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Abstract: In this paper, we study the Hankel and Toeplitz solutions of reduced biquaternion matrix equation (1.1). Using semi-tensor
product of matrices, the reduced biquaternion matrix equation (1.1) can be transformed into a general matrix equation of the form
AX = B. Then, due to the special structure of Hankel matrix and Toeplitz matrix, the independent elements of Hankel matrix or Toeplitz
matrix can be extracted by combing the H-representation method of matrix, so as to reduce the elements involved in the operation in
the process of solving matrix equation and reduce the complexity of the problem. Finally, by using Moore-Penrose generalized inverse,
the necessary and sufficient conditions for the existence of solutions of reduced biquaternion matrix equation (1.1) are given, and the
corresponding numerical examples are given.

Keywords: reduced biquaternion matrix equation; semi-tensor product of matrices;H-representation; real
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1. Introduction

The symbols used in this article are as follows: R is
the set of all real numbers; Rm is the set of all real
column vectors with m-dimensional and Rm×n is the set of
all m × n dimensional real matrices. Qb is the set of all
reduced biquaternions and Qn

b is the set of all n-dimensional
reduced biquaternion vectors. Qm×n

b is the set of all m × n

dimensional reduced biquaternion matrices. Hn×n
r and Tn×n

r

represent the set of all n × n dimensional real Hankel
matrices and real Toeplitz matrices respectively. Hn×n

b and
Tn×n

b represent the set of all n × n dimensional reduced
biquaternion Hankel matrices and reduced biquaternion
Toeplitz matrices respectively. AT is the transpose of A;
A† is the Moore-Penrose generalized inverse of A. 0 and In

represent zero matrix of suitable size and identity matrix of
n-dimensional respectively. A ⊗ B is the Kronecker product
of A and B, Vc and Vr represent the column expansion and
row expansion of the matrix.

Efficient methods for solving matrix equations play an
important role in promoting the application in engineering
mechanics [1], color images [2,3], control and system theory
[4], neural network, and so on. Many scholars are devoted
to the study of the solutions of matrix equations, [5] gave
the necessary and sufficient conditions for Lyapunov matrix
equation to have Hermitian solution, and the sensitivity
of Lyapunov equation to disturbance was analyzed; the
iterative solutions of discrete-time periodic Sylvester matrix
equations were discussed in [6] based on jacobian gradient
gradient algorithm and accelerated iteration algorithm,
and their applications in antilinear periodic systems were
introduced; in [7], a method similar to Hermitian splitting
and oblique Hermitian splitting was used to solve the
continuous time algebraic Riccati matrix equation, and the
convergence of the iterative method was analyzed. Because
of the importance of matrix equation, whether it is real,
complex or quaternion matrix equation, it has attracted
extensive attention. In [8], Yuan derived the expression of
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the least squares Hermitian solution of the quaternion matrix
equation (AXB,CXD) = (E, F) with the least norm over the
skew field of quaternions. Wang [9] divided the quaternion
bisymmetric matrix into four blocks by using the partition
idea, and gave the necessary and sufficient conditions for
the existence of bisymmetric solutions of the quaternion
matrix equation AXB = C by using the relation between the
block matrices. Zhang [10] gave the necessary and sufficient
conditions for quaternion matrix equation AX = B to have
the pure imaginary least squares solution and the real least
squares solution, she also used pure imaginary quaternions
to represent color images, and applies quaternion matrix
equation AX = B to color image restoration.

In recent years, semi-tensor product of matrices proposed
by professor Cheng has attracted extensive attention of
scholars. Semi-tensor product of matrices relieves the
dimension limitation of ordinary matrix multiplication and
makes it possible to multiply matrices of any dimension.
Semi-tensor product of matrices are not only widely used in
finite game theory, graph theory [11] and formation control,
fuzzy control [12] and some other engineering fields. Many
scholars also connect semi-tensor product of matrices with
matrix equation and solve matrix equation by semi-tensor
product of matrices method. Wang [13], Ding [14] studied
the special solutions of generalized Lyapunov equation
and Sylvester equation based on semi-tensor product of
matrices and quaternion matrix real vector representation,
respectively; by using semi-tensor product of matrices,
Zhao [15] gave the necessary and sufficient conditions for
the existence of the minimum norm least squares Tridiagonal
(Anti-) Hermite solution of the quaternion matrix Stein
equation.

A quaternion is a generalization of complex numbers. A
quaternion has four components, one real part and three
imaginary parts

q = q0 + q1i + q2j + q3k, qi ∈ R(i = 0, 1, 2, 3),

and i, j,k obey the rules as follows, i2 = j2 = k2 =

−1, ij = −ji = k, jk = −kj = i,ki = −ik = j.
We know that the multiplication of quaternions does not
satisfy the commutative law of multiplication, which has
become an obstacle to solve some quaternion problems. The
difference between reduced biquaternions and quaternions

are that the multiplication of reduced biquaternions satisfies
the commutative law. The representation of reduced
biquaternions is [16–18]

q = q0 + q1i + q2j + q3k, qi ∈ R(i = 0, 1, 2, 3),

where i2 = k2 = −1, j2 = 1, ij = ji = k, jk =

kj = i,ki = ik = −j. In [19], Davenport gave the
matrix representation for the four-dimensional commutative
hypercomplex algebras. The matrix representation is
determined by the multiplication rules, so for reduced
biquaternions, we have:

1→ I4 ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , i→ Ni ≡


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

j→ N j ≡


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , k → Nk ≡


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,
where N2

j = I4,N2
i = N2

k = −I4,NiN j = N jNi = Nk,N jNk =

NkN j = Ni, and NiNk = NkNi = −N j. Therefore, the matrix
representation of a reduced biquaternion q = q0 + q1i + q2j +

q3k is

q→ Nq ≡


q0 −q1 q2 −q3

q1 q0 q3 q2

q2 −q3 q0 −q1

q3 q2 q1 q0

 .
Similarly, for reduced biquaternion matrix Q = Q0 + Q1i +

Q2j + Q3k, the matrix representation is

Q→ NQ ≡


Q0 −Q1 Q2 −Q3

Q1 Q0 Q3 Q2

Q2 −Q3 Q0 −Q1

Q3 Q2 Q1 Q0

 .

Define an operator ΦQ =
[
Q0 Q1 Q2 Q3

]
, obviously

Vc(ΦQ) =


Vc(Q0)
Vc(Q1)
Vc(Q2)
Vc(Q3)

 . The unique advantage of reduced

biquaternion is that its multiplication is commutative. In
addition, reduced biquaternion matrix theory is widely
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used in digital signal and color image processing. For
example, in [20], the complex symmetric multichannel
system and symmetric lattice filter system were analyzed by
reduced biquaternion, which greatly reduces the complexity
of digital signal processing; in [21], the SVD of reduced
biquaternion matrix was used to process color images, the
SVD method of reduced biquaternion greatly reduces the
complexity of reconstructing the original color image; [22]
the pure imaginary solutions and real solutions of the
reduced biquaternion matrix equation AX = B were solved
in the form of e1 − e2, and the e1 − e2 representation of the
reduced biquaternion was applied to color image restoration.
The methods to solve the reduced biquaternion matrix
equation mainly include using the e1 − e2 representation
of reduced biquaternion, or with the help of the real
representation and complex representation of the reduced
biquaternion matrix.

In this paper, we mainly consider the Hankel and Toeplitz
solutions of reduced biquaternion matrix equation

k∑
i=1

AiXBi = C (1.1)

by using semi-tensor product of matrices, real
representation.

Hankel matrix and Toeplitz matrix are collectively
referred to as banded matrix. Banded matrix has
important applications in many fields, such as image, signal
processing, communication system analysis and so on. For
example, Toeplitz system arise in a variety of applications
in mathematics, scientific computing and engineering,
numerical partial and ordinary differential equations;
numerical solution of convolution-type integral equations;
optimization problems in control theory; signal processing
and image restoration [23, 24]. In addition, Hankel matrix
has important applications in electric power, microseismic
data processing and array signal processing [25]. In
this paper, we will solve the special solutions of reduced
biquaternion matrix equation (1.1) by combining semi-
tensor product of matrices, real representation of reduced
biquaternion matrix and H-representation of special
matrices, Moore-Penrose generalized inverse. The main
questions we considered are as follows.

Problem 1 Given Ai ∈ Q
m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . ,

k),C ∈ Qm×s
b , find

Mh =

X
∣∣∣∣∣X ∈ Hn×n

b ,

k∑
i=1

AiXBi = C

 . (1.2)

Problem 2 Given Ai ∈ Q
m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . ,

k),C ∈ Qm×s
b , find

Mt =

X
∣∣∣∣∣X ∈ Tn×n

b ,

k∑
i=1

AiXBi = C

 . (1.3)

We will find a sufficient and necessary condition for Mh

and Mt to be nonempty. When the reduced biquaternion
matrix equation (1.1) has a solution, we will give a general
expression for X ∈ Mh and X ∈ Mt. When the reduced
biquaternion matrix equation (1.1) has a unique solution,
and we will give a unique expression for X̂h ∈ M̂h and
X̂t ∈ M̂t.

This paper is organized as follows. In Section 2,
we give some basic knowledge of semi-tensor product of
matrices. In Section 3, we first introduce the definition of
H-representation [29], and theH-representation methods of
Hankel matrix and Toeplitz matrix are given. By using the
results to drive the explicit expression for the solutions of
Problem 1,2, in Section 4, respectively. Finally, in Section
5, we give a brief summary.

2. Semi-tensor product of matrices

We know that matrix multiplication is limited by
dimension. It needs to meet that the dimension of the first
matrix column is equal to that of the second matrix row. If
the matrix operation is extended to any dimension matrix,
the application of matrix method will be greatly expanded.
This section first introduces a matrix multiplication between
arbitrary dimensions, semi-tensor product of matrices.

Definition 2.1. [26] Suppose A ∈ Rm×n, B ∈ Rp×q, t =

lcm(n, p) is the least common multiple of n and p. The semi-

tensor product of A and B is denoted by

A n B = (A ⊗ It/n)(B ⊗ It/p).

Denoted by the symbol n.

From the definition of semi-tensor product of matrices,
we can see that semi-tensor product of matrices is the
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generalization of ordinary matrix multiplication. That is, in
the definition, when n = p, semi-tensor product of matrices
is ordinary matrix multiplication. And when the dimension
requirement is satisfied, semi-tensor product of matrices
symbol is usually omitted.

The semi-tensor product of matrices has the following
properties.

Lemma 2.1. [26] Suppose A, B,C be real matrices, then

(1) (Associative rule)

(A n B) nC = A n (B nC);

(2) (Distributive rule)

A n (B + C) = A n B + A nC;

(B + C) n A = B n A + C n A.

Lemma 2.2. [26] Suppose X ∈ Rt is a column of vector, A

is an arbitrary matrix, then

X n A = (It ⊗ A) n X.

Swap matrix, which exchange the order of factors, are
defined as follows

Definition 2.2. [27] A swap matrix W[m,n] ∈ R
mn×mn is

defined as

W[m,n] = δmn[1,m + 1, . . . , (n − 1)m + 1, . . . ,m, 2m, . . . , nm],

where δk[i1, . . . , is] is a shorthand of [δi1
k , . . . , δ

is
k ].

The swap matrix has the function of exchanging the order
of two vector factors and some other propositions.

Lemma 2.3. [26] (1) Suppose X ∈ Rm, Y ∈ Rn is two

columns, then

W[m,n] n X n Y = Y n X;

(2) Suppose A ∈ Rm×n, then

W[m,n]Vr(A) = Vc(A);

W[n,m]Vc(A) = Vr(A);

(3) Suppose A ∈ Rm×n, B ∈ Rs×t, then

A ⊗ B = W[s,m] n B nW[m,t] n A = (Im ⊗ B) n A.

Since reduced biquaternons are commutative, we can
know that the above conclusion for semi-tensor product of
matrices is also true for reduced biquaternons. In addition,
Li [28] gave the properties for semi-tensor product of
matrices which play an important role in solving matrix
equations. For reduced biquaternion matrix, we have the
similar conclusions.

Theorem 2.1. Suppose A ∈ Qm×n
b , X ∈ Qn×q

b , Y ∈ Qp×m
b ,

(1)

Vc(YA) = AT n Vc(Y);

Vr(AX) = A n Vr(X).

(2)

Vc(AX) = (Iq ⊗ A) n Vc(X);

Vr(YA) = (Ip ⊗ AT) n Vr(Y).

Proof. (1) We proof Vc(YA) = AT n Vc(Y).
Let A = (a1, . . . , an), ai ∈ Q

m
b (i = 1, . . . , n), Y = (y1, . . . ,

ym), y j ∈ Q
p
b ( j = 1, . . . ,m), then

Vc(YA) = Vc(Ya1, . . . ,Yan) =


Ya1
...

Yan

 ,
from the commutability of reduced biquaternion, there have

Yai = a1iy1 + . . . + amiym

=
[
a1iIp . . . amiIp

]
Vc(Y).

So

Vc(YA) =


a11Ip a21Ip . . . am1Ip

a12Ip a22Ip . . . am2Ip
...

...
...

a1nIp a2nIp . . . amnIp


Vc(Y)

= (AT ⊗ Ip)Vc(Y)

= AT n Vc(Y).

(2) We proof Vr(YA) = W[n,p] n AT nW[p,m] n Vr(Y).
Suppose A ∈ Qm×n

b , Y ∈ Qp×m
b , then by Lemma 2.3 we

have

Vr(YA) = W[n,p]Vc(YA)

= W[n,p] n AT n Vc(Y)

= W[n,p] n AT nW[p,m] n Vr(Y)

= (Ip ⊗ AT) n Vr(Y).

�
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3. H-representation

In this article, we are very interested in H-representation
of Hankel matrix and Toeplitz matrix. The following part
mainly introduces the H-representation of Hankel matrix
and Toeplitz matrix. The concept of H-representation is as
follows.

Definition 3.1. [29] Consider a q-dimensional real matrix

subspace X ⊂ Rn×n over the field R. Assume that

e1, e2, . . . , eq form the basis of X, and define H =[
Vc(e1) Vc(e2) . . . Vc(eq)

]
. For each X ∈ X, if we

express Ψ(X) = Vc(X) in the form of

Ψ(X) = HX̃,

with a q × 1 vector X̃ =
[
x1 x2 . . . xq

]T
. Then HX̃ is

called an H-representation of Ψ(X), and H is called an H-

representation matrix of Ψ(X).

Definition 3.2. Suppose Hn = (hi j)n×n ∈ R
n×n satisfies hi j =

hi+ j−1, (i, j = 1, . . . , n), that is

Hn =



h1 h2 h3 · · · hn

h2 h3 h4 · · · hn+1

h3 h4 h5 · · · hn+2
...

...
...

. . .
...

hn hn+1 hn+2 · · · h2n−1


,

then Hn is called a real Hankel matrix, and the set of all

n-dimensional real Hankel matrices is recorded as Hn×n
r .

Definition 3.3. Suppose Tn = (ti j)n×n ∈ R
n×n satisfies ti j =

t j−i, (i, j = 1, . . . , n), that is

Tn =



t0 t1 t2 · · · tn−1

t−1 t0 t1 · · · tn−2

t−2 t−1 t0 · · · tn−3
...

...
...

. . .
...

t−n+1 t−n+2 t−n+3 · · · t0


,

then Tn is called a real Toeplitz matrix, and the set of all

n-dimensional real Toeplitz matrices is recorded as Tn×n
r .

Example 3.1. Let X = Hn×n
r , H3 = (hi j)3×3 ∈ X, and then

dim(X) = 5. If we select a basis of X as

e1 =


1 0 0
0 0 0
0 0 0

 , e2 =


0 1 0
1 0 0
0 0 0

 , e3 =


0 0 1
0 1 0
1 0 0

 ,

e4 =


0 0 0
0 0 1
0 1 0

 , e5 =


0 0 0
0 0 0
0 0 1

 .
It is easy to compute

Ψ(H3) =
[
h1 h2 h3 h2 h3 h4 h3 h4 h5

]T
,

H̃3 =
[
h1 h2 h3 h4 h5

]T
,

and

Hh =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Example 3.2. Let X = Tn×n
r ,T3 = (ti j)3×3 ∈ X, and then

dim(X) = 5. If we select a basis of X as

f1 =


1 0 0
0 1 0
0 0 1

 , f2 =


0 0 0
1 0 0
0 1 0

 , f3 =


0 0 0
0 0 0
1 0 0

 ,

f4 =


0 1 0
0 0 1
0 0 0

 , f5 =


0 0 1
0 0 0
0 0 0

 .
It is easy to compute

Ψ(T3) =
[
t0 t−1 t−2 t1 t0 t−1 t2 t1 t0

]T
,

T̃3 =
[
t0 t−1 t−2 t1 t2

]T
,
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and

Ht =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0



.

For the general case, if X = Hn×n
r , we select a standard

basis as
{E1, E2, . . . , E2n−1},

where Ei =



Ji 0
0 0


n×n

, (i ≤ n),

0 0
0 J2n−i


n×n

, (n < i ≤ 2n − 1),

Jn =


0 . . . 1
... 1

...

1 . . . 0


n×n

.

Based on above standard basis, for any Hn = (hi j)n×n ∈ X,
we have

H̃n =
[
h1 h2 . . . h2n−1

]T
,

and Hh =
[
Vc(E1) Vc(E2) . . . Vc(E2n−1)

]
∈ Rn2×2n−1.

Similarly if X = Tn×n
r , we select a standard basis as

{F1, F2, . . . , F2n−1},

where Fi =



 0 0
In−i+1 0


n×n

, (i ≤ n),

0 I2n−i

0 0


n×n

, (n < i ≤ 2n − 1).

Based on above standard basis, for any Tn = (ti j)n×n ∈ X,
we have

T̃n =
[
t0 t−1 . . . t−n+1 t1 . . . tn−1

]T
,

and Ht =
[
Vc(F1) Vc(F2) . . . Vc(F2n−1)

]
∈ Rn2×2n−1.

The following Theorem is obvious from Definition 3.1.

Theorem 3.1. For an n2 × 1 vector α1, if Ψ−1(α1) ∈ Hn×n
r ,

then there exists an (2n − 1) × 1 vector β1, such that α1 =

Hhβ1. For an n2 × 1 vector α2, if Ψ−1(α2) ∈ Tn×n
r , then there

exists an (2n − 1) × 1 vector β2, such that α2 = Htβ2.

4. The Solution of Problem 1,2

In order to obtain the solution of the reduced biquaternion
matrix equation (1.1), we first give the following Lemma.

Lemma 4.1. [30] The matrix equation Ax = b, with A ∈

Rm×n and b ∈ Rm, has a solution x ∈ Rn if and only if

AA†b = b, (4.1)

in this case it has the general solution

x = A†b + (In − A†A)y, (4.2)

where y ∈ Rn is an arbitrary vector, and it has the unique

solution x = A†b for the case when rank(A) = n.

In order to obtain the Hankel solution and Toeplitz
solution of reduced biquaternion matrix equation (1.1), we
first make some signs as follows, for Ai ∈ Q

m×n
b , Bi ∈

Qn×s
b (i = 1, 2, . . . , k),C ∈ Qm×s

b , let

P =

k∑
i=1

(BT
i ⊗ Ai) = P0 + P1i + P2j + P3k;

W1 = diag(Hh,Hh,Hh,Hh),W2 = diag(Ht,Ht,Ht,Ht);

R = NPW1, S = NPW2;

Vc(ΦC) =


Vc(C0)
Vc(C1)
Vc(C2)
Vc(C3)

 .
Theorem 4.1. Suppose Ai ∈ Q

m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . ,

k), C ∈ Qm×s
b , the necessary and sufficient condition for the

equation (1.1) to have Hankel solution is

RR†Vc(ΦC) = Vc(ΦC). (4.3)

Under the condition of solution, the solution set Mh of the

equation (1.1) can be expressed as

Mh =

{
X
∣∣∣∣∣Vc(ΦX) = W1R†Vc(ΦC) + W1

(
I8n−4 − R†R

)
y
}
,

(4.4)
where for any y ∈ R8n−4. Further, when

rank(R) = 8n − 4, (4.5)

the unique solution set of equation (1.1) is

M̂h =

{
X̂h

∣∣∣∣∣Vc(ΦX̂h
) = W1R†Vc(ΦC)

}
. (4.6)
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Proof. By Theorem 2.1, combing with H-representation of
Hankel matrix, the reduced biquaternion matrix equation
(1.1) is equivalent to

k∑
i=1

AiXBi = C

⇐⇒

k∑
i=1

(Is ⊗ Ai) n Vc(XBi) = Vc(C)

⇐⇒

k∑
i=1

(Is ⊗ Ai) n BT
i n Vc(X) = Vc(C)

⇐⇒

k∑
i=1

(Is ⊗ Ai)(BT
i ⊗ In) n Vc(X) = Vc(C)

⇐⇒

k∑
i=1

(BT
i ⊗ Ai)Vc(X) = Vc(C)

⇐⇒ NPVc(ΦX) = Vc(ΦC)

⇐⇒ NPW1


X̃0

X̃1

X̃2

X̃3

 = Vc(ΦC)

⇐⇒ R


X̃0

X̃1

X̃2

X̃3

 = Vc(ΦC).

By Lemma 4.1, we have
X̃0

X̃1

X̃2

X̃3

 = R†Vc(ΦC) +
(
I8n−4 − R†R

)
y,

further, we can obtain

Vc(ΦX) = W1


X̃0

X̃1

X̃2

X̃3

 = W1R†Vc(ΦC) + W1

(
I8n−4 − R†R

)
y.

Then if rank(R) = 8n − 4, the unique solution of equation
(1.1) satisfies

Vc(ΦX̂h
) = W1R†Vc(ΦC).

�

Similar to the conclusion of Hankel solution, we can
obtain the following conditions for the existence of Toeplitz
solution of reduced biquaternion matrix equation (1.1).

Theorem 4.2. Suppose Ai ∈ Q
m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . ,

k),C ∈ Qm×s
b , the necessary and sufficient condition for the

equation (1.1) to have Toeplitz solution is

S S †Vc(ΦC) = Vc(ΦC). (4.7)

Under the condition of solution, the solution set Mt of the

equation (1.1) can be expressed as

Mt =

{
X
∣∣∣∣∣Vc(ΦX) = W2S †Vc(ΦC) + W2

(
I8n−4 − S †S

)
y
}
,

(4.8)
where ∀y ∈ R8n−4. Further, when

rank(S ) = 8n − 4, (4.9)

the unique solution set of equation (1.1) is

M̂t =

{
X̂t

∣∣∣∣∣Vc(ΦX̂t
) = W2S †Vc(ΦC)

}
. (4.10)

5. Numerical exemplification

We now provide numerical algorithms and examples for
finding the solutions of Problem 1,2. Algorithms 5.1 and 5.2
are based on Theorem 4.1 and Theorem 4.2. Examples are
based on Algorithms 5.1 and 5.2, respectively.

Algorithm 5.1. (For Problem 1)

(1) Input: Ai ∈ Q
m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . , k), C ∈ Qm×s

b ,

and P,Hh.

(2) Compute NP, and W1, R and Vc(ΦC).
(3) If both (4.3) and (4.5) hold, then output the Hankel

solution Ẋh(Ẋh ∈ M̂h) according to (4.6).
(4) Output: the solution Ẋh ∈ M̂h.

Algorithm 5.2. (For Problem 2)

(1) Input: Ai ∈ Q
m×n
b , Bi ∈ Q

n×s
b (i = 1, 2, . . . , k), C ∈ Qm×s

b ,

and P,Ht.

(2) Compute NP, and W2, S and Vc(ΦC).
(3) If both (4.7) and (4.9) hold, then output the Toeplitz

solution Ẋt(Ẋt ∈ M̂t) according to (4.10).
(4) Output: the solution Ẋt ∈ M̂t.
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Example 5.1. Suppose m = n = p, Ai, Bi ∈ Q
n×n
b (i = 1, 2)

be generated randomly for n = 2l, l = 1 : 15. Randomly

generated Hankel or Toeplitz reduced biquaternion matrix

Xh, Xt for equation (1.1), respectively, calculate C =

A1XhB1 + A2XhB2, C = A1XtB1 + A2XtB2. In this case,

rank(R) = 8n − 4, rank(S ) = 8n − 4 is satisfied, at

this time, the reduced biquaternion matrix equation (1.1)
has a unique solution. Substitute Ẋh, Ẋt, into the reduced

biquaternion equation (1.1), its computational solutions

can be obtained by using Algorithm 5.1-Algorithm 5.2,

respectively. Define ε1 = log10(
∥∥∥Vc(ΦXh ) − Vc(ΦẊh

)
∥∥∥),

ε2 = log10(
∥∥∥Vc(ΦXt ) − Vc(ΦẊt

)
∥∥∥) as the error obtained by

Algorithms 5.1 and 5.2 respectively. As the dimension

changes, εi (i = 1, 2) is shown in the Figure 5.1 and Figure

5.2.

Figure 5.1. Errors in different dimensions for
Problem 1.

Figure 5.2. Errors in different dimensions for
Problem 2.

It can be seen from the figure that the error value obtained

by the algorithm is less than −11, which fully proves the

effectiveness and rationality of the algorithm.

6. Conclusions

The multiplication of reduced biquaternion satisfies the
commutative law, which provides great convenience for
some of our quaternion calculations. This paper mainly
uses the semi-tensor product of matrices, combines the real
representation of reduced biquaternion matrix and the H-
representation of matrix to solve the Hankel and Toeplitz
solutions of reduced biquaternion matrix equation (1.1),
this provides a new method for the solution of reduced
biquaternion matrix equation. It is believed that the semi-
tensor product of matrices andH-representation of matrices
will be more widely used in solving matrix equation
problems.
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