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Abstract: Fractal ordinary differential equations are successfully established by He’s fractal derivative in a fractal space, and their
variational principles are obtained by semi-inverse transform method.Taylor series method is used to solve the given fractal equations
with initial boundary value conditions, and sometimes Ying Buzu algorithm play an important role in this process. Examples show the
Taylor series method and Ying Buzu algorithm are powerful and simple tools.
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1. Introduction

The ordinary differential equations (ODEs) arise in
many fields like the physics, mechanics, economics
and management, etc. There are many methods for
solving nonlinear ODEs, for example, the He’s frequency
formulation [1,2], homotopy perturbation method [3,4],
variational iteration method [5,6], and variational-based
method [7,8]. In addition, there have been some research
results on differential equations recently [9–15]. Each
method has its advantages and disadvantages. For example,
the Exp-function method can lead to the analytical solutions,
but its complex calculation makes those inaccessible
who are not familiar some mathematics software. The
variational-based methods can obtain a globally valid
solution, however, it is extremely difficult to establish
a needed variational principle for a complex nonlinear
problem, etc.

In my memory, most researchers in the wold pay little
attention to Chinese mathematics, especially on ancient

Chinese mathematics. So the present author feels strongly
necessary to do some work let the world know that China
has 5000 years of civilization, not only in social sciences,
but also in natural sciences. This paper concerns briefly a
famous ancient Chinese algorithm, named Ying Buzu. Every
student knows Newton’s iteration method from a textbook,
which is widely used in numerical simulation, what few
may know is that its ancient Chinese partner, Ying Buzu

algorithm, in about second century BC has much advantages
over Newton’s method [16].

In this paper, we mainly study using Taylor series method
[17–22] and Ying Buzu algorithm [23] to solve ordinary
differential equations with initial boundary value conditions
in a fractal space. To the best of our knowledge, the hybrid
method has not been studied.

The remainder of this paper is organized as follows. In
section 2, we briefly study the initial value problems for
ODEs. In section 3, boundary value problems for ODEs with
Neumann boundary conditions are studied. In section 4,
boundary value problems for ODEs with Dirichlet boundary
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conditions are considered. In section 5, we conclude this
paper and some discussions are also given there.

2. Initial value problems for ODEs

Consider the initial value problem [24]

y′′ + y = 2x − 1, y(1) = 1, y′(1) = 3. (2.1)

2.1. Variational principle of fractal Eq.(2.1)

In a fractal space, Eq.(2.1) can be described as follows

d
dxα

(
dy

dxα
) + y = 2x − 1, y(1) = 1,

dy
dxα

(1) = 3, (2.2)

where dy
dxα is the fractal derivative [25,26]

dy
dxα

(x0) = Γ(1 + α) lim
x−x0→∆x

∆x,0

y(x) − y(x0)
x − x0

. (2.3)

The variational principle of Eq (2.2) can be given by semi-
inverse method as follows

J =

∫ {
−

1
2

(
dy

dxα
)2 +

1
2

y2 − 2xy + y
}

dxα. (2.4)

2.2. Approximate solution of fractal Eq (2.1)

Using the two-scale transform [27,28]

s = xα, (2.5)

we can convert Eq (2.2) approximately into the following
one

d2y
ds2 + y = 2s − 1, y(1) = 1,

dy
ds

(1) = 3. (2.6)

From Eq.(2.6),we have

y′′(1) = 0, y(3)(1) = −1, y(4)(1) = 0. (2.7)

The Taylor series solution of Eq (2.6) is

y(s) = y(1) + (s − 1)y′(1) +
1
2

(s − 1)2y′′(1)

+
1
6

(s − 1)3y(3)(1) +
1

24
(s − 1)4y(4)(1)

= 1 + 3(s − 1) −
1
6

(s − 1)3, (2.8)

which converges to the exact solution, which is

y(s) = 2s − 1 + sin(s − 1). (2.9)

Figure 1. Taylor series solution.

Figure 1 shows the Taylor series solutions, which is very
close to the exact solutions.

3. Boundary value problems for ODEs with Neumann
boundary conditions

Consider the boundary value problem [24]

d2θ

dx2 = εθ4, θ′(0) = 0, θ(1) = 1. (3.1)

3.1. Variational principle of fractal Eq (3.1)

In a fractal space, Eq (3.1) can be described as follows

d
dxα

(
dθ

dxα
) = εθ4,

dθ
dxα

(0) = 0, θ(1) = 1, (3.2)

where dθ
dxα is the fractal derivative [25,26]

dθ
dxα

(x0) = Γ(1 + α) lim
x−x0→∆x

∆x,0

θ(x) − θ(x0)
x − x0

. (3.3)

The variational principle of Eq (3.2) can be given by semi-
inverse method as follows

J =

∫ {
−

1
2

(
dθ

dxα
)2 −

1
5
εθ5
}

dxα. (3.4)
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3.2. Approximate solution of fractal Eq (3.1)

Using the two-scale transform

s = xα, (3.5)

Equation (3.2) can be converted approximately into the
following one

d2θ

ds2 = εθ4,
dθ
ds

(0) = 0, θ(1) = 1. (3.6)

For simplicity, we assume

ε = 1, θ(0) = c, (3.7)

from (3.6), we have

θ′′(0) = c4, (3.8)

θ(3)(0) = 4c3, (3.9)

θ(4)(0) = 12c2. (3.10)

The 4th-order Taylor series solution is

θ(s) = θ(0) + sθ′(0) +
1
2

s2θ′′(0) +
1
6

s3θ(3)(0) +
1

24
s4θ(4)(0)

= c +
1
2

c4s2 +
2
3

c3s3 +
1
2

c2s4, (3.11)

incorporating the boundary condition θ(1) = 1, we have

c +
1
2

c4 +
2
3

c3 +
1
2

c2 = 1. (3.12)

We use the Ying Buzu algorithm [23] to solve c and write
(3.12) in the form

R(c) = c +
1
2

c4 +
2
3

c3 +
1
2

c2 − 1. (3.13)

Assume the two initial solutions are

θ1(0) = 0.6, θ2(0) = 0.8, (3.14)

we obtain the following residuals

R1(0.6) = −0.0112, R2(0.8) = 0.666133, (3.15)

the inital guess θ(0) can be updated as

θ3(0) =
R2θ1 − R1θ2

R2 − R1
= 0.603307, (3.16)

the shooting process using (3.16) results in

θ3(1) = 0.997931, (3.17)

which deviates the exact value of θ(1) = 1 with a relative
error of 0.2%.

The 4th-order Taylor series solution is

θ(s) = 0.603307 + 0.066241s2 + 0.146394s3 + 0.18199s4.

(3.18)

Figure 2. Taylor series solution based on the Ying

Buzu algorithm.

Figure 2 shows the Taylor series solutions, which
approximately meet the requirement of the boundary
condition.

4. Boundary value problems for ODEs with Dirichlet
boundary conditions

Consider the boundary value problem [29]

u′′(t) + tu(t) = t3 + 2, u(0) = 0, u(1) = 1. (4.1)

4.1. Variational principle of fractal Eq (4.1)

In a fractal space, Equation (4.1) can be described as
follows

d
dtα

(
du
dtα

) + tu(t) = t3 + 2, u(0) = 0, u(1) = 1, (4.2)

where du
dtα is the fractal derivative [25,26]

du
dtα

(t0) = Γ(1 + α) lim
t−t0→∆t

∆t,0

u(t) − u(t0)
t − t0

. (4.3)
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The variational principle of Eq (4.2) can be given by semi-
inverse method as follows

J =

∫ {
−

1
2

(
du
dtα

)2 +
1
2

tu(t)2 − (t3 + 2)u(t)
}

dtα. (4.4)

4.2. Approximate solution of fractal Eq (4.1)

Using the two-scale transform

s = tα, (4.5)

Equation (4.2) can be converted approximately into the
following one

d2u
ds2 + su(s) = s3 + 2, u(0) = 0, u(1) = 1. (4.6)

We assume
u′(0) = α, (4.7)

from (4.6), we have
u′′(0) = 2, (4.8)

u(3)(0) = 0, (4.9)

u(4)(0) = −2α. (4.10)

The 4th-order Taylor series solution is

u(s) = u(0) + su′(0) +
1
2

s2u′′(0) +
1
6

s3u(3)(0) +
1

24
s4u(4)(0)

= αs + s2 −
1

12
αs4. (4.11)

by using the boundary condition u(1) = 1, we have

α + 1 −
1

12
α = 1, (4.12)

and α = 0. The 4th-order Taylor series solution is

u(s) = s2. (4.13)

which is also the exact solution of Eq (4.1).

5. Conclusions

Fractal ordinary differential equations are successfully
established by He’s fractal derivative in a fractal space,
and their variational principles are obtained by semi-
inverse transform method.The two-scale transform method
and Taylor series method are adopted to solve the fractal

ODEs with initial boundary value conditions.The examples
show the Taylor series method is simple and effective and
the ancient Chinese Ying Buzu algorithm is a simple and
straightforward tool to two-point boundary value problems.
In the future, we will study how to extend this hybrid method
to PDEs.
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