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Abstract: We consider the damped hyperbolic motion of polygons by a linear semi-discrete analogue
of polyharmonic curve diffusion. We show that such flows may transition any polygon to any other
polygon, reminiscent of the Yau problem of evolving one curve to another by a curvature flow, before
converging exponentially to a point that, under appropriate rescaling, is a planar basis polygon. We also
consider a hyperbolic linear semi-discrete flow of the Yau curvature difference flow, where a polygonal
curve is able to flow to any other such that we get convergence to the target polygon in infinite time.
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1. Introduction

In [2], Chow and Glickenstein considered a semi-discrete analogue of the second order curve
shortening flow for smooth, closed curves. Involving only a first time derivative, this may be considered
a parabolic-type evolution. Recently we considered the polyharmonic analogue of this work [13].
There we also considered a discrete analogue of the Yau problem of evolving one curve to another by
a curvature flow. In this article we replace the first time derivative by the second time derivative plus a
first time derivative ‘damping term’, thus considering a hyperbolic analogue of our previous work. Our
ensuing evolution equation now being second order in time requires more conditions in order to have a
unique solution. We prescribe not only initial conditions but also conditions at a fixed later time, thus
generating flows that transition from one polygonal curve through another and then asymptotically to
a limiting shape. These flows thus flow one curve to another in the spirit of the Yau problem and then
flow to a limiting polygonal curve.

Our setup is similar as in the earlier works [2, 13]. Given an ordered collection of n points in Rp,
joined in order to form a piecewise linear, closed immersed ‘curve’, the flow is given by a second order
system of n coupled linear ordinary differential equations (ODEs). The constant coefficient matrix of
this system is an mth order difference-type operator.
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Linearity permits analysis via finite Fourier series. As in [13] and in the case with nonzero damping
term, we find that the higher the order m, the faster the convergence, in the first case under appropriate
rescaling, to a regular basis polygon. To our knowledge semi-discrete linear hyperbolic flows have not
been considered before, but the hyperbolic analogue, with damping, of the curve shortening flow has
been considered (see [5] and the references contained therein).

Fully discrete flows have been considered by C. Rademacher and H. B. Rademacher [16,17]. These
are related to discretisation of partial differential equations in space and time using finite differences,
while semi-discrete flows are related to the ‘method of lines’ where there is discretisation in all but
one dimension (usually time), reducing a given system of partial differential equations to a system of
ordinary differential equations. The equations we consider are closely related to discretisations via
finite differences or finite elements; a particular hyperbolic reference is [5]. We would also like to
mention that first order semi-discrete flows have been considered in several engineering applications.
A linear curve shortening flow scheme is given in [18] to solve the rendezvous problem, where an
autonomous robotic system is guided such that each robot converges to a common position. In [7,9,10],
curve shortening flows are considered to solve real time path planning for robotic systems and aerial
vehicles. In particular, in [9, 10], a linearised semi-discrete curve shortening flow is utilised, with an
adaption to take into account an ever-changing environment, with the curve shortening flow method
overcoming shortcomings of other approaches. We suspect corresponding second order flows to find
similar useful applications. In [21], second order systems of linear differential equations with direct
reference to engineering applications are discussed, including systems with overdamping. The idea
of replacing a first time derivative by a second derivative and including a first derivative term with
positive damping coefficient, also appears in the heavy ball with friction system [1,6]. For this system,
Attouch et al. [1] explain how the introduction of the second time derivative enables flexibility not
found in the steepest descent system where only the first time derivative appears. Additional flexibility
is also reflected in our case: rather than only the initial polygonal state determining the evolution of
the polygon, we have the ability for an additional intermediate polygonal state to be prescribed at a
fixed later time. A reference with related application is [8] which discusses multi-robotic system path
planning where robots are required to undertake multiple jobs (where a job is represented by a robot
position) within a single trip.

Settings in which curvature flows result in linear ordinary or partial differential equations are
quite rare. Apart from the present setting, the main other setting where flow equations are linear is
where evolving convex curves and hypersurfaces are expressed via the Gauss map parametrisation
and flow speeds have a specific structure. The linear structure was exploited by Smoczyk for curves
and hypersurfaces evolving by parabolic equations in [19]; the curve results were extended by the
first author, Schrader and Wheeler in [15] to higher order equations and curves with general nonzero
rotation number. The first author and Otuf considered linear hyperbolic flows of curves in [14], while
the first author considered convex hypersurfaces evolving by analogous second order linear hyperbolic
flows in [12].

The structure of this article is as follows: In Section 2 we set up the necessary notation, introduce
the semi-discrete linear hyperbolic polyharmonic flows and uncover some fundamental properties of
these flows. In Section 3 we provide background for us to be able to state and prove our main
results, including key properties of circulant matrices and the differential operators on which our
flows are based. In Section 4 we specialise to evolving planar polygons, finding a representation
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formula for general solutions for the flow that allows us to deduce long-time behaviour. In Section 5,
we consider evolving polygonal curves in general codimension. Finally, in Section 6, we consider
a nonhomogeneous version of the flow which addresses the discrete analogue of Yau’s curvature
difference flow.

2. The semi-discrete linear hyperbolic polyharmonic flow of polygons

Definition 2.1. An n sided polygon, or n−gon, ~X, is defined as a collection of ordered points ~X =

(X0, X1, . . . , Xn−1)T . For j = 0, 1, . . . , n− 1, each vertex X j ∈ R
p for some integer p ≥ 2. We set Xn = X0

so the polygon is closed and the indices of the vertices are considered modulo n.

The vertices of the polygon are the points X j, j = 0, 1, , . . . , n − 1. The edges of the polygon are the
line segments X jX j+1 joining each vertex X j to X j+1. In general, ~X is a n × p matrix with real entries.
When p = 2, the polygon lies in the plane. In this case we may consider each vertex, X j = (x j, y j) ∈ R2,

to be a point in C, writing X j = x j + iy j. Thus ~X as an n × 2 matrix representing a polygon in R2 can
also be thought of as a vector in Cn.
Remark 2.1. (1) We can consider the polygonal image of ~X where we have each ordered vertex pair

X j and X j+1 joined by a line segment. If the line segments have crossings, then we say the
polygonal curve is a (piecewise smooth) immersion, and if there are no edge crossings the polygon
is embedded (i.e. separates the plane into a bounded ‘interior’ and unbounded ‘exterior’). A
given polygonal image may be described by different ‘polygons’ where a different first vertex or
a reversed ordering of the vertices may be chosen.

(2) Included in Definition 2.1 are degenerate cases where the collection of points may have
repetitions. Our polygonal image of ~X may contain duplicated vertices and overlapping edges.
In our setting we have basis polygons that are degenerate and also multiply covered, which we
discuss further in Section 3.

A normal to each vertex X j is given by

N j = (X j+1 − X j) + (X j−1 − X j), (2.1)

such that the corresponding system of equations for each normal vector can be expressed in matrix
form as

~N = M~X, (2.2)

where M is the n × n matrix given by

M =



−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0 1 −2 1 0
...

... 0 . . .
. . .

. . . 0

0 . . . 0 1 −2 1
1 0 · · · 0 1 −2


. (2.3)

The length of the normal N j plays the role of the curvature scalar, and the direction is the direction of
the ‘curvature vector’.
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Definition 2.2. Let ~X(t) be a family of polygons as given in Definition 2.1. Given m ∈ N and a constant
δ ≥ 0, polygons ~X(t) satisfying

d2~X
dt2 + δ

d~X
dt

= (−1)m+1Mm~X (S HPFm)

evolve by the 2mth order semi-discrete linear hyperbolic polyharmonic flow, where M is the matrix
given in (2.3).

Remark 2.2. (1) The elements of M in (2.3) are the coefficients in finite difference approximations for
the ‘second spatial derivatives’ associated with ~X, as in (2.1). They are related to approximations of
the second order derivative using Taylor polynomials where we have

f
′′

(x)(∆x)2 ≈ f (x + ∆x) − 2 f (x) + f (x − ∆x), (2.4)

for a twice differentiable function f of a real variable. Powers of M then yield higher finite differences,
consistent with those obtained for example by Newton’s divided difference approach. Elements of Mm

correspond to 2mth order derivative approximations by Taylor polynomials. In our case, the ∆x of (2.4)
relates to the difference between the vertex labels. That is, x ± k∆x coincides with vertex index label
i±k. The coefficients within the Taylor polynomial approximations relate to the coefficients of polygon
vertices in the expression (−1)m+1Mm~X, however we note that depending on the values of n and m and
the modulo n nature of the vertex indices, the coefficient of a vertex in (−1)m+1Mm~X may end up being
the sum of coefficients as found in the higher order approximations.

(2) We have restricted to δ ≥ 0 as we wish to allow only no damping (δ = 0) or damping in
the traditional sense of a mechanical or electrical system. One could also consider δ < 0 above but
this is less relevant for our applications. In the case of negative damping factor, polygons expand
under (S HPFm) such that given the same conditions as for the δ > 0 case, under appropriate rescaling
we have asymptotic convergence to an affine transformation of a regular polygon as t increases.
Otherwise the polygon exhibits oscillating behaviour as the polygon expands.

(3) The case m = 0 of (S HPFm) is

d2~X
dt2 + δ

d~X
dt

= −~X.

Solution behaviour will depend on the value of δ. If, for example, δ = 0 the general solution is

~X(t) = (cos t) ~Y + (sin t) ~Z (2.5)

for arbitrary polygons ~Y and ~Z. Polygons ~Y and ~Z can then be determined for given initial data (or
more general data). In particular, for this δ we observe that solutions are breathers, that is, periodic in
time. They are also ancient (can be extended back to t → −∞) and eternal (exist for all time). As a
specific example, the solution with ~X(0) = X0 and ~X′(0) = 0 (the ‘trivial’ polygon with all points at the
origin) is

~X(t) = (cos t) X0.

On the other hand, if we restrict the general solution (2.5) to the time interval
[
0, π2

]
we have a transition

from ~X(0) = ~Y to ~X
(
π
2

)
= ~Z, a kind of finite, exact solution to the Yau problem in this setting using a

second order flow. Extending the time interval, the solution is breathing between states ~Y and ~Z.
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Alternatively, for 0 < δ < 2, the general solution has the form

~X(t) = e−
δ
2 t
[
cos (γ t) ~Y + sin (γ t) ~Z

]
where γ =

√
1 −

(
δ
2

)2
and we observe solutions again exist for all time but ~X (t) → 0 as t → ∞. The

rescaled solutions e
δ
2 ~X (t) are exactly

e
δ
2 t ~X(t) = cos (γt) ~Y + sin (γt) ~Z.

Thus the solutions exhibit asymptotic breathing behaviour as t → ∞ and under the same rescaling the
ancient solution emanates from an asymptotically breathing solution between the states ~Y and ~Z.

In the case δ = 2 the solution has the form

~X (t) = (1 − t) e−t ~Y + t e(1−t)~Z.

Again solutions make sense for all time and ~X (t) → 0 as t → ∞. Observe that rescaled solutions
satisfy

1
t
et ~X (t) =

(
1
t
− 1

)
~Y + e ~Z → −~Y + e ~Z,

that is, under this rescaling they approach a precise linear combination of the given data ~Y and ~Z. One
can argue similarly in considering ‘where ancient solutions come from’.

Finally for δ > 2 the solution has the form

~X(t) = er−t~Y + er+t~Z,

where r± = − δ2 ±

√(
δ
2

)2
− 1 are both negative. So in this case solutions again decay to zero but there

are no oscillations. Rescaling we observe in this case

e−r+t ~X(t)→ ~Z.

For the remainder of this article we consider m ∈ N, the strictly positive integers.
(4) The system of ODEs (S HPFm) is second order in time and a natural approach to working with

it would be to set ~Y = d~X
dt and consider the associated first order system of 2n equations. This leads to

the following first order system to solve,d~X
dt
d~Y
dt

 =

[
0n×n In

(−1)m+1Mm −δIn

] [
~X
~Y

]
. (2.6)

Approaches to solving systems of linear second order equations, especially within the context of
engineering applications, are given in [21] who consider the following system,

M q̈(t) + C q̇(t) +K q(t) = f (t), (2.7)

for n × n matrices M,K and damping matrix C, and n-vectors q(t) and f (t). When C = 0n×n there
is no damping, while if C satisfies a certain orthogonality condition it is called proportional damping
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and (2.7) can be solved as a second order system using what [21] call the modal superposition method.
In our case, the damping matrix corresponds to δIn which is proportionally damped. When the system
is non-proportionally damped, [21] provide a reformulation into a first order system which as related
to our system of equations leads to (2.6). Our second order system of equations can be solved directly
which is the approach we take (see Sections 4.2 and 5.2). However the approaches outlined in [21]
may be useful in other applications, such as when the damping term varies between each equation of
the system.

(5) As (S HPFm) is a homogeneous system of linear differential equations with a constant coefficient
matrix, existence of a unique solution in a neighbourhood of any initial data is completely standard as
one can write down an explicit formula for the solution. Moreover the formula for the solution reveals
that the solution exists for all time, given any initial polygon and indeed ancient solutions also make
sense for any initial polygon. These are properties that usually do not hold in full generality for other
geometric flows and generally require much work to prove, whether they hold in general or under
particular conditions.

3. Preliminary properties of the semi-discrete hyperbolic polyharmonic flow

In this section we detail the setup of the semi-discrete linear hyperbolic polyharmonic flow and
discuss some of its properties. Some of this material is similarly described in [2, 13].

The matrix M given in (2.3) is a circulant matrix. A general circulant matrix B has the form

B =



b0 b1 b2 · · · bn−2 bn−1

bn−1 b0 b1 · · · bn−3 bn−2

bn−2 bn−1 b0 · · · bn−4 bn−3
...

...
... · · ·

...
...

b2 b3 b4 · · · b0 b1

b1 b2 b3 · · · bn−1 b0


,

where each row is produced by shifting each of the elements of the previous row to the right. A matrix
of this form is also denoted B = circ(b0, b1, . . . , bn−1).Many properties of circulant matrices are detailed
in [4] with further details about their eigenvalues and eigenvectors in [20]. The product of circulant
matrices is circulant, therefore Mm is circulant for any m ∈ N. For a characterisation of the elements of
Mm we refer to [13, Lemmas 3.2 and 3.3].

Our next result is an extension of [13, Lemma 3.5] to include the second time derivative.

Lemma 3.1. Let a vector in Rn with all entries equal to the same constant c be denoted by ~c. Also let
E denote a p × p matrix. We have the following properties, where ~X is a solution to (S HPFm):

(1) Mm~1 = ~0, and for any ai ∈ R for i = 1, 2, . . . , p,

(2) d
dt

(
~XE + (~a1, ~a2, . . . , ~ap)

)
= (−1)m+1Mm(~XE + (~a1, ~a2, . . . , ~ap)) and

(3) d2

dt2 (~XE + (~a1, ~a2, . . . , ~ap)) = M2m(~XE + (~a1, ~a2, . . . , ~ap)).

Proof. The first two parts above are proved in [13]. The third follows by a simple calculation. �

Mathematics in Engineering Volume 7, Issue 3, 281–315.



287

Remark 3.1. As remarked in [13], the polygon ~X can be considered as a graph G = {V, E} where
V = {X0, . . . , Xn−1} are the vertices of the polygon, and E is the set of edges between consecutive
vertices and the degree of each vertex is 2. Therefore the matrix L = −M is a Laplacian matrix
which has a corresponding definition as a Laplacian operator [3, 22]. We have −Lm = (−1)m+1Mm and
the semi-discrete polyharmonic flow can be associated with a higher order linear hyperbolic flow for
graphs.

The eigenvectors of any n × n circulant matrix are in Cn and given by,

Pk = (1, ωk, ω2k, . . . , ω(n−1)k)T , for k = 0, 1, . . . , n − 1, (3.1)

where ω = e2πi/n. Here powers of ω are the nth roots of unity. Each Pk may be thought of as a
polygon by placing the entries of Pk into C as the vertices of the polygon, and joining consecutive
entries by arrows. Specifically, P0 = (1, 1, . . . , 1)T is a point, and the remaining Pk are either regular
convex polygons, non-convex regular star polygons, or a line interval in the case of n even. By regular
we mean polygons whose symmetry group is the dihedral group. Each pair Pk and Pn−k comprises
the same regular polygon, but with the arrows in the opposite orientation. The exception is when n
is even then P n

2
in isolation is a line interval where the arrows between points overlap each other n

2
times. For each n, the collection {Pk}

n−1
k=1 contains the regular embedded polygons with n sides, regular

immersed star polygons with n sides where all vertices of Pk are distinct, degenerate cases where we
have multiply covered regular embedded and immersed polygons whose number of sides is a factor
of n, as well as the reversed orientation of these polygons. Also included for n even is the multiply
covered line segment P n

2
.

Proposition 3.2 ([2]). The set of eigenvectors,
{

1
√

n Pk

}n−1

k=0
of M forms an orthonormal basis for Cn

where the corresponding eigenvalue, λk, for each Pk is given by

λk = −4 sin2
(
πk
n

)
.

Importantly for us, denoting by λm,k the eigenvalues of matrix (−1)m+1Mm corresponding to
eigenvectors Pk, we have

λm,k := (−1)m+1λm
k = −4m

[
sin2

(
πk
n

)]m

. (3.2)

Observe that all eigenvalues are negative, except for λm,0.
The eigenvalues of a circulant matrix occur in conjugate pairs with some exceptions. That is,

λk = λn−k with the exception of λ0 and λ n
2

for n even [4, 20]. Furthermore, if the circulant matrix is
real and symmetric, the eigenvalues are real and thus each eigenvalue pair λk = λn−k. This holds for
(−1)m+1Mm for each m and so we have λm,0 = 0, λm,k = λm,n−k and λm,n/2 does not have an equal pair for
n even. Also λm,k < λm,1 < 0 for all k = 2, . . . ,

⌊
n
2

⌋
.

Lemma 3.3. Given a vector ~x ∈ Rn, if

(−1)m+1Mm~x = ~c, (3.3)

where ~c = (c, c, . . . , c)T for a constant c, then c = 0.
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Proof. We use the diagonalisation of the matrix (−1)m+1Mm which is given by

(−1)m+1Mm =
1
n

Fdiag
(
λm,k

)
F̄, (3.4)

where F is the Fourier matrix,

F =
[
P0 P1 · · · Pn−1

]
=



1 1 1 · · · 1
1 ω1 ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


, (3.5)

and diag(λm,k) is the diagonal matrix with diagonal entries given by the eigenvalues
λm,0, λm,1, . . . , λm,n−1. The matrix F̄ in (3.4) is the complex conjugate of the matrix F, where F−1 = 1

n F̄.
Rearranging (3.3) gives

diag(λm,k)F̄~x = F̄~c.

Considering the first entry of each side in this equation gives λm,0
∑n−1

j=0 x j = nc and, given λm,0 = 0, we
conclude c = 0. �

We complete this section with a restatement of [13, Lemma 3.7] which will be needed in the next
section. The result characterises the solutions ~x in Lemma 3.3 as just the vectors with all entries equal.

Lemma 3.4. Given a vector ~x ∈ Rn, if (−1)m+1Mm~x = ~0 then ~x is a constant vector with all entries
equal. That is ~x = ~c = (c, c, . . . , c)T for a constant c.

4. Planar solutions to the semi-discrete linear hyperbolic polyharmonic flow

In this section we consider planar solutions of (S HPFm). First, in Section 4.1, we consider self
similar solutions, then, in Section 4.2 we consider solutions with general initial polygon ~X(0) = ~X0.

Because (S HPFm) is second order in time, specifying only ~X(0) = ~X0 does not yield a unique solution
in general.

4.1. Planar self-similar solutions

Here we are interested in self-similar solutions to (S HPFm), that is, solutions ~X(t) related to the
initial polygon ~X(0) = ~X0 via the formula

~X(t) = g(t)~X0R( f (t)) + ~h(t), (4.1)

where g, f : R → R and ~h : R → Mn×2 (R) are twice-differentiable functions. Here g(t) represents
scaling (g(t) > 0 for all t ∈ [0,T )), R( f (t)) is the 2 × 2 rotation matrix by angle f (t), and ~h(t) is a
n × 2 matrix corresponding to translation where ~h(t) = (~h1(t) ~h2(t)) and h1, h2 : R → R. We have
g(0) = 1, f (0) = 0, and ~h(0) = 0n×2, where 0n×2 is the n× 2 zero matrix, such that ~X(0) = ~X0. Note that
when considering ~X as a polygon in C, Eq (4.1) is instead written

~X(t) = g(t)ei f (t)~X0 + ~h(t),

where rotation is given by ei f (t) and translation by ~h(t) ∈ Cn.
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Proposition 4.1. If a family of polygons in the plane ~X(t) is a self-similar solution to the flow (S HPFm)
by scaling, then ~X(t) has the form

~X(t) = g (t) (c1Pk + c2Pn−k) (4.2)

for some fixed k ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
, where

g (t) =



c t + 1, for δ = 0 and k = 0.
c
δ

+
[
1 − c

δ

]
e−δ t, for δ > 0 and k = 0.

e−
δ
2 t [cos

(
γm,k t

)
+ c sin

(
γm,k t

)]
, for 0 ≤ δ < 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
.

(1 + c t)e−
δ
2 t, for δ = 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
.

er+t + c
(
er−t − er+t) , for δ > 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
.

Here

r± = −
δ

2
±

√(
δ

2

)2

+ λm,k, γm,k =

√∣∣∣∣∣∣(δ2
)2

+ λm,k

∣∣∣∣∣∣
and c ∈ R, c1, c2 ∈ C are constants. In the case n is even and k = n

2 , we have ~X(t) = c1g(t)P n
2
.

We observe from above different behaviour corresponding to the zero eigenvalue λm,0. In this case, if
δ = 0 the point c1P0 +c2Pn can be moving (c , 0) or stationary (c = 0). Proposition 4.1 shows that each
regular polygon Pk is a scaling self-similar solution of (S HPFm). Since the flow (S HPFm) is invariant
under affine transformations, scaling self-similar solutions are in the form of affine transformations of
the basis polygons. For k > 0 we observe that the self-similar polygon solutions decay with oscillations
for small damping coefficient, but for large damping there are no oscillations as they decay.

Proof. Since ~X(t) = g(t)~X0 is to satisfy Eq (S HPFm) for all t, we use this to find an equivalent
expression in terms of ~X0. We have

d~X
dt

= g′ (t) ~X0

and
d2~X
dt2 = g′′ (t) ~X0,

so (S HPFm) becomes
g′′ (t) ~X0 + δg′ (t) ~X0 = (−1)m+1 g (t) Mm~X0,

that is, [
g′′ (t)
g (t)

+ δ
g′ (t)
g (t)

]
~X0 = (−1)m+1 Mm~X0.

The right hand side above is independent of t so the scaling factor g (t) must satisfy

g′′ (t) + δ g′ (t) −C g (t) = 0 (4.3)

for some constant C.
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This being the case, the remaining equation for ~X0 is

C ~X0 = (−1)m+1 Mm~X0.

For this equation to have a nonzero solution ~X0, it must be that C is an eigenvalue of (−1)m+1 Mm. Thus
we have the possibilities C = λm,k for any k with corresponding eigenvectors Pk and Pn−k.

Solving the differential equation (4.3) with C = λm,k for k ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
, δ and the initial

condition g(0) = 1 we obtain the expressions for g(t) as in the statement of the proposition. �

Proposition 4.2. Consider the family of polygons in the plane, ~X(t) given by

~X(t) = ~X0R( f (t)), (4.4)

where R( f (t)) represents the rotation of the polygon ~X0 by angle f (t), with f (0) = 0.

(1) If ~X(t) satisfies (S HPFm) with δ = 0 for all t, then ~X(t) has the form

~X(t) = (c1Pk + c2Pn−k)R(±
√
−λm,kt),

for some k ∈
{
1, 2, . . . ,

⌊
n
2

⌋}
and any constants c1, c2 ∈ C, where λm,k is the corresponding

eigenvalue for eigenvectors Pk and Pn−k.

(2) In the case δ > 0, there are no nontrivial solutions of (S HPFm) that evolve by pure rotation.

Remark 4.1. (1) We did not include k = 0 in Proposition 4.2(1) above because then λm,0 = 0 and
~X (t) = ~c for a complex constant c; this is just the trivial solution of (S HPFm).

(2) It is not surprising there are no solutions evolving by purely rotation with δ > 0 as this corresponds
physically to a damping term.

Proof. To establish an expression for the rotation matrix R( f (t)) in S O(2) we consider the skew
symmetric matrix S : R→ so(2) such that

S ( f (t)) =

[
0 − f (t)

f (t) 0

]
.

Note that S ( f (t)) = f (t)S (1) and so d
dt S ( f (t)) = f ′(t)S (1) and d2

dt2 S ( f (t)) = f ′′(t)S (1). Considering the
map exp : so(2)→ S O(2), we have exp(S ( f (t))) = R( f (t)). Furthermore

d
dt

R( f (t)) = f ′(t)S (1)R( f (t)) and
d2

dt2 R( f (t)) =
[
f ′(t)S (1)

]2 R( f (t)) + f ′′(t)S (1)R( f (t)).

We also note that S (1)2 = −I2. Therefore for ~X(t) = ~X0R( f (t)) to satisfy (S HPFm) we have

~X0

[
( f ′′(t) + δ f ′(t))S (1) − ( f ′(t))2I2

]
= (−1)m+1Mm~X0. (4.5)

The right hand side above is independent of t so for a nonzero solution ~X it must be that ( f ′′(t) +

δ f ′(t))S (1)− ( f ′(t))2I2 is constant for all t. This requires f ′(t) ≡ b for some constant b and so f ′′(t) ≡ 0.
Therefore, (4.5) becomes

~X0(δbS (1) − b2I2) = (−1)m+1Mm~X0. (4.6)
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If δ = 0, then the above reduces to −b2~X0 = (−1)m+1Mm~X0, and so[
(−1)m+1Mm + b2In

]
~X0 = 0n×2. (4.7)

For a nontrivial solution ~X0 we require

det
[
(−1)m+1Mm + b2In

]
=

b n
2c∏

k=0

(λm,k + b2) = 0.

Hence b = ±
√
−λm,k for some k ∈

{
0, 1, . . . ,

⌊
n
2

⌋}
. Given that −b2 = λm,k, the null space of (−1)m+1Mm +

b2In is spanned by Pk and Pn−k. Therefore ~X0 = c1Pk + c2Pn−k for complex constants c1, c2 and the rate
of rotation f (t) is given by f (t) = ±

√
−λm,kt in this case. Note that for k = 0 we have λm,0 = 0 and

P0 = (1, . . . , 1)T and so f (t) ≡ 0 and ~X0 is a constant vector.
We now consider the case δ > 0. From (4.6) we have

~X0[δbS (1) − b2I2]2 = (b4 − δb2)~X0 − 2δb3~X0S (1) = M2m~X0. (4.8)

Letting ~X0 =
[
~x ~y

]
we therefore have

(b4 − δ2b2)
[
~x ~y

]
− 2δb3

[
~y −~x

]
= M2m

[
~x ~y

]
,

and a rearrangement gives (
M2m − (b4 − δ2b2)I2

) [
~x ~y

]
= −2δb3

[
~y −~x

]
. (4.9)

Multiplying both sides by
(
M2m − (b4 − δb2)I2

)
we have(

M2m − (b4 − δ2b2)I2

)2 [
~x ~y

]
= −2δb3

(
M2m − (b4 − δ2b2)I2

) [
~y −~x

]
= −2δb3

[
2δb3~x 2δb3~y

]
from (4.9),

which is equivalent to [
(M2m − (b4 − δ2b2)In)2 + 4δ2b6

]
~X0 = 0n×2.

For a non trivial ~X0 we require

det
[(

M2m − (b4 − δ2b2)In

)2
+ 4δ2b6

]
=

b n
2c∏

k=0

[(
λ2

m,k − (b4 − δ2b2)
)2

+ 4δ2b6
]

= 0.

Each factor in the product above is the sum of two squares. Since δ > 0, the only chance of a zero
factor is if b = 0 which implies f (t) ≡ 0. Substituting b = 0 back into (4.8) we find only the trivial
solution ~X(t) = ~c for any complex constant c. �

Proposition 4.3. Consider the family of polygons in the plane, ~X(t) given by

~X(t) = ~X0 + ~h(t), (4.10)

where ~h(t) represents the translation of the polygon ~X0 and ~h(0) = ~0. If ~X(t) satisfies (S HPFm) for
all t then ~X0 corresponds to a single point in the plane. That is, there are no non-trivial self-similar
solutions by translation under the semi-discrete polyharmonic flow.
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Proof. Since ~h(t) translates each vertex of ~X0 in the same way, it follows that ~h(t) must be a vector in
Cn with every entry equal to the same function of t. Since (4.10) is to satisfy (S HPFm), it follows that
~h (t) must satisfy

~h′′(t) + δ~h′ (t) = (−1)m+1Mm
[
~X0 + ~h(t)

]
= (−1)m+1Mm~X0.

Again, the right hand side is independent of t, so each element h(t) of ~h (t) must satisfy

h′′ (t) + δ h′ (t) = C

for some complex constant C. In view of Lemmas 3.3 and 3.4, the only solutions of

(−1)m+1Mm~X0 = ~C

are the constants ~X0 = ~a0, corresponding to trivial solutions of (S HPFm). �

Remark 4.2. One can solve the ODE for h to obtain the expression for the path of translating point in
both the δ = 0 and δ > 0 cases. The results are, for δ = 0,

h (t) = d t

and for δ > 0,

h (t) =
d
δ

(
1 − e−δ t

)
for constant d not equal to zero.

4.2. Planar solutions for general initial data

In this subsection we move from considering those solutions to (S HPFm) that move self-similarly
to general solutions given specified initial data. As the governing equation is hyperbolic there are
natural analogues of initial position and velocity; the former is clear in our setting while the latter gives
rise to several options. Consequently we specify our results in this section for given initial polygon
~X0 only and include free parameters that can be determined from an appropriate additional condition.
Two possible such conditions are outlined in the remark below.

Theorem 4.4. Given an initial polygon ~X0 =
∑n−1

k=0 α
0
kPk with n vertices in R2 and any m ∈ N, the

Eq (S HPFm) with δ = 0 and initial data ~X (0) = ~X0 has a unique solution given by

~X(t) =
(
α0

0 + a0 t
)

P0 +

n−1∑
k=1

[
α0

k cos
( √
−λm,kt

)
+ ak sin

( √
−λm,kt

)]
Pk, (4.11)

where the ak, k = 0, . . . , n − 1 are arbitrary constants.

Proof. The proof is similar to the parabolic flow cases in [2] for m = 1 and in [13] for general m. The
set of eigenvectors {Pk}

n−1
k=0 of (−1)m+1Mm forms a basis for Cn. Therefore by considering ~X(t) ∈ Cn we

can write our polygon in the form

~X(t) =

n−1∑
k=0

αk(t)Pk, (4.12)
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where the coefficients αk(t) are complex. We have

d~X
dt

=

n−1∑
k=0

α′k (t) Pk

and
d2~X
dt2 =

n−1∑
k=0

α′′k (t) Pk.

Since ~X(t) satisfies (S HPFm) with δ = 0, this gives

n−1∑
k=0

α′′k (t) Pk = (−1)m+1Mm
n−1∑
k=0

αk(t)Pk =

n−1∑
k=0

αk(t)λm,kPk.

Hence
α′′k (t) = λm,kαk(t)

for each t which implies
α0(t) = c0 + a0 t,

while for all other k = 1, . . . , n − 1,

αk(t) = ck cos
( √
−λm,kt

)
+ ak sin

( √
−λm,kt

)
,

for constants ck, ak, k = 0, 1, . . . , n − 1. The result follows in view of the initial coefficients. �

Remark 4.3. The appearance of arbitrary constants a0, . . . , an−1 in the solution formula (4.11) is not
surprising. Prescribing only the initial polygon does not give provide enough information to solve
(S HPFm) uniquely. There are of course many ways extra information can be given yielding a unique
solution. Two of these are

(1) A ‘zero initial velocity’ condition. Clearly, in view of (4.11), this will result in a0 = a1 = . . . =

an−1 = 0.

(2) A ‘prescribed polygon at later time’ condition. In other words, not only do we specify the initial
polygon, but we also specify another polygon at some later time. In view of the arguments of the
sine functions in (4.11), this can be messy in general, however, suppose for a specific example we
required

~X

 π

2
√
−λm,1

 = P0 + P1.

From (4.11), we must therefore have

α0
0 + a0

π

2
√
−λm,1

= 1, a1 = 1

and α0
k cos

π2
√
λm,k

λm,1

 + ak sin

π2
√
λm,k

λm,1

 = 0, for k = 2, . . . , n − 1.

This kind of specification of ~X at another time is also a kind of approach to the discrete Yau
problem where we consider the solution only on a finite time interval.
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Next we consider the case of δ > 0. The damping ensures convergence to a point that, under
certain conditions and under appropriate rescaling, is an affine transformation of a regular polygon.
This is fundamentally different behaviour from the undamped case where the solution (4.11) exhibits
continued undamped oscillations.

Theorem 4.5. Given an initial polygon ~X0 =
∑n−1

k=0 α
0
kPk with n vertices in R2 and any m ∈ N, the

Eq (S HPFm) with δ > 0 constant and initial data ~X (0) = ~X0 has a unique solution given by

~X(t) =

[
α0

0 +
a0

δ
−

a0

δ
e−δ t

]
P0 +

n−1∑
k=1

αk(t)Pk, (4.13)

where

αk (t) =


α0

ker+m,kt + ak
(
er−m,kt − er+m,kt) , for

∣∣∣λm,k

∣∣∣ < δ2

4 ,

(α0
k + akt)e−

δ
2 t, if λm,k = − δ

2

4 ,

e−
δ
2 t
[
α0

k cos
(
γm,kt

)
+ ak sin

(
γm,kt

)]
, for

∣∣∣λm,k

∣∣∣ > δ2

4 ,

(4.14)

r±m,k = −
δ

2
±

√(
δ

2

)2

+ λm,k,

and

γm,k =

√
−λm,k −

(
δ

2

)2

.

The constants ak for k = 0, . . . , n − 1 are arbitrary. The solution exists for all time and converges
exponentially to a point.

When the dominant eigenvalue λm,d, where λm,d ≥ λm,k for all k ∈
{
1, . . . ,

⌊
n
2

⌋}
, satisfies the condition

|λm,d| <
δ2

4 , or λm,d = − δ
2

4 with at least ad or an−d nonzero, then under appropriate rescaling, the solution
is asymptotic as t → ∞ to an affine transformation of a regular polygon with n vertices. Otherwise if
λm,d = − δ

2

4 and ad = an−d = 0, or |λm,d| >
δ2

4 , then the solution in (4.13) exhibits continued oscillating
behaviour as it shrinks to a point.

Remark: In view of (4.14), all modes of the solution are exponentially decaying except for P0.

Proof. Again writing ~X(t) =
∑n−1

k=0 αk(t)Pk, since ~X(t) satisfies (S HPFm) with δ > 0, this gives

n−1∑
k=0

[
α′′k (t) + δα′k (t)

]
Pk = (−1)m+1Mm

n−1∑
k=0

αk(t)Pk =

n−1∑
k=0

αk(t)λm,kPk.

Therefore for each k,
α′′k (t) + δ α′k (t) = λm,k αk(t).

Solving the above equation for different cases of the eigenvalues λm,k in relation to δ, solves the
coefficients αk(t) as given in (4.14).

Since δ > 0 and each λm,k < 0 for non zero k, then each αk(t) goes to zero as t → ∞ for each
k = 1, . . . , n − 1. Therefore

lim
t→∞

~X(t) =

[
α0

0 +
a0

δ

]
P0,
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that is, each vertex of the polygon converges to the same point, by α0
0 + a0

δ
where α0

0 is the complex
constant given by the initial polygon, and a0 is an arbitrary complex constant.

To determine the limiting shape of the polygon, we consider an appropriately scaled and translated
version of ~X(t) given by

~Y(t) = g(t)
(
~X(t) −

[
α0

0 +
a0

δ
−

a0

δ
e−δt

]
P0

)
.

The scaling factor g(t) is determined by the value of the damping term δ and the relationship of
the eigenvalues λm,k, to this damping term, such that this therefore determines the coefficient terms as
given in (4.14).

Suppose that for the dominant eigenvalue λm,1, we have |λm,1| <
δ2

4 . Then we choose the scaling
factor to be

g(t) = e−r+m,1t = e

(
δ
2−

√
δ2
4 +λm,1

)
t
.

Note that for k = 2, . . . , n − 1 we have

r±m,k − r+m,1 = ±

√
δ2

4
+ λm,k −

√
δ2

4
+ λm,1 < 0

and

−
δ

2
− r+m,1 = −

√
δ2

4
+ λm,1 < 0.

Therefore for k = 2, . . . , n − 1 the expression e−r+m,1tαk(t) will go to zero as t → ∞ and we have

lim
t→∞

~Y(t) = (α0
1 − a1)P1 + (α0

n−1 − an−1)Pn−1.

Therefore ~Y(t) converges to an affine transformation of P1.

If we have the condition λm,1 = − δ
2

4 with a1 or an−1 nonzero, then we choose scaling factor g(t) = e
δ
2 t

t .

We therefore obtain
lim
t→∞

~Y(t) = a1P1 + an−1Pn−1,

where the limiting shape is again an affine transformation of P1.

In the case of the original polygon being orthogonal to P1, then we instead consider the next
dominant eigenvalue λm,d for some d ∈

{
2, . . . ,

⌊
n
2

⌋}
where the initial polygon is not orthogonal to Pd.

The scaling factor g(t) is therefore chosen in the same way as described above, but instead involving
λm,d.

In the case of the dominant eigenvalue with property λm,d = − δ
2

4 and ad = an−d = 0, or |λm,d| >
δ2

4 ,
then taking the scaling factor to be g(t) = e

δ
2 t gives

~Y(t) = α0
dPd + α0

n−dPn−d +

n−(d+1)∑
k=d+1

[
α0

k cos
(
γm,kt

)
+ ak sin

(
γm,kt

)]
Pk

or

~Y(t) =

n−1∑
k=1

[
α0

k cos
(
γm,kt

)
+ ak sin

(
γm,kt

)]
Pk,

respectively. Therefore in these cases we have oscillating behaviour of the polygon as it shrinks to a
point. �
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Remark 4.4. As we did earlier for the undamped case, we can supplement the initial condition in
Theorem 4.4 with an additional condition to ensure a unique solution. In the case of prescribing a
second polygon at a later time, we create a hyperbolic flow that begins with one polygon, transitions
through a second polygon at some fixed time and then converges exponentially to a point that, under
rescaling, is an affine transformation of a regular polygon for certain values of δ.

Figure 1 depicts the evolution of a pentagon under the semi-discrete hyperbolic polyharmonic flow
for m = 1, 2, 3 and with damping term δ = 4. All arbitrary constants ak for k = 0, 1, . . . , n−1 are chosen
to be zero. A selection of nine states of the polygon under the semi-discrete hyperbolic polyharmonic
flow are superimposed over the initial polygon. The figures demonstrate the behaviour of the flow as
the polygon shrinks and converges to an affine transformation of the regular polygon. In the case of
m = 1 we have |λm,k| <

δ2

4 for all eigenvalues. In the case of m = 2 and m = 3, only the dominant
eigenvalue λm,1 satisfies this condition, and so the terms in our solution that involve the eigenvectors
associated with non-dominant eigenvalues, include coefficients with oscillating expressions as set out
in (4.14). Convergence is faster for higher m.

Figure 2 depicts the evolution of the same pentagon as given in Figure 1 under the semi-discrete
hyperbolic polyharmonic flow at the same overlayed time steps and for select values of m. In this case
however, non zero arbitrary coefficients ak are prescribed such that the polygon flows to a specific
polygon at a particular time value before shrinking to a point.

(a) m = 1, δ = 4 (b) m = 2, δ = 4 (c) m = 3, δ = 4

Figure 1. Evolution of the pentagon given by ~X0 = ((−1, 10), (0, 0), (9,−1), (3, 9), (10, 2))T

under the semi-discrete hyperbolic polyharmonic flow for select values of m = 1, 2, 3 and
damping term δ = 4. All arbitrary constants ak are chosen to be zero. Nine distinct stages
of the evolution are shown superimposed over the initial polygon, starting at t = 0 and with
a time step of 0.3. The same time step values are used for each case of m. In each case, the
polygon at time step t = 1.2 is shown in red which may be compared with Figure 2, where
constants ak are chosen so that the polygon first flows to an intermediate polygon at time
t = 1.2 before shrinking to a point. Further details on example (a) are provided in Appendix.
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(a) m = 1, δ = 4 (b) m = 2, δ = 4 (c) m = 3, δ = 4

Figure 2. Evolution of initial pentagon as given in Figure 1, under the semi-discrete
hyperbolic polyharmonic flow for m = 1, 2, 3 and damping term δ = 4. The constants ak

are chosen so that at time t = 1.2 we have ~X(1.2) = α0
0P0 + 3P1. Distinct time steps of the

evolution are shown superimposed over the initial polygon starting at t = 0 and with time
step 0.3. The intermediate prescribed polygon at time t = 1.2 is shown in red. The same
time step values are used for each case of m. Further details on example (a), including the
constants ak for this case, is provided in Appendix.

Figure 3 depicts the evolution of a hexagon under (S HPFm) for m = 1, 2, 3 and damping term
δ = 7, where all arbitrary constants ak for k = 0, 1, . . . , n − 1 are chosen to be zero. Distinct states
of the polygon are overlayed over the initial polygon. In each case the dominant eigenvalue λm,1 has
the condition |λ1,k| <

δ2

4 . Otherwise for each case of m shown, the coefficients given in the solution
vary based on the conditions and expressions given in (4.14). We see that for m = 3, where only the
dominant eigenvalue satisfies |λ1,k| <

δ2

4 , that the convergence to the limiting shape is faster.

(a) m = 1, δ = 7 (b) m = 2, δ = 7 (c) m = 3, δ = 7

Figure 3. Evolution of a hexagon ~X0 = ((0, 10), (4, 10.5), (7, 3.5), (−1, 9), (10, 1), (−2, 0.5))T

under the semi-discrete hyperbolic polyharmonic flow for m = 1, 2, 3 and damping coefficient
δ = 7. The constants ak are chosen to all be zero. Distinct time steps of the evolution
corresponding to a time step of 0.5 are shown superimposed over the initial polygon at t = 0.
The same time step values are used for each case of m.
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4.3. Ancient solutions

We may also examine ancient solutions of our hyperbolic polyharmonic flows of polygons by
considering limits as t → −∞ in solution formulae, which always make sense in this setting. In the
δ > 0 case for planar polygons, we get different outcomes based on the relationships of the least and
most dominant eigenvalues with δ, as well as the arbitrary constants ak chosen in the expression (4.13)
and (4.14).

We demonstrate such solutions by following a similar argument as in the proof of Theorem 4.5,
rescaling and translating ~X(t) as follows

~Y(t) = g(t)(~X(t) − ~α0(t)),

for appropriate rescaling factor g(t). If we have
∣∣∣∣λm,b n

2c

∣∣∣∣ ≤ δ2

4 and ak = 0 for all k, then we observe
asymptotic convergence to the affine transformation of the regular polygon Pb n

2c
as t → −∞. We see

this by choosing scaling factor g(t) = e
−r

+m,b n
2c

t
if

∣∣∣∣λm,b n
2c

∣∣∣∣ < δ2

4 , or g(t) = e
δ
2 t if

∣∣∣∣λm,b n
2c

∣∣∣∣ = δ2

4 , and note

lim
t→−∞

~Y(t) = α0
b n

2c
Pb n

2c
+ α0

n−b n
2c

Pn−b n
2c
.

When n is even, this will be the straight line interval of n
2 overlapping polygon edges. If the original

polygon is orthogonal to Pb n
2c

then we consider the next least dominant eigenvalue and get a similar
result, provided the arbitrary constants ak are zero.

In the case of nonzero arbitrary constants, if we have at least a1 or an−1 not equal to zero, where
λm,1 is the dominant eigenvalue and |λm,1| ≤

δ2

4 , then choosing a rescaling factor of g(t) = e−r−m,1t if

|λm,1| <
δ2

4 , or g(t) = e
δ
2 t

t if |λm,1| =
δ2

4 , demonstrates asymptotic convergence to an affine transformation
of regular polygon P1 as t → −∞, given by

lim
t→−∞

~Y(t) = a1P1 + an−1Pn−1.

If a1 and an−1 are both zero, then we consider the next dominant eigenvalue λm,d, d ∈
{
2, . . . ,

⌊
n
2

⌋}
,

where ad or an−d is nonzero, and similarly choose the rescaling factor g(t) as described above but
involving eigenvalue λm,d instead. Here we have asymptotic convergence to an affine transformation of
the regular polygon Pd as t → −∞.

5. Solutions in higher codimension

To consider the flow in higher codimension, we set up similarly as in [2]. Let each vertex X j ∈ R
p

be denoted as X j = (x1 j, x2 j, . . . , xp j). Consider the ith coordinate for every vertex in the polygon, for
i = 1, 2, . . . , p, we can define

~xi = (xi0, xi1, . . . , xi(n−1))T ,

which is a vector in Rn. Therefore
~X =

(
~x1 · · · ~xp

)
. (5.1)

For k = 0, 1, . . . ,
⌊

n
2

⌋
, let us define the following vectors in Rn

~ck =

(
1, cos

(
2πk
n

)
, cos

(
4πk
n

)
, . . . , cos

(
2(n − 1)πk

n

))T

, (5.2)
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~sk =

(
0, sin

(
2πk
n

)
, sin

(
2πk
n

)
, . . . , sin

(
2(n − 1)πk

n

))T

. (5.3)

The vectors ~ck and ~sk are the real and imaginary parts respectively of eigenvector Pk. Thinking of each
entry of Pk as expressed as a vector in R2, we have Pk =

(
~ck ~sk

)
. Furthermore, nonzero elements

from the set
{
~ck, ~sk

}
k=0,1,...,b n

2c
are mutually orthogonal and form a basis for Rn. Therefore each ~xi for

i = 1, . . . , p can be expressed as

~xi =

b n
2c∑

k=0

(αik~ck + βik~sk)

for real coefficients αik and βik.

A family of polygons can therefore be expressed as

~X(t) =
(
~x1(t) · · · ~xp(t)

)
=

b n
2c∑

k=0

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
. (5.4)

5.1. Self-similar solutions in higher codimension

We obtain the same behaviour of self-similar solutions in the higher codimension that we see in the
plane polygon case. In regards to solutions that are self-similar by scaling, these solution polygons are
planar in Rp. There are no non-trivial self similar solutions by translation. In the case of self similar
solutions by rotation, when a damping term δ > 0 is involved again we have no non-trivial solutions.
In the rotation case where δ = 0, pure rotations are possible. We provide a simple construction of a
planar rotator, but do not give a complete classification of general rotators.

Proposition 5.1. If a family ~X(t) of polygons with n vertices in Rp is a self-similar scaling solution to
the flow (S HPFm), then ~X(t) has the form

~X(t) = g(t)
(
~ck ~sk

) [α1 · · · αp

β1 · · · βp

]
, (5.5)

for any k ∈
{
1, 2, ...,

⌊
n
2

⌋}
and real constants α j and β j for j = 1, . . . , p, where

g (t) =



c t + 1, for δ = 0 and k = 0,
c
δ

+
[
1 − c

δ

]
e−δ t, for δ > 0 and k = 0,

e−
δ
2 t [cos

(
γm,k t

)
+ c sin

(
γm,k t

)]
, for 0 ≤ δ < 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
,

(1 + c t)e−
δ
2 t, for δ = 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
,

er+t + c
(
er−t − er+t) , for δ > 2

√∣∣∣λm,k

∣∣∣ and k ∈
{
1, . . . ,

⌊
n
2

⌋}
,

(5.6)

such that

r± = −
δ

2
±

√(
δ

2

)2

+ λm,k, γm,k =

√∣∣∣∣∣∣(δ2
)2

+ λm,k

∣∣∣∣∣∣
and constant c ∈ R.
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The higher codimension polygon ~X(t) is the image of a linear transformation of a regular polygon
Pk =

(
~ck ~sk

)
with n vertices in R2, with linear transformation T : R2 → Rp given by

T (x, y) =
(
x y

) [α1 · · · αp

β1 · · · βp

]
. (5.7)

Proof. Suppose ~X(t) = g(t)~X0 for differentiable scaling function g : R → R. Following the same
process as in the proof of Proposition 4.1, we find(

g′′(t)
g(t)

+ δ
g′(t)
g(t)

)
~X0 = (−1)m+1Mm~X0

such that since the right hand side of the above equation is independent of t, we have

g′′(t) + δg′(t) −Cg(t) = 0.

This results in the following [
(−1)m+1Mm −CIn

]
~X0 = 0n×p. (5.8)

For nonzero ~X0 we therefore require C to be the eigenvalues of the matrix (−1)m+1Mm such that C = λm,k

for k ∈
{
0, 1, . . . ,

⌊
n
2

⌋}
. The corresponding eigenvectors are Pk =

(
~ck ~sk

)
and Pn−k =

(
~ck −~sk

)
, noting

~s0 = ~0 and ~s n
2

= ~0 for n even. Applying a linear transformation as given in (5.7), produces a polygon
in Rp given by

~X0 =
(
~ck ~sk

) [α1 · · · αp

β1 · · · βp

]
,

and furthermore this polygon solves (5.8), where αi and βi for all i = 1, . . . , p are any real coefficients.
Similar to the plane polygon case, solving Eq (5.8) for C = λm,k, δ and the required initial condition

g(0) = 1 gives us the expressions for g(t) as stated in (5.6). �

Proposition 5.2. Consider the family ~X(t) of polygons in Rp such that

~X(t) = ~X0R(t), (5.9)

where R : R → S O(p) represents a time-dependent p × p rotation of the polygon ~X0 in Rp such that
R(0) = Ip.

If ~X(t) satisfies (S HPFm) for some δ > 0 and all t then R(t) ≡ Ip and ~X0 corresponds to a point in
Rp, that is the only self similar solution by rotation in this case is the trivial solution.

If ~X(t) satisfies (S HPFm) with δ = 0 for all t then pure rotations are possible.

Proof. We first consider the case where δ > 0.We also consider the explicit expression for the solutions
for (S HPFm) stated and proven in Theorem 5.5. This solution is given in (5.15) where

~X0 =

b n
2c∑

k=0

(
~ck ~sk

) [α0
1k · · · α0

pk

β0
1k · · · β0

pk

]
,
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and

~X(t) =
(
~α10(t) · · · ~αp0(t)

)
+

b n
2c∑

k=1

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
, (5.10)

where
αi0(t) = α0

i0 +
ai0

δ
−

ai0

δ
e−δt,

for each i = 1, . . . , p and ai0 are arbitrary constants. The αik(t) and βik(t) are given in (5.16) and (5.17)
also in the statement for Theorem 5.5.

We require ~X0R(t), where R(t) is a rotation function, to be of the form given in (5.10) above to
satisfy (S HPFm). The expressions for αik(t) and βik(t) all include an exponential decaying term e−

δ
2 t

and so we must have ai0 = 0, αik(t) = 0 and βik(t) = 0 for all i = 1, . . . , p and k = 1, . . . ,
⌊

n
2

⌋
. This gives

~X0 = ~c0

(
α0

10 · · · α0
p0

)
,

and so our initial polygon is a point in Rp and we have only the trivial solution for ~X(t) in the δ > 0
case.

For the case where δ = 0 we give an example of pure rotation self-similar solutions, without
classifying all possible solutions of this type.

We consider the skew symmetric matrix S : R → so(p) such that for the exponential map, exp :
so(p) → S O(p), from the set of skew symmetric p × p matrices to the set of p × p rotation matrices,
we have exp(S (t)) = R(t). The second derivative of R is therefore given by

d2R
dt2 =

d2S
dt2 R(t) +

(
dS
dt

)2

R(t).

For ~X(t) = ~X0R(t) to satisfy (S HPFm) where δ = 0 we have

~X0
d2R
dt2 = (−1)m+1Mm~X0R(t),

which in terms of the skew symmetric matrix and with rearrangement implies

~X0

d2S
dt2 +

(
dS
dt

)2 = (−1)m+1Mm~X0. (5.11)

For (5.11) to be true for all t then d2S
dt2 +

(
dS
dt

)2
must be a constant matrix we denote as B, and

~X0B = (−1)m+1Mm~X0. (5.12)

We can consider rotations in a plane given by orthogonal axes xi and x j, for i, j ∈ {1, . . . , p} and
i , j, where remaining p − 2 axes are invariant. We denote this rotation as Rxi,x j( fi j(t)) where the
differentiable function fi j : R → R is the angle of rotation at time t in the xi − x j plane and where
fi j(0) = 0. Furthermore Rxi,x j( fi j(t)) = exp(S xi,x j( fi j(t))) for skew symmetric matrix S xi,x j( fi j(t)). This
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matrix S xi,x j( fi j(t)) = [sab : a, b = 1, . . . , p] has entries given by si j = −s ji = − fi j(t), or si j = −s ji =

fi j(t), and all other entries are equal to zero. We also write S xi,x j( fi j(t)) = fi j(t)S xi,x j(1) and note that

d
dt

S xi,x j( fi j(t)) = f ′i j(t)S xi,x j(1) and
d2

dt2 S xi,x j( fi j(t)) = f ′′i j (t)S xi,x j(1).

Denoting by Ii j,p the p×p matrix with 1s in the (i, i)th and ( j, j)th diagonal entries, and zeroes elsewhere,
we have (S xi,x j(1))2 = −Ii j,p.

Following from (5.11), for a rotation on the xi − x j sub-plane, the matrix

[ f ′′i j (t)S xi,x j(1) + ( f ′i j(t))
2(S xi,x j(1))2]

has −( f ′i j(t))
2 in the (i, i)th and ( j, j)th diagonal entries, − f ′′i j (t) in the (i, j)th entry and f ′′i j (t) in the ( j, i)th

entry (for i < j), and all other entries are zero.
Since this matrix is constant, we must have f ′i j(t) = b, for some constant b and so f ′′i j (t) = 0 for all

t. Therefore we have
− b2~X0Ii j,p = (−1)m+1Mm~X0. (5.13)

The matrix ~X0Ii j,p has zero coordinate vectors at each position, except for the ith and jth coordinate
vectors. That is, for ~X0Ii j,p =

(
~x1 · · · ~xp

)
, ~xk = ~0 for all k , i, j. We denote this matrix as ~X0,i j. For

any k ∈
{
1, . . . ,

⌊
n
2

⌋}
, consider an initial polygon of

~X0 = ~X0,i j =
(
~ck ~sk

) [α1 · · · αp

β1 · · · βp

]
,

where αl = βl = 0 for all l , i, j, and is therefore the image of a regular polygon Pk =
(
~ck ~sk

)
from R2

mapped to Rp by a linear transformation, that is planar in the xi − x j sub-plane of Rp. We note that for
this expression of ~X0 which corresponds to the eigenvectors Pk, we have

(−1)m+1Mm~X0 = λm,k ~X0,

for any k ∈
{
1, . . . ,

⌊
n
2

⌋}
. From (5.13) we therefore have

−b2~X0 = −b2~X0,i j = (−1)m+1Mm~X0,

and so b = ±
√
−λm,k for k ∈ {0, 1, . . . , n − 1} such that fi j(t) = ±

√
−λm,kt. The rotation in the xi − x j

plane is therefore given by Rxi,x j(±
√
−λm,kt). This demonstrates that polygons in Rp given by affine

images of regular polygons Pk in R2 such that they are planar polygons in main sub-planes of Rp, are
self similar solutions by rotation. We suspect that there are also other rotation self-similar solutions for
general rotations. �

Remark 5.1. If the rotation R(t) is acting on a subspace that the polygon ~X(t) is not in, then ~X(t) =
~X0R(t) = ~X0. In this case for δ ≥ 0, the only solution is the trivial solution ~X0 where ~X0 =

(
~a1 . . . ~ap

)
for real constants ai, i = 1, . . . , p.

We complete the discussion of higher co-dimension self-similar solutions by stating there are no
non-trivial solutions by translation.
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Proposition 5.3. Consider the family of polygons with n vertices in Rp , ~X(t), such that

~X(t) = ~X0 + ~h(t), (5.14)

where ~h(t) is a n × p matrix that represents the translation of the polygon ~X0 and ~h(0) = 0n×p. If ~X(t)
satisfies (S HPFm) for all t then each vertex of ~X0 is the same fixed point in Rp. That is, there are no
non-trivial self-similar solutions by translation under (S HPFm).

Proof. The proof follows the same process as that for Proposition 4.3. In the higher codimension case
we find ~h′′(t) + δ~h′(t) = ~C =

(
~c1 . . . ~cp

)
for real constants ci, i = 1, . . . , p. Then from Lemma 3.3 and

Lemma 3.4, the only solution to
(−1)m+1Mm~X0 = ~C

is if ~X0 =
(
~a1 . . . ~ap

)
for real constants a1, . . . , ap. �

5.2. Higher codimension solutions for general initial data

A similar result to Theorems 4.4 and 4.5 holds for polygons in higher codimensions.

Theorem 5.4. Given an initial polygon ~X0 with n vertices in Rp as expressed in (5.4), the Eq (S HPFm),
for any m ∈ N, with δ = 0 and initial data ~X (0) = ~X0, has a unique solution ~X(t) for all time given by

~X(t) = ~c0

(
α10(0) + a10t · · · αp0(0) + ap0t

)
+

b n
2c∑

k=1

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
,

where
αik(t) = αik(0) cos

( √
−λm,kt

)
+ a1k sin

( √
−λm,kt

)
and

βik(t) = βik(0) cos
( √
−λm,kt

)
+ b1k sin

( √
−λm,kt

)
,

where aik and bik are arbitrary constants for i = 1, . . . , p and k = 0, 1, . . . ,
⌊

n
2

⌋
.

Proof. We follow a similar argument to Theorem 4.4 and the process given for the parabolic flow cases
in [2] for m = 1 and in [13] for general m. As given in the setup above and in (5.4), we consider a
polygon given by

~X(t) =
(
~x1(t) · · · ~xp(t)

)
=

b n
2c∑

k=0

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
.

The second derivative is given by

d2~X
dt2 =

d2

dt2

(
~x1(t) · · · ~xp(t)

)
=

b n
2c∑

k=0

(
~ck ~sk

) [α′′1k(t) · · · α′′pk(t)
β′′1k(t) · · · β′′pk(t)

]
.

Since the polygon ~X(t) satisfies (S HPFm) with δ = 0 then we have

b n
2c∑

k=0

(
~ck ~sk

) [α′′1k(t) · · · α′′pk(t)
β′′1k(t) · · · β′′pk(t)

]
= (−1)m+1Mm

b n
2c∑

k=0

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
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=

b n
2c∑

k=0

λm,k

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
.

Therefore α′′ik(t) = λm,kαik and β′′ik(t) = λm,kβik for all i = 1, . . . , p and k = 0, . . . ,
⌊

n
2

⌋
.

For k = 0 we have λm,0 = 0 and so

αi0(t) = αi0(0) + ai0t and βi0(t) = βi0(0) + bi0t,

for i = 1, . . . , p and where ai0, bi0 are constants.
For k = 1, . . . ,

⌊
n
2

⌋
, we have

αik(t) = αik(0) cos
( √
−λm,kt

)
+ aik sin

( √
−λm,kt

)
,

and similarly
βik(t) = βik(0) cos

( √
−λm,kt

)
+ bik sin

( √
−λm,kt

)
,

for constants aik, bik, and as such the result follows. �

A damping coefficient δ > 0 in (S HPFm) causes the polygon to shrink to a point in Rp. Under
appropriate rescaling, the solution converges to a polygon in Rp that is the affine image of a regular
polygon in the plane.

Theorem 5.5. Given an initial polygon ~X0 with n vertices in Rp as given by

~X0 =

b n
2c∑

k=0

(
~ck ~sk

) [α0
1k · · · α0

pk

β0
1k · · · β0

pk

]
,

and any m ∈ N, the Eq (S HPFm) with δ > 0 constant and initial data ~X (0) = ~X0 has a unique solution
given by

~X(t) =
(
~α10(t) · · · ~αp0(t)

)
+

b n
2c∑

k=1

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
, (5.15)

where
αi0(t) = α0

i0 +
ai0

δ
−

ai0

δ
e−δt,

for each i = 1, . . . , p and where ai0 are arbitrary constants.
Each αik(t) is given by

αik (t) =


α0

ike
r+m,kt + aik(er−m,kt − er+m,kt), for

∣∣∣λm,k

∣∣∣ < δ2

4 ,

(α0
ik + aikt)e−

δ
2 t, if λm,k = − δ

2

4 ,

e−
δ
2 t
[
α0

ik cos
(
γm,kt

)
+ aik sin

(
γm,kt

)]
, for

∣∣∣λm,k

∣∣∣ > δ2

4 ,

(5.16)

and similarly for βik(t),

βik (t) =


β0

ike
r+m,kt + bik(er−m,kt − er+m,kt), for

∣∣∣λm,k

∣∣∣ < δ2

4 ,

(β0
ik + bikt)e−

δ
2 t, if λm,k = − δ

2

4 ,

e−
δ
2 t
[
β0

ik cos
(
γm,kt

)
+ bik sin

(
γm,kt

)]
, for

∣∣∣λm,k

∣∣∣ > δ2

4 ,

(5.17)
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where

r±m,k = −
δ

2
±

√(
δ

2

)2

+ λm,k

and

γm,k =

√
−λm,k −

(
δ

2

)2

.

The constants aik and bik are arbitrary constants for i = 1, . . . , p and k = 1, . . . ,
⌊

n
2

⌋
.

The solution exists for all time and converges exponentially to a point in Rp. If the dominant
eigenvalue λm,d satisfies |λm,d| <

δ2

4 or λm,d = − δ
2

4 where at least aid or bid is nonzero for any i ∈
{1, . . . , p}, then under appropriate rescaling, the solution is asymptotic as t → ∞ to a planar polygon
in Rp with n vertices which is an affine image of a regular polygon in R2. If λm,d = − δ

2

4 with aid = bid = 0
for all i = 1, . . . , p, or |λm,d| >

δ2

4 , the solution exhibits continued oscillating behaviour as it shrinks to
a point.

Proof. Since the polygon ~X(t) is to satisfy (S HPFm) with δ > 0, we obtain

d2~X
dt2 + δ

d~X
dt

=

b n
2c∑

k=0

(
~ck ~sk

) [α′′1k(t) + δα′1k(t) · · · α′′pk(t) + δα′pk(t)
β′′1k(t) + δβ′1k(t) · · · β′′pk(t) + δβ′pk(t)

]

= (−1)m+1Mm
b n

2c∑
k=0

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]

=

b n
2c∑

k=0

λm,k

(
~ck ~sk

) [α1k(t) · · · αpk(t)
β1k(t) · · · βpk(t)

]
.

Therefore we are left to solve
α′′ik(t) + δα′ik(t) = λm,kαik(t)

and
β′′ik(t) + δβ′ik(t) = λm,kβik(t),

for i = 1, . . . , p and k = 0, . . . ,
⌊

n
2

⌋
. This leads to expression for αi0(t) as stated in the theorem, and the

cases for αik(t) and βik(t) as given in (5.16) and (5.17).
With the same reasoning as given for the planar case in Theorem 4.5, as t → ∞ then each vertex of

the polygon will converge to the same point in Rp given by
(
α0

10 + a10
δ
, · · · , α0

p0 +
ap0

δ

)
.

To determine the limiting shape of the polygon as it shrinks, again we consider an appropriate
rescaling and translation of ~X(t) given by

~Y(t) = g(t)
(
~X(t) −

(
~α10(t) · · · ~αp0(t)

))
, (5.18)

and where the scaling function is chosen based on the chosen damping term δ and the relationship of
eigenvalues λm,k to this damping term, that then determine the expression for the coefficients αik(t) and
βik(t).

If the dominant eigenvalue λm,1 satisfies |λm,1| <
δ2

4 , then we choose scaling function g(t) = e−r+m,1t.

By similar reasoning as in Theorem 4.5, we find that
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lim
t→∞

~Y(t) =
(
~c1 ~s1

) [α0
11 − a11 · · · α0

p1 − ap1

β0
11 − b11 · · · β0

p1 − bp1

]
.

We have P1 =
(
~c1 ~s1

)
which is a regular polygon in plane R2. Therefore the limit of ~Y(t) is the polygon

P1 where each vertex is mapped to a vertex in Rp by the linear map T1 : R2 → Rp given by

T1(x, y) =
(
x y

) [α0
11 − a11 · · · α0

p1 − ap1

β0
11 − b11 · · · β0

p1 − bp1

]
.

T1 is a linear transformation, and since P1 is in the plane, the image of P1 under T1 is two dimensional
and therefore planar.

If λm,1 = − δ
2

4 and ai1 or bi1 is nonzero for any i ∈ {1, . . . , p}, then we choose the scaling factor to be

g(t) = e
δ
2 t

t in (5.18). Taking the limit gives

lim
t→∞

~Y(t) =
(
~c1 ~s1

) [a11 · · · ap1

b11 · · · bp1

]
.

Therefore considering the linear map T2 : R2 → Rp given by

T2(x, y) =
(
x y

) [a11 · · · ap1

b11 · · · bp1

]
we have the same result as above where the limiting shape is given by the image of P1 in R2 mapped
to Rp by T2.

Given T1 and T2 are linear transformations from R2, the resulting polygon in Rp that is the image of
these maps, is planar.

If λm,1 = − δ
2

4 and ai1 = bi1 = 0 for all i = 1, . . . , p, then we choose the scaling factor g(t) = e
δ
2 t for

the expression in (5.18) which gives

~Y(t) =
(
~c1 ~s1

) [α0
11 · · · α0

p1

β0
11 · · · β0

p1

]

+

b n
2c∑

k=2

(
~ck ~sk

) [α0
1k cos(γm,kt) + a1k sin(γm,kt) · · · α0

pk cos(γm,kt) + apk sin(γm,kt)
β0

1k cos(γm,kt) + b1k sin(γm,kt) · · · β0
pk cos(γm,kt) + bpk sin(γm,kt)

]
.

Similarly, for |λm,1| >
δ2

4 we also choose the scaling factor g(t) = e
δ
2 t which gives

~Y(t) =

b n
2c∑

k=1

(
~ck ~sk

) [α0
1k cos(γm,kt) + a1k sin(γm,kt) · · · α0

pk cos(γm,kt) + apk sin(γm,kt)
β0

1k cos(γm,kt) + b1k sin(γm,kt) · · · β0
pk cos(γm,kt) + bpk sin(γm,kt)

]
.

As such, in both these cases the polygon exhibits continued oscillating behaviour.
In the case of αi1(0) = 0 and βi1(0) = 0 for all i = 1, 2, . . . , p, we instead scale the polygon by

an expression involving λm,d such that λm,d is the next dominant eigenvalue where we have nonzero
αid, βid, and carry out the same process as described above depending on the relationship λm,d has with
the damping term δ. �
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Remark 5.2. Results regarding ancient solutions also hold for solutions in higher codimension using
the scaled polygon

~Y(t) = g(t)
(
~X(t) −

(
~α10(t) · · · ~αp0(t)

))
,

with g(t) chosen similarly as described in Section 4.3. Here we need to consider the values of the
arbitrary constants aik and bik in the general solution given in (5.15). Whether these constants are equal
to zero or not will determine the limiting behaviour of the polygon as t → −∞ and whether we have
asymptotic convergence to an affine image of P1 or Pb n

2c
in Rp. The outcome is based on the same

reasoning as in the planar polygon case.

6. Semi-discrete geometric flow between polygons

In [11], Lin and Tsai described Yau’s curvature difference flow whose objective is to evolve one
curve to another, either in finite time or in infinite time, possibly up to an isometry, using a parabolic
flow. In [13], we considered a first order in time semi-discrete polyharmonic flow analogue of Yau’s
curvature difference flow. Here we consider a second order in time analogue that includes a linear
damping term.

Theorem 6.1. Given a target polygon ~Y with n vertices in Rp, for p ∈ N, p ≥ 2, and any fixed δ > 0,
all solutions ~X(t) to the second order semi-discrete Yau difference flow,

d2~X
dt2 + δ

d~X
dt

= (−1)m+1Mm
[
~X(t) − ~Y

]
(S YDFm)

with any initial polygon ~X(0) = ~X0 with n vertices, exist for all time and converges as t → ∞ to a
translate of ~Y.

Remark 6.1. (1) Recalling the operator (−1)m+1Mm is a higher order linear curvature-type operator,
the right hand side of (S YDFm) is precisely the difference in this type of curvature of ~X as
compared with that of ~Y . When ~X ≡ ~Y , the right hand side is identically equal to zero and
~X ≡ ~Y is a stationary solution.

(2) Of particular interest is that convergence to ~Y is obtained for any initial polygon.

(3) Above we say ‘all solutions’ because the problem as written is underdetermined. As earlier, to
obtain a unique solution we must provide some additional data, for example, an initial ‘velocity’
or a specific polygon through which the solution transitions at a specific time. Our result says
whatever the initial polygon and additional data, we will always have long time existence, and
convergence as t → ∞ to ~Y .

(4) If, instead of having the same number of vertices, one of ~X0 or ~Y has fewer vertices, we can simply
duplicate vertices or add points on the line segments joining vertices to create initial and target
polygons with the same number of ‘vertices’. This process is described in more detail in [13].

Proof. As in [13] we set up a difference polygon, ~Z(t) = ~X(t) − ~Y .
Write

~Y =

b n
2c∑

k=0

(
~ck ~sk

) y(1)
1k · · · y(1)

pk

y(2)
1k · · · y(2)

pk

 ,
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and

~X0 =

b n
2c∑

k=0

(
~ck ~sk

) [α0
1k · · · α0

pk

β0
1k · · · β0

pk

]
.

Then

~Z0 =

b n
2c∑

k=0

(
~ck ~sk

) α0
1k − y(1)

1k · · · α0
pk − y(1)

pk

β0
1k − y(2)

1k · · · β0
pk − y(2)

pk

 .
Since ~Y is constant, it follows that ~Z(t) satisfies Eq (S HPFm) and therefore, by Theorem 5.5 has

solution

~Z(t) =

b n
2c∑

k=0

(
~ck ~sk

) z(1)
1k (t) · · · z(1)

pk (t)
z(2)

1k (t) · · · z(2)
pk (t)

 ,
where for each i = 1, . . . , p,

z(1)
i0 (t) =

(
α0

i0 − y(1)
i0

)
+

ai0

δ
−

ai0

δ
e−δt, (6.1)

where ai0 are arbitrary constants, and for k = 1, 2, . . . , n − 1,

z(1)
ik (t) =


(
α0

ik − y(1)
ik

)
er−m,kt + aik

(
er+m,kt − er−m,kt) , for

∣∣∣λm,k

∣∣∣ < δ2

4 ,(
α0

ik − y(1)
ik + aik t

)
erm,kt, if λm,k = − δ

2

4 ,

e−
δ
2 t
[(
α0

ik − y(1)
ik

)
cos

(
γm,kt

)
+ aik sin

(
γm,kt

)]
, for

∣∣∣λm,k

∣∣∣ > δ2

4 ,

(6.2)

and

z(2)
ik (t) =


(
β0

ik − y(2)
ik

)
er−m,kt + bik

(
er+m,kt − er−m,kt) , for

∣∣∣λm,k

∣∣∣ < δ2

4 ,(
β0

ik − y(2)
ik + bik t

)
erm,kt, if λm,k = − δ

2

4 ,

e−
δ
2 t
[(
β0

ik − y(2)
ik

)
cos

(
γm,kt

)
+ bik sin

(
γm,kt

)]
, for

∣∣∣λm,k

∣∣∣ > δ2

4 ,

(6.3)

where

r±m,k = −
δ

2
±

√(
δ

2

)2

+ λm,k, γm,k =

√
−λm,k −

(
δ

2

)2

.

The constants aik and bik are completely free. Hence

~X(t) = ~c0

[
α0

10 +
a10

δ
−

a10

δ
e−δ t · · · α0

p0 +
ap0

δ
−

ap0

δ
e−δ t

]
+

b n
2c∑

k=1

(
~ck ~sk

) z(1)
1k (t) + y(1)

1k · · · z(1)
pk (t) + y(1)

pk

z(2)
1k (t) + y(2)

1k · · · z(2)
pk (t) + y(2)

pk

 .

In view of (6.2) and (6.3), provided ai0 is chosen such that

α0
i0 +

ai0

δ
= y(1)

i0

for all i = 1, . . . , p, we will have ~X(t) → ~Y as t → ∞. Otherwise ~X will converge to a translate of ~Y as
t → ∞. �
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The case of a moving target polygon ~Y(t) may be handled using Green’s functions as follows.
Considering polygons in the plane, our equation can now be written as

d2~X
dt2 + δ

d~X
dt

= (−1)m+1 Mm
[
~X(t) − ~Y(t)

]
, (6.4)

where

~Y(t) =

n−1∑
k=0

yk(t)Pk.

Specifically, in view of Proposition 3.2 we may seek a solution to (6.4) of the form

~X(t) =

n−1∑
k=0

αk(t)Pk. (6.5)

Then, by linearity of (6.4), the coefficients of the evolving polygon ~X(t) satisfy

α′′k (t) + δ α′k(t) = λm,k
[
αk(t) − yk(t)

]
(6.6)

with solution for k = 0
α0(t) = c0e−δ t + d0

with arbitrary constants c0, d0. The given data will put at least one condition on these constants, so
only in special cases will the translation term approach that of ~Y .

For k = 1, 2, . . . , n − 1, writing as usual

r±m,k = −
δ

2
±

√(
δ

2

)2

+ λm,k,

we have the independent real solutions to the homogeneous equation

α(1)
k (t) = er−m,kt and α(2)

k (t) = er+m,kt for
∣∣∣λm,k

∣∣∣ < δ2

4
,

α(1)
k (t) = erm,kt and α(2)

k (t) = t erm,kt if λm,k = −
δ2

4
,

and

α(1)
k (t) = e−

δ
2 t cos

(
γm,kt

)
and α(2)

k (t) = e−
δ
2 t sin

(
γm,kt

)
for

∣∣∣λm,k

∣∣∣ > δ2

4
,

where

γm,k =

√
−λm,k −

(
δ

2

)2

.

These allow us to write down a Green’s function corresponding to each coefficient function:

Gk (x, t) =
1

det Wk (t)

[
α(1)

k (x)α(2)
k (t) − α(1)

k (t)α(2)
k (x)

]
,
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where

Wk (t) =

[
α(1)

k (t) α(2)
k (t)

d
dtα

(1)
k (t) d

dtα
(2)
k (t)

]
.

The solution to the nonhomogeneous Eq (6.6) is then

αk(t) = c−kα
(1)
k (t) + c+kα

(2)
k (t) +

∫ t

0
Gk (x, t) yk(x)dx,

where c±k are arbitrary constants. The solution polygon is then

~X(t) =
[
c0e−δ t + d0

]
P0 +

n−1∑
k=1

[
c−kα

(1)
k (t) + c+kα

(2)
k (t) +

∫ t

0
Gk (x, t) yk(x)dx

]
Pk.

The limiting solution will not translate as per ~Y unless d0 = y0 is constant. In view of the form of the
coefficients of the other Pk, whether the solution will approach ~Y(t) as t → ∞ depends precisely on the
behaviour of the terms involving the Green’s functions.

Figure 4 depicts examples of the semi-discrete Yau difference flow. In Figure 4c, nonzero values
of ak are chosen such that the polygon passes through an intermediate polygon at a fixed time before
converging to the target polygon. Figure 5 shows alternative cases for the Yau difference flow including
where a polygon can be flowed to a polygon of different number of vertices by setting excess vertices
along the line segments or by duplicating excess vertices.

(a) m = 1, δ = 4, all ak = 0 (b) m = 2, δ = 4, all ak = 0 (c) m = 1, δ = 4, ak nonzero

Figure 4. Different cases of pentagons flowing to regular pentagons under the semi-
discrete Yau difference flow. In each case, selected time steps of the evolution are shown
superimposed over the initial and target polygons. The initial polygon is given in blue and
the target polygon in orange. The target polygon in this case is 5P1. In (c), the arbitrary
coefficients ak are prescribed such that the polygon flows to an intermediate polygon at a
particular time, depicted in red. In this case the intermediate polygon is 3P1.
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(a) m = 2, δ = 4, all ak = 0 (b) m = 1, δ = 4, all ak = 0 (c) m = 1, δ = 4, all ak = 0

Figure 5. Different cases of pentagons flowing under the semi-discrete Yau difference flow.
In each case, selected time steps of the evolution are shown superimposed over the initial and
target polygons. The initial polygon is given in blue, and the target polygon in orange. (a)
depicts a quadrilateral flowing to a regular pentagon. (b) demonstrates a pentagon flowing to
a triangle by duplicating excess vertices for the target polygon (c) demonstrates a pentagon
flowing to a triangle by setting excess vertices to lie on the edges of the triangle.

Remark 6.2. (1) Hyperbolic flows that evolve one smooth curve to another are discussed in [14].
Parabolic flows that achieve this are described in [11, 15]. In general, some conditions on the
smooth initial and target curves are needed. For example, they might need to be strictly locally
convex. Alternatively, for curves given as radial graphs one may flow the radial graph function
by the heat equation.

(2) In the case of δ = 0, there would be no exponential decay factors in the solution formula and
instead of convergence to the target ~Y we would have oscillating about the target polygon for all
time.

(3) By considering a sequence t → −∞ of initial polygons, we can construct a flow with ‘initial’
(limiting t → −∞) polygon ~X−∞ that passes through two states, say ~X0 and ~X1 at two distinct
times before converging to the target polygon ~Y . The hyperbolic flow with damping (S YDFm)
allows two intermediate states ~X0 and ~X1 in such a process, as compared with a parabolic flow that
would allow one intermediate state. More intermediate states could be accommodated by using
higher order flows. Such considerations could be relevant in practical applications, for example,
where a collection of robots or drones need to pass through several specific states before approach
a long-term target state.

(4) The evolution Eq (S YDFm) can flow any initial polygon ~X0 with n sides to any target polygon
~Y with n sides. As in the smooth case and as discussed in [11] for example, there are also other
ways of deforming one polygon to another that do not involve a curvature flow. In our setting we
could simply take, for example, ~X : [0, 1]→ Rp given by

~X (t) = t~Y + (1 − t) ~X0.
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(5) As with our earlier flows, one may consider ancient solutions to (S YDFm). Again in comparison
with the smooth case any solution at all may be extended back in time.

(6) The flow (S YDFm) can evolve an n1-gon ~X0 to an n2-gon ~Y where n1 , n2 are not necessarily
the same. We can either duplicate vertices or add additional vertices on the line segments of the
polygon of fewer vertices. If for example n1 < n2, then ~X0 is adjusted to a n2-gon where some of
its original vertices are duplicated (Figure 5a). Similarly if n1 > n2, ~Y can be adjusted to a n1-gon
with the same approach (Figure 5b). An example of adding additional vertices along connecting
line segments is given in Figure 5c.

7. Conclusions

In this paper we considered damped hyperbolic motion of closed polygons in Rp, p ≥ 2, by a
linear semi-discrete hyperbolic analogue of polyharmonic curve diffusion flows. Our flows correspond
to second order linear ODEs, and solutions in both the plane and in higher codimension are given
explicitly and their behaviour explored. For positive damping, an initial polygon may evolve to any
other prescribed polygon at a fixed later time, before converging exponentially to a point in Rp. Under
certain conditions and appropriate rescaling, a plane polygon asymptotically converges to an affine
transformation of a regular polygon. In the higher codimension case, given similar conditions and
again with appropriate rescaling, the polygon asymptotically converges to a planar polygon in Rp

that is an affine image of are regular plane polygon. For systems with zero damping factor, the
solution undergoes continued undamped oscillations. Self-similar solutions under such semi-discrete
hyperbolic flows are also examined. We also introduced the semi-discrete linear hyperbolic analogue
of Yau’s curvature difference flow, where we are able to evolve any initial closed polygonal curve to
any other polygon. The introduction of the second time derivative for the hyperbolic flows in question
allows for an additional polygonal state to be prescribed, such that an initial polygon flows to an
intermediate state at a fixed time, before converging exponentially to a given target polygon in infinite
time.
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Appendix

Calculations for example in Figures 1a and 2a

We provide further detail for the calculation of the examples given in Figures 1a and 2a. In both
these cases we have an initial plane polygon with five vertices given as a vector in C5,

~X0 = (−1 + 10i, 0, 9 − i, 3 + 9i, 10 + 2i)T . (A.1)

We consider damping term δ = 4 and m = 1.
The basis eigenvectors {Pk}

4
k=0 are given by P0 = (1, 1, 1, 1, 1)T , P1 = (1, ω, ω2, ω3, ω4)T , P2 =

(1, ω2, ω4, ω, ω3)T , P3 = (1, ω3, ω, ω4, ω2)T , and P4 = (1, ω4, ω3, ω2, ω)T , where ω = e
2πi
5 . Furthermore

we have eigenvalues

λ1,k = −4 sin2
(
πk
5

)
for k = 0, 1, 2, 3, 4.We note that

∣∣∣λ1,k

∣∣∣ < δ2

4 = 4 for all k = 0, . . . , 4. The coefficients α0
k in the expression

~X0 =
∑4

k=0 α
0
kPk are calculated as follows,

α0
k =

1
5

〈
~X0, Pk

〉
for ~X0 as in (A.1), and we note that α0

0 = 21
5 + 4i. The solution to (S HPFm) for this example is given by

~X(t) =

[
21
5

+ 4i +
a0

4
−

a0

4
e−4t

]
P0 +

4∑
k=1

αk(t)Pk, (A.2)
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where from (4.14) we have

αk(t) =
(
α0

k − ak

)
e
(
−2+
√

4+λ1,k

)
t
+ ake

(
−2−
√

4+λ1,k

)
t

for k = 1, 2, 3, 4, and the ak are arbitrary constants. All five vertices converge to 21
5 + a0

4 + 4i as t
increases. We consider appropriate rescaling by scaling factor

g(t) = e
(
2−
√

4+λ1,1

)
t
= e(3−

√
5) t

2 ,

and translation of ~X(t) such that

~Y(t) = g(t)
(
~X(t) −

[
21
5

+ 4i +
a0

4
−

a0

4
e−4t

]
P0

)
.

Therefore
lim
t→∞

~Y(t) = (α0
1 − a1)P1 + (α0

4 − a4)P4, (A.3)

which is an affine transformation of the regular pentagon P1.

For the example given in Figure 1a we have ak = 0 for all k = 0, . . . , 4, and so the coefficients αk(t)
in (A.2) for k = 1, 2, 3, 4 are given by

αk(t) = α0
k e

(
−2+
√

4+λ1,k

)
t
,

and the polygon converges to
(

21
5 + 4i

)
P0 as t increases.

For the example given in Figure 2a, we choose the constants ak such that

~X(1.2) =

((
21
5

+ 4i
)

P0 + 3P1

)
.

Therefore, we find

a0 = 0, a1 =
3 − α0

1e1.2 r+1,1

e1.2 r−1,1 − e1.2 r+1,1
=

3 − α0
1e

3
5 (
√

5−3)

e−
3
5 (
√

5+5) − e
3
5 (
√

5−3)

and

ak =
−α0

ke1.2 r+1,k

e1.2 r−1,k − e1.2 r+1,k
, for k = 2, 3, 4,

such that

ak =
−α0

ke
3
5 (
√

5−1)

e−
3
5 (
√

5−1) − e
3
5 (
√

5−1)
, for k = 2, 3, and a4 =

−α0
4e

3
5 (
√

5+1)

e−
3
5 (
√

5+1) − e
3
5 (
√

5+1)
.
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