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Abstract: Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. For any real number
a € [0, 1], Nikiforov recently defined the A,-matrix of G as A,(G) = aD(G) + (1 — @)A(G). The graph invariant S%(G) is the sum of
the p-th power of the A,-eigenvalues of G for % < a < 1, which has a close relation to the @-Estrada index. In this paper, we establish
some bounds on S%(G) and characterize the extremal graphs. In particular, we present some bounds on S%(G) in terms of the degree
sequences, order and size of G by using majorization techniques. Moreover, we give lower and upper bounds for S%(G) of a bipartite

graph and characterize the extremal graphs.
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1. Introduction

Let G be a simple finite undirected connected graph with
vertex set V(G) and edge set E(G), where |V(G)| is the
order and |E(G)| is the size of G. Let A(G) and D(G) be
the adjacency matrix and the degree diagonal matrix of a
graph G, respectively. Then L(G) = D(G) — A(G), O(G) =
D(G) + A(G) and L(G) = D’%(G)L(G)D’%(G) are called
the Laplacian matrix, the signless Laplacian matrix and the
normalized Laplacian matrix of the graph G, respectively.

The investigation on the sum of the p-th power of the
eigenvalues of graphs is a topic of interest in Mathematical
Chemistry. Based on the mathematical methods, scholars
get many bounds for the sum of the p-th power of the
eigenvalues of graphs. For a non-zero real number p, Zhou
[1] introduced the sum of the p-th power of the non-zero
Laplacian eigenvalues of G, denoted by S7(G). Since S1(G)
has close relation with the Laplacian-energy-like invariant
[2], the Laplacian Estrada index [3] and the Kirhhoff index
[4], there are considerable results regarding S¥(G) in the

literature. For related results, one may refer to [1, 5-9]
and references therein. For a non-zero real number p, M.
Liu and B. Liu [10] defined SZ(G) as the sum of the p-
th power of the non-zero signless Laplacian eigenvalues of
G, which has close relation with the incidence energy [11]
and the signless Laplacian Estrada index [12]. For details
on SZ(G), see the papers [13, 14] and the references cited
therein. Moreover, Akbari et al. [15, 16] compared between
S7(G) and S ’é(G) when the parameter p takes different
values. For a non-zero real number p, S$.B. Bozkurt and D.
Bozkurt [17] defined S Z(G) as the sum of the p-th power
of the normalized Laplacian eigenvalues of G, which has
close relation with the degree-Kirchhoff index [18] and the
general Randi¢ index [19]. For related results, one may refer
to [20,21].

For any real number « € [0, 1], Nikiforov [22] defined the
A,-matrix of G as

A,(G) = aD(G) + (1 — 0)A(G).

It is easy to see that A,(G) is the adjacency matrix A(G)
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if @ = 0, and A,(G) is essentially equivalent to signless
Laplacian matrix Q(G) if @ = % The new matrix A,(G) not
only can underpin a unified theory of A(G) and Q(G), but it
also brings many new interesting problems, see for example
[22-25]. In particular, A,(G) is a positive definite matrix for
% < a < 1, which is a hitherto uncharted territory of worth
our investigation and exploration, see [22]. Moreover, X.
Liu and S. Liu [26] found that A,-eigenvalues (especially,
% < a < 1) are much more efficient than A-eigenvalues
and Q-eigenvalues when we use them to distinguish graphs,
by enumerating the A,-characteristic polynomials for all
graphs on at most ten vertices. The A,-matrix has been
an interesting topic in mathematical literature and has been
studied extensively, see for example [22, 23, 27-30] and
references therein.

Let 21(A4(G)) = 12(A(G)) = - -+ = 4,(A,(G)) be the A,-
eigenvalues of a graph G of order n. Motivated by the above
work, we define S/ (G) as the sum of the p-th power of the

A,-eigenvalues of G, that is,
SHG) = ) (4,6,
i=1

where % < @ < 1 and pis areal number. S%(G) can be regard
as a generalization of S ’é(G) due to the fact that our results
are correct for the sum of the p-th power of the non-zero A -

eigenvalues of G. By using the Maclaurin development, we

have
n 0 S p(G)
E,(G) = iAa(G) — @ ,

where p is an integer and E,(G) is called the a-Estrada index
defined by Cardoso et al. [31]. Thus the bound for S4(G) can
be naturally converted to the bound of the @-Estrada index.
In addition, we find that S?(G) is connected with the first
general Zagreb index, which is a useful topological index
and has important applications in chemistry.

The primary purpose of this paper is to establish the
bounds of S2(G). The cases p = 0 and p = 1 are trivial as
Sg(G) =n and SCIY(G) = 2am, where m is the size of G. We
will not consider both cases in the following results. The rest
of the paper is organized as follows. In Section 2, we recall
some useful notions and lemmas used further. In Section
3, some bounds on the SF(G) are presented. In Sections 4
and 5, several bounds for §7(G) related to degree sequences,
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order and size are given through majorization techniques. In
Section 6, lower and upper bounds for S%(G) of a bipartite
graph G are obtained, and the extremal graphs characterized.

2. Preliminaries

Let G — e denote the graph that arises from G by deleting
the edge e € E(G). A connected graph is called a c-cyclic
graph if it contains n vertices and n + ¢ — 1 edges. For
vi € V(G), dg(v;) = di(G) denotes the degree of vertex
v; in G. The minimum and the maximum degree of G are
denoted by 6 = (G) and A = A(G), respectively. A pendant
vertex is a vertex of degree one and a quasi-pendant vertex
is a vertex adjacent to a pendant vertex. Li and Zheng [32]
defined the first general Zagreb index of G as Z, = Z,(G) =
2weviG) d”(v), where p is an arbitrary real number except 0
and 1. A subset 7 of V(G) is called an independent set of a
graph G if no two vertices in / are adjacent in G. Given a
graph G, the independence number 8(G) of G is the numbers
of vertices of the largest independent set. Denote by K,,, K,
and G the complete graph, the complete bipartite graph and
the complement of a graph G, respectively. The join G| V G,
of two vertex-disjoint graphs G| and G is the graph formed
from the union of G| and G, by joining each vertex of G; to

each vertex of G,.

Lemma 2.1. ( [33]) Let G be a graph with n vertices. If
e € E(G) and % < a < 1, then ;(AL(G)) = Ai(Ax(G — e)) for

1<i<n

Lemma 2.2. ([34,35]) Let G be a graph of order n and size
m. Then

am? 1
2G) > I f Z(A=5)?
n 2

with equality if and only if G has the property dy = d3 =
_ A+6

W1 = =52, which includes also the regular graphs.

Lemma 2.3. ([36]) Let 51, 52, ..
of a matrix M = (m;;) € M,,. Then

., Sy be the singular values

D imilr for 0<p<2,

™M
S
A

j >

= ij=1
n n

sf > Z Imil? for p>2.
= ij=1

Lemma 2.4. ( [37]) For c-cyclic graphs with n vertices, the

minimal degree sequences with respect to the majorization
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order are given by (2,2,...,2,1,1), in case ¢ = 0 and

n > 2, 2,2,...,2), in case ¢ = 1 and n > 2,
3,3,...,3,2,2,...,2), incase2 < c < 6andn > 2c - 2.
N’

2¢-2

Lemma 2.5. ( [38]) Let a(G), b(G) and mg(a) be the
number of pendant vertices, quasi-pendant vertices of G and
the multiplicity of a as an eigenvalue of A,(G), respectively.
Then mg(e) > a(G) — b(G) with equality if each internal

vertex is a quasi-pendant vertex.

Lemma 2.6. ([39]) Let G be a graph of order n and size m.
Ifae(3,1), then

2
H(A,(6) € (1) +an - 1,
the equality holds if and only if G = K,,.
3. Some bounds on S5(G)

Theorem 3.1. Let % < a < 1, G be a connected graph with
n vertices and e € E(G).

@) Ifp>0andp # 1, then S(G - e) < SL(G).

() If p <0, then SH(G — e) > SH(G).

Proof. By  Perron-Frobenius  Theorem, we  have

A1(Aa(G)) > 1(Aa(G = e)).

follows. ]

By Lemma 2.1, the result

Corollary 3.1. Let % < a < 1, G be a connected graph of
order n.

W) Ifp>0andp # 1, then
SPG) <=1+ (- 1D(an—-1)P

with equality if and only if G = K,,.
) If p <0, then

SHG) =2 (-1 + (- D(an—1)

with equality if and only if G = K,,.

Proof. From Proposition 36 in [22], it follows that
A(Ay(Ky) =n—1and 4;(A,(K,)) =an—1for2 <i < n.
By Theorem 3.1, we have the proof.
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Corollary 3.2. Let % < a < 1, G be a connected graph of
order n with independence number 6.
@) Ifp>0andp # 1, then

SHG) < (n—0—D(an— 1P + (@ - D(n-6"a” + x| + x5,
where x| and x, are the roots of the equation
xz—(a/n+n—9— 1)x+a0+an2—an—a02—9n+02 =0

and equality holds if and only if G = Ky V K,_g.
(i) If p <O, then

SHG)=(m—-0-D(an— 1P + (- Dn—-6"a’ +x + x5,
where x| and x, are the roots of the equation
xz—(cm+n—9— 1)x+a/9+cm2—cm—a/92—6’n+92 =0

and equality holds if and only if G = Ky V K,_g.

Proof. Let ¢,(G,x) be the characteristic polynomial of
A.(G). By direct computation, we have

Poa(KgV Kpg,x) = (x—an+1)"x—m-0al’'[x*

—(a/n+n—0—1)x+a9+cm2—om

—at® — On + 6.
Thus
SE(KyVKng) = (n—6—1)(an—1)P+(@-1)(n-0)"a’ +x" +x5,

where x; and x; are the roots of the equation X —(an+n-
60— Dx + ab + an®> — an — ab® — 6n + 6> = 0. By Theorem

3.1, we have the proof. m]

Theorem 3.2. Let G be a connected graph of order n and
size m. If% <a<landp#0andp # 1, then

ndet(Aa(G)))"p‘ G

4
55(0)2(2—’") fn- 1)(
n 2m

with equality if and only if G = K,,.

Proof. By the arithmetic-geometric mean inequality, we

have

SHG) = A(A(G) + ) X (AG))
i=2
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P

> (A,(G) +(n—1) (]—[ A,»(A(,(G))] 7
i=2

o, [ det(A,(G)) T

= A+ = ( 1(4,(G)) )

Let h(x) = x” + (n — 1) (M)L‘ Then //(x) = p(x"~! -
det(Aa(G))ﬁx‘fl‘1 ). Itis easy to see that h(x) is increasing
on [det(Aq(G))7,+o0) whether p > 0 or p < 0. From
Corollary 19 in [22], it follows that

2 2am gl Ai(Aa(G))

n n n
1

41(Ax(G))

\%

> (]_[ A,-(AQ(G»]" = det(4,(G))’.
i=1

\%

Thus

\%

SEG) = hL(AG) = h (27’")

P =
(2_m) -1 (ndet(Aa(G)))
n 2m

with equality if and only if 1;(A,(G)) = % and A,(A4,(G)) =
<o+ = A,(A4(G)). From Corollary 33 in [22], the diameter
of Gis 1. Thus, G = K,. Conversely, if G = K,, then
2(A(G) =n—-1,and L;(A,(G)) =an—1for2 <i<n. It
is easy to check that equality holds in (3.1). This completes
the proof. O

Theorem 3.3. Let % < a < 1, G be a connected graph of
order n and size m.

@) Ifp<0orp>1,then

1 z\

with equality if and only if G = K,,.
(i) If0 < p < 1, then

Z5\* 1 Z)
55(6)3(72) +m[2am— \/g] (33)

with equality if and only if G = K,,.

5162 (2) 4

Proof. Since p < 0 or p > 1, we know that f(x) = x” is a

strictly convex function. By Jensen’s inequality, we have

n 1 P n 1
(Z mma(c))) < ) A (Au(G)),

i=2 i=2
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that is,
- 1
Z A (An(G)) 2 ————(2am — 1,(A.(G)))".
n—
= (n = Tyrt
Thus
SHG) = A(A(G) + Z/lf (Aa(G))
i=2
1
p - _ 12
> A(A.(G)) + e 1)I,_1(2am A1 (Aa(G)))".
Let g(x) = xP + W(hxm — x)?.  Then g'(x) =
p()cp‘1 - (z(fl'fl_;f),’fl) > 0 for x > 22 Hence g(x) is

increasing on [2‘1’—1’”, +00). From Lemma 2.2 and Corollary

19 in [22], it follows that 2;(A,(G)) > \/% > 2“7’” Thus

Z
SeG 2 gi(AG) Zg(\/f]
(Zz)g r—L foam- |2 ’
= — - m — s
AT n
with equality if and only if 2;(A.(G)) = % and
1(Al(G)) = -+ = 1,(A,(G)). From Corollary 33 in [22],

the diameter of G is 1. Thus, G = K,,. Conversely, if G = K,,,
then 41(A,(G)) = n—1, and 2;(A,(G)) = an—1for2 <i < n.
It is easy to check that equality holds in (3.2).

Now suppose that 0 < p < 1. Then

n

SN ! 1
[Z anAa(G))] 2 ) AV (A(G)),

i=2 i=2

with equality if and only if 2;(A4(G)) = -+ = 4,(A.(G)),
and g(x) is decreasing on [2‘%, +00). By similar arguments
as above, the second part of the theorem follows.

Combining the above arguments, we have the proof. O
By Lemma 2.2 and Theorem 3.3, we have

Corollary 3.3. Let % < a < 1, G be a connected graph of
order n and size m.

@) Ifp<0orp>1, then

4 2 1 %
sPG) = [ s Za-s)
n? 2n

LI N (TR o2|
TRl S AR s
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with equality if and only if G = K,,.
(i) If0 < p < 1, then

4m? 1
p
S(Y(G) < (? + ;l

P
1 4m? 1
0 oam— AT L A2
+(n— T [ am \/ p + 2}1( o) )

with equality if and only if G = K,,.

(A- 5)2)2

Theorem 3.4. Let % < a < 1, G be a connected graph of
order n and size m.

() If0 < p <2, then SL(G) < afZ, +2m(l — a)”.

(i) If p > 2, then SH(G) > a”Z, + 2m(1 — @)".

Proof. Since A,(G) is a real symmetric and positive definite
matrix for % < a < 1, the singular values of A,(G) are equal
to the eigenvalues of A,(G). By Lemma 2.3, we have the
proof. O

4. Bounds for S%(G) related to degree sequences

X)) and y = (y1,y2,...,yn) are
two non-increasing sequences of real numbers, we say x is

Suppose x = (x1,x2,..

majorized by y, denoted by x <y, if )} x; =

=1 i

n J
yiand ) x; <
=1 =1

. =
Z y; for j = 1,2,...,n — 1. For a real-valued function f

Eeﬁned on a set in R”, if f(x) < f(y) whenever x < y but

x # Y, then f is said to be Schur-convex.

Theorem 4.1. Let % < a < 1, G be a connected graph of
order n and size m with the degree sequence d, > dy > -+ >
dy.

W) Ifp<0orp>1,then

am)?
np-1

< a’Z,(G) < SH(G).

(i) If0 < p < 1, then

2 P
S2(G) < a?Z,(G) < 22
npP
Proof. Let x = 22(1,...,1), y = (adi,...,ad,) and

7 = (U1(Ax(G)), ..., 1,(Ax(G))). Tt is well known that the
spectrum of any symmetric, positive semi-definite matrix
majorizes its main diagonal [40], hence x < y < z. Since
p<0orp>1, f(x) = x” is a convex function. From [41],
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we know that if the real-valued function f defined on an

n
interval in R is a convex then ), f(x;) is Schur-convex. Thus
i=1

i=

Qamy’ i a’d” < SP(G)
nl = Fur] i =Ya '
If0 < p < 1, then g(x) = —x” is a convex function. By

similar arguments as above, the second part of the theorem

follows. a
By Lemma 2.4 and Theorem 4.1, we have

Corollary 4.1. Let 5 < a < 1,0 < ¢ < 6 and G be a c-cyclic
graph with n vertices.
WO)Ifp<0orp>1,c¢c=0andn>?2, then

SPG) = (n-2)Ra)’ +2a”.
Ifp<0Qorp>1,c=1andn>?2, then
SP(G) = nQa)?.
Ifp<Oorp>12<c<6andn>2c-2, then
SP(G) = a’((2c = 2)3" + (n — 2¢ + 2)2P).
1) IfO0<p<1,c=0andn > 2, then
SP(G) < (n-2)a)’ +2a”.

IfO<p<1,c=1andn>?2, then SL(G) < nQa)’.
If0<p<1,2<c<6andn>2c-2, then

SHG) < a”((2c —2)37 + (n — 2¢ + 2)2P).

Theorem 4.2. Let % < a < 1, G be a connected graph of
order n and size m with the degree sequence dy > d, > -+ >
d, = 6.
@) Ifp<0orp>1, then
n-1

SHG) < Z(adﬁ(l—a)(m—i))"—i—2%(2&6—(1—&)}101— 1))P.

i=1
(1) If0 < p < 1, then
n-1 1
SHG) = Z(adﬁ(l —a)(n—0)’+ 2—p(2a6—(1 —a)n(n—1))".
i=1
Proof. Let x = (11(A4(G)), 12(Ax(G)), . .., 1,(A,(G))) and
y=(adi+ (1 -—a)n—-1D,ad, + (1 —a)(n—2),...,ad,—1 +
(1 - @), 2am — a2m - §) — (1 - @)"®2). From Theorem
3.1 in [28], it follows that 1;(A,(G)) < ad; + (1 — @)(n — i)
for 1 < i < n. Thus x < y. Similar to the method used in

Theorem 4.1, we have the proof. O
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Theorem 4.3. Let % < a < 1, G be a connected graph of
order n and size m with the degree sequence A = d; > d, >
el > dn‘

OIfp<OQorp>landd, > d; > ---
then

>dy >an-—1,

SPG) < AP + (k- 1)(an—1)?

+[2am — A = (k = 1)(an - D], @.1)

where2 <k<n. Ifp<Qorp>1landd, < an—1, then

k k P
SP(G) < Z d’ + (Zsz - Z d,-] ,
i=1

i=1
where 2 < k < n.
) IfO<p<landdy >d;y >--->dy > an— 1, then

SPG) = AP + (k- )(an—1)?

+[2am — A — (k - )(an - D], 4.2)

where2 <k <n. IfO<p<landd, < an -1, then

k k P
SP(G) > Z d’ + (Z(lm - Z di] ,
i=1

i=1
where 2 < k < n.

Proof. Let x = (11(A(G)), 12(A(G)), ..., 1,(Ax(G))) and
y=(d,an—-1,...,an—1,2am—-d;—(k—1)(an—1),0,...,0).
From Proposition 10 in [22], it follows that 1;(A,(G)) < d;.
By Lemma 2.1, we have 1;(A,(G)) < 4;(A(K,)) = an—1
for 2 < i < n. Thus x < y. Similar to the method used in

Theorem 4.1, we have the proof. O

Remark 4.1. It is easy to see that the equality in (4.1) and
(4.2) holds if G = K,,.

Theorem 4.4. Let % < a < 1, G be a connected graph of
order n and size m with the degree sequence A = dy > d, >
e > dn_

OIfp<Oorp>landn—-1>d >dy >2dy >--- >
di = a(n —2), then

SPG) < AP +a”(k—1D)(n=2)" + 2am—A-a(k—1)(n-2))",

where 2 < k <n Ifp <Qorp>1d <n-1and
dy < a(n - 2), then

k k P
SP(G) < Z d’ + (2am - di] ,
i=1 i=1

Mathematical Modelling and Control

where 2 < k < n.
@A) If0O<p<land

n—-1>d>2dy>dy>--->2dp 2 an-2),
then
SP(G) = AP + o’ (k—1)(n—2)" + Qam—A—a(k—1)(n—-2))",

where2 <k<n. IfO<p<1l,dy <n—-1landd, < a(n-2),

then
k k P
SHG) = Y dl + {2a/m - Zdi] ,
i=1

i=1
where2 <k < n.

Proof. Let x = (11(A(G)), 12(A.(G)), ..., 4,(Ax(G))) and
y = di,a(n —2),...,an — 2),2am — d; — alk — 1)(n —
2),0,...,0). From Proposition 10 in [22] and Theorem 3.1
in [27], it follows that 1, (A,(G)) < d; and 1;(A,(G)) < a(n—
2) for 2 < i < n. Thus x < y. Similar to the method used in

Theorem 4.1, we have the proof. m]

Theorem 4.5. Let % < a < 1, G be a connected graph of
order n and size m with the degree sequence A = dy > dp >
o> dn_

@) If p < 0or p > 1 and mg(A;) is the multiplicity of A;

as an eigenvalue of Ay(G), then

k k
Sg(G) < AP+Z dlp+m(;(/lj)/lf+(2am -A- Z d; — mG(/lj)/lj
i=2 i=2
where2 <k < j<n.
(i) If 0 < p < 1 and mg(4;) is the multiplicity of A; as an
eigenvalue of Ay(G), then

k k
SP(G) > AP+Z d"+mg(A j)/l’;+(2a'm ~A- Z d; — mg(2))A;

i=2 i=2
where2 <k < j<n.

Proof. Let x = (41 (Aa(G)), . .., 2,(Aa(G)))  and
y = (di,do,....d,4;,...,4;,2am — d — ﬁdk -
mg(4,)4;,0,...,0). From Proposition 10 in l[:222], it
follows that 1;(A,(G)) < d; for 1 < i < n. Then x < y.

Similar to the method used in Theorem 4.1, we have the

proof. O

By Lemma 2.5 and Theorem 4.5, we have
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Corollary 4.2. Let § < a < 1, G be a connected graph of
order n and size m with the degree sequence A = d; > d, >
-+ >d,, and let a and b be the number of pendant vertices
and quasi-pendant vertices of G, respectively.
O Ifp<Oorp>landa—>b>1, then
n—a+b-1

SPG) < AP+ Z d” + (a - b)a”

i=2

n—a+b-1 P
+{2&m—A— Z di—(a—b)a].

i=2
() If0<p<landa—>b > 1, then

n—a+b—1
SHG) = AP+ Y dl+(a-bpa’
i=2

n—a+b—1 4
+(2¢ym—A— Z di—(a—b)a].

i=2

5. Bounds for S5 (G) related to order and size

Theorem 5.1. Let % < a < 1, G be a connected graph of
order n and size m.
@) If p <0or p > 1 and there is ¢ such that 1;(A,(G)) >

¢ >0, then
am — c)?

-1yt
(i) If 0 < p < 1 and there is ¢ such that 1;(A4(G)) > ¢ >
0, then

SP(G) > ¢ +

— o)
S(G) < cr 4+ 2am =
(n—1)r-1
_ 2am—c 2am—c
Proof. Let x = (c, =555, ..., <7%7¢) and

y = (11(Aa(6)), 12(Aa(G)), . . ., An(Aa(G))).

Since 11(A,(G)) = ¢ > 0, we have x < y. Similar to the

method used in Theorem 4.1, we have the proof. O

Corollary 5.1. Let % < a < 1, G be a connected graph of
order n and size m.

@O Ifp<0orp>1, then
P 1 2 2
Se(G) =2 —(@"A+ (1 -a))
aP

N Qa*m — *A — (1 — @)?)?P
a’(n—1)r-!

5.1
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(1) If0 < p < 1, then
1
SP(G) < — (@A + (1 - )
074

+(2a/2m —PA -1 -

5.2
aP(n—1)r-1 (52)
Proof. From Corollary 13 in [22], it follows that
1= 2
LALG) = ah+ TZD
a
By Theorem 5.1, we have the proof. m]

Corollary 5.2. Let % < a < 1, G be a connected graph of
order n and size m.

@) Ifp<0orp>1, then
)4
SHG) = (Z_m) (1 +
n
(1) If0 < p < 1, then
P
SH(G) < (2_m) (1 +
n

Proof. From Corollary 19 in [22], it follows that

(an - 1)
(n— 1)”1)'

(an - 1)”)
-y 1)

2m
A1(A(G) 2 —.
n
By Theorem 5.1, we have the proof. O

Remark 5.1. It is easy to see that the equality in Corollary
5.2 holds if G = K,,.

Corollary 5.3. Let % < a < 1, G be a connected graph of
order n and size m with chromatic number Y.

@) Ifp<0orp>1, then

dam -y + 1
SPG) > (- 1) + % (5.3)
(i) If0 < p < 1, then
2am -y + 1)
SPG) < (- 1) + % (5.4)

The equality holds in (5.3) and (5.4) if and only if G = K,,.

Proof. Tt is well known that 1,(A(G)) > y — 1 with equality
if and only if G is a complete graph or an odd cycle, see [42].
From Proposition 18 in [22], it follows that

A(Ax(G)) 2 L1(AG)) 2 x — 1

with equality if and only if G is a complete graph or an odd
cycle. By Theorem 5.1, we have the proof. O
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Theorem 5.2. Let % < a < 1, G be a connected graph of
order n and size m.

) Ifp<0orp>1,then

_ p
SP(G) < (2(1%)’" +on— 1) +(n—=2)(an - 1)
2(1 —a)m P
+ (ZQm B (n—1)(an - 1)) . (5.5)

(i) If0 < p < 1, then

_ P
SP(G) > (M +an— 1) +(n=2)(an - 1)
2(1 —a)m P
+ (2a/m -1 - (n-1(an - 1)) . 5.6)

The equality holds in (5.5) and (5.6) if and only if G = K,,.

Proof. Let x = (11(Ax(G)), ..., ,(A(G)))and y = (’f_—ml(l -
a)+an—1,an—-1,...,an—1, 2am—%(1—a)—(n—l)(cm—1)).

By Lemmas 2.1 and 2.6, we have
2m
A(Aa(@) < — (1 -a)+an-1
n—

and
1i(Ae(G)) £ 4i(Ao(Ky)) = an— 1

for 2 < i < n. Thus x < y. Similar to the method used in
Theorem 4.1, we have the proof. O

6. S’(G) of bipartite graphs

Theorem 6.1. Let % < a < 1, G be a connected bipartite
graph with n vertices.

Q) If p > 1, then ST(G) < SE(Ky, 1) with equality if and
onlyif G = K 1.

() If 0 < p < 1, then SE(G) < SH(Kinj21.1n/2)) With
equality if and only if G = Kpn1, \n/2)-

(iii) If p < O, then SE(G) > SE(Kpuja1.1n/2)) With equality
if and only if G = K21, 1n/2)-

Proof. Let G = (X,Y) be a connected bipartite graph on n
vertices and suppose that |X| = a, |Y| = banda > b > 1,

where a + b = n. From Proposition 38 in [22], it follows that

SH(Kap) = %(an + Va2n? +da(n - a)(1 - 2a))”

+afa’ + o (n - a)?

Mathematical Modelling and Control

+2ip(om — Va2n? + da(n — a)(1 - 2a))".
Let
fx) = %(an + Va2n? + 4x(n - x)(1 - 2a))”
+a?xf + af(n — x)?
+2ip(a/n — Va2n? + 4x(n - x)(1 - 2a))".
Then

) ~ p(1 = 2a)(n - 2x)
o= 201 \Ja?n? + 4x(n — x)(1 - 2a) o
+ \/aznz +4x(n — x)(1 - 20,))17—1

—(an — Va2n? + 4x(n - x)(1 = 2a))’ ™1

+pa?(x’ = (n - x)P7h).

If p > 1, then f(x) is decreasing for I < x < 3

increasing for 5 < x < n— 1. Hence f(n/2) < f(x) < f(1).

By Theorem 3.1, we have SH(G) < SH(Kyp) < SH(Ki n1)
forp>0,p#1and G # K, 5.

If 0 < p < 1, then f(x) is increasing for 1 <

and

x <
and decreasing for 5 < x < n— 1. Hence f(1) < f(x)
f(n/2). By Theorem 3.1, we have SH(G) < SH(K.p)
SP(Kin.1nj2)) for p> 0, p # 1 and G # K, .

If p < 0, then f(x) is decreasing for 1 < x < %
increasing for 5 < x < n - 1. Hence f(n/2) < f(x)
f(1). By Theorem 3.1, we have S5(G) > SL(K.»)
SP(Kin21.1nj2)) for p < 0and G # K, .

Combining the above arguments, we have the proof.
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