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1. Introduction

As is well known, impulsive differential equations can
display numerous practical problems arising in mechanics,
electrical engineering, medicine, biology, ecology, etc. The
mathematical theory of impulsive differential equations have
been extensively studied in many classical problems in
the past several decades. Such as stability, persistence,
synchronization and control problems. Many important and
interesting results have been achieved. The reader can refer
to some papers and books by Bainov and Simeonov [1,2],
Lakshmikantham et al. [3–5], K. Gopalsamy and Zhang [6],
and [7–15] among others.

The method of Lyapunov-Razumikhin functions has been
widely applied to dynamical analysis of various delay
differential equations, especially in stability of IFDEs. Many
important results can be seen in [16–26] and the references
therein. In 1892, Lyapunov presented the idea of this method
originated with for the ordinary differential equations. And
Razumikhin developed it to delay differential equations in
1956. A manifest advantage of this method is that it
can exhibit the dynamics of systems and does not require
the knowledge of solutions of systems. And then, one

may naturally ask that whether it can be applied to the
existence problems of positive and negative solutions of
systems. In other words, we can establish some Lyapunov-
Razumikhin type conditions to guarantee the existence
of positive and negative for IFDEs. Several results of
existence of positive solutions for IFDEs can be seen in
[27–31]. Although Lyapunov-Razumikhin methods have
been developed to stability and control problem of impulsive
dynamical systems in past years, to the best of author’s
knowledge, so far there is almost no result of Lyapunov-
Razumikhin type on the existence of positive and negative
solutions for IFDEs and the aim of this paper is to close this
gap.

In this paper, we shall develop the Lyapunov-Razumikhin
method to study the existence problems of positive and
negative solutions for IFDEs. In order to do this, we first
introduce the concept of ε-unstability to IFDEs and establish
some sufficient conditions to guarantee the ε-unstability
via Lyapunov-Razumikhin method. Based on the obtained
results, we present some sufficient conditions for the global
existence of positive and negative solutions of IFDEs. An
example is given to demonstrate the effectiveness of the
results.
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2. Preliminaries

Notations. Let R denote the set of real numbers, R+ the
set of positive real numbers, Z+ the set of positive integers
and Rn the n-dimensional real space equipped with the
Euclidean norm |•|.K = {a ∈ C(R+,R+)| a(0) = 0 and a(s) >
0 for s > 0, a is strictly increasing in s and tend to infinite
as s tend to infinite }. C(S ,V) = {ϕ : S → V is continuous}
and PC(S ,V) = {ϕ : S → V is continuous everywhere
except at finite number of points t, at which ϕ(t+), ϕ(t) exist
and ϕ(t+) = ϕ(t)}. In particular, let PCr = PC([−r, 0],R). For
ϕ ∈ PCr, the norm of ϕ is defined by ||ϕ||r = max−r≤θ≤0 |ϕ(θ)|.

Consider the following IFDEs:
x′(t) = f (t, xt), t ∈ [tk−1, tk),

∆x|t=tk = x(tk) − x(t−k ) = Ik(tk, x(t−k )), k ∈ Z+,

xt0 = φ(s), −r ≤ s ≤ 0,
(2.1)

where φ ∈ PCr, the impulse times tk satisfy 0 ≤ t0 < t1 <

. . . < tk → ∞ as k → ∞ and x
′

denotes the right-hand
derivative of x. For each t ≥ t0, xt, xt− ∈ PCr are defined by
xt(s) = x(t + s), xt− (s) = x(t− + s), s ∈ [−r, 0].

In this paper, we make the following assumptions:

• (H1) f : [tk−1, tk) × PCr → R, k ∈ Z+, is continuous
and f (t, 0) = 0. For any ϕ ∈ PCr, k ∈ Z+, the limit
lim(t,θ)→(t−k ,ϕ) f (t, θ) = f (t−k , ϕ) exists.

• (H2) f (t, ϕ) is Lipschitzian in ϕ in each compact set in
PCr.

• (H3) Ik(t, x) : R+ × R → R, k ∈ Z+, is continuous and
Ik(t, 0) = 0. For any ρ > 0, there exists a ρ1 ∈ (0, ρ)
such that x ∈ S (ρ1) implies that x + Ik(tk, x) ∈ S (ρ),
where S (ρ) = {x : |x| < ρ, x ∈ R}.

• (H4) For ϕ ∈ PCr, ||φ||r0 � min−r≤θ≤0 |ϕ(θ)| > 0 holds.
• (H5) For any (t, x) ∈ R+ × R, x[x + Ik(t, x)] ≥ 0 holds

for all k ∈ Z+.

Remark 2.1. Under the assumptions (H1)− (H3), the initial
value problem (2.1) exists with a unique solution which
can be written in the form x(t, t0, φ), see [12,7] for detailed
information. Assumptions (H4) and (H5) are given for later
use.

Definition 2.1. The function V : [−r,∞) × PCr → R+

belongs to class ν0 if
(H1) V is continuous on each of the sets [tk−1, tk) × PCr and
lim(t,ϕ1)→(t−k ,ϕ2) V(t, ϕ1) = V(t−k , ϕ2) exists;
(H2) V(t, x) is locally Lipschitzian in x and V(t, 0) ≡ 0.

Definition 2.2. Let V ∈ ν0, for any (t, ψ) ∈ [tk−1, tk) × PCr,
the right-upper Dini derivative of V(t, x) along the solution
of system (2.1) is defined by

D+V(t, ψ(0)) = lim sup
h→0+

1
h
{V(t+h, ψ(0)+h f (t, ψ))−V(t, ψ(0))}.

Definition 2.3. Assume that x(t) = x(t, t0, φ) be the solution
of system (2.1) through (t0, φ). Then the trivial solution of
system (2.1) is said to be

1. ε-unstable, if for any ε > 0 and t0 ≥ 0, there exists a
δ = δ(t0, ε) > 0 such that ||φ||r0 ≥ δ implies |x(t)| ≥
ε, t ≥ t0.

2. Uniformly ε-unstable, if δ is independent of t0.

3. ε-unstability results

In this section, we shall establish some sufficient
conditions to guarantee the ε-unstability of the trivial
solution of system (2.1) by using Lyapunov-Razumikhin
method and some analysis techniques.

Theorem 3.1. Assume that (H1) − (H4) hold. If there

exist some functions w1,w2 ∈ K, c ∈ C(R+,R+), p ∈

PC(R+,R+),V ∈ ν0, and some constants q > 1, σ > 0, βk ∈

[0, 1), k ∈ Z+ such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, ψ(0)) ≥ −p(t)c(V(t, ψ(0))), for all t ∈

[tk−1, tk), k ∈ Z+ whenever qV(t + θ, ψ(θ)) ≥ V(t, ψ(0)), for

θ ∈ [−r, 0] and ψ ∈ PCr;

(iii) V(tk, ψ(0) + Ik(tk, ψ)) ≥ q(1 − βk)V(t−k , ψ(0)), for all

(tk, ψ) ∈ R+ × PCr, and
∏m

k=1(1 − βk) ≥ σ for all m ∈ Z+;

(iv) inf s>0
∫ qs

s
du

c(u) −
∫ tk

tk−1
p(s)ds > 0 for all k ∈ Z+.

Then the trivial solution of system (2.1) is uniformly ε-

unstable.
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Proof. Let x(t) = x(t, t0, φ) be a solution of system (2.1)
through (t0, φ). For any ε > 0, choose β = β(ε) > 0 and
δ = δ(ε) > 0 such that

w2(ε) ≤ σw1(β) ≤ w1(β) < qw1(β) ≤ w1(δ). (3.1)

For the sake of brevity, we denote V(t) = V(t, x(t)). Next we
shall show that for any φ ∈ PCr, ‖φ‖r0 ≥ δ implies

V(t) ≥
m−1∏
k=0

(1 − βk)w1(β), t ∈ [tm−1, tm), m ∈ Z+.

where β0 = 0. Frist, we show that V(t) ≥ w1(β), t ∈ [t0, t1).
Suppose not, then there exist some t ∈ [t0, t1) such that
V(t) < w1(β). Let

t̄ = inf{t ∈ [t0, t1), V(t) < w1(β)}.

It follows from (3.1) that V(t0) ≥ w1(δ) > w1(β). So it is
obvious that t̄ > t0, V(t̄) = w1(β) and

V(t) ≥ w1(β), t ∈ [t0, t̄].

Considering (3.1) again, it holds:

V(t) ≥ w1(β), t ∈ [t0 − r, t̄]. (3.2)

Since V(t0) ≥ qw1(β), we further define

t = sup{t ∈ [t0, t̄], V(t) ≥ qw1(β)}.

Obviously, t < t̄, V(t) = qw1(β) and together with (3.2)
yields

w1(β) ≤ V(t) ≤ qw1(β), t ∈ [t, t̄].

Thus it can be obtained that

qV(t + θ) ≥ qw1(β) ≥ V(t), θ ∈ [−r, 0], t ∈ [t, t̄],

which implies that D+V(t, ψ(0)) ≥ −p(t)c(V(t, ψ(0))) for t ∈

[t, t̄].
Hence, we get

inf s>0
∫ qs

s
du

c(u) ≤
∫ qw1(β)

w1(β)
du

c(u)

=
∫ V(t)

V(t̄)
du

c(u)

≤
∫ t̄

t p(u)du

≤
∫ t1

t0
p(u)du,

which is a contradiction with condition (iv). So we obtain
V(t) ≥ w1(β), t ∈ [t0, t1).
Meanwhile, we note that

V(t1) ≥ q(1 − β1)V(t−1 ) ≥ q(1 − β1)w1(β).

Now we suppose that

 V(t) ≥
∏m−1

k=0 (1 − βk)w1(β), t ∈ [tm−1, tm)
V(tm) ≥ q

∏m
k=0(1 − βk)w1(β)

(3.3)

for

1 ≤ m ≤ N,N ∈ Z+.

Next we show that

V(t) ≥
∏N

k=0(1 − βk)w1(β), t ∈ [tN , tN+1). (3.4)

For the sake of brevity, we define

B =
∏N−1

k=0 (1 − βk)w1(β).

Thus, it follows from (3.3) that V(t) ≥ B, t ∈ [t0 − r, tN),

V(tN) ≥ q(1 − βN)B.
(3.5)

Now we only need prove that

V(t) ≥ (1 − βN)B, t ∈ [tN , tN+1).

Suppose not, then there exist some t ∈ [tN , tN+1) such that
V(t) < (1 − βN)B. Let

t? = inf{t ∈ [tN , tN+1), V(t) < (1 − βN)B},

then t? > tN , V(t?) = (1 − βN)B and

V(t) ≥ (1 − βN)B, t ∈ [tN , t?],

which together with (3.5) yields

V(t) ≥ (1 − βN)B, t ∈ [t0 − r, t?]. (3.6)

Note that V(tN) ≥ q(1 − βN)B, we further define

t∗ = sup{t ∈ [tN , t?], V(t) ≥ q(1 − βN)B},
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then t∗ < t?, V(t∗) = q(1 − βN)B and

(1 − βN)B ≤ V(t) ≤ q(1 − βN)B, t ∈ [t∗, t?].

It follows from (3.6) and above inequality that

qV(t + θ) ≥ q(1 − βN)B ≥ V(t), θ ∈ [−r, 0], t ∈ [t∗, t?],

which implies that D+V(t, ψ(0)) ≥ −p(t)c(V(t, ψ(0))) for t ∈

[t∗, t?].
Hence, we get

inf s>0
∫ qs

s
du

c(u) ≤
∫ q(1−βN )B

(1−βN )B
du

c(u)

=
∫ V(t∗)

V(t?)
du

c(u)

≤
∫ t?

t∗ p(u)du

≤
∫ tN+1

tN
p(u)du,

which is a contradiction. So we have proven (3.4) holds.
By the method of induction, in general, we get

V(t) ≥
∏m

k=0(1 − βk)w1(β), t ∈ [tm, tm+1),m ∈ Z+,

which implies that

w2(|x(t)|) ≥ V(t) ≥
∏m

k=0(1 − βk)w1(β) ≥ σw1(β) ≥ w2(ε),

for
t ≥ t0,

i.e.,
|x(t)| ≥ ε, t ≥ t0.

Thus the trivial solution of system (2.1) is uniformly
ε-unstable. �

Corollary 3.1. Assume that (H1) − (H4) hold. If there exist

some functions w1,w2 ∈ K,V ∈ ν0, and some constants

p > 0, q > 1, σ > 0, βk ∈ [0, 1), k ∈ Z+ such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, ψ(0)) ≥ −pV(t, ψ(0)), for all t ∈ [tk−1, tk), k ∈
Z+ whenever qV(t + θ, ψ(θ)) ≥ V(t, ψ(0)), for θ ∈ [−r, 0] and

ψ ∈ PCr;

(iii) V(tk, ψ(0) + Ik(tk, ψ)) ≥ q(1 − βk)V(t−k , ψ(0)), for

all (tk, ψ) ∈ R+ × PCr, and
∏m

k=1(1 − βk) ≥ σ for all

m ∈ Z+;

(iv) tk − tk−1 < ln q
p , for all k ∈ Z+. Then the trivial

solution of system (2.1) is uniformly ε-unstable

Remark 3.1. Theorem 3.1 presents some sufficient
conditions from the view of impulsive control to ensure the
uniform ε-unstability. In fact, the ε-unstability can also be
derived from the view of impulsive perturbation. Next we
shall give the main result and its proof is similar to Theorem
3.1 and omitted here.

Theorem 3.2. Assume that (H1) − (H4) hold. If there exist

some functions w1,w2 ∈ K,V ∈ ν0, and some constants

σ > 0, βk ∈ [0, 1), k ∈ Z+ such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, ψ(0)) ≥ 0, for all t ∈ [tk−1, tk), k ∈ Z+

whenever V(t + θ, ψ(θ)) ≥ V(t, ψ(0)), for θ ∈ [−r, 0] and

ψ ∈ PCr;

(iii) V(tk, ψ(0) + Ik(tk, ψ)) ≥ (1 − βk)V(t−k , ψ(0)), for all

(tk, ψ) ∈ R+ × PCr, and
∏m

k=1(1 − βk) ≥ σ for all m ∈ Z+.

Then the trivial solution of system (2.1) is uniformly

ε-unstable.

From Theorem 3.2, we can obtain the uniform ε-
unstability result for system (2.1) without impulsive effect.

Corollary 3.2. Assume that (H1) − (H4) hold. If there exist

some functions w1,w2 ∈ K such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, ψ(0)) ≥ 0, for all t ≥ t0, whenever V(t +

θ, ψ(θ)) ≥ V(t, ψ(0)), for θ ∈ [−r, 0].

Then the trivial solution of system (2.1) without impulsive

effect is uniformly ε-unstable.

4. Global existence of positive and negative solutions

Based on the obtained results in Section 3, we next shall
study the global existence of positive and negative solutions
for system (2.1).

Theorem 4.1. Assume that (H1) − (H5) hold. If there

exist some functions w1,w2 ∈ K, c ∈ C(R+,R+), p ∈
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PC(R+,R+),V ∈ ν0, and some constants q > 1, σ > 0, βk ∈

[0, 1), k ∈ Z+ such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, x(t)) ≥ −p(t)c(V(t, x(t))), for all t ∈

[tk−1, tk), k ∈ Z+ whenever qV(t + θ, x(t + θ)) ≥ V(t, x(t)),
for θ ∈ [−r, 0];

(iii) V(tk, x(t−k ) + Ik(tk, x(t−k ))) ≥ q(1 − βk)V(t−k , x(t−k )), and∏m
k=1(1 − βk) ≥ σ for all m ∈ Z+;

(iv)

inf s>0
∫ qs

s
du

c(u) −
∫ tk

tk−1
p(s)ds > 0 for all k ∈ Z+,

where x(t) = x(t, t0, φ) is a solution of system (2.1) with

‖φ‖r0 > 0 and φ(0) > 0.

Then x is a globally positive solution of system (2.1).

Proof. From Theorem 3.1, we know that the trivial solution
of system (2.1) is uniformly ε-unstable. So for any ε > 0,
one may choose δ = w−1

1

(
q
σ

w2(ε)
)

such that ‖φ‖r0 ≥ δ

implies |x(t)| ≥ ε, t ≥ t0. Note that w1,w2 ∈ K and

lim
s→0

w−1
1

(
q
σ

w2(s)
)

= 0.

Thus we analyze it from another point of view. Since x(t) =

x(t, t0, φ) is a solution of system (2.1) with ‖φ‖r0 > 0, we
define

δφ = ‖φ‖r0 and εφ = w−1
2

(
σ
q w1(δφ)

)
.

Obviously, for εφ > 0, we have |x(t)| ≥ εφ, t ≥ t0. Then note
that the continuity of x(t) on [t0, t1) and φ(0) > 0, we get
x(t) > 0, t ∈ [t0, t1). From (H5), it is clear that x(t−1 ) > 0 and
x(t1) > 0. Similarly, we get x(t) > 0, t ∈ [t1, t2) in view of
the continuity of x(t) on [t1, t2). In this way, we can deduce
that x(t) > 0, t ≥ t0. Thus the proof is complete. �

Remark 4.1. It should be noted that in the proof of
Theorem 4.1, we are interested in the the existence of
positive constant ε rather than its concrete value. Moreover,
one may find that assumption (H5) plays an important role
in guaranteeing the global existence of positive (negative)
solutions.

Corollary 4.1. Under the conditions in Theorem 4.1,

assume that x(t) = x(t, t0, φ) is a solution of system (2.1)
with ‖φ‖r0 > 0 and φ(0) < 0. Then the solution x is a

globally negative solution of system (2.1).

Theorem 4.2. Assume that (H1) − (H5) hold. If there exist

some functions w1,w2 ∈ K,V ∈ ν0, and some constants

σ > 0, βk ∈ [0, 1), k ∈ Z+ such that

(i) w1(|x|) ≤ V(t, x) ≤ w2(|x|), (t, x) ∈ [t0,∞) × R;

(ii) D+V(t, x(t)) ≥ 0, for all t ∈ [tk−1, tk), k ∈ Z+ whenever

V(t + θ, x(t + θ)) ≥ V(t, x(t)), for θ ∈ [−r, 0];

(iii) V(tk, x(t−k ) + Ik(tk, x(t−k ))) ≥ (1 − βk)V(t−k , x(t−k )), and∏m
k=1(1 − βk) ≥ σ for all m ∈ Z+,

where x(t) = x(t, t0, φ) is a solution of system (2.1) with

‖φ‖r0 > 0 and φ(0) > 0.

Then x is a globally positive solution of system (2.1).

Corollary 4.2. Under the conditions in Theorem 4.2, assume

that x(t) = x(t, t0, φ) is a solution of system (2.1) with ‖φ‖r0 >

0 and φ(0) < 0. Then the solution x is a global negative

solution of system (2.1).

Remark 4.2. The proofs of Theorem 4.2 and Corollary 4.2
is similar to Theorem 4.1 and omitted here.

Example. Consider the following IFDE:
x′(t) = a(t)x(t) + b(t)

∫ 0
−r |x(t + u)|sign(x(t))du, t ≥ 0, t , tk,

∆x(tk) = Ik(x(t−k )), k ∈ Z+,

x(s) = ϕ(s), s ∈ [−r, 0],
(4.1)

where ϕ ∈ PCr, a ∈ C(R+,R), b ∈ C(R+,R+). r > 0 is a
constant. Here we consider the following two cases:

(I) Ik(s) = (λ − 1 − λβk)s, λ > 1, βk ∈ [0, 1), k ∈ Z+;
(II) Ik(s) = −βk s, βk ∈ [0, 1), k ∈ Z+.

Property 1. Case (I). Assume that there exist some

constants q ∈ (1, λ], p > 0, and σ > 0 such that

(P1) − a(t) − r
q b(t) ≤ p, t ≥ 0;

(P2)
∏m

k=1(1 − βk) ≥ σ, m ∈ Z+;

(P3) tk − tk−1 <
ln q

p , k ∈ Z+;
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(P4) min−r≤θ≤0 |ϕ(θ)| > 0.

Then x(t) = x(t, ϕ) is a globally positive (negative)

solution of system (4.1) if ϕ(0) > 0(< 0).

Property 2. Case (II). Assume that there exists a constant

σ > 0 such that

(Q1) a(t) + rb(t) ≥ 0, t ≥ 0;

(Q2)
∏m

k=1(1 − βk) ≥ σ, m ∈ Z+;

(Q3) min−r≤θ≤0 |ϕ(θ)| > 0.

Then x(t) = x(t, ϕ) is a globally positive (negative)

solution of system (3.1) if ϕ(0) > 0(< 0).

Remark 4.3. Let V(t) = |x(t)|, then the results in Properties
1 and 2 can be easily obtained by Theorem 4.1 and 4.2.
From among, one may observe that Properties 1 and 2
present the global existence of positive (negative) solutions
of system (3.1) from the point of view of the impulsive
control and impulsive perturbation, respectively.
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