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Abstract: Recently the exponential Randić index eχ was introduced. The exponential Randić index of a graph G is defined as the sum

of the weights e
1√

d(u)d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we give sharp lower and
upper bounds on the exponential Randić index of unicyclic graphs.
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1. Introduction

In recent years, graph theory has been widely applied
in chemistry. The topological index of a graph is an
invariant numerical quantity that can be used to describe
some properties of a molecular graph. Topological indices
can be divided into several different categories. The indices
based on vertex-degree are the most widely studied and
applied ones.

In 1975, the famous chemist Milan Randić proposed
a structural descriptor called Randić (connectivity) index,
which is common used molecular descriptor in the study of
structure-activity relations. For a simple connected graph
G = (V, E), V and E represent the set of vertices and edges
of graph G, respectively. And d(u) refers to the degree of a
vertex u in G. The Randić index of the graph G is defined as

χ(G) =
∑

uv∈E(G)

1
√

d(u)d(v)
.

The Randić index has been shown to be closely related to
chemical properities.

Bollobás and Erdös [1] generalized this index by

replacing −
1
2

with any real number α in 1998, which is
called the general Randić index and defined as

χα(G) =
∑

uv∈E(G)

(d(u)d(v))α.

There are a lot of researches on the mathematical
properties of the Randić index and general Randić index
of a graph. Du and Zhou [2] gave the extremal values on
the Randić indices of trees, unicyclic graphs and bicyclic
graphs. Li and Yang [3] obtained the lower and upper
bounds for the general Randić index among graphs with
n vertices. Hu and Li [4, 5] investigated the trees with
the maximum and minimum value of general Randić index
among all trees with n vertices. Li and Shi [6] showed
that among all unicyclic graphs with n vertices, S +

n has
the maximum general Randić index for 0 < α < 1, and
Td n+1

2 e,b
n+1

2 c
has the maximum general Randić index for α > 2

and n ≥ 7. Wu and Zhang [7] showed that among all
unicyclic graphs with n vertices, Cn for α > 0 and S +

n for
−1 ≤ α < 0, respectively, has the minimum general Randić
index. See ([8]-[13]) for more information of the Randić
index.

In order to study the descrimination properties of Randić
index. Rada [14] proposed exponential vertex-degree based
topological indices and gave the definition of exponential
Randić index

eχ(G) =
∑

uv∈E(G)

e

1
√

d(u)d(v) .

Cruz, Londoño and Rada [15] gave the definition of
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general Randić index

eχα (G) =
∑

uv∈E(G)

e(d(u)d(v))α .

They showed that the minimum value of eχα is attained in
the path Pn when α > 0, and in the star S n when α < 0 over
the set Tn. Cruz, Monsalve and Rada [16] showed that eχ

attains its maximum value in the path Pn.

Theorem 1.1. ([16]) If T ∈ Tn and T � Pn, then T is not

maximal with respect to eχ over Tn.

This paper discusses the extremal value problems of
exponential Randić index of unicyclic graphs. For
convenience, there are some notations and terminologies.
For integer n, letUn as a set of unicyclic graphs with n ≥ 3
vertices. A vertex of degree one is called a pendent vertex.
Let S +

n is a unicyclic graphs with n vertices as follows:
S +

n is obtained from the star graph S n by connecting two
pendent vertices of S n (see Figure 4). Let N(u) denote the
neighborhood of vertex u. We use Cn and Pn to denote
the cycle and path with n vertices, respectively. Let Ta,b,c

is a triangle with leaves, where a, b and c are nonnegative
integers that denote the degrees of the vertices on the
triangle, respectively. Particularly, if c = 2, a triangle
with two branches Ta,b,2 is simply Ta,b. Ta,b is balanced if
|a − b| ≥ 1, i.e., Ta,b = Td n+1

2 e,b
n+1

2 c
. A unicyclic graph G is

said to be a sun graph [17] if the vertices belonging to the
cycle have degree at most three and remaining vertices have
degree at most two.

2. Preliminaries

In this section, we will introduce some graph
transformations, which increase the exponential
Randić index. And we will give some lemmas. These
transformations and lemmas will help to prove our main
results.

Lemma 2.1. (i) The function g1 (x) = e
1
√

x is monotonously

decreasing for x ≥ 2 .

(ii) The function g2 (x) = e
1
√

2 − e
1
√

x−1 is monotonously

increasing for x ≥ 2.

(iii) The function g3(x) = (1 −
1
2

x−
1
2 )e

1
√

x is monotonously

decreasing for x ≥ 2.

Proof. (i) Let g (t) = et , t (x) =
(√

x
)−1

. The function
g (t) is monotonously increasing for x ≥ 2. The function
t (x) is monotonously decreasing for x ≥ 2. So that g (x) is
monotonously decreasing for x ≥ 2.
(ii) By applying (i), it is obvious that (ii) holds.
(iii) For x ≥ 2, we have

dg3(x)
dx

=
1
4

x−
3
2 e

1
√

x −
1
2

x−
3
2 (1 −

1
2

x−
1
2 )e

1
√

x

=
1
4

x−
3
2 e

1
√

x − (
1
2
−

1
4

x−
1
2 )x−

3
2 e

1
√

x

= e
1
√

x x−
3
2 (

1
4
−

1
2

+
1
4

x−
1
2 )

=
1
4

e
1
√

x x−
3
2 (

1
√

x
− 1)

< 0,

and hence (iii) holds.

Lemma 2.2. The function f (x) =
1
2

e
1
√

x −

√
2

4
e

1
√

2x is

monotonously decreasing for x ≥ 2.

Proof. For x ≥ 2, we have

d f (x)
dx

= −
1
4

e
1
√

x x−
3
2 +

√
2

4
(2x)−

3
2 e

1
√

2x

=
1
8

x−
3
2 e

1
√

2x −
1
4

x−
3
2 e

1
√

x

< 0.

Lemma 2.3. For integer q ≥ 2, the function

f (x) = e
1
√

qx − e
1√

(q−1)x is increasing for x ≥ 2.

Proof. For x ≥ 2, we have

d f (x)
dx

=
(q − 1)e

1√
(q − 1)x

2(x(q − 1))
3
2

−
qe

1
√

qx

2(qx)
3
2

=
1

2x
3
2

(
(q − 1)e

1√
(q − 1)x

(q − 1)
3
2

−
qe

1
√

qx

q
3
2

)

=
1

2x
3
2

(
e

1√
(q − 1)x√
q − 1

−
e

1
√

qx
√

q
)

> 0,

and hence Lemma 2.3 holds.
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Lemma 2.4. Let x, y be positive integers with x ≥ 1 and

y ≥ 2. Denote

l(x, y) = e
1
√

y + x(e
1
√

y − e
1√
y−1 ) + (y − 1 − x)(e

1√
2y − e

1√
2(y−1) ),

then l(x, y) is monotonously decreasing in x.

Proof. For x ≥ 1 and y ≥ 2, we have

∂l(x, y)
∂x

= (e
1
√

y − e
1√
y−1 ) − (e

1√
2y − e

1√
2(y−1) ).

It is easily to know that e
1
√

y − e
1√
y−1 < 0 and e

1√
2y − e

1√
2(y−1) <

0. By Lemma 2.3, e
1√
2y − e

1√
2(y−1) > e

1
√

y − e
1√
y−1 . Hence

l(x, y) < 0 and l(x, y) is monotonously decreasing in x.

Lemma 2.5. For x ≥ 2, denote

f (x) = e
1
√

x + (x − 2)(e
1
√

x − e
1
√

x−1 ) + (e
1
√

2x − e
1

√
2(x−1) ).

Then f (x) is monotonously decreasing in x.

Proof. For x ≥ 2, by applying Lemma 2.1(iii) and Lemma
2.2, we have

d f (x)
dx

= e
1
√

x (−
1
2

x−
3
2 ) + (e

1
√

x − e
1
√

x−1 )

+ (x − 2)[e
1
√

x (−
1
2

x−
3
2 ) − e

1
√

x−1 (−
1
2

(x − 1)−
3
2 )]

− e
1
√

2x (2x)−
3
2 + e

1
√

2(x−1) [2(x − 1)]−
3
2

= −
1
2

e
1
√

x x−
3
2 + (e

1
√

x − e
1
√

x−1 )

+ (x − 2)[−
1
2

e
1
√

x x−
3
2 +

1
2

e
1
√

x−1 (x − 1)−
3
2 ]

−

√
2

4
e

1
√

2x x−
3
2 +

√
2

4
e

1
√

2(x−1) (x − 1)−
3
2

= (
1
2

e
1
√

x −

√
2

4
e

1
√

2x )x−
3
2 + (

√
2

4
e

1
√

2(x−1)

− e
1
√

x−1 )(x − 1)−
3
2 + e

1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2

+
1
2

e
1
√

x−1 x(x − 1)−
3
2

≤ (
1
2

e
1
√

x −

√
2

4
e

1
√

2x )(x − 1)−
3
2 + (

√
2

4
e

1
√

2(x−1)

− e
1
√

x−1 )(x − 1)−
3
2 + e

1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2

+
1
2

e
1
√

x−1 x(x − 1)−
3
2

= (e
1
√

x −

√
2

4
e

1
√

2x )(x − 1)−
3
2 + (

√
2

4
e

1
√

2(x−1)

− e
1
√

x−1 )(x − 1)−
3
2 + e

1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2

+
1
2

e
1
√

x−1 x(x − 1)−
3
2 −

1
2

e
1
√

x (x − 1)−
3
2

= (
1
2

e
1
√

x −

√
2

4
e

1
√

2x +

√
2

4
e

1
√

2(x−1)

−
1
2

e
1
√

x−1 )(x − 1)−
3
2 + e

1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2

−
1
2

e
1
√

x (x − 1)−
3
2 +

1
2

e
1
√

x−1 x(x − 1)−
3
2

+
1
2

(e
1
√

x − e
1
√

x−1 )(x − 1)−
3
2

≤ e
1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2 −

1
2

e
1
√

x (x − 1)−
3
2

+
1
2

e
1
√

x−1 x(x − 1)−
3
2 +

1
2

(e
1
√

x − e
1
√

x−1 )(x − 1)−
3
2

(by Lemma 2.2)

= e
1
√

x − e
1
√

x−1 −
1
2

e
1
√

x x−
1
2

+
1
2

e
1
√

x−1 x(x − 1)−
3
2 −

1
2

e
1
√

x−1 (x − 1)−
3
2

= (1 −
1
2

x−
1
2 )e

1
√

x − (1 −
1
2

(x − 1)−
1
2 )e

1
√

x−1

< 0 (by Lemma 2.1 (iii)),

and hence f (x) is monotonously decreasing in x.
Transformation 1. Let H1 be a cycle subgraph of G1,

which is attached at u in graph G1. Let v1 and v2 be adjacent
to u in H1 with d(v1) = 2, 3 or 4 and d(v2) = 2, 3 or 4.
Let K1 be a graph obtained from G1 by attaching two paths:
P1 = uu1u2u3...ua of length a and P2 = uw1w2w3...wb of
length b. If K1 = G1−uw1 +uaw1, we say that K1 is obtained
from G1 by Transformation 1, as shown in Figure 1.

Lemma 2.6. If K1 is obtained from G1 by Transformation 1

as shown in Figure 1, then

eχ(G1) < eχ(K1).

r r r r rrrrr
H1

u u1 u2 u3 uaw1w2w3wb

G1

r rv1 v2

r r r r r r r
u u1 u2 ua w1 w2 wb

H1

K1

Figure 1. Trans f ormation 1.

r rv1 v2
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Proof. Applying Transformation 1, let d(v1) = d1 and
d(v2) = d2. So

eχ(K1) − eχ(G1) = e
1√
3d1 + e

1√
3d2 + e

1
√

6 + (a + b − 2)e
1
2 + e

1
√

2

− e
1√
4d1 − e

1√
4d2 − 2e

1
√

8 − (a + b − 4)e
1
2

− 2e
1
√

2

= e
1√
3d1 − e

1√
4d1 + e

1√
3d2 − e

1√
4d2 + e

1
√

6

− 2e
1
√

8 + 2e
1
2 − e

1
√

2

> 0.0265 (by Lemma 2.3)

> 0.

Transformation 2. P = v1v2...vt−1vt is a pendent path
attaching at v1 in graph G2. The vertices u and w are two
neighbors of v1 different from v2 with d(u) = 2 or 3 and
d(w) = 2 or 3, d(u) , d(w). If K2 = G2 − wv1 + vtw, we say
that K2 is obtained from G2 by Transformation 2, as shown
in Figure 2.

r rrr
rr

u

G2

v1
w

v2

vt−1

vt

r rr r r

Figure 2. Trans f ormation 2.

K2

u v1 v2 vt w

Lemma 2.7. If K2 is obtained from G2 by Transformation 2

as shown in Figure 2, then

eχ(G2) < eχ(K2).

Proof. By Transformation 2, let d(u) = d1, d(w) = d2 and
d(u) , d(w), we have

eχ(K2) − eχ(G2) = e
1√
2d1 + e

1√
2d2 + (t − 1)e

1
2 − e

1√
3d1 − e

1√
3d2

− e
1
√

6 − e
1
√

2 − (t − 3)e
1
2

= e
1√
2d1 − e

1√
3d1 + e

1√
2d2 − e

1√
3d2 + 2e

1
2

− e
1
√

6 − e
1
√

2

> 0.0183 (by Lemma 2.3)

> 0.

Therefore, the proof is complete.
Transformation 3. Let G3 be a graph as shown in Figure

3. The pendent paths P1 = u1u2...ua, P2 = v1v2...vb, P3 =

w1w2...w3 is attached at u, v, w in graph G3. Let d(p) = d1,
d(q) = d2, and d1 = 2 or 3, d2 = 2 or 3. If K3 = K2 − uv −

vw − wq + uav + vbw + wcq, we say that K3 is obtained from
G3 by Transformation 3, as shown in Figure 3.

Lemma 2.8. If K3 is obtained from G3 by Transformation 3

as shown in Figure 3, then

eχ(G3) < eχ(K3).

r r r r rrrr
rrr

rrr

p qu v w

u1

u2

ua

v1

v2

vb

w1

w2

wc

G3

r r r r

r r r r r r r rp qv wu u1 u2 ua v1 v2 vb w1 w2 wcr r r r r r
K3

Figure 3. Trans f ormation 3.

r r r r

Proof. Let d(p) = d1 and d(q) = d2, we have

eχ(K3) − eχ(G3) = e
1√
2d1 + (a + b + c + 2)e

1
2 + e

1√
2d2 − e

1√
3d1

− e
1√
3d2 − 2e

1
3 − 3e

1
√

6 − 3e
1
√

2 − (a + b + c − 6)e
1
2

= e
1√
2d1 − e

1√
3d1 + e

1√
2d2 − e

1√
3d2 + 8e

1
2 − 2e

1
3

− 3e
1
√

6 − 3e
1
√

2

> 0.0188 (by Lemma 2.3)

> 0.

Therefore, the proof is complete.

3. Main results

In this section, we will give the upper and lower bounds
on the exponential Randić index of unicyclic graphs.
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Theorem 3.1. Let G be a unicyclic graph on n vertices for

n ≥ 3. Then

eχ(G) ≤ eχ(Cn).

The equality holds if and only if G � Cn.

Proof. By Theorem 1.1, we know that eχ attains its
maximum value in the path Pn. For any unicyclic graph G

with n vertices, the value of exponential Randić index gets
larger when some paths are suspended. By Lemma 2.6, we
can find that any unicyclic graph G can be changed into a
sun graph with a larger exponential Randić index eχ. We
can applying Lemma 2.7 and Lemma 2.8 repeatedly to any
sun graph by increasing its exponential Randić index eχ until
it is a Cn. So we can prove the theorem.

For a graph G = S +
n , denote

eχ(G) = f (n) = (n − 3)e
1
√

n−1 + 2e
1

√
2(n−1) + e

1
2 .

We have the following result.

Theorem 3.2. Let G be a unicyclic graph on n vertices for

n ≥ 3, then

f (n) ≤ eχ(G).

The equality holds if and only if G = S +
n (see Figure 4).

r
r
r

r
r
r

n − 3

Figure 4. S +
n

Proof. From the above conclusion, we know the
exponential Randić index reaches its maximum value in Cn.
In the proof, we assume that G is a unicyclic graph but not
a Cn, and just show that f (n) ≤ eχ(G) and equality holds if
and only if G = S +

n .
We use induction on the number n. Since G is not a Cn and

G ∈ Un, we have n ≥ 4. When n = 4, 5, then the theorem
holds (see Figure 5). In the following proof, we assume that
G ∈ Un with n ≥ 6. M is the set of vertices with degree one
in V(G) (i.e. M = {u ∈ V(G)|d(u) = 1}). Since G is not a
Cn, M , ∅. Let u ∈ M and v be the neighbor of u. Then
d(v) ≥ 2. Set W(u) = {y|y ∈ N(v) \ {u}, d(y) = 1}. Choose u0

such that
(i) the number of the set W(u0) is as large as possible;
(ii) subject to (i), d(v) is as small as possible.

n = 4

n = 5

r
r r

r
6.4384r

r r
rr

7.7944

r
r r

r
r

7.9666

r r
r r

r
8.0871

r
r r

r r
8.1894

Figure 5. the value o f eχ when n = 4, 5.

Let G
′

= G − u0, then G
′

∈ Un−1, d(v) = d and NG′ (v) =

{y1, y2, y3, ..., yd−1}.

Let S be the sum of the weights e
1

√
d(u)d(v) of the edges

incident with v except for the edge u0v in G. Then

S =
∑d−1

i=1 e
1√
ddyi .

Let S
′

be the sum of the weights e
1

√
d(u)d(v) of the edges

incident with v in G
′

. Then

S ′ =
∑d−1

i=1 e
1√

(d−1)dyi .

By induction assumption, we have

eχ(G) = eχ(G
′

) + e
1
√

d + S − S
′

≥ f (n − 1) + e
1
√

d + S − S
′

= f (n) − (n − 3)e
1
√

n−1 − 2e
1

√
2(n−1) − e

1
2 + (n − 4)e

1
√

n−2

+ 2e
1

√
2(n−2) + e

1
2 + e

1
√

d + S − S
′

= f (n) + (n − 4)e
1
√

n−2 + 2e
1

√
2(n−2) − (n − 3)e

1
√

n−1 − 2e
1

√
2(n−1)

+ e
1
√

d + S − S
′

.

Now we consider the following two cases.

Case 1. For i = 1, 2, 3, ..., d − 1, d(yi) ≥ 2.

If d(v) = 2, we have

eχ(G) ≥ f (n) + (n − 4)e
1
√

n−2 + 2e
1

√
2((n−2) − (n − 3)e

1
√

n−1 − 2e
1

√
2(n−1)

+ e
1
√

2 + e
1√
2dy1 − e

1√
dy1

= f (n) + [(n − 3)e
1
√

n−2 − (n − 3)e
1
√

n−1 ] + [2e
1

√
2(n−2) − 2e

1
√

2(n−1) ]

+ [e
1
√

2 − e
1
√

n−2 + e
1√
2dy1 − e

1√
dy1 ].
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By Lemma 2.1(ii) and Lemma 2.3, we have

e
1
√

2 − e
1
√

n−2 + e
1√
2dy1 − e

1√
dy1

≥e
1
√

2 − e
1
√

4 + e
1
2 − e

1
√

2

=0.

Then eχ(G) > f (n) holds.
If d(v) = 3 and n ≥ 9, applying Lemma 2.3, then we have

eχ(G) ≥ f (n) + [(n − 3)e
1
√

n−2 − (n − 3)e
1
√

n−1 ]

+ [2e
1

√
2(n−2) − 2e

1
√

2(n−1) ] − e
1
√

n−2 + e
1
√

3 + e
1√
3dy1

− e
1√
2dy1 + e

1√
3dy2 − e

1√
2dy2

= f (n) + [(n − 3)e
1
√

n−2 − (n − 3)e
1
√

n−1 ] + [2e
1

√
2(n−2)

− 2e
1

√
2(n−1) ] + e

1
√

3 − e
1
√

n−2 + e
1√
3dy1 − e

1√
2dy1

+ e
1√
3dy2 − e

1√
2dy2

≥ f (n) + [(n − 3)e
1
√

n−2 − (n − 3)e
1
√

n−1 ] + [2e
1

√
2(n−2)

− 2e
1

√
2(n−1) ] + 0.0329

> f (n).

If d(v) = 3 and n = 6, 7, 8, it’s not difficult to check that

[(n − 3)e
1
√

n−2 − (n − 3)e
1
√

n−1 ] + [2e
1

√
2(n−2) − 2e

1
√

2(n−1) ] + e
1
√

3

− e
1
√

n−2 + e
1√
3dy1 − e

1√
2dy1 + e

1√
3dy2 − e

1√
2dy2 > 0.

We have proved that the theorem holds when d(v) = 2
and d(v) = 3. If d(v) ≥ 4, then there is at least one vertex in
{y1, y2, y3, ..., yd−1} such that the subgraph H of G − v which
including the vertex is a tree and |V(H)| ≥ 2. Because
W(u) = Φ for all u ∈ M, there exists u′ ∈ V(H)

⋂
M and

u′v′ ∈ E(G) such that d(v′) = 2, which is a contradiction. So
d(v) = d ≤ 3.

Case 2. There exists some i(1 ≤ i ≤ d − 1) such that
d(yi) = 1.

Without loss of generality, d(y1) = d(y2) = ... = d(yk) = 1
and d(yi) ≥ 2 for k + 1 ≤ i ≤ d − 1, where k ≥ 1.

By applying Lemma 2.3, we have

S − S
′

= ke
1
√

d +

d−1∑
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1
√

d−1 +

d−1∑
i=k+1

e
1√

(d−1)dyi

= k(e
1
√

d − e
1
√

d−1 ) +

d−1∑
i=k+1

e
1√
ddyi −

d−1∑
i=k+1

e
1√

(d−1)dyi
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1
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d − e
1
√

d−1 ) + (d − 1 − k)(e
1
√

2d − e
1

√
2(d−1) ).

Since G ∈ Un, k ≤ d − 2, and d(v) = d ≤ n − 2. By Lemma
2.4 and Lemma 2.5, we have that

eχ(G) ≥ f (n) + (n − 4)e
1
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≥ f (n) + (n − 4)e
1
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= f (n) + (n − 3)(e
1
√

n−2 − e
1
√

n−1 ) + (n − 4)(e
1
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1
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> f (n).

We put the proof of the last inequality in the appendix, and
the proof is complete.

4. Conclusions

In this paper, we give the extremal value on exponential
Randić index of unicyclic graphs, and the corresponding
extremal graph is characterized. However, determining the
extremal value with respect to exponential Randić index
of bicyclic graphs still remains an open and challenging
problem.
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17. D. Stevanović, A. Ilić. On the Laplacian coefficients
of unicyclic graphs, Linear Algebra Appl., 430 (2009),
2290–2300.

Appendix

Proposition 4.1. Let n be a positive integer with n ≥ 6, we

will show that

(n − 3)(e
1
√

n−2 − e
1
√

n−1 ) + (n − 4)(e
1
√

n−2 − e
1
√

n−3 )

+ 2(e
1

√
2(n−2) − e

1
√

2(n−1) ) + (e
1

√
2(n−2) − e

1
√

2(n−3) ) > 0.

Proof. Let g(n) = (n − 3)(e
1
√

n−2 − e
1
√

n−1 ) + (n − 4)(e
1
√

n−2 −

e
1
√

n−3 ) + 2(e
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√
2(n−2) − e

1
√

2(n−1) ) + (e
1

√
2(n−2) − e

1
√

2(n−3) ), the image of
function g(n) is shown in the following figure.

It can be seen from the function image that g(n) is
above the horizontal axis. Calculated by MATLAB,
the point of intersection of g(n) and the horizontal
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axis is (0,−27852563104487148.539894396758705 −

23751291381668762.757332046522084 ∗ i). So g(n) > 0 is
always established when n ≥ 6.
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