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Abstract: According to Moreau (C.I.M.E. 1973), plastically deforming springs of lattice spring
systems with a time-dependent displacement-controlled loading correspond to the attractor of a
differential inclusion with a moving constraint of the form C(t) = C + c(t), where C is a polytope and
c(t) is a time-dependent vector. Finite-time stability of differential inclusions of this type is established
in Gudoshnikov et al. [SIAM J. Control Optim. 60 (2022)]. The work by Moreau also implies that
accounting for a stress-controlled loading no longer allows to split C(t) as C +c(t). In the present paper
we show that if we are interested in attractivity of a particular vertex of C(t), then C(t) can again be
viewed as C + c(t) for a specially constructed c(t) (which depends on the vertex of interest), so that the
technique of Gudoshnikov et al. can be used to obtain a criterion for finite-time stability of the vertex.
The criterion obtained is illustrated with a benchmark example where we discover a drastic increase
of diversity of possible combinations of plastically deforming springs when stress-controlled loading
is introduced on top of displacement-controlled loading compared to the case where displacement-
controlled loading is the only forcing.

Keywords: sweeping process; finite-time stability; time-dependent constraint; Lyapunov function;
elastoplastic lattice spring model

1. Introduction

Finite-time stability in differential equations with nonsmooth right-hand-sides is addressed in
Bernuau et al. [4], Bhat-Bernstein [5], Oza et al. [16], Sanchez et al. [19] over the Lyapunov function
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V that solves
d
dt

[V(x(t))] + 2ε
√

V(x(t)) ≤ 0, a.e. on [0,∞), (1.1)

where ε > 0 and x is a solution. Adly et al. [1] extended the Lyapunov function approach to
differential inclusions with a subdifferential of a convex function Φ : R → Rn (given by a cone,
see Rockafellar [18])

− ẍ(t) − ∇ f (x(t)) ∈ ∂Φ(ẋ(t)), (1.2)

and derived an inequality of form (1.1) (and corresponding finite-time stability) from a cone-type
condition

− ∇ f (x(t)) + Bε(0) ⊂ ∂Φ(0), a.e. on [0,∞), (1.3)

where Bε(0) is the ball of Rn of radius ε centered at 0.
More recently, a significant interest in the study of finite-time stability of differential inclusions has

been due to new applications in elastoplasticity (see e.g., Gudoshnikov et al. [8]). We remind the reader
that according to the pioneering work by Moreau [15] (see also Gudoshnikov and Makarenkov [9]),
the stresses in a network of m elastoplastic springs with time-varying displacement-controlled loadings
are governed by

− ẏ ∈ NA
C(t)(y), y ∈ V,

V is a d − dimensional subspace of Rm

with the scalar product (x, y)A = 〈x, Ay〉 ,
(1.4)

where A is a positive diagonal m × m-matrix, and NA
C(t)(y) is a normal cone to the set

C(t) =

m⋂
j=1

V j(g(t), h(t)),
V j(g, h) = L(−1, j, g, h) ∩ L(+1, j, g, h),

L(α, j, g, h) =
{
y ∈ V :

〈
αe j, Ay + Ag

〉
≤ αcαj + αa jh

}
,

(1.5)

at a point y, with appropriate d, c−j , c+
j , g(t), h(t) that define mechanical parameters of the network of

elastoplastic springs, displacement-controlled loadings and stress-controlled loadings (to be discussed
in Section 4 in details), and where e j ∈ R

m is the vector with 1 in the j-th component and zeros
elsewhere. The solutions y(t) of differential inclusion (1.4) never escape from C(t) (i.e., y(t) is swept
by C(t)) for which reason (1.4) is called sweeping process. Spring j undergoes plastic deformation
when the inequality c−j <

〈
e j, Ay(t) − Ah(t) + Ag(t)

〉
< c+

j is violated. Therefore, knowledge of the
evolution of y(t) allows to make conclusions about the regions of plastic deformation (that lead to
low-cycle fatigue or incremental failure, see Yu [20, §4.6]).

Krejci [13] proved that if C(t) is T -periodic then any solution y(t) of (1.4) always converges to a
T -periodic solution. Colombo et al. [7] proved the existence of the attractor in the case when C(t)
is a parallelepiped (of potentially changing dimensions). Extending their earlier two-dimensional
version [8], Gudoshnikov et al. [11] offered a rule to compute the T -periodic attractor of (1.4) in the
case where h(t) ≡ 0, i.e., when just displacement-controlled loading is present (meaning that the shape
of the moving polytop doesn’t change). Details of geometry of the attractor of (1.4) are addressed in
Gudoshnikov et al. [12]. The goal of the present work is to investigate finite-time convergence of (1.4)
in the case of displacement-controlled loading and stress-controlled loading present simultaneously.

As also mentioned in Gudoshnikov et al. [11], predicting the behavior of solutions of sweeping
process (1.4) within a guaranteed time is of crucial importance for materials science. Current
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methods of computing the asymptotic response of networks of elastoplastic springs (see e.g., Boudy
et al. [6], Zouain-SantAnna [21]) run the numeric routine until the difference between the responses
corresponding to two successive cycles of loading get smaller than a prescribed tolerance (without any
estimate as for how soon such a desired accuracy will be reached).

The approach of the present paper is a suitable generalization of Gudoshnikov et al. [11] (pioneered
by Adly et al. [1]). Specifically, let y∗(t) be a vertex of C(t). We prove that if y∗(t) can be expressed as

y∗(t) = y∗ + c(t), (1.6)

{y∗} =
⋂

(α, j)∈I0

L(α, j), (1.7)

L(α, j) =
{
y ∈ V :

〈
e j, Ay

〉
= cαj

}
,

where

L(α, j), (α, j) ∈ I0 are independent : |I0| = dim V, (1.8)

and if
− c′(t) + BA(0)

ε ⊂ NA
C(t)−c(t)(y∗), a.a. t ∈ [0, τd], (1.9)

where BA
ε (0) is a ball in the norm induced by the scalar product (1.4), then, for any solution y(t) of (1.4),

the function
x(t) = y(t) − c(t) (1.10)

satisfies the estimate (1.1) on [0, τd] for a suitable Lyapunov function V that measures the distance
from x(t) to y∗. In the earlier work [11], the difference C(t) − c(t) is independent of t due to the lack of
the stress-controlled loading. Accordingly, [11] assumes

− c′(t) + BA
ε (0) ∩ NA

F (y) ⊂ NA
C(F) (1.11)

instead of (1.9), where F is however allowed to be a face, not just a vertex of C. The complication
we encounter when adding a stress-controlled loading is that C(t) − c(t) is no longer constant, but we
discover that, for applications to lattice spring models, y∗(t) − c(t) can still be assumed to be constant
thanks to an appropriate construction of c(t) (Lemma 4.2), which is the main result of the paper.

The paper is organized as follows: In Section 2, we adjust the proof of [11, Theorem 3.1] for the
case where assumption (1.11) is replaced by (1.9). The corresponding theorem (Theorem 2.1) provides
an estimate for the time it takes for any solution of (1.4) to reach y∗(t). A corollary of Theorem 2.1 for
the case where c(t) is T -periodic is given in Section 3. Section 4 links the entries of Theorem 2.1 to
parameters of a lattice spring model, which allows to specify the structure of C(t) and c(t) and to prove
the main result of the paper (Lemma 4.2) about the existence of representation (1.6)-(1.7) for the case
where sweeping process (1.4) comes as a model of an elastoplastic lattice spring model (as introduced
in Moreau [15] and adapted to lattice spring models in Gudoshnikov et al. [9]). Section 5 combines
Sections 2 and 4 in order to provide a step-by-step guide for computation of the entries of Theorem 2.1
in terms of mechanical parameters of elastoplastic lattice spring models. Section 6 follows the guide
of Section 5 in order to investigate several instructional cases of a benchmark model of 5 springs
on 4 nodes (Rachinskiy [17], Gudoshnikov et al. [11]) that allows us to clarify (Section 6.4) the role
of the stress-controlled loading in the diversity of possible attractors of sweeping process (1.4) and,
accordingly, in the diversity of different destributions of plastic deformations in elastoplastic lattice
spring models. Conclusions section concludes the paper.
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2. A sufficient condition for finite-time stability of sweeping process with a moving constraint of
changing shape

We remind the reader that the normal cone NA
C(y) to the set C at a point y ∈ C in a scalar product

space V with the scalar product

(x, y)A = 〈x, Ay〉 , where A is a diagonal positive m × m−matrix, (2.1)

is defined as (see Bauschke and Combettes [3, §6.4])

NA
C(y) =

{ {
x ∈ V : 〈x, A(ξ − y)〉 6 0, for any ξ ∈ C

}
, if y ∈ C,

∅, if y < C.

In what follows (see Bauschke and Combettes [3, §3.2])

‖x‖A =
√
〈x, Ax〉. (2.2)

Definition 2.1. (see e.g., [14]) A set-valued function C(t) (acting from R to a vector space V ⊂ Rm) is
called Lipschitz continuous, if, for any T > 0, there exists L > 0 such that

dH(C(t),C(s)) ≤ L|t − s|, t, s ∈ [0,T ],

where dH(C1,C2) is Hausdorff distance between closed bounded sets C1,C2 ∈ R
m.

We remind the reader that solution of an initial-value problem for sweeping processes (1.4) with
Lipschitz continuous moving constraint C(t) exists, unique and features continuous dependence on
initial conditions (see e.g., Kunze and Monteiro Marques [14, Theorems 1–3]).

The statement of the following theorem and its proof follow the corresponding statement and proof
of [11, Theorem 3.1], but we still rewrite the proof for completeness because [11, Theorem 3.1] uses
condition (1.9) with C(t) − c(t) replaced by C, i.e., C(t) − c(t) is assumed totally constant in [11]. It
turns out that replacing C by C(t) − c(t) requires almost no changes in the proof.

Theorem 2.1. Let V be a d-dimensional linear subspace of Rm with scalar product (2.1), t 7→ C(t) be a
Lipschitz continuous multi-valued function with closed convex values, and c : [0,∞)→ V be Lipschitz
continuous, and

y∗ ∈ C(t) − c(t), t ∈ [0,∞). (2.3)

Assume that there exists an ε > 0 such that condition (1.9) holds on an interval [0, τd] with

τd ≥
1
ε
· sup

v∈C(t)−c(t), t≥0
‖y∗ − v‖A. (2.4)

Then, every solution y of (1.4) with the initial condition y(0) ∈ C(0) satisfies y(τd) = y∗ + c(τd).

The proof of Theorem 2.1 follows the lines of [11]. The idea is based on observing that

V(v) = (‖v − y∗‖A)2 = 〈v − y∗, A(v − y∗)〉 (2.5)

is a Lyapunov function for the sweeping process

− x′(t) − c′(t) ∈ NA
C(t)−c(t)(x(t)), (2.6)
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which is related to (1.4) through the change of the variables (1.10). Accordingly, V(x(t1)) = 0 will
imply y(t1) = y∗ + c(t1). For completeness, the proof of Theorem 2.1 is included in Appendix.

The supremum in (2.4) of Theorem 2.1 can be estimated using the following proposition (which
extends [9, Proposition 3.14]).

Proposition 2.1. For any y ∈ C(t) − c(t), it holds that

sup
v∈C(t)−c(t), t≥0

‖y − v‖A ≤ ‖A−1c+ − A−1c−‖A. (2.7)

Proof. We have

sup
v∈C(t)−c(t), t≥0

‖y − v‖A ≤ sup
v1v2∈C(t)−c(t), t≥0

‖v1 − v2‖

= sup
u1,u2∈C(t), t≥0

‖u1 − u2‖

= sup
u1,u2∈Π(t)∩V, t≥0

‖u1 − u2‖ ≤ sup
u1,u2∈Π(t), t≥0

‖u1 − u2‖

= sup
u1,u2∈A−1C+h(t)−g(t), t≥0

‖u1 − u2‖ = max
u1,u2∈A−1C

‖u1 − u2‖,

which can be estimated from above by ‖A−1c+ − A−1c−‖A according to [9, Proposition 3.14]. The proof
of the proposition is complete. �

3. The existence of a globally one-period stable periodic attractor

Corollary 3.1. If, in the settings of Theorem 2.1, we additionally have that c(t) is T -periodic with
T ≥ τd, then y∗ is a globally one-period stable T-periodic solution of (1.4).

Corollary 3.1 follows by observing that

y∗(τd + T ) = y∗ + c(τd + T ) = y∗ + c(τd) = y∗(τd).

4. Application to a general elastoplastic system with displacement-controlled loading and
stress-controlled loading present simultaneously

We remind the reader that according to Moreau [15] a network of m elastoplastic springs on n nodes
with 1 displacement-controlled loading and subjected to a stress-controlled loading at all nodes is fully
defined by an m × n kinematic matrix D of the topology of the network, m × m matrix of stiffnesses
(Hooke’s coefficients) A = diag(a1, ..., am), an m-dimensional hyperrectangle C =

∏m
j=1[c−j , c

+
j ] of the

achievable stresses of springs (beyond which plastic deformation begins), a vector R ∈ Rm of the
location of the displacement-controlled loading, a scalar function l(t) that defines the magnitude of the
displacement-controlled loading, and a function h̄(t) ∈ Rm such that

f (t) = −DT h̄(t) ∈ Rn (4.1)

defines the forces applied at the n nodes of the network. When all springs are connected (form a
connected graph), we have (see Bapat [2, Lemma 2.2])

rank D = n − 1. (4.2)
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We furthermore assume that
m ≥ n and rank(DT R) = 1. (4.3)

To formulate the Moreau sweeping process corresponding to the elastoplastic system
(D, A,C,R, l(t), f (t)), we first follow the 3 steps described in Gudoshnikov and Makarenkov [10, §5]:

(1) Find an n× (n−2)−matrix M of rank(DM) = n−2 that solves RT DM = 0 and use M to introduce
Ubasis = DM.

(2) Find a matrix Vbasis of m − n + 2 linearly independent column vectors of Rm that solves

(Ubasis)T AVbasis = 0. (4.4)

(3) Find an m × (m − n + 1)−matrix D⊥ that solves (D⊥)T D = 0(m−n+1)×n and such that

rank(D⊥) = m − n + 1. (4.5)

With the new matrices introduced, the moving constraint C(t) of sweeping process (1.4)
corresponding to the elastoplastic system (D, A,C,R, l(t), f (t)) is given by

C(t) =

m⋂
j=1

{
y ∈ V : c−j + aihi(t) ≤

〈
e j, Ay + AVbasisL̄l(t)

〉
≤ c+

j + aihi(t)
}
, (4.6)

where, for each j ∈ 1,m,

L̄ = W−1

(
1

0m−n+1

)
, W =

(
RT

(D⊥)T

)
Vbasis (4.7)

with e j being the basis vectors of Rm, i.e., e j = (0, ..., 0︸ ︷︷ ︸
j−1

, 1, 0, ..., 0)T , and where h(t) is found from h̄(t)

according to a formula given by the following proposition ( [11] focused on h(t) = 0 and didn’t derive
explicit formula for h). The existence of W−1 is proved in Gudoshnikov et al. [11].

Lemma 4.1. If the stress-controlled loading f (t) verifies the representation (4.1), then the
corresponding function h(t) in (4.6) is given by

h(t) = Ubasis

(
(Ubasis)T AUbasis

)−1
(Ubasis)T h̄(t),

or, equivalently,
h(t) = −Ubasis

(
(Ubasis)T AUbasis

)−1
MT f (t). (4.8)

In particular, the (n − 2) × (n − 2)-matrix (Ubasis)T AUbasis is invertible.

Proof. First of all, we observe that the (n − 2) × (n − 2) matrix (Ubasis)T AUbasis is invertible. Indeed,
if (Ubasis)T AUbasisx = 0, then (Ubasis x)T A(Ubasis x) = 0. But since the stiffness matrix A is
positive definite, then Ubasis x = 0. This means that Ker(Ubasis) = Ker((Ubasis)T AUbasis) and hence,
Rank(Ubasis) = Rank((Ubasis)T AUbasis) = n − 2.

According to [9, formula (16)],
h(t) = PU A−1h̄(t), (4.9)
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where PU is a linear (orthogonal in sense of scalar product (2.1)) projection map on U along V . To
compute PU we decompose x as

x = Ubasisu + Vbasisv, (4.10)

and compute u ∈ Rdim U from (4.10). Applying (Ubasis)T A to both sides of (4.10), using (4.4), and
solving for u, we get

u =
(
(Ubasis)T KUbasis

)−1
(Ubasis)T Ax,

which implies
PU = Ubasis

(
(Ubasis)T KUbasis

)−1
(Ubasis)T Ax. (4.11)

The statement of the proposition is obtained by substituting (4.11) to (4.9). The proof of the proposition
is complete. �

Using Lemma 4.1 and [9, Theorem 3.1], the solution y(t) of sweeping process (1.4) is related to the
vector s(t) = (s1(t), ..., sm(t))T of the stresses of springs via

y(t) = A−1s(t) − VbasisL̄l(t) − Ubasis

(
(Ubasis)T AUbasis

)−1
MT f (t), (4.12)

provided that f (t) admits representation (4.1) or, equivalently (see [9, Remark 3.5]),

f1(t) + . . . + fn(t) = 0, t ≥ 0. (4.13)

In contrast with Gudoshnikov et al. [11], the function c(t), that we need to verify condition (1.9) for,
depends on the choice of the vertex y∗, i.e., on the choice of I0 in (1.7).

Definition 4.1. A set of indices I0 ⊂ {−1, 1}×1,m with |I0| = d will be called non-singular, if the matrix({
e j, (α, j) ∈ I0

})T
AVbasis (4.14)

is invertible.

Remark 4.1. [11, formula (7.9)] If I0 ⊂ {−1, 1} × 1,m with |I0| = d is non-singular then
⋂

(α, j)∈I0

L(α, j)

is a singleton and y∗ in (1.7) is well defined.

Lemma 4.2. Let I0 ⊂ {−1, 1} × 1,m be non-singular and let y∗ be given by (1.7). Then, y∗(t) given by
(1.6) belongs to C(t), if c(t) is defined by

c(t) = −VbasisL̄l(t) + Vbasis∆I0h(t), (4.15)
∆I0 = Z−1L, (4.16)

Z =
(
{e j : (α, j) ∈ I0}

)T
AVbasis, (4.17)

L =
(
{e j : (α, j) ∈ I0}

)T
A, (4.18)

and if the feasibility condition

c−j + a jh j(t) <
〈
e j, Ay∗ + AVbasis∆I0h(t)

〉
< c+

j + a jh j(t), (α, j) < I0, t ≥ 0, (4.19)

holds.
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Remark 4.2. Equation (4.16) is equivalent to

a jh j(t) =
〈
e j, AVbasis∆I0h(t)

〉
, (α, j) ∈ I0. (4.20)

Proof of Lemma 4.2. Introduce

C∗(t) = C0(t) + C1(t),
C0(t) =

⋂
(α, j)∈I0

{
y ∈ V : cαj + a jh j(t) =

〈
e j, Ay + AVbasisL̄l(t)

〉}
,

C1(t) =
⋂

(α, j)<I0

{
y ∈ V : c−j + a jh j(t) ≤

〈
e j, Ay + AVbasisL̄l(t)

〉
≤ c+

j + a jh j(t)
}
.

Since C∗(t) ⊂ C(t), the problem of finding y∗(t) with (1.6)-(1.7) reduces to finding y∗(t) that satisfies

{y∗(t)} = C0(t), t ≥ 0, (4.21)
y∗(t) ⊂ C1(t), t ≥ 0. (4.22)

By (4.20), C0(t) can be rewritten in the form

C0(t) =
⋂

(α, j)∈I0

{y ∈ V : cαj = 〈e j, Ay + AVbasisL̄l(t) − AVbasis∆I0h(t)〉}. (4.23)

To solve (4.20) we rewrite (4.20) as
L(t) = Z∆I0h(t).

Observe that if y ∈ {y ∈ V : F(y + k) = 0} for some k ∈ V , then letting x = y + k, we have x ∈ V and
F(x) = 0, meaning that y can be represented as y = x − k ∈ {x ∈ V : F(x) = 0} − k.

Therefore, with formula (4.23), the expression for C0(t) can be written as

C0(t) = C0 + c(t),

where
C0(t) =

⋂
(α, j)∈I0

{y ∈ V : cαj = 〈e j, Ay〉}

and where c(t) is given by (4.15). Therefore, C0(t) is a singleton given by

C0(t) = {y∗(t)},

where y∗(t) is defined by (1.6)-(1.7), i.e., (4.21) is established.
The inclusion (4.22) follows from (4.19). The proof of the lemma is complete. �

To understand what the conclusion

y(t) = y∗ + c(t), t ≥ τd, (4.24)

of Theorem 2.1 says about the dynamics of the elastoplastic system (D, A,C,R, l(t), f (t)), recall that
by [9, Theorem 3.1 and §3.2],

y(t) = A−1s(t) + h(t) − VbasisLl(t),

or, by combining with (4.24) and (4.15),

y∗ + Vbasis∆I0h(t) = A−1s∗(t) + h(t),

i.e.,
s∗(t) = Ay∗ + (Vbasis∆I0 − I)h(t), t ≥ τd. (4.25)
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5. A step-by-step guide for analytic computations

The following lemma from Rockafellar-Wets [18, Theorem 6.46] (see also [11, Lemma 5.1]) gives
a computational recipe to check condition (1.9). Recall that cone{ξ1, ..., ξK} stays for the cone formed
by vectors ξ1, ..., ξK .

Lemma 5.1. Let V be a d-dimensional linear subspace of Rm with scalar product (2.1). Consider

C̃ =

K⋂
k=1

{y ∈ V : 〈̃nk, Ay〉 ≤ ck} , (5.1)

where ñk ∈ V, ck ∈ R, K ∈ N. If Ĩ(y) =
{
k ∈ 1,K : 〈̃nk, Ay〉 = ck

}
, then

NA
C̃

(y) = cone
{̃
nk : k ∈ Ĩ(y)

}
.

Corollary 5.1. If y∗(t) ∈ C(t) satisfies (1.6)-(1.7) for suitable c(t) and y∗, then

NA
C(t)−c(t)(y∗) = cone

{
αn j : (α, j) ∈ I0

}
, (5.2)

where n j ∈ V, j ∈ 1, dim V are the vectors that solve the equality〈
e j, y

〉
=

〈
n j, y

〉
, y ∈ V.

Proof. First note that
NA

C(t)−c(t)(y∗) = NA
C(t)(y∗ + c(t)).

To apply Lemma 5.1, we rewrite (4.6) as follows:

C(t) =

m⋂
j=1

{
y ∈ V :

〈
−n j, Ay + AVbasisL̄l(t)

〉
≤ −c−j − aihi(t)

}
∪

{
y ∈ V :

〈
n j, Ay + AVbasisL̄l(t)

〉
≤ c+

j + aihi(t)
}
.

Therefore, we want to compute Ĩ(y∗ + c(t)) given by

Ĩ(y∗ + c(t)) =
{
(α, j) ∈ {−1, 1} × 1,m :

〈
αn j, Ay∗ + AVbasis∆I0h(t)

〉
= αcαj

}
.

By successively using (4.19), (4.20), and (1.7) the above equality rewrites as

Ĩ(y∗ + c(t)) =
{
(α, j) ∈ I0 :

〈
αn j, Ay∗ + AVbasis∆I0h(t)

〉
= αcαj

}
=

{
(α, j) ∈ I0 :

〈
αn j, Ay∗

〉
= αcαj

}
=

{
(α, j) ∈ I0 :

〈
n j, Ay∗

〉
= cαj

}
= I0,

which provides the required statetment. The proof of the Corollary is complete. �

Using (5.2), condition (1.9) can be rewritten as

− c′(t) + BA
ε (0) ⊂ cone

{
αn j : (α, j) ∈ I0

}
. (5.3)
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Therefore, when c′(t) is T -periodic, the required ε > 0 exists, if

I0 admissibility condition: −c′(t) ∈ cone
{
αn j : (α, j) ∈ I0

}
, t ∈ [0,T ], (5.4)

I0 irreducibility condition: −c′(t) < rb
(
cone

{
αn j : (α, j) ∈ I0

})
, t ∈ [0,T ],

where rb(B) denotes the relative boundary of a set B of a linear subspace V ⊂ Rm. The irreducibility
condition can be further rewritten as

I0 irreducibility condition: Ĩ0 is not admissible for any Ĩ0 ⊂ I0, Ĩ0 , I0. (5.5)

In other words, (5.5) says that I0 is irreducible, if any Ĩ0 ⊂ I0 with Ĩ0 , I0 makes

−c′(t) < cone
{
αn j : (α, j) ∈ Ĩ0

}
, for at least one t ∈ [0,T ].

According to [10, formula (27)], n j can be taken as

n j = VbasisW−1
(

RT

(D⊥)T

)
e j (5.6)

and substitution of (5.2), (4.7), and (4.15) to (5.4) gives

−c′(t)︷                                         ︸︸                                         ︷
VbasisW−1

(
l′(t)

0m−n+1

)
− Vbasis∆I0h

′(t) ∈ cone
(
VbasisW−1

(
RT

(D⊥)T

) {
αe j : (α, j) ∈ I0

})
,

(5.7)

or (
l′(t)

0m−n+1

)
−W∆I0h

′(t) ∈ cone
((

RT

(D⊥)T

) {
αe j : (α, j) ∈ I0

})
, (5.8)

Based on Lemma 4.2 and formula (5.8) we can now split verification of conditions of Theorem 2.1
into the following steps.

Step 1. Fix appropriate indexes I0 (springs that will reach plastic deformation). Spot a non-singular
I0 that is admissible and irreducible (i.e., solves (5.8) and such that Ĩ0 doesn’t satisfy (5.8) for any
Ĩ0 ⊂ I0, Ĩ0 , I0).

Combination of Theorem 2.1 and Lemma 4.2 lead to the following qualitative description of
the asymptotic behavior of elastoplastic system (D, A,C,R, l(t), f (t)) and of the associated sweeping
process (1.4). Here the quantities y∗, c(·), I0, ∆I0 , h(·) are those referred to in the statement of
Lemma 4.2.

Proposition 5.1. (Conclusion of Step 1). If

1) both l′(t) and f ′(t) are constant,
2) f (t) satisfies the static balance condition (4.13),
3) there exists a non-singular and irreducible I0 satisfying (5.8),
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then there exist cαj , (α, j) < I0, such that the solution y of sweeping process (1.4) with initial condition
y(0) ∈ C(0) satisfies

y(τd) = y∗ + c(τd), (5.9)

for an appropriate τd > 0, and the stress vector s(t) of the elastoplastic system (D, A,C,R, l(t), f (t))
satisfies

s(τd) = Ay∗ + (Vbasis∆I0 − I)h(τd), (5.10)
s j(τd) = cαj , (α, j) ∈ I0. (5.11)

Indeed, conditions of Proposition 5.1 imply that condition (1.9) of Theorem 2.1 is satisfied on [0, τd],
where

τd =
1
ε
· sup

v∈C(t)−c(t), t≥0
‖y∗ − v‖A (5.12)

with suitable ε > 0, which gives τd used in the statement. Relation (5.11) follows from (5.10) by
Remark 4.2.

Remark 5.1. Relation (5.11) means that springs with indices I0 get to plastic mode (i.e., capable to
deform plastically) by the time τd.

One has to proceed to Steps 2 and 3 to come up with an explicit version of Proposition 5.1 where
conditions for cαi and formulas for ε and τd are given in closed form.

Step 2. Compute y∗ and impose the feasibility condition. By [11, formula (7.9)] the formula for y∗
of (1.7) reads as

y∗ = Vbasis

(({
e j, (α, j) ∈ I0

})T
AVbasis

)−1 ({
cαj , (α, j) ∈ I0

})T
. (5.13)

Substitution of y∗, ∆I0 , h(t) as defined by (5.13), (4.16), (4.8) to (4.19) yields feasibility condition in
terms of mechanical parameters of the lattice-spring model.

Note, function f (t) must additionally satisfy (4.13) for formula (4.8) to be valid.

Step 3. Compute ε0. This step is devoted to finding ε for which assumption (5.3) holds.
Assumption (5.3) requires computation of the distance from −c′(t) to the boundary of cone cone{αn j :
(α, j) ∈ I0}. The required boundary is ∂cone

{
αn j : (α, j) ∈ I0

}
.

Using formula (5.2), we compute

ε0(t) = distA
(
−c′(t), ∂cone

{
αn j : (α, j) ∈ I0

})
= min

(α∗, j∗)∈I0
distA

(
−c′(t), cone

{
αn j : (α, j) ∈ I0\{(α∗, j∗)}

})
. (5.14)

According to [11, formula (7.18)] and [11, Lemma 7.7], the quantity

ε0(t) = distA
(
−c′(t), ∂cone

{
αn j : (α, j) ∈ I0

})
computes as (see [11, formula (7.20)])

ε̄0(t) = min
(α∗, j∗)∈I0

∥∥∥∥−c′(t) − projA
(
−c′(t), span

{
αn j : (α, j) ∈ I0\{(α∗, j∗)}

})∥∥∥∥A
, (5.15)
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where
projA

(
−c′(t), span

{
αn j : (α, j) ∈ I0\{(α∗, j∗)}

})
= −({n j, (α, j) ∈ I0\{(α∗, j∗)}})◦

◦
[
({n j, (α, j) ∈ I0\{(α∗, j∗)}})T A({n j, (α, j) ∈ I0\{(α∗, j∗)}})

]−1

◦({n j, (α, j) ∈ I0\{(α∗, j∗)}})T Ac′(t).

(5.16)

Choose ε0 > 0 such that ε0 ≤ ε̄0(t) for all t ∈ [0, τd]. Theorem 2.1, Proposition 2.1, and Lemma 4.2
then lead to the following conclusion.

Proposition 5.2. (Conclusion of Steps 1–3). If assumptions 1)–3) of Proposition 5.1 hold, then
condition (1.9) holds on [0, τd] for any τd ≥ τ, where

τ =
1
ε0
· ‖A−1c+ − A−1c−‖A.

If, additionally,

4) condition (4.19) holds on some [0, τd] with τd ≥ τ,

then conclusions (5.9)–(5.11) of Proposition 5.1 hold with τd replaced by t, t ∈ [τ, τd].

6. A benchmark example

The focus of the present section is on the elastoplastic model shown in Figure 1 (earlier introduced
in Rachinskiy [17]), which allows to fully illustrate the practical implementation of Theorem 2.1.

 

 

 

 

1 

2 

3 5 

4 

 
 

  

l(t) 

f3(t) f4(t) 

f2(t) 

f1(t) 

Figure 1. A system of 5 elastoplastic springs on 4 nodes with displacement-controlled
loading l(t) and stress-controlled loading f (t) = ( f1(t), f2(t), f3(t), f4(t))T . Circled numbers
are indices of nodes and regular numbers are indices or springs.

According to Gudoshnikov et al. [11], the elastoplastic system of Figure 1 leads to the following
expressions for D and R

D =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1


, R =


1
0
1
0
1


.

We now follow Gudoshnikov et al. [11] to formulate the quantities used in Section 5.
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First of all, based on [10, formula (17)], we compute the dimension of sweeping process (1.4) as

dim V = m − n + q + 1 = 5 − 4 + 1 + 1 = 3.

According to [10, §5, Step 1], we then look for an 4 × 2 matrix M such that RT DM = 0 and such that
the matrix DM is full rank. Such a matrix M can be taken as

M =


0 0
1 1
1 −1
0 0

 with DM =


1 1
1 −1
0 −2
−1 −1
−1 1


= Ubasis.

The next step is determining Vbasis which consists of d = 3 linearly independent columns of Rm = R5

and solves (DM)T AVbasis = 0. Such a Vbasis can be takes as

Vbasis =


0 1/a1 1/a1

0 1/a2 −1/a2

1/a3 0 1/a3

−1/a4 1/a4 0
1/a5 1/a5 0


with AVbasis =


0 1 1
0 1 −1
1 0 1
−1 1 0
1 1 0


.

Finally, a 5 × 2 full rank matrix D⊥ satisfying (D⊥)T D = 0 can be taken as

D⊥ =


0 1
0 −1
1 1
−1 0
1 0


leading to

(
RT

(D⊥)T

)
=


1 0 1 0 1
0 0 1 −1 1
1 −1 1 0 0

 . (6.1)

Formula (5.6) then yields

n1 = (a2(a3 + a4) + a4a5 + a3(a4 + a5),−a1a3, a1(a2 + a5), a1(a2 + a3 + a5), a1a3)T/k,
n2 = (−a2a3, a4a5 + a1(a3 + a5) + a3(a4 + a5),−a2(a1 + a4), a2a3, a2(a1 + a3 + a4))T/k,
n3 = (a3(a2 + a5),−a3(a1 + a4), (a1 + a4)(a2 + a5),−a3(a2 + a5), a3(a1 + a4))T/k,
n4 = (a4(a2 + a3 + a4), a3a4,−a4(a2 + a5), a3(a2 + a5) + a1(a2 + a3 + a5),−a3a4)T/k,
n5 = (a3a5, (a1 + a3 + a4)a5, (a1 + a4)a5,−a3a5, a1(a2 + a3) + a3a4 + a2(a3 + a4))T/k

(6.2)

with
k = a3a4 + a2(a3 + a4) + a3a5 + a4a5 + a1(a2 + a3 + a5). (6.3)

In what follows, we consider

f (t) =


b1t + d1

b2t + d2

b3t + d3

b4t + d4

 ,
4∑

i=1

bi =

4∑
i=1

di = 0, l(t) = l0 + l1t, (6.4)
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where l0, l1 > 0, b1, b2, b3, b4, d1, d2, d3, d4 ∈ R, which leads to

h(t) =
1
k



−(a2(tb2 + d2) + a5(tb2 + d2) + a3(tb2 + tb3 + d2 + d3))
−((a1 + a4)(tb3 + d3) + a3(tb2 + tb3 + d2 + d3))
a2(tb2 + d2) + a5(tb2 + d2) − (a1 + a4)(tb3 + d3)

a2(tb2 + d2) + a5(tb2 + d2) + a3(tb2 + tb3 + d2 + d3)
(a1 + a4)(tb3 + d3) + a3(tb2 + tb3 + d2 + d3)


with k given by (6.3).

We now illustrate computations of Steps 1–3 of Section 5 and statements of Propositions 5.1 and 5.2
through three instructive cases of I0.

6.1. Case I0 = {(+, 2), (+, 3), (+, 4)}

This case was addressed in [11] without stress-controlled loading.

Step 1. Computation of matrix ∆I0 gives

∆I0 =


0 1 −1
1 0 1
−1 1 0


−1

◦


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 A =
1
2


0 a2 a3 −a4 0
0 a2 a3 a4 0
0 −a2 a3 a4 0

 . (6.5)

Substituting to (5.8) gives
l1 −

b2
a1

+ b3
a5

b3
a5

−
b2
a1

 ∈ cone





0
0
−1

 ,


1
1
1

 ,


0
−1
0



 . (6.6)

The vector in the left-hand-side won’t belong to the boundary of the right-hand-side (i.e., I0 will be
admissible and irreducible), if

l1 +
b3

a5
> 0, l1 −

b2

a1
+

b3

a5
> 0, l1 −

b2

a1
> 0. (6.7)

Remark 6.1. Conditions (6.7) can be viewed as a condition for l1 to be sufficiently large or as a
condition for |b2| + |b3| to be sufficiently small.

Proposition 6.1. (Conclusion of Step 1). Assume that stress-controlled loading f (t) and
displacement-controlled loading l(t) of elastoplastic system of Figure 1 are given by (6.4) and satisfy
(6.7). Then cαj , (α, j) < I0, can be amended in such a way that the stress vector s(t) of the elastoplastic
system (D, A,C,R, l(t), f (t)) satisfies

s(τd) = Ay∗ + (Vbasis∆I0 − I)h(τd), (6.8)
s j(τd) = cαj , (α, j) ∈ I0. (6.9)
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Step 2. Formula (5.13) yields

AyI0 =


c+

3 + c+
4

c+
2

c+
3

c+
4

c+
2 + c+

3

 (6.10)

and substitution to (4.19) returns

c−1 < tb2 + d2 + c+
3 + c+

4 < c+
1 ,

c−5 < −tb3 − d3 + c+
2 + c+

3 < c+
5 .

(6.11)

Step 3. Since |I0| = 3, for any (α∗, j∗) ∈ I0, the set I0\{(α∗, j∗)} consists of two elements
{(α1, j1), (α2, j2)}, and formulas (5.15) and (5.16) can be rewritten as

ε0(t) = min
(α1, j1),(α2, j2)∈I0

S j1 j2 , (6.12)

where S j1 j2 =
∥∥∥−c′(t) − proj(−c′(t), span{n j1 , n j2})

∥∥∥A
,

and projA(−c′(t), span{n j1 , n j2}) = −
(
n j1 n j2

) ( nT
j1 An j1 nT

j1 An j2

nT
j2 An j1 nT

j2 An j2

)−1 (
nT

j1
nT

j2

)
Ac′(t).

Substituting n j and c′(t) given by (6.2) and (5.7) to (6.12), we get

ε0 = min{S 23, S 34, S 24}, (6.13)

S 23 =

√
a4(−l1a1 + b2)2

a1(a1 + a4)
, S 34 =

√
a2(l1a5 + b3)2

a5(a2 + a5)
,

S 24 =

√
a3(a1b3 + a5(−b2 + a1l1))2

a1a5(a3a5 + a1(a3 + a5))
.

Proposition 6.2. (Conclusion of Steps 1–3). Assume that assumptions of Proposition 6.1 hold. Let ε0

be given by (6.13) and assume that

time τ =
1
ε0
· ‖A−1c+ − A−1c−‖A satisfies (6.11). (6.14)

Then the stress vector s(t) of the elastoplastic system (D, A,C,R, l(t), f (t)) satisfies

s(t) = AyI0 + (Vbasis∆I0 − I)h(t), (6.15)
s j(t) = cαj , (α, j) ∈ I0, (6.16)

for all t ≥ τ that satisfy (6.11).

Remark 6.2. When b2 = d2 = b3 = d3 = 0 (e.g., in the absence of the stress-controlled loading),
condition (6.11) is the standard feasibility condition of vertex y∗ ( [11, formula (8.5)]). Therefore,
condition (6.11) can be viewed as a condition for the stress-controlled loading to not be too big.
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6.2. Case I0 = {(+, 2), (−, 3), (+, 4)}

Formula (6.5) stays because computation of ∆I0 is independent of the signs of α in (α, j) ∈ I0. The
relations (6.6) and (6.10) take the form

l1 −
b2
a1

+ b3
a5

b3
a5

−
b2
a1

 ∈ cone





0
0
−1

 ,

−1
−1
−1

 ,


0
−1
0



 , AyI0 =


c−3 + c+

4
c+

2
c−3
c+

4
c−3 + c+

2

 .
Admissibility and irreducibility condition (6.7), feasibility condition (6.11), and convergence
time (6.11) now compute as follows.

Admissibility and irreducibility condition:

l1 +
b3

a5
> 0,

b2

a1
−

b3

a5
− l1 > 0, l1 −

b2

a1
> 0. (6.17)

Feasibility condition:
c−1 < tb2 + d2 + c−3 + c+

4 < c+
1 ,

c−5 < −tb3 − d3 + c−3 + c+
2 < c+

5 .
(6.18)

Convergence time:

t ≥ max
{√

a1(a1 + a4)
a4(−l1a1 + b2)2 ,

√
a5(a2 + a5)

a2(l1a5 + b3)2 ,

√
a1a5(a3a5 + a1(a3 + a5))

a3(a1b3 + a5(−b2 + a1l1))2

}
‖A−1c+ − A−1c−‖A.

(6.19)
Proposition 6.2 can now be concisely formulated as follows.

Proposition 6.3. Assume that condition (6.17) holds. Then, for any t ≥ 0 that satisfies
simultaneously (6.18) and (6.19) the stress vector s(t) of elastoplastic system (D, A,C,R, l(t), f (t))
obeys properties (6.15) and (6.16). In particular, for these values of t, spring j plastically expands
if (+, j) ∈ I0 and spring j plastically contracts if (−, j) ∈ I0.

6.3. Case I0 = {(+, 1), (+, 2), (−, 3)}

Relations (6.5), (6.6) and (6.10) take the form

∆I0 =


0 1 1
0 1 −1
1 0 1


−1

◦


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 A =
1
2


−a1 a2 a3 0 0
a1 a2 0 0 0
a1 −a2 0 0 0

 ,


l1 + b3
a5

−b2
a4

+ b3
a5

0

 ∈ cone





1
0
1

 ,


0
0
−1

 ,

−1
−1
−1



 , AyI0 =


c+

1
c+

2
c−3

−c−3 + c+
1

c−3 + c+
2

 .
Admissibility and irreducibility condition (6.7), feasibility condition (6.11), and convergence

time (6.11) now compute as follows.
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Admissibility and irreducibility condition:

l1 +
b2

a4
> 0,

b3

a5
+ l1 > 0,

b2

a4
−

b3

a5
> 0. (6.20)

Feasibility condition:
c−4 < −tb2 − d2 − c−3 + c+

1 < c+
4 ,

c−5 < −tb3 − d3 + c−3 + c+
2 < c+

5 .
(6.21)

Convergence time:

t ≥ max
{√

a4a5(a4a5 + a3(a4 + a5)))
a3(a5b2 − a4b3)2 ,

√
a1(a1 + a4)

a1(b2 + a4l1)2 ,

√
a5(a2 + a5)

a2(b3 + a5l1)2

}
‖A−1c+ − A−1c−‖A. (6.22)

A statement about convergence of the stress vector and about the terminal distribution of plastic
deformations given by I0 comes in direct analogy with the statement of Proposition 6.3.

6.4. Comparison of the cases considered

While the admissibility and irreducibility condition (6.6) for the case I0 = {(+, 2), (+, 3), (+, 4)}
does hold when the stress-controlled loading is absent, this no longer the case for the cases I0 =

{(+, 2), (−, 3), (+, 4)} and I0 = {(+, 1), (+, 2), (−, 3)} meaning that the latter two cases are possible
only when stress-controlled loading is forcing the model of Figure 1. However, the requirements
for the stress-controlled loading in cases I0 = {(+, 2), (−, 3), (+, 4)} and I0 = {(+, 1), (+, 2), (−, 3)} are
qualitatively opposite. Indeed, we can see that arbitrary small amount of stress-controlled loading is
sufficient to realize the case of I0 = {(+, 1), (+, 2), (−, 3)}. In this case, the role of stress-controlled
loading is to make admissible and reducible I0 = {(+, 1), (+, 2), (−, 3)} irreducible (because in the
absence of the stress-controlled loading I0 = {(+, 1), (+, 2), (−, 3)} reduces to I0 = {(+, 1), (+, 2)}). The
case of I0 = {(+, 2), (−, 3), (+, 4)}, in contrast, requires a significant amount of stress-controlled loading
to make I0 admissible (see e.g., the second inequality of (6.17) saying that stress-controlled loading
should surpass the displacement-controlled loading). The elastic limits of the remaining springs 1
and 5 should be large enough to accommodate such a large stress-controlled loading, see feasibility
condition (6.18).

6.5. Remaining cases of |I0| = 3

We recall the reader that in the case where the model of Figure 1 is forced by just displacement-
controlled loading, all admissible irreducible I0 are [11] I0 = {(+, 1), (+, 2)}, I0 = {(+, 4), (+, 5)}, I0 =

{(+, 1), (−, 3), (+, 5)}, I0 = {(+, 2), (+, 3), (+, 4)}, see formulas (5.4) and (5.5) for the definitions of
admissibility and irreducibility. Addition of stress-controlled loading enlarges this list substantially
even in this case of |I0| = 3 that this work sticks to. Indeed, the only |I0| = 3 that are singular
(Definition 4.1) are

I0 = {(±, 1), (±, 3), (±, 4)},
I0 = {(±, 2), (±, 3), (±, 5)},

with all possible combinations of pluses and minuses. And, additionally,

I0 = {(+, 1), (−, 2), (+, 3)},
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225

I0 = {(−, 1), (+, 2), (−, 3)},
I0 = {(+, 3), (−, 4), (+, 5)},
I0 = {(−, 3), (+, 4), (−, 5)}

are not admissible, i.e., do not satisfy (5.4).

7. Conclusions

We developed an algorithm to determine finite-time convergence of sweeping processes with
moving and shape changing polytope to a vertex of the polytope. The earlier results either considered
special shapes of polytopes (parallelepipedal) or didn’t allow change of shape. As an application
we were able to understand the influence of stress-controlled loading on asymptotic (finite-time)
elastoplastic behavior of lattice spring model. In particular, we discovered that addition of a small
stress-controlled loading can reduce the dimension of attractor that is present in the system otherwise
(i.e., add more plastically deforming springs to the springs that deform plastically already), while
addition of a larger stress-controlled loading can create such combinations of plastically deforming
springs I0 that none of I ⊂ I0 constitute an eligible (i.e., admissible and irreducible) set of plastically
deforming springs in the absence of stress-controlled loading.
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Appendix

Proof of Theorem 2.1. This proof follows the proof of [11, Theorem 3.1] with C replaced by C(t)−c(t).
Let y(t) be an arbitrary solution of (1.4). For the function x(t) given by (1.10) consider

v(t) = V(x(t)).

Note, that x(t) is differentiable almost everywhere on [0,∞) because c(t) is Lipschitz continuous. Let
us fix some t ≥ 0 such that x(t) is differentiable at t. Without loss of generality we can assume that
t ≥ 0 is chosen also so that V(x(t)) is differentiable at t. Then

v′(t) = 2 〈x′(t), A(x(t) − y∗)〉 . (A.1)

By the definition of normal cone, (2.6) implies

〈−ẋ(t) − ċ(t), A(ξ − x(t))〉 ≤ 0, for any ξ ∈ C(t) − c(t).

Therefore, taking ξ = y∗ we conclude from (A.1) that

v′(t) ≤ 2 〈−c′(t), A (x(t) − y∗)〉 . (A.2)

Now we use assumption (1.9), which is equivalent to

−c′(t) + ε
ζ

‖ζ‖A
∈ NA

C(t)−c(t)(y∗), for any ζ ∈ V,

or, using the definition of the normal cone,〈
−c′(t) + ε

ζ

‖ζ‖A
, A(ξ − y∗)

〉
≤ 0, for any ζ ∈ Rm, ξ ∈ C(t) − c(t).

Therefore, letting ξ = x(t) and ζ = x(t) − y∗, we get〈
−c′(t) + ε

x(t) − y∗
‖x(t) − y∗‖A

, A (x(t) − y∗)
〉
≤ 0,

which allows to further rewrite inequality (A.2) as

v′(t) ≤ −2ε
〈

x(t) − y∗
‖x(t) − y∗‖A

, A(x(t) − y∗)
〉

= −2ε
√

v(t).

Therefore, the Lyapunov function (2.5) satisfies estimate (1.1). The proof is complete. �
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