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Abstract: According to Moreau (C.ILM.E. 1973), plastically deforming springs of lattice spring
systems with a time-dependent displacement-controlled loading correspond to the attractor of a
differential inclusion with a moving constraint of the form C(¢) = C + c(f), where C is a polytope and
c(t) is a time-dependent vector. Finite-time stability of differential inclusions of this type is established
in Gudoshnikov et al. [SIAM J. Control Optim. 60 (2022)]. The work by Moreau also implies that
accounting for a stress-controlled loading no longer allows to split C(¢) as C + ¢(¢). In the present paper
we show that if we are interested in attractivity of a particular vertex of C(¢), then C(#) can again be
viewed as C + c(¢) for a specially constructed c(#) (which depends on the vertex of interest), so that the
technique of Gudoshnikov et al. can be used to obtain a criterion for finite-time stability of the vertex.
The criterion obtained is illustrated with a benchmark example where we discover a drastic increase
of diversity of possible combinations of plastically deforming springs when stress-controlled loading
is introduced on top of displacement-controlled loading compared to the case where displacement-
controlled loading is the only forcing.

Keywords: sweeping process; finite-time stability; time-dependent constraint; Lyapunov function;
elastoplastic lattice spring model

1. Introduction

Finite-time stability in differential equations with nonsmooth right-hand-sides is addressed in
Bernuau et al. [4], Bhat-Bernstein [5], Oza et al. [16], Sanchez et al. [19] over the Lyapunov function
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V that solves

%[V(x(t))] +2e4/V(x(#)) <0, a.e.on [0, ), (1.1)

where € > 0 and x is a solution. Adly et al. [1] extended the Lyapunov function approach to
differential inclusions with a subdifferential of a convex function ® : R — R” (given by a cone,
see Rockafellar [18])

— X(t) = Vf(x(1)) € 0D(x(1)), (1.2)

and derived an inequality of form (1.1) (and corresponding finite-time stability) from a cone-type
condition
— Vf(x(t)) + B,(0) c 99(0), a.e. on [0, ), (1.3)

where B,(0) is the ball of R” of radius & centered at 0.

More recently, a significant interest in the study of finite-time stability of differential inclusions has
been due to new applications in elastoplasticity (see e.g., Gudoshnikov et al. [8]). We remind the reader
that according to the pioneering work by Moreau [15] (see also Gudoshnikov and Makarenkov [9]),
the stresses in a network of m elastoplastic springs with time-varying displacement-controlled loadings
are governed by

V is a d — dimensional subspace of R™

with the scalar product (x, y)4 = (x, Ay), 14

-y €N, yEV,

where A is a positive diagonal m X m-matrix, and Né(t)(y) 1s a normal cone to the set

=1 ! , ’ L(a, j,g,h) = {y eV: <cxej,Ay +Ag> < acf + aajh} ,

at a point y, with appropriate d, ¢}, ¢j, g(#), h(7) that define mechanical parameters of the network of
elastoplastic springs, displacement-controlled loadings and stress-controlled loadings (to be discussed
in Section 4 in details), and where e; € R™ is the vector with 1 in the j-th component and zeros
elsewhere. The solutions y(¢) of differential inclusion (1.4) never escape from C(¢) (i.e., y(¢) is swept
by C(¢)) for which reason (1.4) is called sweeping process. Spring j undergoes plastic deformation
when the inequality c; < <e i Ay(t) — Ah(1) + Ag(t)> < c;T is violated. Therefore, knowledge of the
evolution of y(#) allows to make conclusions about the regions of plastic deformation (that lead to
low-cycle fatigue or incremental failure, see Yu [20, §4.6]).

Krejci [13] proved that if C(¢) is T-periodic then any solution y(¢) of (1.4) always converges to a
T-periodic solution. Colombo et al. [7] proved the existence of the attractor in the case when C()
is a parallelepiped (of potentially changing dimensions). Extending their earlier two-dimensional
version [8], Gudoshnikov et al. [11] offered a rule to compute the T-periodic attractor of (1.4) in the
case where A(t) = 0, i.e., when just displacement-controlled loading is present (meaning that the shape
of the moving polytop doesn’t change). Details of geometry of the attractor of (1.4) are addressed in
Gudoshnikov et al. [12]. The goal of the present work is to investigate finite-time convergence of (1.4)
in the case of displacement-controlled loading and stress-controlled loading present simultaneously.

As also mentioned in Gudoshnikov et al. [11], predicting the behavior of solutions of sweeping
process (1.4) within a guaranteed time is of crucial importance for materials science. Current
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methods of computing the asymptotic response of networks of elastoplastic springs (see e.g., Boudy
et al. [6], Zouain-SantAnna [21]) run the numeric routine until the difference between the responses
corresponding to two successive cycles of loading get smaller than a prescribed tolerance (without any
estimate as for how soon such a desired accuracy will be reached).

The approach of the present paper is a suitable generalization of Gudoshnikov et al. [11] (pioneered
by Adly et al. [1]). Specifically, let y.(#) be a vertex of C(¢). We prove that if y.(#) can be expressed as

Y«() =y« +c(0), (1.6)
b = [ L@, (1.7)
(@, ))ely
L(a, J) = {y evV: <ej,Ay> = c‘]’} ,

where
f(a/, /), (a, j) € I, are independent :  lo| = dimV, (1.8)

and if
— (1) + B2 € N2y 000, a.a.t€[0,74], (1.9)

where B2(0) is a ball in the norm induced by the scalar product (1.4), then, for any solution y(¢) of (1.4),
the function

x(t) = y(t) — (1) (1.10)
satisfies the estimate (1.1) on [0, 7,] for a suitable Lyapunov function V that measures the distance

from x(#) to y.. In the earlier work [11], the difference C(¢) — ¢(¢) is independent of ¢ due to the lack of
the stress-controlled loading. Accordingly, [11] assumes

— (1) + BX(0) N NA(y) C NA(F) (1.11)

instead of (1.9), where F is however allowed to be a face, not just a vertex of C. The complication
we encounter when adding a stress-controlled loading is that C(¢) — c(¢) is no longer constant, but we
discover that, for applications to lattice spring models, y.(f) — c(¢) can still be assumed to be constant
thanks to an appropriate construction of ¢(¢) (Lemma 4.2), which is the main result of the paper.

The paper is organized as follows: In Section 2, we adjust the proof of [11, Theorem 3.1] for the
case where assumption (1.11) is replaced by (1.9). The corresponding theorem (Theorem 2.1) provides
an estimate for the time it takes for any solution of (1.4) to reach y.(#). A corollary of Theorem 2.1 for
the case where c(¢) is T-periodic is given in Section 3. Section 4 links the entries of Theorem 2.1 to
parameters of a lattice spring model, which allows to specify the structure of C(¢) and c(¢) and to prove
the main result of the paper (Lemma 4.2) about the existence of representation (1.6)-(1.7) for the case
where sweeping process (1.4) comes as a model of an elastoplastic lattice spring model (as introduced
in Moreau [15] and adapted to lattice spring models in Gudoshnikov et al. [9]). Section 5 combines
Sections 2 and 4 in order to provide a step-by-step guide for computation of the entries of Theorem 2.1
in terms of mechanical parameters of elastoplastic lattice spring models. Section 6 follows the guide
of Section 5 in order to investigate several instructional cases of a benchmark model of 5 springs
on 4 nodes (Rachinskiy [17], Gudoshnikov et al. [11]) that allows us to clarify (Section 6.4) the role
of the stress-controlled loading in the diversity of possible attractors of sweeping process (1.4) and,
accordingly, in the diversity of different destributions of plastic deformations in elastoplastic lattice
spring models. Conclusions section concludes the paper.
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2. A sufficient condition for finite-time stability of sweeping process with a moving constraint of
changing shape

We remind the reader that the normal cone N2 (y) to the set C at a point y € C in a scalar product
space V with the scalar product

(x,y)a = (x,Ay), where A is a diagonal positive m X m—matrix, 2.1
is defined as (see Bauschke and Combettes [3, §6.4])

NAG) = {xeV:i(x,A(¢-y)) <0, forany £ € C}, ifyeC,
c 0, ifyeC.

In what follows (see Bauschke and Combettes [3, §3.2])

Ix* = Vix, Ax). (2.2)

Definition 2.1. (see e.g., [14]) A set-valued function C(t) (acting from R to a vector space V C R") is
called Lipschitz continuous, if, for any T > 0, there exists L > 0 such that

dy(C(@®),C(s)) < Llt—sl|, t,s€[0,T],

where dy(C, C,) is Hausdorff distance between closed bounded sets C1,C, € R™.

We remind the reader that solution of an initial-value problem for sweeping processes (1.4) with
Lipschitz continuous moving constraint C(f) exists, unique and features continuous dependence on
initial conditions (see e.g., Kunze and Monteiro Marques [14, Theorems 1-3]).

The statement of the following theorem and its proof follow the corresponding statement and proof
of [11, Theorem 3.1], but we still rewrite the proof for completeness because [11, Theorem 3.1] uses
condition (1.9) with C(¢) — c(¢) replaced by C, i.e., C(t) — c(¢) is assumed totally constant in [11]. It
turns out that replacing C by C(¢) — c(¢) requires almost no changes in the proof.

Theorem 2.1. Let V be a d-dimensional linear subspace of R with scalar product (2.1), t — C(t) be a
Lipschitz continuous multi-valued function with closed convex values, and c : [0, 00) — V be Lipschitz
continuous, and

v« € C() —c(t), te][0,00). (2.3)

Assume that there exists an € > 0 such that condition (1.9) holds on an interval [0, T,] with

1
A
Tg>—-  sup |y =" (2.4)
€ veC()-c@), 120

Then, every solution y of (1.4) with the initial condition y(0) € C(0) satisfies y(t;) = y. + c(7y).

The proof of Theorem 2.1 follows the lines of [11]. The idea is based on observing that

V) = (v =3 = (v = 3, AW = ) (2.5)
is a Lyapunov function for the sweeping process
= X' (1) = (1) € Nfgyon(X(1)), (2.6)
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which is related to (1.4) through the change of the variables (1.10). Accordingly, V(x(t;)) = 0 will
imply y(¢;) = y. + c(t;). For completeness, the proof of Theorem 2.1 is included in Appendix.

The supremum in (2.4) of Theorem 2.1 can be estimated using the following proposition (which
extends [9, Proposition 3.14]).

Proposition 2.1. For any y € C(t) — c(t), it holds that
sup |y —vII* <A et — AT 2.7

veC(t)—c(t), 120

Proof. We have
A
sup  [ly—vI[" < sup [lvi = vall
veC(t)—c(t), =0 vivaeC(t)—c(1), t=0

= sup oty — uo|
up,upeC(t), =0

= sup luy —woll < sup  luy — uo|
up,upell()NV, >0 uy,u€ll(t), t=0

= sup ey — us|| = max |1 — usall,
u1 €A1 C+h(t)—g(t), 20 uy,ur€ATIC

which can be estimated from above by [|[A~!¢* — A~!¢7||* according to [9, Proposition 3.14]. The proof
of the proposition is complete. O

3. The existence of a globally one-period stable periodic attractor

Corollary 3.1. If, in the settings of Theorem 2.1, we additionally have that c(t) is T-periodic with
T > 1y, then y, is a globally one-period stable T-periodic solution of (1.4).

Corollary 3.1 follows by observing that
Vi(Tg+T) =y +c(tg+T) =y, + c(tg) = y.(70).

4. Application to a general elastoplastic system with displacement-controlled loading and
stress-controlled loading present simultaneously

We remind the reader that according to Moreau [15] a network of m elastoplastic springs on n nodes
with 1 displacement-controlled loading and subjected to a stress-controlled loading at all nodes is fully
defined by an m X n kinematic matrix D of the topology of the network, m X m matrix of stiffnesses
(Hooke’s coefficients) A = diag(ay, ..., a,,), an m-dimensional hyperrectangle C = H?’:l [cj‘., cj+.] of the
achievable stresses of springs (beyond which plastic deformation begins), a vector R € R™ of the
location of the displacement-controlled loading, a scalar function /(¢) that defines the magnitude of the
displacement-controlled loading, and a function A(¢) € R™ such that

f(t) = =D"h(t) e R" 4.1)

defines the forces applied at the n nodes of the network. When all springs are connected (form a
connected graph), we have (see Bapat [2, Lemma 2.2])

rankD =n — 1. 4.2)
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We furthermore assume that
m>n and rank(D'R) = 1. 4.3)

To formulate the Moreau sweeping process corresponding to the elastoplastic system
(D,A,C,R, (1), f(1)), we first follow the 3 steps described in Gudoshnikov and Makarenkov [10, §5]:

(1) Find an n X (n —2)—matrix M of rank(DM) = n—2 that solves R” DM = 0 and use M to introduce
Upasis = DM.
(2) Find a matrix Vj,;; of m —n + 2 linearly independent column vectors of R™ that solves

(Ubasis)TAVbasis =0. (44)
(3) Find an m X (m — n + 1)—matrix D* that solves (D*)” D = 0(,_n+1)x, and such that
rank(D*) =m—n + 1. 4.5)

With the new matrices introduced, the moving constraint C(f) of sweeping process (1.4)
corresponding to the elastoplastic system (D, A, C, R, [(t), f(1)) is given by

C@t) = ﬂ {yeV:ic+amt) < (e Ay + AViug, LI1)) < cf + aihi(1)}, (4.6)
j=1

where, for each j € 1,m,

L=w"! ! W= R Vipasi 4.7)
B Om—n+l ’ B (DL)T basts ’
with e; being the basis vectors of R”, i.e., ¢; = (0, ...,0, 1,0, ..., 0)7, and where h(t) is found from A(f)
N——

-1
according to a formula given by the following proposition ( [11] focused on A(#) = 0 and didn’t derive

explicit formula for /). The existence of W~! is proved in Gudoshnikov et al. [11].

Lemma 4.1. If the stress-controlled loading f(t) verifies the representation (4.1), then the
corresponding function h(t) in (4.6) is given by

1 _
h(t) = Ubasis ((Ubasis)TA Ubasis) (Ubasis)Th(t)’

or, equivalently,
-1
h(t) = _Ubasis ((Ubasis)TAUbasis) MTf(t) (48)
In particular, the (n — 2) X (n — 2)-matrix (Upgsis)T AUpysis is invertible.

Proof. First of all, we observe that the (n — 2) X (n — 2) matrix (Upgusis)? AUpqsis is invertible. Indeed,
if (Upgsis)TAUpasisx = 0, then (Upgsis X)TA(Upasis X) = 0. But since the stiffness matrix A is
positive definite, then Uy, x = 0. This means that Ker(Upgis) = Ker((Upasis)T AUpqsis) and hence,
Rank(Ubusis) = Rank((Ubasis)TAUbasis) =n-2.
According to [9, formula (16)],
h(t) = PyA~'h(¢), (4.9)
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where Py is a linear (orthogonal in sense of scalar product (2.1)) projection map on U along V. To
compute Py we decompose x as
X = Upusistt + ViasisVs (4.10)

and compute u € RY™Y from (4.10). Applying (Upusis)' A to both sides of (4.10), using (4.4), and
solving for u, we get

-1
u= ((Ubasis)TKUbasis) (Ubasis)TAxa
which implies
-1
Py = Upysis ((Ubasis)TKUbasis) (Ubasis)TAx~ (41 1)

The statement of the proposition is obtained by substituting (4.11) to (4.9). The proof of the proposition
is complete. o

Using Lemma 4.1 and [9, Theorem 3.1], the solution y(#) of sweeping process (1.4) is related to the
vector s(f) = (s1(f), ..., s,u(t))T of the stresses of springs via

_ -1
}’(l) = A_l S(t) - VbasisLl(t) - Ubasis ((Ubasis)TAUbasis) MTf(t)’ (412)

provided that f(¢) admits representation (4.1) or, equivalently (see [9, Remark 3.5]),
fil) +...+ f,(t) =0, t>0. (4.13)

In contrast with Gudoshnikov et al. [11], the function c(¢), that we need to verify condition (1.9) for,
depends on the choice of the vertex y., i.e., on the choice of [ in (1.7).

Definition 4.1. A set of indices Iy C {—1, 1} x 1, m with |Iy| = d will be called non-singular, if the matrix

(le. (@) € L))" AV (4.14)
is invertible.

Remark 4.1. [11, formula (7.9)] If Iy C {1, 1} x T, m with |lo| = d is non-singular then () L(a, j)
(a5j)610
is a singleton and y. in (1.7) is well defined.

Lemma 4.2. Let Iy C {—1, 1} X 1, m be non-singular and let y, be given by (1.7). Then, y.(t) given by
(1.6) belongs to C(t), if c(t) is defined by

c(t) = —Viasis L) + ViasisAr h(0), (4.15)
A, = Z7'L, (4.16)
Z = (lej: @))€ ) AV, 4.17)
L = (fe: (@) el)) A (4.18)
and if the feasibility condition
¢j +a;hi(0) < (e}, Ay, + AViusis A h(®)) < ¢ + ashy(), (@, j) ¢ Io, 120, (4.19)

holds.

Mathematics in Engineering Volume 7, Issue 3, 208-227.



215

Remark 4.2. Equation (4.16) is equivalent to

a;h(t) = (e AVpasisAph(0) . (. j) € Iy, (4.20)
Proof of Lemma 4.2. Introduce
C) = Co()+Ci(),
Co) = () freVieh+ahio = (e, Ay + AViusLID))
(@, )€l
Ci(t) = ﬂ {yev:c+aho < (e Ay + AViugi LI < ¢ +a;h;(n)}.
(a,))¢lo
Since C.(t) C C(¢), the problem of finding y.(#) with (1.6)-(1.7) reduces to finding y.(7) that satisfies
{v.(0)} = Cop), t>0, 4.21)
v.(t) < Ci(p), t>0. (4.22)
By (4.20), Cy(?) can be rewritten in the form
CO(I) = ﬂ {y evV: C? = <€j’Ay + Avbasisl_*l(t) - AVbasisAloh(t)>}' (423)
(@, )€l

To solve (4.20) we rewrite (4.20) as
L(t) = ZA, h(1).

Observe thatif y € {y € V : F(y + k) = 0} for some k € V, then letting x = y + k, we have x € V and
F(x) = 0, meaning that y can be representedasy = x—ke{xe V: F(x) =0} — k.
Therefore, with formula (4.23), the expression for Cy(#) can be written as

Co(0) = Co + c(0),

where
Coy= (| yeV:c)=(e,Ap)
(@))€l
and where c(¢) is given by (4.15). Therefore, Cy(¢) is a singleton given by

Co(®) = {y.(D)},

where y.(?) is defined by (1.6)-(1.7), i.e., (4.21) is established.
The inclusion (4.22) follows from (4.19). The proof of the lemma is complete. O

To understand what the conclusion
(@) = y. + (1), t> 1y, (4.24)

of Theorem 2.1 says about the dynamics of the elastoplastic system (D, A, C, R, [(¢), f(¢)), recall that
by [9, Theorem 3.1 and §3.2],

)’(f) = A_ls(t) + h(t) - VbasiSZl(t),
or, by combining with (4.24) and (4.15),

Vs + VbasisAloh(t) = A_ls*(t) + h(t),
i.e.,

S*(t) = Ay* + (VbasisAIo - I)]’l(t), t= Tq. (425)
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5. A step-by-step guide for analytic computations

The following lemma from Rockafellar-Wets [18, Theorem 6.46] (see also [11, Lemma 5.1]) gives
a computational recipe to check condition (1.9). Recall that cone{é, ..., £k} stays for the cone formed

by vectors &1, ..., ék.

Lemma 5.1. Let V be a d-dimensional linear subspace of R™ with scalar product (2.1). Consider

C=[ |yeV:n,Ay) <c,

K
k=1

wheren, €V, ¢, € R, K € N, Ifl~(y) = {k € 1,K: (m,Ay) = ck}, then
Ng(y) = cone {ﬁk ke T(y)}.
Corollary 5.1. If y.(t) € C(¢) satisfies (1.6)-(1.7) for suitable c(t) and y., then
N y—en(+) = cone {a/n ji(a, e IO},
wheren; €V, j€ 1,dim V are the vectors that solve the equality

(epy)=(npy),  yev.

Proof. First note that
Né(t),c(,)(y*) = Né(t)(Y* + c(1)).

To apply Lemma 5.1, we rewrite (4.6) as follows:

m

C =y eV:(-njAy+ AViu Lit)) < —c; = aihi()}
" ulyev: <n Ay + Avbw-SU(t)) < ¢t + ah(b).
Therefore, we want to compute /(y, + c(¢)) given by
Iy, + () = {(@. j) € (=1, 1} x Tm : {anj, Ay, + AVpasisArh(®)) = eccl}.
By successively using (4.19), (4.20), and (1.7) the above equality rewrites as
Iy, + () = {(@. j) € Io : {an;, Ay, + AViaisArh(D)) = ac§]
= {(a, Nel: <0m.,-,Ay*> = ac?} = {(a, Nely: <n‘,~,Ay*> = c‘;} = Iy,

which provides the required statetment. The proof of the Corollary is complete.

Using (5.2), condition (1.9) can be rewritten as

— c/(t) + BX(0) C cone {an; : (@, j) € Io}.

S.1)

(5.2)

(5.3)
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Therefore, when ¢’(¢) is T-periodic, the required € > 0 exists, if

Iy admissibility condition: ~ —c'(¢) € cone{an; : (e, j) € L}, t€[0,T], (5.4)

Iy irreducibility condition: —c'(t) ¢ 1b (cone {an i, )) € Io}) , te][0,T],

where rb(B) denotes the relative boundary of a set B of a linear subspace V C R™. The irreducibility
condition can be further rewritten as

Iy irreducibility condition: Iy is not admissible for any Iy c I, Iy # Io. (5.5
In other words, (5.5) says that I, is irreducible, if any I, c I, with I, # I, makes
—c'(t) ¢ cone {cmj () € fo}, for at least one t € [0, T'].

According to [10, formula (27)], n; can be taken as

_ o R
n; = VbasisW ((DJ_)T)ej (56)

and substitution of (5.2), (4.7), and (4.15) to (5.4) gives

=c'(1)
' T (5.7)
Viasis W™ ( O,i(f,)ﬂ ) = ViasisArh' (1) € cone (VbusisW_l ( (DIi)T ){(Zej (@, )) € Io}) )
or
’ T
( Ofnfil )— WAL, K (1) € cone (( (zfl)T ){aej (. ) € 10}), (5.8)

Based on Lemma 4.2 and formula (5.8) we can now split verification of conditions of Theorem 2.1
into the following steps.

Step 1. Fix appropriate indexes [ (springs that will reach plastic deformation). Spot a non-singular
I, that is admissible and irreducible (i.e., solves (5.8) and such that I, doesn’t satisfy (5.8) for any
Iy C Iy, Iy # Ip).

Combination of Theorem 2.1 and Lemma 4.2 lead to the following qualitative description of
the asymptotic behavior of elastoplastic system (D, A, C, R, (1), f(t)) and of the associated sweeping
process (1.4). Here the quantities y., c(-), Iy, A, h(-) are those referred to in the statement of
Lemma 4.2.

Proposition 5.1. (Conclusion of Step 1). If

1) both I'(t) and f'(t) are constant,
2) f(¢) satisfies the static balance condition (4.13),
3) there exists a non-singular and irreducible I, satisfying (5.8),
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then there exist ct (a, j) ¢ Iy, such that the solution y of sweeping process (1.4) with initial condition
y(0) € C(0) satisfies

Y(Ta) = yu + c(Ta), (5.9
for an appropriate T, > 0, and the stress vector s(t) of the elastoplastic system (D, A, C,R, (1), f(t))
satisfies

S(Td) Ay* + (VbasisAlo - I)h(Td), (510)
si(ta) = cf, (a, j) € Ip. (5.11)

Indeed, conditions of Proposition 5.1 imply that condition (1.9) of Theorem 2.1 is satisfied on [0, 74],

where !
A
Tg=—"+ sup ||y* — V|| (512)
€ veC()—c(t), >0

with suitable £ > 0, which gives 7, used in the statement. Relation (5.11) follows from (5.10) by
Remark 4.2.

Remark 5.1. Relation (5.11) means that springs with indices Iy get to plastic mode (i.e., capable to
deform plastically) by the time t,.

One has to proceed to Steps 2 and 3 to come up with an explicit version of Proposition 5.1 where
conditions for ¢ and formulas for & and 7, are given in closed form.

Step 2. Compute y, and impose the feasibility condition. By [11, formula (7.9)] the formula for y,
of (1.7) reads as

v = Vi ([e @ € 1) AVi) ({eh 0y € 1)) (5.13)

Substitution of y., Ay, h(t) as defined by (5.13), (4.16), (4.8) to (4.19) yields feasibility condition in
terms of mechanical parameters of the lattice-spring model.
Note, function f(#) must additionally satisty (4.13) for formula (4.8) to be valid.

Step 3. Compute &,. This step is devoted to finding £ for which assumption (5.3) holds.
Assumption (5.3) requires computation of the distance from —c’(¢) to the boundary of cone cone{an; :
(@, j) € Iy}. The required boundary is dcone {an ji(a, )€ Io}.

Using formula (5.2), we compute

go(7) = dist” (—c’(t),acone {anj “(a, j) € IO})
= min_dist" (~c'(¢), cone {an; : (e, j) € Io\{(a. j.)}}). (5.14)

(@, j )€y

According to [11, formula (7.18)] and [11, Lemma 7.7], the quantity
£o(f) = dist” (—c’(t),acone {a/nj (a, j) € Io})

computes as (see [11, formula (7.20)])

|~'(t) = proj” (~¢'(1, span {an; : (@, j) € Ih\(a, j*)}})HA, (5.15)

&o(H) = min
(‘1*7j*)€10
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where
proj* (=c’(#), span {an; : (. j) € D\{(@.. j)}})
= —({n;, (@, ) € I\{(a, j)Io
o|(in. (@, j) € D\(@.. jONTAlin;, (@, j) € D\(@.. j)})]
o({nj, (@, j) € I\{(a., jJONTAC(2).
Choose & > 0 such that &y < &y(t) for all t € [0, 7,]. Theorem 2.1, Proposition 2.1, and Lemma 4.2
then lead to the following conclusion.

-1 (5.16)

Proposition 5.2. (Conclusion of Steps 1-3). If assumptions 1)-3) of Proposition 5.1 hold, then
condition (1.9) holds on [0, t,] for any T, > T, where

1
r=— A7 ¢t = A7)
0]

If, additionally,
4) condition (4.19) holds on some [0, 7] with Ty > T,

then conclusions (5.9)—(5.11) of Proposition 5.1 hold with T, replaced by t, t € [T, T4].
6. A benchmark example

The focus of the present section is on the elastoplastic model shown in Figure 1 (earlier introduced
in Rachinskiy [17]), which allows to fully illustrate the practical implementation of Theorem 2.1.

fi(t) 2 fa(t) fa(t)
1 % , ,,§:i®,j3 ;53 éfzt

®
f, (t) 4/\/\2\/\,_!?—

)

< >

Figure 1. A system of 5 elastoplastic springs on 4 nodes with displacement-controlled
loading I(f) and stress-controlled loading f(f) = (fi(?), f2(2), f5(2), f4(t))T. Circled numbers
are indices of nodes and regular numbers are indices or springs.

According to Gudoshnikov et al. [11], the elastoplastic system of Figure 1 leads to the following
expressions for D and R

-1 1 0 0 1
-1 0 1 0 0
D=1 0 -1 1 0], R=|1
0 -1 0 1 0
0 0 -11 1

We now follow Gudoshnikov et al. [11] to formulate the quantities used in Section 5.
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First of all, based on [10, formula (17)], we compute the dimension of sweeping process (1.4) as
dmV=m-n+g+1=5-4+1+1=3.

According to [10, §5, Step 1], we then look for an 4 x 2 matrix M such that Rf DM = 0 and such that
the matrix DM is full rank. Such a matrix M can be taken as

0 0 11
U 1 -1
M=, with DM =| 0 -2 |= Upes
-1 -1
0 0 o

The next step is determining Vs which consists of d = 3 linearly independent columns of R” = R
and solves (DM)" AV,,sis = 0. Such a V,,;, can be takes as

0 1/ap 1/a 0 1 1
0 1/(12 —1/(12 0 1 -1
Vbasis = 1/(13 0 1/613 with AVbasis = 1 0 1
—1/as 1/ay4 0 -1 1 O
1/615 1/615 0 1 1 0
Finally, a 5 x 2 full rank matrix D* satisfying (D) D = 0 can be taken as
0 1
0 -1 RT I 01 0 1
D=1 1 leading to ( (DY ): 0O 0 1 -1 1. (6.1)
-1 0 1 -1 1 0 O
1 0

Formula (5.6) then yields

ny = (ax(as + ag) + asas + az(as + as), —aas, ai(az + as), a\(ax + as + as), aya3)" [k,

Ny = (—apas, asas + ay(as + as) + as(as + as), —ax(a) + as), axas, ax(a, + az + as))’ /k,

ns = (as(as + as), —as(ay + as), (ay + as)(az + as), —asz(as + as), as(a, + as))" /k, (6.2)
ny = (as(a + az + as), azas, —as(az + as), as(az + as) + ay(az + asz + as), —azay)" [k,

ns = (asas, (a) + as + ag)as, (a) + as)as, —azas, ai(az + az) + azas + ar(az + ag))’ [k

with
k = azas + ar(as + as) + azas + azas + a;(a, + as + as). (6.3)

In what follows, we consider

bit+d,;

4 4
_ byt + d, _ o _
fO= 2l Dibi= ) di=0 I =lo+ b, (6.4)

bat + dy
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where l(), l] > 0, b] , bz, b3, b4, d], dz, d3, d4 € R, which leads to

—(ay(thy + dy) + as(tb, + dy) + as(tby + ths + dy + d3))
—((ay + a4)(tbs + d3) + a;(tb, + ths + dy + d3))
h(t) = % ar(thy + do) + as(thy + d») — (a; + ag)(th; + d3)
ar(thy + dy) + as(thy + dy) + as(thy + ths + d, + d3)
(ay + ay)(tbs + d3) + as(tb, + ths + d> + d3)

with k given by (6.3).
We now illustrate computations of Steps 1-3 of Section 5 and statements of Propositions 5.1 and 5.2
through three instructive cases of I.

6.1. Case Iy ={(+,2),(+,3),(+,4)}

This case was addressed in [11] without stress-controlled loading.
Step 1. Computation of matrix A, gives
01 -1y (01000 (0 @ a5 -a 0
A,=]1 1 0 1 oOOlOOA:§0a2a3a4O. (6.5)
-1 1 0 010 0 —dp; dads ay 0
Substituting to (5.8) gives

ll_}2+b_3

ar  as 0 1 0
b—s € cone 0 |, A =1 Y. (6.6)
n -1 0

ai

—

The vector in the left-hand-side won’t belong to the boundary of the right-hand-side (i.e., I, will be
admissible and irreducible), if
bs b, b b,

I +— >0, L-——+—>0, L ——>0. (6.7)
as ap as ap

Remark 6.1. Conditions (6.7) can be viewed as a condition for l| to be sufficiently large or as a
condition for |b,| + |bs| to be sufficiently small.

Proposition 6.1. (Conclusion of Step 1). Assume that stress-controlled loading f(t) and
displacement-controlled loading [(t) of elastoplastic system of Figure I are given by (6.4) and satisfy
(6.7). Then c‘}, (a, j) ¢ Iy, can be amended in such a way that the stress vector s(t) of the elastoplastic
system (D, A, C,R, [(t), f(1)) satisfies

Ay* + (VhasisAIo - I)h(Td)’ (68)

a

cf, (a, j) € L. (6.9)

s(tq)

si(ta)
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Step 2. Formula (5.13) yields
Ayl() = C% (610)

and substitution to (4.19) returns

+ + +
c) <tbhy+dy+cj+c; <cj,

c5 <—thy—ds+c; +c; <ci. 61D
Step 3. Since || = 3, for any (a.,j.) € Iy, the set I)\{(a., j.)} consists of two elements
{(a1, j1), (@2, j2)}, and formulas (5.15) and (5.16) can be rewritten as
1) = i S, 6.12
&o(?) (al,jlg(ltizr}jz)do S ( )
’ . ’ A
where §;;, = ||—c (1) — proj(—c’(v), span{njl,njz})H ,
. , nLAn; nlAn; - nt ,
and  proj*(=c'(¢), span{n;,n;,}) = - (njl njz)( anlAnjj nJTlAnz ) ( nJTl )Ac (2).
2 J2 J2
Substituting n; and ¢’(¢) given by (6.2) and (5.7) to (6.12), we get
go = min{S 13, 534, S 24}, (6.13)

as(=lLay + by)? ar(lias + by)?
S»n= , Sy = ———,
ai(a; + as) as(a, + as)

S = as(a\bs + as(=by + a;l))?
2% = :
ayas(azas + a,(az + as))

Proposition 6.2. (Conclusion of Steps 1-3). Assume that assumptions of Proposition 6.1 hold. Let &,
be given by (6.13) and assume that

1
time T=—-|JA"\c¢t —A7\cT|? satisfies (6.11). (6.14)
€0

Then the stress vector s(t) of the elastoplastic system (D, A, C, R, [(t), f(t)) satisfies

s(1) Ay, + (ViasisAg, — Dh(1), (6.15)
si(t) = f, (@, j) € Iy, (6.16)

for all t > 7 that satisfy (6.11).

Remark 6.2. When b, = d, = b3 = d3 = 0 (e.g., in the absence of the stress-controlled loading),
condition (6.11) is the standard feasibility condition of vertex y. ([11, formula (8.5)]). Therefore,
condition (6.11) can be viewed as a condition for the stress-controlled loading to not be too big.
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6.2. Case Iy = {(+,2),(-,3),(+,4)}

Formula (6.5) stays because computation of A, is independent of the signs of « in (a, j) € Iy. The
relations (6.6) and (6.10) take the form

_b b ;o
ll a +a5 O _1 0 C3C+C4
2
fz_i € cone [ 0 ],[ -1 ],[ —1] , Ay = Ci
-1 -1 0 4
b _
_ﬁ c; +cy

Admissibility and irreducibility condition (6.7), feasibility condition (6.11), and convergence
time (6.11) now compute as follows.
Admissibility and irreducibility condition:
bs by bs

b
L+—=>0, 2-2-1,>0, [, -=>0. (6.17)
as aq as aj

Feasibility condition:

¢ <thy+dy +c5 +c; <cj,

1
cs < —thy—ds+cj +cy <ci. (6.18)

Convergence time:

‘> max{\/ ai(a; + as) \/ as(az + as) \/ aras(azas + ay(az + as)) }llA‘1c+ _ A,

as(=liay + b)?" N ax(lias + b3)?" N as(a1b; + as(—=by + a1y))?
(6.19)

Proposition 6.2 can now be concisely formulated as follows.

Proposition 6.3. Assume that condition (6.17) holds. Then, for any t > 0 that satisfies

simultaneously (6.18) and (6.19) the stress vector s(t) of elastoplastic system (D,A,C,R,I(t), (1))
obeys properties (6.15) and (6.16). In particular, for these values of t, spring j plastically expands
if (+, )) € Iy and spring j plastically contracts if (-, j) € I,.
6.3. Case Iy = {(+,1),(+,2),(-,3)}

Relations (6.5), (6.6) and (6.10) take the form

1

01 1) (10000 (@ @ a 00
AIO:(01—1] o 01000]/4:5[ a a0 00],

1 0 1 00100 a -a, 0 0 0

)

h+ 3 1Y (0)(-I o

by L by | € cone O],[ 0 ],[—1] , Ay, = Cy
“o. 1 -1 -1 —c5 + ¢y
0 3 +e

Admissibility and irreducibility condition (6.7), feasibility condition (6.11), and convergence
time (6.11) now compute as follows.
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Admissibility and irreducibility condition:

b b b, b
L+=2>0, 2+04,>0, =-=>0. (6.20)
ay as ag as
Feasibility condition:
¢y, < —thy —dy —c5 +c¢] <cj, 6.21)
5 <—=thy—ds+c5 +c; <ci. '

Convergence time:

{\/0405(04% + az(as + as))) a(ay + as) \/ as(ay + as)
t > max

az(asby — asbs)? "N ai(by + ash)*’ N ax(b; + asly)?

} lA™let — A7lem||A. (6.22)

A statement about convergence of the stress vector and about the terminal distribution of plastic
deformations given by [, comes in direct analogy with the statement of Proposition 6.3.

6.4. Comparison of the cases considered

While the admissibility and irreducibility condition (6.6) for the case Iy = {(+,2),(+,3),(+,4)}
does hold when the stress-controlled loading is absent, this no longer the case for the cases I, =
{(+,2),(-,3),(+,4)} and Iy = {(+,1),(+,2),(—,3)} meaning that the latter two cases are possible
only when stress-controlled loading is forcing the model of Figure 1. However, the requirements
for the stress-controlled loading in cases Iy = {(+,2),(—,3),(+,4)} and Iy = {(+,1),(+,2),(—,3)} are
qualitatively opposite. Indeed, we can see that arbitrary small amount of stress-controlled loading is
sufficient to realize the case of Iy = {(+, 1), (+,2),(—,3)}. In this case, the role of stress-controlled
loading is to make admissible and reducible I, = {(+, 1), (+,2),(—,3)} irreducible (because in the
absence of the stress-controlled loading Iy = {(+, 1), (+, 2), (-, 3)} reduces to Iy = {(+, 1), (+,2)}). The
case of Iy = {(+,2), (-, 3), (+,4)}, in contrast, requires a significant amount of stress-controlled loading
to make [ admissible (see e.g., the second inequality of (6.17) saying that stress-controlled loading
should surpass the displacement-controlled loading). The elastic limits of the remaining springs 1
and 5 should be large enough to accommodate such a large stress-controlled loading, see feasibility
condition (6.18).

6.5. Remaining cases of |I] = 3

We recall the reader that in the case where the model of Figure 1 is forced by just displacement-
controlled loading, all admissible irreducible I, are [11] Iy = {(+, 1), (+,2)}, Iy = {(+,4),(+,5)}, Iy =
{(+,1),(=,3),+,5}, Iy = {(+,2),(+,3),(+,4)}, see formulas (5.4) and (5.5) for the definitions of
admissibility and irreducibility. Addition of stress-controlled loading enlarges this list substantially
even in this case of |[j] = 3 that this work sticks to. Indeed, the only |[j] = 3 that are singular
(Definition 4.1) are

I
I

{(£ D, (£3), (4},
{(£2),(#,3), (£ 5},

with all possible combinations of pluses and minuses. And, additionally,

IO = {(+9 1)’ (_, 2)’ (+’ 3)}’
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Ly = {(=1,(+,2),(=3)}
IO = {(+’3)’ (_’4)’ (+’ 5)}9
IO = {(_’3)’ (+94)5 (_a 5)}

are not admissible, i.e., do not satisfy (5.4).
7. Conclusions

We developed an algorithm to determine finite-time convergence of sweeping processes with
moving and shape changing polytope to a vertex of the polytope. The earlier results either considered
special shapes of polytopes (parallelepipedal) or didn’t allow change of shape. As an application
we were able to understand the influence of stress-controlled loading on asymptotic (finite-time)
elastoplastic behavior of lattice spring model. In particular, we discovered that addition of a small
stress-controlled loading can reduce the dimension of attractor that is present in the system otherwise
(i.e., add more plastically deforming springs to the springs that deform plastically already), while
addition of a larger stress-controlled loading can create such combinations of plastically deforming
springs I, that none of I C I, constitute an eligible (i.e., admissible and irreducible) set of plastically
deforming springs in the absence of stress-controlled loading.
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Appendix

Proof of Theorem 2.1. This proof follows the proof of [11, Theorem 3.1] with C replaced by C(#)—c(%).
Let y(7) be an arbitrary solution of (1.4). For the function x(¢) given by (1.10) consider

v(#) = V(x(0).

Note, that x(7) is differentiable almost everywhere on [0, o) because c(#) is Lipschitz continuous. Let
us fix some ¢ > O such that x(7) is differentiable at . Without loss of generality we can assume that
t > 0 is chosen also so that V(x(¢)) is differentiable at . Then

V(1) = 24X (1), A(x(1) = y.)) - (A.1)
By the definition of normal cone, (2.6) implies
(=x(f) — (1), A(€ — x(1)y <0, forany & € C(r) — ¢(p).
Therefore, taking £ = y. we conclude from (A.1) that
V() < 2(=c' (1), A (x(1) = y.)). (A.2)

Now we use assumption (1.9), which is equivalent to

£
It

or, using the definition of the normal cone,

—'(t) +¢& € Ny-cy(s), forany eV,

<—c’(t) + SM%,A(%‘ - y*)> <0, forany eR", &€ C(t)—c(t).

Therefore, letting & = x(¢) and { = x(t) — y., we get

X(t) — YV«

() +e———— A (x(t) — *)> <0,
< (t) =yl g
which allows to further rewrite inequality (A.2) as
x(t) =V«
V() < —28<—,A(x(l) - *)> = —2e+/v(1).
) — y. A g

Therefore, the Lyapunov function (2.5) satisfies estimate (1.1). The proof is complete. O
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