consequently, equation (4.2) is equivalent to the following
matrix-vector equations under left semi-tensor product:

AX j − X jB = Ĉ j,

X j ∈ C
p̄, j = 1, . . . , q̄. Thus we have the following results.

Theorem 4.1. The Sylvester matrix equation (4.1) exists

a solution X ∈ Cp̄×q̄, if and only if Â1, Â2, . . . , Âp̄,

B̂1, B̂2, . . . , B̂p̄ and Ĉ j are linearly dependent, j = 1, 2, . . . , q̄.

Moreover, if Â1, Â2, . . . , Âp̄, B̂1, B̂2, . . . , B̂p̄ are linearly

independent, the solution would be unique.

Corollary 4.1. If the Sylvester matrix equation (4.1) exists

a solution, the following rank condition holds:

rank(A) + rank(B) = rank

A C

0 B

 . (4.3)

Similar to the matrix-vector case, condition (4.3) is a
necessary.
In order to solve the solution of the Sylvester matrix
equation AX − XB = C, we have the following equivalent
form.

Theorem 4.2. The Sylvester matrix equation AX − XB = C,

X ∈ Cp̄×q̄, under left semi-tensor product is equivalent to the

following matrix-vector equation with conventional matrix

product:

(Iq̄ ⊗ Ā)Vc(X) − (I p̄ ⊗ B̄T)Vc(X) = Vc(C),

where
Ā =

[
Vc(Â1) Vc(Â2) · · · Vc(Âp̄)

]

=


A1 Aᾱ+1 · · · A(p̄−1)ᾱ+1

A2 Aᾱ+2 · · · A(p̄−1)ᾱ+2
...

...
. . .

...

Aᾱ A2ᾱ · · · A p̄ᾱ


,

B̄ =
[
Vc(B̂1) Vc(B̂2) · · · Vc(B̂p̄)

]

=


B1 Bᾱ+1 · · · B(q̄−1)ᾱ+1

B2 Bᾱ+2 · · · B(q̄−1)ᾱ+2
...

...
. . .

...

Bᾱ B2ᾱ · · · Bq̄ᾱ


,

and Ai,Bi are the i-th column of A and B, respectively.

Corollary 4.2. The Sylvester matrix equation AX − XB = C

exists a solution X ∈ Cp×q if and only if the following rank

condition holds:

rank(Ā) + rank(B̄) = rank

Ā Vc(Ĉ1) Vc(Ĉ2) · · · Vc(Ĉq)
0 B̄

 .
4.2. The general case

In this subsection, we study the solvability of the
Sylvester matrix equation (4.1) with m , h. We give the
following lemma, which presents a necessary condition for
solvability of the matrix equation (4.1).

Lemma 4.2. If the Sylvester matrix equation (4.1) exists

a solution X ∈ Cp×q, the orders of matrices A, B and C

satisfy the following two conditions: (i) h
m and k

n are positive

integers. (ii) rh
mα = h

β
= p and k

α
= sk

nβ = q, where α is a

common divisor of r and k, β is a common divisor of s and

h. Moreover, it satisfies gcd(α, h
m ) = 1, gcd(β, k

n ) = 1.

Proof. (i) By Definition 2.3, we suppose that matrix
equation (4.1) exists a solution X, and its order is p × q,
we can obtain that mt

r =
lp
q = h, qt

p = ln
s = k. Then t = rh

m ,
l = sk

n . Consequently, h
m and k

n are positive integers, where
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t = lcm(r, p), l = lcm(q, s).
(ii) Supposing the matrix equation (4.1) exists a solution
X ∈ Cp×q, we can get mt

r =
lp
q = h, qt

p = ln
s = k. Then

t = rh
m , t

p = k
q . Denote α =

rh/m
p = t

p = k
q . Then we have

rh
mα = p, k

α
= q. Consequently, r

α
is a positive integer, and α

is a common divisor of r and k, and gcd(α, h
m ) = 1. As the

same way, l = sk
n , h

p = l
q . Denote β = sk

qn = l
q = h

p . Then we
have sk

nβ = q, h
β

= p. Consequently, s
β

is a positive integer,
and β is a common divisor of s and h, and gcd(β, k

n ) = 1.
The proof is completed. �

Remark 4.2. (i) h
m and k

n are positive integers is a necessary

condition for the solvability of the Sylvester matrix equation

AX − XB = C.

(ii) The orders, which satisfy the conditions in Lemma 4.2,

are called admissible orders. When α = 1, β = 1, we have
rh
m = h = p, k = sk

n = q, then m = r, s = n. The Sylvester

matrix equation AX − XB = C can transform into

(A ⊗ I h
m

)X − X(B ⊗ I k
n
) = C

with respect to the conventional product.

5. Some examples

In this section, two numerical examples are given. One
is about matrix-vector equation, and the other one is about
general matrix equation.

Example 5.1. (i) Let matrices A, B, C as follows:

A =


1 1 0 1
1 0 1 1
1 1 0 1
1 1 0 1

 , B =

1 3
2 4

 ,C =


0 0
1 −2
−1 −3
−3 −5

 .

It is easy to verify that

X =

12
 (5.1)

is a solution. 2
2 ,

4
2 are positive integers, and the given

matrices satisfy the conditions of the Lemma 3.1.

(ii) Let matrices A, B, C as follows:

A =

2 0 3
1 2 1

 , B =

3 1 4
2 2 0

 ,C =



2 1 3 4
4 1 0 3
0 4 2 1
2 0 1 2
1 2 1 3


.

Clearly, 5
2 , 4

3 are not positive integers, the given matrices do

not satisfy the conditions of the Lemma 3.2. So the equation

has no solution.

(iii) Let matrices A, B, C as follows:

A =

1 2 0
0 1 1

 , B =

0 1 3
1 1 0

 ,C =


0 1 3
1 1 0
0 0 0
0 0 0

 .

It is easy to verify that

X =

12


is a solution. 4
2 , 3

3 are positive integers, and gcd(k, h
m ) =

gcd(3, 2) = 1. Consequently, it is a necessary condition for

solvability of the Sylvester matrix-vector equation (3.1).

Example 5.2. (i) We reconsider items (i) in Example 5.1.

Take matrices A, B, C as following:

A =


1 1 0 1
1 0 1 1
1 1 0 1
1 1 0 1

 , B =

1 3
2 4

 ,C =


0 0
1 −2
−1 −3
−3 −5

 .

Obviously, the admissible orders of solutions are 2×1, 4×2.

And we have the solution

Xa =

12


in Example 5.1. Moreover, Xa is the unique solution for

admissible order 2 × 1. Meanwhile, Xb = Xa ⊗ I2, and Xb is

the unique solution for admissible order 4 × 2.

(ii) Take matrices A, B, C as following:

A =


2 1 3
1 2 4
3 0 1
4 2 0

 , B =


3 4 2
2 1 0
0 3 1
1 2 1

 ,
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C =



5 2 3 0 1 3 0 1
2 1 4 1 2 5 2 1
0 1 0 3 3 4 1 2
3 0 2 1 1 0 0 4
4 2 1 2 0 2 3 1
2 3 0 2 1 3 0 3
1 1 3 0 3 3 4 1


.

As 7
4 ,

8
3 are not positive integers, the given matrices do not

satisfy the conditions of the Lemma 4.2 and the equation has

no solution.

(iii) Take matrices A, B, C as following:

A =


2 1 3
1 2 4
3 0 1
4 2 0

 , B =


3 4 2
2 1 0
0 3 1
1 2 1

 ,

C =



−1 −4 1 0 1 2 −2 12 0
0 −1 −4 1 0 1 1 −2 12
1 0 −1 −4 4 0 −2 16 −2
−1 1 0 1 −4 4 8 −2 16
3 −2 0 6 0 −12 0 4 −4
−4 3 −2 −8 6 0 −4 0 4
4 −4 2 5 −8 4 −1 −4 0
0 4 −4 2 5 −8 8 −1 −4



.

It is easy to verify that

X =

1 2 0
0 1 4


is a solution of the Sylvester matrix equation (4.1). We find
8
4 ,

9
3 are positive integers, and p = 2, q = 3. Moreover, the

given matrices satisfy the conditions of the Lemma 4.2.

6. Conclusion

In this paper, we discuss the solvability of the Sylvester
matrix equation AX−XB = C with respect to left semi-tensor
product. Firstly, we divide the solution X into two kinds: the
matrix-vector equation one and the matrix equation one. For
the matrix-vector equation case, we discuss a necessary and
sufficient condition for the solvability and concrete solving
methods. Based on this, the solvability of the Sylvester

matrix equation under left semi-tensor product has been
studied. At last, we give several examples to illustrate the
efficiency of the results.

Acknowledgment

This research work is partially supported by
undergraduate education reform project of Shandong
Normal University (No. 2021BJ054).

Conflict of interest

The author declares that there is no conflicts of interest in
this paper.

References

1. G. W. Stagg, A. H. El-Abiad, Computer Methods in

Power System Analysis, New York: McGraw-Hill, 1968.

2. D. Z. Cheng, Matrix and Polynomial Approach to

Dynamics Control Systems, Beijing: Science Press,
2002.

3. S. W. Mei, F. Liu, A. C. Xue, A Tensor Product in Power

System Transient Analysis Method, Beijing: Tsinghua
University Press, 2010.

4. E. B. Castelan, V. Gomes da Silva, On
the solution of a Sylvester matrix equation
appearing in descriptor systems control theory,
Syst. Control Lett., 54 (2005), 109–117.
https://doi.org/10.1016/j.sysconle.2004.07.002

5. A. C. Antoulas, Approximation of Large-

Scale Dynamical Systems, Advances in Design
and Control, SIAM, Philadelphia, PA, 2005.
https://doi.org/10.1137/1.9780898718713

6. R. K. Cavinlii, S. P. Bhattacharyya, Robust and well-
conditioned eigenstructure assignment via sylvester’s
equation, Optim. Contr. Appl. Met., 4 (1983), 205–212.
https://doi.org/10.1002/oca.4660040302

7. C. Chen, D. Schonfeld, Pose estimation from
multiple cameras based on Sylvester’s equation,
Comput. Vis. Image Und., 114 (2010), 652–666.
https://doi.org/10.1016/j.cviu.2010.01.002

Mathematical Modelling and Control Volume 2, Issue 2, 81–89

http://dx.doi.org/https://doi.org/10.1016/j.sysconle.2004.07.002
http://dx.doi.org/https://doi.org/10.1137/1.9780898718713
http://dx.doi.org/https://doi.org/10.1002/oca.4660040302
http://dx.doi.org/https://doi.org/10.1016/j.cviu.2010.01.002


89

8. W. E. Roth, The equation AX−YB = C and AX−XB = C

in matrices, Proc. Amer. Math. Soc, 3 (1952), 392–396.
https://doi.org/10.1090/S0002-9939-1952-0047598-3

9. G. Golub, S. Nash, C. Van Loan, A Hessenberg-
Schur method for the problem AX + XB = C,
IEEE T. Autom. Control, 24 (1979), 909–913.
https://doi.org/10.1109/TAC.1979.1102170

10. A. Varga, Robust pole assignment via Sylvester
equation based state feedback parametrization, IEEE

International Symposium on Computer-Aided Control

System Design, 57 (2000), 13–18.

11. A. Dmytryshyn, B. Kågström, Coupled Sylvester-
type matrix equations and block diagonalization,
SIAM J. Matrix Anal. Appl, 36 (2015), 580–593.
https://doi.org/10.1137/151005907

12. D. Cheng, H. Qi, Y. Zhao, An Introduction to

Semi-tensor Product of Matrices and its Applications,
Singapore: World Scientific Publishing Company, 2012.

13. M. R. Xu, Y. Z. Zhang, A. R. Wei, Robust
graph coloring based on the matrix semi-tensor
product with application to examination timetabling,
Control theory and technology, 2 (2014), 187–197.
https://doi.org/10.1007/s11768-014-0153-7

14. D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean

Networks: A Semi-tensor Product Approach, London:
Singapore, 2011.

15. J. Yao, J.-E. Feng, M. Meng, On solutions of the
matrix equation AX = B with respect to semi-tensor
product, J. Franklin Inst., 353 (2016), 1109–1131.
https://doi.org/10.1016/j.jfranklin.2015.04.004

16. Z. Ji, J. Li, X. Zhou, F. J. Duan, T. Li, On solutions of
the matrix equation AXB = C under semi-tensor product,
Linear and Multilinear Algebra, 69 (2021), 1935–1963.
https://doi.org/10.1080/03081087.2019.1650881

17. R. A. Horn, C. R. Johnson, Topics in Matrix Analysis,
Cambridge: Cambridge University Press, 1991.

18. H. Fan, J.-E. Feng, M. Meng, B. Wang, General
decomposition of fuzzy relations: Semi-tensor product
approach, Fuzzy Sets and Systems, 384 (2020), 75–90.
https://doi.org/10.1016/j.fss.2018.12.012

19. Y. Yuan, Solving the mixed Sylvester matrix
equations by matrix decompositions, C. R.

Math. Acad. Sci. Paris, 353 (2015), 1053–1059.
https://doi.org/10.1016/j.crma.2015.08.010

20. Q. W. Wang, Z. H. He, Solvability conditions
and general solution for the mixed Sylvester
equations, Automatica, 49 (2013), 2713–2719.
https://doi.org/10.1016/j.automatica.2013.06.009

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 2, Issue 2, 81–89

http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1952-0047598-3
http://dx.doi.org/https://doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/https://doi.org/10.1137/151005907
http://dx.doi.org/https://doi.org/10.1007/s11768-014-0153-7
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2015.04.004
http://dx.doi.org/https://doi.org/10.1080/03081087.2019.1650881
http://dx.doi.org/https://doi.org/10.1016/j.fss.2018.12.012
http://dx.doi.org/https://doi.org/10.1016/j.crma.2015.08.010
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.06.009
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Solvability of the Sylvester matrix-vector equation AX-XB=C
	The case m=h
	The general case

	Solvability of the Sylvester matrix equation AX-XB=C
	The case m=h
	The general case

	Some examples
	Conclusion

