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1. Introduction

We are concerned with the following volume constraint problem of a nonlocal doubly nonlinear
parabolic equation of the type

a, w9 )+( A)yu = A0l u ! in Q:=Qx(0,7),

f lu®)|" ' dx =1 for any ¢ > 0,

on (R"\ Q) x (0,T),
U= U in Qx {0},

(1.1)
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with p > 1, s € (0,1) satisfying sp < nand g := p: — 1 := nf’:p — 1, where Q is a bounded open

subset of R” for n > 2 and T > 0, whereas the initial datum u, belongs to W, ”(Q) N L7*!(Q) satisfying
llollLe+1@) = 1. Here the nonlocal term (—A);u is the fractional p-Laplacian defined as

(Dp(u(xa t) - M(y’ Z)) d

(=A)Su(x, 1) := 2PV. f

Ry |x — ypresp
D, (u(x,t) — u(y,t
:=21lim P t) ~ 4G 1)) dy, (1.2)
el0 JrmB,(x) |x — y|*+sp

where the function ®, : R — R is defined by ®,(w) := |w|P~>w for short. Moreover, the fractional
p-Laplacian (—A), stems from the an energy structure. The energy functional on W, (Q)

1 - P
WPQsw o Ew) = f W) =W 4 4y
P Jrn Jpn |x = yrrer

has Gateaux derivative given by

| 80 +ep) = (Ayw0),

e=0

where the symbol (-, -) denotes the pairing on W(‘;’p (Q)XWP (Q) with %+[$ = 1. Here W=5”'(Q) means
the dual space of W,”(Q). The fractional p-Laplace operator defined as (1.2) is naturally characterized
in the distribution sense, that is, a bounded linear functional on Sobolev-Slobodeckii space Z)g’p (Q)
defined as the completion of C’(€2) in the seminorm (E)'P of WHP(R™). In addition, if the boundary
of domain Q is smooth, then W (Q) is identical to D,”(R"), which is verified by the density of C;’(Q)
in Wg’p (Q) (refer to [17] and [23, Theorem 1.4.2.2]). In this way, (1.1); can be interpreted as the
nonlinear generalization of the usual gradient vector flow dw = —V&(w). Furthermore, the volume
constraint in (1.1), yields that the constant A(¢) appearing in (1.1); is the Lagrange multiplier. Indeed,
multiplying (1.1) by the solution u itself and integration by parts, one can check that

A(t):f |u(x, 1) — uly, NI dxdy.
Rn Rn

|X — y|n+sp

We call the system (1.1) as nonlocal p-Sobolev flow. Prior to stating the main results, we briefly
comment on the previous results with regard to the local or nonlocal doubly nonlinear evolutionary
problems. The doubly nonlinear parabolic equations appear in a model of some physical phenomena
like plasma physics or turbulent filtration of liquids; for instance, see [39] and references therein
for a detailed explanation. They also describe the gradient flow associated with the p-Sobolev type
inequality. Accordingly, we shall consider the prototype doubly nonlinear parabolic equation:

d/(jul"'u) = Apju =0, with p>1and g>0. (1.3)
Here, A,u := div (|Dulp‘2Du) is the p-Laplacian, where by Du = (uy,),.., we denote the spatial
gradient of u with respect to x. The existence of solutions to the Cauchy-Dirichlet problem of (1.3) is

firstly shown by Alt and Luckhaus [3] in the case ¢ > 1. Employing a variational method, the existence
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of nonnegative solutions is obtained by Bogelein et al. [5] and, they extended the result to the more
general form

0:b(u) — divD,f(x,u, Du) = =D, f(x,u, Du) in Qr, (1.4)

where f : Q X R X R" — (—o00, 00] is a Carathéodory function fulfilling some convexity and coercivity
assumptions. The prototype of the integrand f is of the form f = f(x, Du) = a(x)|Du|” +B(x)|Du|? with
1 < p < gand a(-), B(:) being nonnegative functions such that a(x)+£(x) > v > 0. The historical notes
and the quick overview of regularity theory for the elliptic equation associated with (1.4) with the non-
standard growth condition similarly as above are summarized in transparent paper by Mingione and
Rédulescu [32]. The first and second authors proved the existence of (possibly singed) weak solutions
to (1.3) for all p > 1 and g > 0 via energy estimates for approximate equations of Rothe type and the
integral strong convergence of spatial gradient of approximate solutions [34]. The Holder regularity
issues of singed weak solutions to (1.3) are partially solved by three results: Bogelein et al. [9] (¢ =
p—1,p > 1), Bogelein et al. [10] (p > 2,0 < g < p — 1) and Liao & Schitzler [30] (1 < p < 2,
0 < p—1 < g). To the best of our knowledge, in the other combinations of (p, g), the regularity issues
are still open problems. The doubly nonlinear equation having a power nonlinearity of solution itself
such as (1.3) is not translation invariant with respect to unknown function and that is why we directly
consider a signed solution for Holder regularity estimates of solution itself. The regularity method is
expected to be developed for doubly nonlinear parabolic equations in all cases of p > 1 and g > 0. The
method will be adopted to doubly nonlinear parabolic fractional equations as (1.1);, with the nonlocal
tail effect at infinity. We shall pursue the regularity problems for doubly nonlinear parabolic fractional
equations in our future work.

We briefly explain our motivation for studying the nonlocal p-Sobolev flow (1.1). Focusing on the

Sobolev critical case where g + 1 = % withn > 3 and 2 < p < n and taking s — 1 formally,

Eq (1.1) under such a choice is deeply related to Yamabe flow in a compact Riemannian manifold.
Kuusi & first and second authors [27,28] proved the global existence of a positive weak solution with
the spatial gradient regularity. This result covers that of Yamabe flow in the Euclidean setting of which
the scalar curvature is zero. In those results, we employed the so-called nonlinear intrinsic scaling
method, transforming the doubly nonlinear parabolic equation (1.3) to the p-Sobolev flow. In the
present work we employ the same program in a nonlocal context. In the fractional framework, Eq (1.1)
is also related to a geometric flow in Differential Geometry as well. As a matter of fact, through the
stereographic projection on the Euclidean sphere S" = {x eR™ ;x| = 1}, the fractional Yamabe flow

on S" is represented as

3, (u™ (1)) + (=AY u(r) = rui () in R", (1.5)

where (—A)°u denotes the usual fractional Laplacian defined by (1.2) with p = 2. The quantity r$ :=

R% dvol, appearing in (1.5) is the integral average of the fractional order curvature RS.
M

At least from analytical point of view, the nonlocal p-Sobolev flow (1.1) can be interpreted as a
generalization of the fractional Yamabe flow (1.5) in the L”-setting.

In this paper, we also focus on the Cauchy-Dirichlet problem for the prototype nonlocal fractional
doubly nonlinear parabolic equation because this is an auxiliary equation vital to establishing our main
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results for (1.1):
O(W"V) + (~A)v =0 in Qs,
v=0 on (R"\Q)x(0,S), (1.6)
V=1 in QX {r =0},

where the initial datum v, belongs to the class Wé’p (Q) N LT*1(Q). The definition of weak solution and
its properties are summarized in Section 3.

For the nonlocal p-Laplace equation, that is, (1.6) with ¢ = 1, there are many remarkable
literatures [1,16,26,29,31,38,42] and references therein. In particular, Stromqvist [40,41] established
the local boundedness and a Harnack inequality with nonlocal tail for weak solutions to (1.6); with
g = 1 and p > 2, who first extended the breakthrough techniques by Di Castro et al. [18, 19] to the
parabolic setting. Brasco et al. [16] showed the Holder regularity of (1.6); with g = 1 and p > 2 by
beginning a slightly weaker notion of solutions; we remark that the proof relies on the iterated discrete
differentiation method and a certain Morrey type embedding, which is completely different to previous
approaches. In the homogenous doubly nonlinear case of (1.6);, i.e., ¢ = p — 1 with p > 2, Banerjee
et al. [4] first proved the local boundedness with the nonlocal tail of positive solutions. Up to now, as
far as we know, and as stated as before, the regularity problems in the doubly nonlinear case (¢ # 1)
for (1.6) are still left to investigate.

Recently, mixed local and nonlocal problems become a subject of engaging investigation in terms of
not only purely mathematics but also biological viewpoint; see for instance, the linear case is addressed
in [12-14,21]. Very recently, in the nonlinear case, the gradient regularity is established by De Filippis
and Mingione [20] and the further topics are addressed in references therein. It is of its own interest
how the local effect of p-Laplacian controls the nonlocal behavior with the tail at infinity of solutions
in mixed local and nonlocal equations.

This paper introduces the nonlinear intrinsic scaling technique adopted to the nonlocal p-Sobolev
flow. The idea of this nonlinear intrinsic scaling is to mimic the aforementioned p-Sobolev flow case.
Indeed, a nonlinear intrinsic scaling is introduced to convert the nonlocal doubly nonlinear parabolic
equation (1.6) to the nonlocal p-Sobolev flow (1.1) (see Theorem 1.1). Our nonlinear intrinsic scaling
generates p-Sobolev flow and nonlocal one, the gradient flow of a constrained energy-minimization
problem as stated before, from the corresponding prototype equation. It is worth remaking that the
energy identity for the prototype equation plays a crucial role in both local and nonlocal setting,
see [25,34]. On the other hand, the difference of equations between the local case and nonlocal one is
just reduced to the corresponding prototype equations. The technical detail of our nonlinear intrinsic
scaling is addressed in a common way to both the local and nonlocal setting (see [28]). The outline of
Theorem 1.1 will be given in Section 4.

Our result reads as follows:

Theorem 1.1 (Nonlinear Intrinsic Scaling). Fix p > 1, s € (0, 1) satisfying sp <nand g+ 1 = p;. Let
v = v(x, T) be a nonnegative weak solution to (1.6) with vy = uy being the initial datum as in (1.1). Let
S* < +oo be a finite extinction time of v depending only on n, s and p. Then, there exists a unique pair
of solutions

(A, g) € C'[0, 00) x C'[0, 0)
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fulfilling

sp

n

’ _ #\—1 +1 * _ ,—A®
A(1) = (S ”anq (x.57(1-e ))dx]

A0)=0

and

g0)=0
such that the following statement holds true: Let

1(t) = $* (1 - ™)

{ g'(t) = ehE®

and consider the following composite function:

v (x, (1))

u(x,t) = T
vt (x, 7(1)) dx)

(1.7)

Rll
Then, u is a weak solution of the nonlocal p-Sobolev flow (1.1) in the sense of Definition 1, where

A1) = f lux, 1) = uG, O dxdy.
Rn Rﬂ

|X — y|n+xp

Theorem 1.1 actually treats a very special case of the choice of exponents (p, g) but the intrinsic
scaling transformation will be well-worked for more general case that p > 1 and g > 0.
The following global existence result then follows directly from Theorem 1.1:

Theorem 1.2 (Global existence). Let p > 1, g > 0, s € (0,1) be such that sp < nand g+ 1 = p.
Suppose that the initial datum uy belongs to Wg’p (Q) N LT*Y(Q) and satisfies ||ug|| e+ = 1. Then there
exists a global in time nonnegative weak solution to (1.1) in the sense of Definition 1 possessing the
regularity

9,(1ul"= u) € LAQr) (1.8)

for every positive T < oo.
2. Basic setup

For convenience, we first fix some notation that will be used throughout the paper, then we define
fractional Sobolev spaces. After that, we introduce some elementary inequalities and list the property
of exponential mollification. Finally, we state the definition of weak solutions to (1.1).

2.1. Notation

In what follows, Q C R" with n > 2 denotes a bounded domain with Lipschitz boundary. For
T € (0,00], Q7 := Q x (0, T) describes a space-time cylinder. If E ¢ R¥ with k > 1 is a measurable
subset satisfying 0 < |E| < oo, then for any g € L!(E), we will denote

1
(&)E ~=J(Eg(x) dx := i Lg(x) dx.
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Finally, we record the general notation. By C we denote a general positive constant, which varies
from line to line and only depends on the parameters indicated in the statement to be revealed. By
putting the corresponding parameters in parentheses, we will emphasize relevant dependencies on
parameters; for instance, C = C(n, s, p, q) means that C depends on n, s, p and g. Furthermore, the
symbol ( ); denotes the i-th line of the display ().

2.2. Fractional materials

In this subsection, we summarize fractional spaces and some useful tools. We start with recalling
the fractional space. For 1 < p < 400 and s € (0, 1), the fractional Sobolev space W*?(R") is defined
via

WSP(R") 1= {w € L’(R") : [Wlysrany < +oo},

w(x) — w)I? VP
Sp(R) 1= —— dxd
[wlw 10:0) (fRn fRn Ix—yI””l’ X )’)

is the Gagliardo-Slobodeckﬁ seminorm. W*?(R") is a Banach space endowed with the norm

where

IWllwsewny = Wllzr@ny + [Wlwsr@ny.-

In a similar fashion, the fractional Sobolev spaces W*P(Q)) in a domain 2 C R” can be defined. The
fractional Sobolev space with zero boundary values is defined as

WP (Q) = fw e W(Q) : w=0onR"\ Q.

See [37] for the fundamental topics and tools related to these spaces and the references therein. Further
a precise description of the completeness of these spaces are addressed in [15].
The next inequality is retrieved from [37, Theorem 6.5].

Lemma 2.1 (Fractional Sobolev inequality). Assume that p > 1 and s € (0, 1) satisfy sp < n. Then
there exists a constant Csqy, = Csop(n, s, p) such that

i )P
Csob( f |w<x>|f’f*dx) < f f W) =Wl 4
R~ rr JR? |)C — y|n+sp

holds whenever w € Wy*(Q) with denoting p% := £

n—sp’

2.3. Some elementary inequalities

First, we collect the property of the boundary integral term, devised by Bogelein et al. [5]: For
v,k € R

B[v. k] := (|k|‘1“ - |v|q+1) — Mk = V). (2.1)

qg+1

This boundary term is a crucial quantity for our argument. We state the estimates for the boundary
term B, whose precise proof is presented in [5, Lemma 2.5] and also in [8, Lemma 3.4].
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Lemma 2.2. Fix g > 0 and let B|v, k] be the algebraic quantity given by (2.1) for v,k € R. Then, there
exists a positive constant C = C(q) such that the following estimates hold:

B[v. k] < (Ik"k = M*7v) (k = v) (2.2)
and
g-1 -1 |2 g-1 -1 |2
CHvzv- Ilek‘ <B[v,k]<C ‘|V|TV — |kl k| . (2.3)
In particular,
B[v,k] >0 (2.4)

whenever v, k € R.

We recall the some algebraic inequalities. The next is addressed in [2, Lemma 2.2] in the case
0 < B < 1 and in [22, inequality (2.4)] in the case 8 > 1.

Lemma 2.3. For every 8 > 0 there exists a constant C = C(B) such that

CllePe — 1P| < (el + InlP kg =l < C|e e —
holds whenever &, € R.

The above algebraic inequality is recasted in the following:

Lemma 2.4. For all a € (1, )
(126 =l mE =) = 0
holds whenever &, € R.

2.4. Exponential mollification in time

We employ throughout the paper that the technique of the exponential mollification in time, devised
in [24]. This mollification is a key ingredient that can overcome the difficulty of weak differentiable
in time of weak solutions to Eq (1.1). Indeed, this technique is available for various doubly nonlinear
parabolic equations; for instance, see [7-9,11,35,36] and also the references therein. Let E C R* be
an open set with k > 1 and set E; := E x (0, T). For a function v € L'(E;) and a number 4 € (0, T), we
define

VIn(x, 1) = % f e%v(x, NHdY, (x,1)e Ex|[0,T]. (2.5
0

Analogously, we define the reversed version of [v], by

T
VIp(x, 1) = %f e%v(x, PHd?, (x,1)e Ex[0,T].

In this setting, we summarize the properties of [v], and [v]; displayed below, whose detailed proof
of (1)—(iii) can be seen in the literatures [24, Lemma 2.2] and [6, Appendix B], We are going to apply
Lemma 2.5 with E = Qor E = Q X Q.

Lemma 2.5. Let E C R¥ be an open, bounded set. Assume that v € L'(Er) and p € [1, o). Then the
mollifications [v], and [v]; have the following properties:
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(1) If v e LP(E7), then [v], € LP(Er) and the inequality holds true:

v 1allrery < Vlleecer)-
Furthermore, [v], — v strongly in LP(E7) as h | 0. A same statement for [v];, holds true.
(i1) If v € LP(E7), then [v], and [v]; have weak time derivatives being in LP(Er) and follow the ODE:

] —v Dl
h ’ al‘[v]/'l - h .

0vln = -

(i) Ifv € LP(0,T ; LP(E)), then [v], and [v]; belong to C([0,T]; LP(E)).
A simple manipulation validates the following result.

Lemma 2.6. Let w € LP(0, T ; WSP(R")). Then [w];, belongs to LP(0, T ; WSP(R")), in particular,

T T
f [[wCe, D]In]3ysn e dE < f [W(x, O }ysp e dt.
0 0
We conclude this section by defining of weak solutions of (1.1) used in the course of the paper.
Definition 1. Let p > 1, g > O and s € (0, 1) be such that sp < nand g+ 1 = p;. We identify a function
uelL”O,T;W"R")

as a weak solution of (1.1) if and only if the volume constraint (1.1), is in force and there exists
A(-) € L'(0, T) such that the identity

T _
— f |u|q‘1ucp, dxdr + f f f ®p (ulx, 1) — 40, 1)) (o(x, 1) — @(y, 1)) dxdydr
- 0 R" JR7

=y

Qp
= f AD|u|  up dxdt
Qr
holds whenever ¢ € 77, where the class of testing functions 77 are defined by

- )4 N 0 7404 l,g+1 . g+l (,O(X, O) = ()O(X’ T) =0
%.—{QDEL (0.7 : Wy (@) n whe! (0, T ; L7 (Q)) | e e e .

Moreover, u attains the prescribed initial condition u(0) = u, in the W*” -sense, that is,
lim u(lt) —u S, ny = O
im (1) = ol
and u satisfies the boundary condition in the following sense:
u(t) € W, (Q) for ae. 1€ (0,7).
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3. Prototype nonlocal doubly nonlinear parabolic equation

In this section we shall collect the results on the prototype nonlocal doubly nonlinear parabolic
equation (1.6). To begin, we prepare the notion of weak solutions to (1.6), whose definition is retrieved
from [25]:

Definition 2. Let Q C R” be a bounded domain and fix S € (0, oo]. Suppose that the initial datum v, is
in the class W;"(€) N LY (Q). Let Ts be the class of test functions as in Definition 1, replaced T with
S. We say that a measurable function v = v(x, 7) defined on a whole space-time region R" X (0,S5) is a
weak solution fo (1.6) provided that the following conditions are satisfied:

o veL®(0,S ; WSP(R") N L® (o, S ;Lq“(R")).
o There holds

S —
_fﬂ hﬁ*vwﬁhdf+1n\f_f‘®Pwu”ﬂ YD) o, 1) - gy, 7)) dxdydr = 0 (3.1)
Qs 0o Jrr Jre

=P

for every ¢ € Ts.
e v attains the initial datum v, continuously in the fractional Sobolev space:

lim ||V(T) - VO”W'W’(R") = O,
710

and satisfies the boundary condition in the sense that
v(t) € W,P(Q)  for almost every T € (0,5).

3.1. Existence of a weak solution

In this section we recall the result of the existence for the problem (1.6).

Theorem 3.1 ( [25, Theorem 1.1]). Let p > 1, g > 0 and s € (0, 1) be given and assume that the initial
datum vy belongs to Wg’p (Q) N LI*Y(Q). Then there exists a global in time weak solution to (1.6) in the
sense of Definition 2 fulfilling the following energy structures and regularity:

+1 [~ - P
sup f W)l de+ 52 f f v, 7) vEy’T)l dxdydr < f Vol dx,  (3.2)
O<r<o0 JO q Jo Jrn Jge |x — y[r+sp Q

_ )4 _ P
wp [ [ SR gy o [ WO 53
O<r<oo JR" JR7 |x — y|rtsp re Jgn X = y|rrsp
and
_ )4
|v| > v dxdTSC f f dedy (3.4)
g Jre X = yrHsP

with a positive constant C = C(p, q).
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Proof. Here, we only give the sketch of the proof. As discussed precisely in [34] or [25], we first
introduce the approximating equation of Rothe type for (1.6), which is constructed by a direct method
in the calculus of variations. Subsequently, we prove that these approximate solutions fulfill certain
energy estimates of the form (3.2)—(3.4) through some algebraic estimates associated to the difference
quotient. Next, we exploit a truncation of the approximate solutions and make some integral estimates
of spatial gradients and time-derivative of them. Since the integral bounds are available for the
truncated approximating solutions above, combining the Fatou and Vitali convergence lemmas, we
can pass to the limit of them. The most crucial step in this limiting procedure is how to deal with
the time derivative of power-nonlinearity of solution itself. We notice that a simple transformation of
unknown function such as w = [v|9"'v does not work well, because the positivity of solutions is not a
priorily guaranteed. So we are forced to make use of the approximation of Rothe type. Indeed, the
difference quotient in time effectively works to obtain the energy inequalities (3.2)—(3.4). O

Remark 3.2. Some apriori esimates for (1.6) can be verified by virtue of the exponential mollification
in time. The time continuity in LI*1(Q) and the energy inequalities apriorily hold for weak solutions
of (1.6). See Theorem 3.5 and Proposition 3.6. However, we are not sure to a priori get the energy
estimate (3.3) containing space-time integral of time-derivative. Other approximations can be probably
considered for (1.6); see for instance, [33].

3.2. Extinction in the finite time

The phenomenon of extinction of (nonnegative) solutions to (1.6) in the finite time naturally occurs,
which is in the subsequent proposition.

Proposition 3.3 (Extinction in the finite time). Let p > 1, s € (0, 1) be satisfy sp <nand g+ 1 = p;.
Let v be a nonnegative weak solution to the problem (1.6) in the sense of Definition 2. Suppose that the
initial datum vy belongs to Wy"(Q) N LS (Q). Then, there exists a finite time

5Pk
Tps

. i =D —p)
- LP5(Q)

S
(P2)*Csob

[[voll
such that, there holds that
v(-,7) =0 whenever 7>S".

Proof. The proof is quite similar to [1,33], although we provide the details for the sake of completeness.
Let v be a weak nonnegative solution to the problem (1.6). We multiply (1.6); by the solution v and
integrating over R” render that

d s - s i
42| vordx+ ) = Ve DI 4 2 o, (3.5)
q + 1 dT R” R” R” |x - y|n+‘sp

where this procedure can be justified rigorously by using the independent Proposition 3.6 below. This
combined with the fractional Sobolev inequality (Lemma 2.1) yields

)4

*—1d . AV
Ps v(1)Ps dx + Cgop ( f v(T)Ps dx) <0
RYI

D5 ER”
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with Csop = Csob(n, 5, p) being the fractional Sobolev best constant, where we used the condition

q + 1 = p;. We shall shorten W(r) := f v(t)P* dx and therefore, the above display is rewritten as
R)l

*

W) W(1) < ——22Cy.
pi-1

N

Integrating this over [0, 7] leads to

0< W@ 7 W) - LB
pi=1pi—p

L *
= ( f Vi dx) -~ _*Ps *ps CsobT.
Q Ps— 1 Ps—P

(ps =Dy =p) 2y
— Ivoll” !
(P3)*Csob LPs()
then v(x, 7) = 0 holds and therefore the desired result follows. O

This plainly assures that if

T>8":=

3.3. Continuity in L7(Q)

In this subsection we prove the time continuity of solution via the technique of the exponential
mollification. The following energy identity is an essential tool in this approach. Notice that the
assertion holds for every exponent g > 0. The argument below follows from [11, 35, 39].

Lemma 3.4 (Energy identity). Given p > 1, g > O and s € (0,1), let { = {(7) be a nonnegative
piecewise smooth function, defined on [0, S], such that £(0) = £(S) = 0. Set

X:={f e 1208 . W)(Q) : f, d.f € LT™(Qy)).

Then there holds the quantitative identity

- ff §(|vlq_1v - leq_lw) Owdxdr + f I’Blv,w] dxdr
QS QS

S —
e[ RO ) = v ) = 5 7) = () [ =0
s

=y

for every weak solution v to (1.6) and w € X, where B[v,w] is as in (2.1).

Proof. The proof is similar to [35, Lemma 3.3], although we will give the full proof for the reader’s
convenience. First, the function space X allows us to choose w = [v]; later. Let w € X. Testing the
identity (3.1) with ¢ = ¢}, := { (w — [v];), which is admissible by Lemma 2.6, it is

—ff V9 - 8., dxdr
S

Q
s _
. f f @, (v(x,7) V(Y’T))[%(x,f)—goh(y,r)] dxdydr = 0. (3.6)
0 R" JR?

=y
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For the evolutionary term we split it into four terms as follows:

—ff Ivlq_lvaTgohdxdT
Qg

- f f |17 v = 1) + ZVIE" Y (@ew = B: V1) | dxde
Qg

- f Iy (w = [v]) dxdr — f Ty 8w dxdr
Qg Qg

+ f f £ (W™ = 111 1) De [yl dxd + f VI V148 V], dxdr
Qg Qg

£ (0) + (I) + (IT) + (TID).

By Lemma 2.5-(v) and Lemma 2.4 we obtain

(In) = f f £ (WY = It 1) 2 Vb dr 2 0
Qs

h

and, in view of integration by parts, there holds

(I11) = ffgs §af(ﬁ|[v]h|"”) dxdr = —ffgs ¢ oqlv

where we used the fact that £(0) = £(S) = 0. Since [v], — v in L(Qy) by Lemma 2.5-(i), the
combination of the preceding estimates above validates that

liminf(— f V9o, ¢, dxdT)
ni0 Qg

> lirl?l inf [(0) + () + (IH)]

g+1
dxdr,

it vl + -1 r 1 q+1
llhll() f( ﬂ;s [é |V|q V(W - [V]h) {|V|q VGTW + ;‘ q+_1|[v]h| ] N )
ﬂ‘ [(’Ivlq—lv w=v) §|V|q_1v87w + 7 ﬁMqH] Y
Qg ( d j

=_ f fg S [g(w-lv - |w|q_lw) ow + gqﬁafw“

+ (Ivlq_lv(w —-V)+ qﬁlvlqﬂ) ] dxdr

= - ]LS [{ (|V|4—1v - |W|q—lw) ow+{ (# (|v|q+l _ |w|q+1) — v — w)) ] dxdr
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= - ff §(|V|q_1v - |W|q_1w) O;w dxdr + f 'Blv, w] dxdr. (3.7)
Qs QS

Here, in the fifth line, we used integration by parts combined with £(0) = £(S) = 0 again. A similar
procedure to [35, (3.5)] assures that

S —
L f | f @, (v(x,7) — v(y, T))[()Oh . T)—cph(y,‘r)] dxdydr

|x_y|n+sp
S -
Hf f f Do D= V0 D) ) 05,7 = v, ) = () = vy ) dxdde (B.8)
0 Jrr Jre e = ypreep

as h | 0. Merging the last inequality (3.7) with (3.8) and then, sending /2 | O in (3.6) leads to

- ff §(|V|q_lv - |W|q_1W) 0.wdxdr + ff 'Blu, w]dxdr
Qs Qg

S —
N f f f D, (v(x, 7) v(y,f))[(w(m)_v(m))_(w(y,T)_v(y,T))]dxdydeo.
0 Jrr Jrr

|X — y|n+sp

The reversed sign “>" is confirmed by taking ¢ = {(w — [v];) in (3.1) and the proof is complete. O

As a consequence of Lemma 3.4, we can show the time continuity in the Lebesgue space LI*!:

Theorem 3.5 (Time continuity in L*!). Given p > 1, ¢ > 0 and s € (0, 1) let v be a weak solution
to (1.6) in the sense of Definition 2. Then v € C([0,S]; L7*(Q)).

Proof. The argument follows that of [11, Lemma 3.11] or [35, Proposition 3.4], but we give full details
here for the sake of completeness.
For every S € (0, ), lety = (1) : R — R be a piecewise smooth function satisfying

. (3.9)

“lAa

woy = 0 TS/ O<y<l ; W<
T) .= 5 < < 5 <
0, 7>35/4

Given 7 € (0,5/2), set
0, T<T,

@ =113
E

~I
IA
—*
IA
~I
+
»

\Y%
~I
+

1, T g,

for £ > 0 small enough so that T + £ < §/2. We take { = y.(7)¥(7) and w = [v]; € X in Lemma 3.4 to
observe that

J( f B[v, [v];] dxdr
7 Q

= - ff Blv, [v];lxe¢ dxdr + ff X (lvl"_lv - |[v];l|"_1[v];,) 0.[v]; dxdr
Qs QS
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> @
- fo f f L @[ (Vi 1) = v(x. ) = (Vi ) — vy, 7)| ddydr,
R" JR?

PR

where we shortened @, = @, (v(x, 7) — v(y, 7)). We use Lemma 2.5-(v) and Lemma 2.4 to obtain

f f et (MY = I3 v];) B:[v]; dxde
Qg

=[] et (vt = i ) PE= e <0
Qs h

therefore combining this with the previous display and the definition (3.9), we obtain

J( fB[v, [v];] dxdr

z Q

Sgﬂ B[v, [v];] dxdt
S JJag

S )
_ f(; f P —)(s(T)l//(T)[([V]ﬁ(X, 7) = v(x, 7)) = (V] (y, 7) — v(y, T))] dxdydr.
Re

O

Since B[u, [u];] is integrable, sending & | 0 in the above display in turn implies that

L[Bwﬁlhhﬁﬂdx
Q

C
gzg‘[]“ B[v. [v];] dxdr (3.10)
Qg

N O
[ it n = v ) = (5027 - v ) e
o Jrr Jrn X — Y|P

whenever T € (0,S5/2)\ N,, where N, is a null set with respect to one-dimensional Lebesgue’s measure.

We preliminary take a sequence {£,} ja so that 2; | 0 as j — oo, and set N := U Ny,;; therefore, N is
jeN

negligible as well. By the same procedure leading to (3.8) and the convergence [v];, — v in L1 (Qy),

guaranteed by Lemma 2.5-(1), the right-hand side of (3.10) converges to zero in the limit j — co. As a

consequence, letting j — oo in (3.10) with [v]; = [v]h-j renders

lim sup( sup f B[v(7), [v];.(T)] dx) <0,
jooo \ref0.5/21\ N Ja !
which together with (2.3) in Lemma 2.2 implies that
q- q- 2
hm( sup jWMfwa—uﬂmﬁwmﬁﬂdﬂ=o. (3.11)
J= \ze[0,5/21\ N Jo
We now distinguish the cases between ¢ > 1 and 0 < ¢ < 1. When considering ¢ > 1, Lemma 2.3 with

a= %1 renders that

v®) — 5 B) < €|l e — 100, [0, 3
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for a constant C = C(gq) and therefore, we have

lim( sup f v - v, @) dx):O. (3.12)

J= \z¢[0,5 21\ N JQ

In the opposite case 0 < g < 1, (2.3) with a = ? gives

(V@ + I,E)) * o)~ 115, ()] < €[l @) 15 1= 105, 5]

2

T q) we have

Using this and appealing to Holder’s inequality with a pair of exponents (

sup f |v(?) — [v];,j(?")|qul dx

7€[0,S 2]\ N JQ

g+l

< C( sup f(lv(f)| + ]z, (T)|) |V(T) ]/‘z,-(%)|2 dx)

7€[0,S 2]\ N JQ

1-q

( sup f [|v(f)|+[v],;,.(%)]q“dx)2
T Q

7€[0,S 2]\ N

g+l

g-1 ! 2 N
sc( sup [ 000 = 10,5 0 )| dx)
Q

T€[0,S 2]\ N

( sup f [|v<f>|q“+|[v]h,<%>|4“]dx)
Q

7€[0,5 /2] \ N
-0

as h | 0. Here, in the last line, we used (3.11) and Lemma 2.5-(i). Thus, we gain (3.12) in the case
0 <g<1aswell

Thanks to Lemma 2.5-(vi), [v]h (7) is continuous in L7*!(Q) for any 7 € [0, S] and so, v(7) is also
continuous on [0, S /2] \ NV in Lq”(Q) since v is a uniform limit representation of V15, by (3.12). We
stress that this representation is independent of the choice of sequences {/,}ay. By means of (3.12)
and the continuity of [vlz,(7) on [0,S], we can find a continuous function v*(7) : [0,S] — LI*'(Q)
being equals to v(7) in [0,S/2]\ N and therefore, v*(7) = v(t) holds for everywhere on [0, S/2]. In an
analogous way as done above, letting w = [v];, and £ = y.(7)¥/(7) in Lemma 3.4 yields that v(7) is also
continuous in L9*1(Q) on [S/2, S ], where (1) and /(1) are reflexions with respect to 7 = S/2 of y,.(1)
and (1), respectively. * As a result, v certainly belongs to C([0, S ]; L¢*1(Q)), finishing the proof. O

*More precisely, one could have proceeded as follows: Fix an arbitrary & > 0. In view of (3.12), there exists j. € N so that

sup  |Jv(@) - vz, (1) <e/3. (3.13)

7€[0.5/2]\ N L@

Lemma 2.5-(iii) yields that [v] 3 (7) is uniformly continuous in L7*'(Q) on 7 € [0, S /2] and therefore, there exists § > 0 such that

V1,7 €[0,5/2] with [t -7'| <6 = ||V, (@) - [V];, (7))

< &/3. (3.14)

L‘1+I(Q)
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Theorem 3.5 allows to deduce the following energy identity:

Proposition 3.6. With p > 1, ¢ > 0 and s € (0, 1), let v be a weak solution to (1.6) in the sense of
Definition 2. Then the following quantitative estimate

T2 _ 14
4 f (T2l dx + f f f e o) = VOO gvdr = —9 f M)l de (3.16)
g+1Ja o JrnJrn X =y g+1Ja

holds whenever 0 < 7| < 1, < S, in particular, the function
T f [v(r)l*! dx
0

Proof. We shall split the proof into several step.
Step 1: First, a similar argument to [35, Lemma 2.10] yields the following mollified versions of
weak formulation (3.1):

f B9,  ddr

is Lipschitz continuous on [0, S ].

Qs ;
L LA
———— (p(x,7) — @(y, 7)) dxdydr (3.17)
0 Jrr Jge [x = y[r+ep
s

= f |v|ff—‘v(0)(l f e-igp(x,ﬁ)dﬁ) dx
Q h 0

f f 8. IV V]  dxdr
Qg

s
f f [q)p]/‘l
+ ——— (p(x, 7) — @(y, 7)) dxdydr (3.18)
0 Jrn Jgn [x = yIrrer

and

|x

s
=—f|V|q_1v(S)(1f eﬁ'_lsgo(x,ﬁ)dﬁ) dx
Q h 0

Combining two displays (3.13) and (3.14), it readily follows that

V7,7 €[0,S/2]\ N with [t =7 <6 = V(1) = (T )llpe+1(q) < &. (3.15)

On the other hand, since N is negligible with respect to the one-dimensional Lebesgue measure, for any v € [0,S/2] there exists a
sequence {7;}ienw C [0,S5/2] \ N so that 7; — 7 as i — co. Take a natural number N so that |t; — 74| < ¢ for all i,k > N. By means
of (3.15),
Yiik>2N = |[v(1) = v(@)llerq) < &

that is, {v(t;)}iay is a Cauchy sequence in L?*!(Q), therefore the limiting function v*(7) := lim;_. v(t;) exists. A simple observation
shows that this limiting function is uniquely determined, which is independent of the choice of sequences in [0, S /2] \ N. Thanks to
this uniqueness together with the fact that v(7) is continuous on [0, S /2] \ N in L¥*1(Q), v(1) = lim;_,. v(7;) = vi(7) in turn follows for
every T € [0,5/2] \ N. Finally, we shall show the validity of v{ € C ([O,S /2]; L"“(Q)). For this, given &£ > 0, we first take 6 > 0
fulfilling (3.15). For every 7,7’ € [0,S/2] with |7 — 7’| < 6/3 we take sequences {7}, {T}}iew C [0,S/2]\ N'sothat; —» 7,7, — 7/,
respectively. By this construction, |r; — 7| < ¢ holds for i € N large enough and therefore, in view of (3.15), it is

Y1, 7 € [0,S/21\ N with |r;—-T|<d = “v(‘r,-) - V(T:-)|

i@ <&

Finally, sending i — oo in the last inequality renders [[v*(7) — v*(7')ll4+1q) < & for every 7,7’ € [0,5/2], as claimed. In a similar
fashion with w = [v], and with ¥,(r) and ¢(r) mirrored on the whole interval [0, S] under transformation 7 +— § — 7, we find v} €
C([O,S/Z] ; L‘“'(Q)). Finally, we let v* := v{ on [0, 5 /2] and := v} on [§/2, S ], leading to the conclusion.
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holds whenever ¢ € 75, where we again shortened ®, = @, (v(x,7) — v(y,7)). Indeed, (3.17) is
verified by testing ¢ = [¢];7. in (3.1), which is admissible in 9%, where

T/e for 0<7<eg,
775(7-) =
1 for e<7t<S,

whereas (3.18) is confirmed by choosing ¢ = [¢],7j. in (3.1), where the Lipschitz function 7, is defined
as

1 for 0<7<S —g¢
7:(1) =3 (S —-1)/e for S-e<71<8,
0 for 7>8.

Here, in these procedures we used the Fubini theorem for the double integral and Theorem 3.5.
Moreover, for every 0 < 71 < 7, < § and € > 0 small enough, let us define the following Lipschitz
cut-off function shaped like a trapezoid (see Figure 1):

Xe(T)

T +&g/2 Tite To—& T1y,-¢g/2

Figure 1. Graphs of y.(7).

0, Te€[0,11 +&/2),
%(T— T %), TE [T +&/2, T + &),

X =Xe(T) =11, TE [T +6&,1—¢],
“2(r-1-%, Te(m-&1-¢/2],
0, Te(r,—€/2,S8].

Choosing the testing function in (3.17) as

P(x, T) = x (X, T)

gives the estimates below respectively: The evolutional term is split into two terms

1_
f f O [V V]pxev dxdr = f f X0V V], (V—|[IVI"‘IV]h|" 1[IVIq‘l\/]h) dxdr
Qg Qg

+ f f oD LMV || v v dde
Qg
= (D); + (D).
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We abbreviate

1_
fo = [t P A (1 e TRy
0 ifv=0

= 1Ll f = MY,

and apply Lemma 2.5-(v) and Lemma 2.3 to infer that

1
i =+ ff xe (MY = A7 ) 0 = £i) dxdr 2 0.
Qg

In view of integration by parts, we get

g+l
Dii = ff X0+ (q;:l |[|v|"_1u]h| a )dxdT
Qg
ff Xe 7 q+1 [vl?~ 1V]h| 1 dxdT
T1te | g+l Tr—&/2 X g+l
f f M| T dadr + f f 2 |l
T1+g/2 JQ Ty—¢€ Q

¢ dxdr.

Since by definition |[v|?"!v € L%(QS), Lemma 2.5-(i) yields that

(V|| oo < IVllgeras)s
{ L9 (Qs) (3 19)

o
[V =h0 My in L7 (Qs).

By means of (3.19), the fundamental theorem of calculus and Holder’s inequality, it is

g+l
f f [
Qg

dxdr

! +1

< ffg (fo % |19[|VI4—1v]h +(1 —ﬁ)|v|q—1v|q7—l dﬁ)|[lvlq_lv]h a |v|q_1v| dudz
s
< C@ (ff IVI" 1V]h| T+ Ivl"”] dxdT) )
. 7
(ff |[|V|q_1V]h - |V|q_IV|qT dxd‘r)q
Qs
(3.19)

)

that is,

g+l
[V 7 = w in L'(Qy)
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as h | 0. Combining the preceding estimates above and passing to the limit as 4 | 0 yield

liminfff A (VT W]y ev dxdr
nl0 s

= lim inf [(D; + (D]

T+ Tr—&/2
q q+1 q q+1
Z—f qulvl dxdT+J( fmlvl dxdr. (3.20)
T14+€/2 JQ T —¢& Q

We now focus on the fractional term. Since supp(y.) C [71 + €/2, 7, — £/2], Lemma 2.5-(i) (see the
argument as in [36, Appendix A, Step 2] for details) yields that

(7 [©,],
lim —Lh (1) (v(x, T) = W(y, 7)) dxdydt
nlo Jo Rt JRr |x — y|n+sp

Ty—&/2 [0
_ f f —p+Xs(T) (v(x, ) = v(y, 7)) dxdydr
T1+e/2 JR" JR? |x — y|n P
T2-£/2 — 4
_ f Voo = VO DF ) dxdydr. (3.21)
Ti+e/2 JR" JR? x — y|n+Sp

We conclude this step by observing the right-hand side of (3.17) as 2 | 0. Under such a choice of
¢ = x«(T)v, by supp(ys) C [11 + &/2, T, — £/2] again, we have that

S S
f b o(r, 9)dd = f e Eya()v(x, 9) do
0 T

1+8/2

and therefore, for any 7; > 0 and fixed £ > 0,

1 S
flvlq_lv(O)Zf e_%go(x, ) dx
Q 0

in the limit 2 | 0. Combining this with (3.20) and (3.21) concludes that

_Tire2 S
<¢ hh f v(x, 0) f (e, ®)|dx — 0 (3.22)
Q T

1+&/2

T1+E

Ty—&/2
- L |y|7*! dxdT + L |7+t dxdr
g+l gq+1
T1+e/2 JQ T)—& Q

e/ f |V(x, T) - V(y’ T)lp
R* JR"

=P

(3.23)
+

Ye(T) dxdydr < 0.

T1+€/2

Step 2: We select the test function ¢ = y.(7)v in the weak formulation (3.18). A completely same
argument as Step 1 leads to

lim sup ff A (VT W]y ev dxdr
nlo Qs

T1+E T2—€/2
< _J( f q%lvlq” dxdr +J[ f ﬁMqH dxdr,
T1+8/2 JQ -€ Q
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where we have used the second identity in Lemma 2.5-(i1) and Lemma 2.3 and

lim f ’ f f ﬂ){ (t) (v(x, ) — v(y, 7)) dxdydr
hlo n R |x - yll’l+Sp € ’ ’
Tr—&/2 _

f f v(x, 7) = v(y, TNPXS(T) dxdydr.

T1+&/2 |X - )’|"+Sp

A similar observation leading to (3.22) yields

1 S 9=
}li%— fg Ivl"_lv(S)(E fo e}hsgo(x,ﬁ)dﬂ) dx =0.

Merging the content of the preceding displays, we obtain

T|+e To—£/2
- f jul*! dxdr + j( f jul*! dxdr
q+l q+1
T1+€/2

rel? f v(x, 7) —v(y, DI
R* JR"

=

(3.24)

Ye(T)dxdydr > 0

T1+€/2

in the limit 2 | 0. Hence, the above displays (3.23) and (3.24) eventually yield the identity

TI+E Tr—€/2
f M7t dxdr + J( f M7+ dxdr
q+l q+1
T1+&/2

T2—/2 _ p
f f f v 7 = v, 7l Ye(7) dxdydr = 0.
T1+€/2 R® JR™ |X - )’|"”‘”

Since v € C([0, S]; LI*1(Q)) by Theorem 3.5, we can apply Lebesgue’s differentiation theorem and the
dominated convergence theorem to get

- f el I(C N dx + f . (T2)|9™" dx

p
f f WD) = VO D ydr = 0
LIV, UR P e |

as € | 0, proving the desired identity (3.16). Finally, this together with (3.3) leads to

f [v(T)|7+! dx — f ()l dx sC( f dedy) (12 — 11)
Q Q Rr JR2

b=y
with a constant C = C(p, ¢), as claimed. O

4. Proof of Theorem 1.1
We report the proof of Theorem 1.1.
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Proof. For the reader’s convenience we will demonstrate a formal manipulation and reveal the
relevance of intrinsic scaling above to the nonlocal p-Sobolev flow (1.1). In a completely similar
way of [28, Appendix C], the argument will be guaranteed rigorously.

Fix powers p > 1, ¢ > 0 and s € (0, 1) such that g + 1 = p} and sp < n and use shorthand notation

1
1
y(t) = ( f vt (x, 7(1)) dx) .
R)l
The proof now goes in three steps.

Step 1: Firstly, by observation that

d
5\ 80) = N (g(0)g'(1)

= (S*) M) ( f v (x, 7(1)) dx) n
R

=(S *)—1 e/\(g(l)),y(t)(qﬂ)%

we gain
_dr e d — y(A\g+DE
TE = S’e dt/\(g(t)) = (0 : 4.1)

Since by Proposition 3.6, T +— ( f
R

n

g+1
vq“(x, T) dx) is differentiable almost everywhere, we observe
that
Au? = 0Ty +vi(—q)y Ty (¢
t tz ( _65)): Y () 42)
= 0vly P —quly™ Y (1),

where, in the last line, we have manipulated that —qg + (¢ + 1)% = 1 — p. Recalling identity (3.5)
and (3.16) in Proposition 3.6, we deduce that

I
1 T d
Y = — f v (x, 7(r)) dx ' — f v (1) dx
q + 1 R2 dT R”

o 1y f f e T@) = vo, T
q R? JR" |.x - y|n+sp

1 1) —u(y, )P
Y f ux, 1) — u(y, 0| dxdy, 4.3)
q" JrrJrn X —yImer

Ty
T=7(t)

where in the penultimate line we have used —¢g + (¢ + 1)% = 1 — p again, and
(—=A)u = y'"P(=A). (4.4)

We merge two displays (4.2) and (4.3) to get

1) — HP
Ou? = dvly' P + (f f . 1) = u(y. o) dxdy | uf.

=y
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This together with (4.4) and (1.6); yields that

! , 1) — ,HIP
O + (=A)u = (f f lu(x, D) = uly, ) dxdy | u?,
) VI P | (A

therefore (1.1), is confirmed.

Step 2: By definition (1.7) in the statement of Theorem 1.1, the composite function u satisfies

u(t)™"' dx = 1 for any ¢ € [0, c0), that is the volume constraint (1.1),.
Q
We now show that u is indeed in the demanded class. Let 7 < oo be any positive number and set

S = 8*(1 — e MM Notice that T T 0o <= § 1 S*. Thanks to Proposition 3.6, there exists a
positive number 7y, so that

Yanin = MU y(7) = min V(7| @ > 0.
By using v = 0in (R"\ Q) X (0,5), y(#) > ¥Ymin > 0, (3.2) and (3.3) with vy = u, and appealing to the

Holder inequality, we get

1
. lu()|P dx = oy

p/p;
[ ax< e ([ paora)
Q Q

(32) . .
P s K
< Vmin|Q|(p‘ PIPs < 0o

fflu(x’t)_u(y’t)lpdxdy: 1 ff|V(X,T(f))—V(YaT(f))|pdxdy
Rr JRe |x—y|"+5p V()P Jgn Jpn |x_y|n+sp

33 _pf luo(xx) — uo(y)I”
R? JR2

< Y min |x _ y|n+sp

and

dxdy < oo,

therefore u € L™ (0, T ; W*P(R")), as desired.
Step 3: Finally, we show the function u satisfies the initial boundary condition (1.1);4. Since
v(7) € W,P(Q) for almost every 7 € (0,5), u(t) = v(t(1))/y(r) € W,"(Q) for almost every € [0, T],
which confirms (1.1);. By adding and subtracting y(0) = [lug||s+1() = 1, we have
v(t(1))
y(©)

”u(t) - l/t()”WAv,p(Rn) = — Uy

Ws:P(R™)

1
< %I: ”V(T(l)) - uO”W&p(Rn) + ”MOHWLP(Rn)l')/(I) _ ’)’(O)l .

Since by the monotone increasing property of A(r) and g(#) with A(0) = g(0) = 0, there holds that
7(t) = S*(1 — e A6y | 0 if and only if ¢ | 0. Therefore, thanks to the continuity of a map [0, c0) >
w = wi! and Proposition 3.6, it verifies that

ly(®) —y(0)| = 0

in the limit 7 | 0. Bearing in mind this and the condition [[v(7) — uo|lys»gn — 0 as 7 | 0, we gain

l|2e(t) — uollwsr@ny = 0

as ¢t | 0 and therefore, the proof is finally complete. O
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5. Proof of Theorem 1.2

This final section is devoted to the proof of Theorem 1.2.
Proof of Theorem 1.2. The global existence result in turn follows from Theorem 3.1 and the nonlinear

intrinsic scaling in Theorem 1.1. We now prove the demanded regularity. For every positive number
T < oo, letus take S = S*(1 — e~ *¢T)) By (4.1) and (4.3) we have

3(1ul"™ ) = 9,(y(0y % M7 v(0)

1 1 P g
(@)@, q+ (t)__l( 5y(t)1_pf f v(x, ) = v(y, 7)| dxdy)lvl;v
R JRo

=P

gt » a1
O Y (et

1 - P -
q+ (f v(x, 1) — vy, 7)| dxdy)y(t)_plulzlu
R* JR"

2q |x — y|r+sp
+1 sp —1
+ YT (v T ).

This observation together with three displays (1.1),, (4.1), (4.3), and estimates (3.3) and (3.4) with
Vo = ug validates that

I,

é C@tteTy e, fo Y(t)2P ( f ,, v(x, 7()) = v(y, ()P W dy)

8, |u| o u dxdt

R |X y|n+sp

. ( f |u(r)|7+! dx) dt
Q

————
=1

+ C(g) f f y(1) @D+ D@D g
Qg

T
C@Nolysery fo YO gy (o)) de

+ C(g) f f y(@)™"
Qg
(3.4)

< C(q)[MO][‘,)VX,p(RH) [%’y(l‘)_p

v %v ’ dxdr
()

43),,(1.1),

aT(|v|"T"v)'2 dxdr

T

+ C(Q)Y i [0 Y5 ey
=0

< C(C[ ) [MO]IJVLP (]R")’yr_nlfn’

therefore the assertion is actually verified. O
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