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1. Introduction

Let Ω be a bounded C3 domain in Rn and u ∈ C3(Ω). In this paper, we will establish a priori
gradient estimates for solutions of the prescribed k-curvature equation with the prescribed contact
angle boundary value 

σk(κ) = f (x, u), in Ω,

∂u
∂ν

= φ(x)
√

1 + |Du|2, on ∂Ω.
(1.1)

where κ = (κ1, · · · , κn) are the principal curvatures of the graphM = {(x, u(x)) ∈ Rn+1|x ∈ Ω}, n ≥ 2, f
is a smooth, positive function in Ω and φ is a smooth function on Ω such that −1 < φ < 1. And for any
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k = 1, 2, · · · , n,

σk(λ) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · · λik , (1.2)

the k-order fundamental symmetric function of λ ∈ Rn. For k = 1, n, the (1.1) is the mean curvature
and Gaussian curvature equation respectively.

The gradient estimate for the prescribed mean curvature equation has been extensively studied. The
interior gradient estimate, for the minimal surface equation, was obtained in the case of two variables
by Finn [2]. Bombieri-De Giorgi-Miranda [1] obtained the estimate for high dimensional cases. For
the general mean curvature equation, such an estimate had also been obtained by Ladyzhenskaya
and Ural’tseva [10], Trudinger [17] and Simon [13]. All their methods were used by test function
argument and a resulting Sobolev inequality. A more detailed history could be found in Gilbarg
and Trudinger [3]. In 1983, Korevaar [5] introduced the normal variation technique and got the
maximum principle proof for the interior gradient estimate on the minimal surface equation, then
in 1987 Korevaar [6] got the interior gradient estimates for the higher order curvature equations.
Trudinger [18] also studied the curvature equations and got the interior gradient estimates for a
class curvature equation. In 1998, Wang [19] gave new proof for the interior gradient estimates on
the general k-curvature equation via the standard Bernstein technique. In 2012, Sheng-Trudinger-
Wang [16] also gave a new proof for the general Weingarten curvatures equation by the moving frame
on the hypersurface.

For the mean curvature equation with the Neumann boundary value problem, Ma and Xu [11]
used the technique developed by Spruck [14], Lieberman [7], Wang [19] and Jin-Li-Li [4] to get the
global gradient estimates. As a consequence, they obtained an existence theorem for a class of mean
curvature equations with the Neumann boundary value. For a fully nonlinear elliptic equation with
Neumann boundary value or oblique derivative problem, we recommend Lieberman [8] to readers.
Recently, Ma and Wang [12] used the technique developed by Sheng-Trudinger-Wang [16] to give a
simpler new proof of the gradient estimates for the mean curvature equation with Neumann boundary
value and prescribed contact angle boundary value. In this paper, we use the same technique to get
the global gradient estimates for the k-curvature equation with the prescribed contact angle boundary
value. Precisely, we have the following theorem.

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain with a C3 boundary, n ≥ 2, ν is the unit inner normal
to ∂Ω. Suppose f ∈ C1(Ω × [−M0,M0]) satisfies that fz ≥ 0 with infΩ f ≥ f0 > 0, and φ ∈ C3(Ω) and
−1 < φ < 1. If u ∈ C2(Ω)∩C3(Ω) is a bounded k-admissible solution of the k-curvature equation (1.1),
then we have

sup
Ω

|Du| ≤ C, (1.3)

where C is a positive constant depending on n, k, f0, Ω, | f |C1(Ω×[−M0,M0]), |φ|C3(Ω), and M0 = |u|C0(Ω).

Remark 1.2. We define the Garding’s cone as Γk = {λ ∈ Rn|σi(λ) > 0, 1 ≤ i ≤ k}. Then we say a
function u is k-admissible if λ(D2u) ∈ Γk, where λ(D2u) = (λ1, · · · , λn) are eigenvalues of the Hessian
matrix D2u.
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Remark 1.3. In order to prove the existence theorem for the k-curvature equations with the prescribed
contact angle boundary value problem, we still need global estimates for second-order derivatives.
In another paper, we had gotten the global gradient estimates for the k-curvature equation with the
Neumann boundary value problem.

The rest of the paper is organized as follows. In Section 2, we first give the definitions and some
notations. We also give some basic properties of the fundamental symmetric functions. In Section 3,
we prove the main Theorem 1.1 by the moving frame on the hypersurface.

2. Preliminary

A, B, · · · will be from 1 to n + 1 and i, j, α, · · · from 1 to n, the repeated indices denote summation
over the indices.

Let Ω be a bounded domain in Rn and u ∈ C∞(Ω). Then the graph of u is a hypersurface in Rn+1,
denoted byM, given by the smooth embedding X : Ω→ Rn+1,

X(x1, · · · , xn) = (x1, · · · , xn, u(x1, · · · , xn)). (2.1)

Denote ui = uxi , ui j = uxi x j , and Du = (u1, · · · , un). Then the downward unit normal ofM is

N =
(Du,−1)√
1 + |Du|2

. (2.2)

Let {ε1, ε2, · · · , εn+1} be the standard orthonormal basis in Rn+1. We choose an orthonormal frame
in Rn+1 such that {e1, e2, ..., en} are tangent toM and en+1 = N is the downward unit normal. Let the
corresponding coframe be denoted by {ωA} and the connection forms by {ωA,B}. The pullback of them
through the embedding are still denoted by {ωA},{ωA,B} in the abuse of notation. Therefore onM

ωn+1 = 0.

The second fundamental form is defined by the symmetry matrix {hi j} with

ωi,n+1 = hi jω j. (2.3)

The principal curvatures κ = (κ1, κ2, · · · , κn) are the eigenvalues of the second fundamental form (hi j).
The first and second-order covariant derivatives will be denoted by ∇i, ∇i∇ j respectively. We recall

the following fundamental formulas of a hypersurface in Rn+1.

∇ j∇iX = ∇ jei = − hi jen+1, (Gauss formula) (2.4)
∇ien+1 = hi je j. (Weingarten equation) (2.5)

We denote

d(x) = dist(x, ∂Ω),
Ωµ = {x ∈ Ω| d(x) < µ}.
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It is well known that there exists a small positive universal constant µ0 such that d(x) ∈ C3(Ωµ), ∀0 <
µ ≤ µ0, provided ∂Ω ∈ C3. As in Simon-Spruck [15] or Lieberman [7] (on page 331), we can extend ν
by ν = Dd in Ωµ and note that ν is a C3(Ωµ) vector field. As mentioned in the book [7], we also have
the following formulas

|Dν| + |D2ν| ≤ C(n,Ω), in Ωµ,
n∑

i=1

νiD jν
i =

n∑
i=1

νiDiν
j =

n∑
i=1

didi j = 0, |ν| = |Dd| = 1, in Ωµ.
(2.6)

Lemma 2.1. Denote v =
√

1 + |Du|2 and eB
A = 〈eA, εB〉 for A, B = 1, · · · , n + 1. We have

∇iv = v2hir∇ru, (2.7)
∇ j∇iv = 2v3h jr∇ruhis∇su + v2∇rhi j∇ru + vhirh jr, (2.8)
∇iur = vhis(ur∇su + er

s), (2.9)
∇ j∇iur = 2v2h jp∇puhiq(ur∇qu + er

q) + v∇phi j(ur∇pu + er
p). (2.10)

Proof. Note that u = 〈X, εn+1〉. Using the Gauss formula and Weingarten equation above, we obtain

∇iv = ∇i(−
1

〈en+1, εn+1〉
)

=
1

〈en+1, εn+1〉
2∇i〈en+1, εn+1〉

= v2hil〈el, εn+1〉

= v2hil∇lu.

Similarly, we have

∇ j∇iv = ∇ j

(
v2hil〈el, εn+1〉

)
= 2v3h jr∇ruhis∇su + v2∇rhi j∇ru + vhirh jr

It follows that, recall ul = v〈en+1, εl〉 = vel
n+1,

∇iul = ∇i(v〈en+1, εl〉) = v2hir∇ruel
n+1 + vhirel

r

= vhir(ul∇ru + el
r).

Furthermore, we have

∇ j∇iul = ∇ j
(
vhir(ul∇ru + el

r)
)

= v2h js∇suhir(ul∇ru + el
r) + v∇ jhir(ul∇ru + el

r)
+ vhir

(
ul∇ j∇ru + v∇ruh js(ul∇su + el

s) + ∇ jel
r
)
,

noting that

∇ jel
r = −h jrel

n+1 = −ul〈∇ j∇rX, εn+1〉 = −ul∇ j∇ru,

then, since ∇ jhir = ∇rhi j (Codazzi equation),

∇ j∇iul = 2v2h js∇suhir(ul∇ru + el
r) + v∇rhi j(ul∇ru + el

r).

�
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Now we give some basic properties of elementary symmetric functions, which could be found in [9].
First, we denote by σk(λ|i) the symmetric function with λi = 0 and σk(λ|i j) the symmetric function

with λi = λ j = 0.

Proposition 2.2. Let λ = (λ1, · · · , λn) ∈ Rn and k = 1, · · · , n, then

σk(λ) = σk(λ|i) + λiσk−1(λ|i), ∀1 ≤ i ≤ n,
n∑

i=1

λiσk−1(λ|i) = kσk(λ),

n∑
i=1

σk(λ|i) = (n − k)σk(λ).

Recall that Garding’s cone is defined as

Γk = {λ ∈ Rn : σi > 0,∀ 1 ≤ i ≤ k}.

Proposition 2.3. Let λ ∈ Γk and k ∈ {1, 2, · · · , n}. Suppose that

λ1 ≥ · · · ≥ λk ≥ · · · ≥ λn,

then we have

σk−1(λ|n) ≥ · · · ≥ σk−1(λ|k) ≥ · · · ≥ σk−1(λ|1) > 0. (2.11)

Then the k-curvature equation (1.1) is elliptic if the principal curvatures κ ∈ Γk.

3. Gradient estimate for prescribed contact angle

We consider the following k-curvature equation with the prescribed angle condition and obtain a
gradient estimate of k-admissible solution. We state it again in the following theorem.

Theorem 3.1. Let Ω ⊂ Rn be a bounded domain with C3 boundary. f ∈ C1(Ω × [−M0,M0]) satisfies
that fz ≥ 0. Assume u is a k-admissible solution of the equation

σk(hi j) = f (x, u), in Ω

∂u
∂ν

= φ(x)
√

1 + |Du|2, on ∂Ω,
(3.1)

where ν be the unit inner normal vector on ∂Ω and φ ∈ C3
(
Ω̄, (−1, 1)

)
. We have

sup
Ω

|Du| ≤ C. (3.2)

Proof. Denote v =
√

1 + |Du|2 and M0 = supΩ |u|. Let

w := v − uνφ, (3.3)
ψ(u) := α1(1 + M0 + u). (3.4)
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The constant α1 will be determined later. Fix a small 0 < µ ≤ µ0 and consider the auxiliary function

G(x) := log log w + ψ(u) + d, x ∈ Ωµ. (3.5)

There are three cases to be considered.
Case 1. G(x) attains maximum at x0 ∈ ∂Ωµ ∩Ω.
By the interior gradient estimates of Korevaar [6] and Wang [19], we have

sup
Ω

|Du| ≤ C. (3.6)

Case 2. G(x) attains maximum at x0 ∈ ∂Ω.
Assume U ⊂ Rn be a neighborhood of x0. We choose a geodesic coordinate {xi}

n−1
i on U ∩ ∂Ω

centered at x0. We let ∂xn = ν at x0. In the following, we take all calculations at x0.
Denote (bi j) the second fundamental form of ∂Ω with respect to ν. We have

Gn =
wn

w log w
+ α1un + 1 ≤ 0, (3.7)

and

G j =
w j

w log w
+ α1u j = 0, j = 1, 2, · · · , n − 1. (3.8)

Denote a = w log w for simplicity. Note that

un = φv, (3.9)
wl = vl − unlφ − unφl, l = 1, 2, · · · , n, (3.10)

vn =
1
v

n−1∑
i=1

uiuin +
ununn

v

=
1
v

n−1∑
i=1

uiuin + φunn. (3.11)

Choose l = n in (3.10), then plug into (3.11) to get

wn =
1
v

n−1∑
i=1

uiuin − unφn

=
1
v

n−1∑
i=1

uiuni −
1
v

n−1∑
i=1

uibi ju j − vφφn

≥
1
v

n−1∑
i=1

uiuni −Cv.

(3.12)

By (3.8) and (3.10),

vi = uniφ + unφi − α1aui. (3.13)
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From the boundary data un = φv and (3.13), we have

uni = (φv)i = φiv + viφ

= φiv − α1auiφ + uniφ
2 + unφiφ.

(3.14)

It follows that

uni =
1

1 − φ2 (φiv − α1auiφ + vφiφ
2)

≥ −
α1aφui

1 − φ2 −Cv.
(3.15)

Plugging (3.15) into (3.12), we get

wn ≥ −
α1aφ

(1 − φ2)v

n−1∑
i=1

u2
i −Cv

=
α1aφ

(1 − φ2)v
− α1aφv −Cv.

(3.16)

Here we use the fact

v2 − 1 =

n−1∑
i=1

u2
i + u2

n =

n−1∑
i=1

u2
i + v2φ2 at x0 ∈ ∂Ω. (3.17)

Putting (3.17) into (3.7), we have

0 ≥ − α1φv +
α1φ

(1 − φ2)v
−

Cv
w log w

+ α1un + 1

=
α1φ

(1 − φ2)v
−

Cv
w log w

+ 1. (3.18)

Thus we have v ≤ C.
Case 3. G(x) attains its maximum at x0 ∈ Ωµ.
Direct computation shows that

∇iG =
∇iw

w log w
+ α1∇iu + ∇id, (3.19)

and

∇ j∇iG =
∇ j∇iw
w log w

−
∇iw∇ jw

(w log w)2 (1 + log w) + α1∇ j∇iu + ∇ j∇id. (3.20)

From (2.7)–(2.10) and (3.3), we have

∇iw = ∇i(v − urdrφ)
= v2hir∇ru − vhis(ur∇su + er

s)drφ − ur∇i(drφ)
= v(v − urdrφ)hir∇ru − vhir∇rdφ − ur∇i(drφ)
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= vwhir∇ru − vhir∇rdφ − ur∇i(drφ), (3.21)

and

∇ j∇iw = ∇ j∇iv − ∇ j∇iurdrφ − ∇iur∇ j(drφ) − ∇ jur∇i(drφ)
− ur∇ j∇i(drφ)

= 2v3h jr∇ruhis∇su + v2∇rhi j∇ru + vhirh jr

− 2v2h jp∇puhiq(ur∇qu + er
q)drφ − v∇phi j(ur∇pu + er

p)drφ

− vhis(ur∇su + er
s)∇ j(drφ) − vh js(ur∇su + er

s)∇i(drφ) − ur∇ j∇i(drφ)
= 2v2wh jr∇ruhis∇su + vw∇rhi j∇ru + vhirh jr

− 2v2h jp∇puhiq∇qdφ − v∇phi j∇pdφ

− vhis(ur∇su + er
s)∇ j(drφ) − vh js(ur∇su + er

s)∇i(drφ) − ur∇ j∇i(drφ). (3.22)

By selecting a suitable moving frame, we assume (hi j) is diagonal at x0. At the maximum point
x0 ∈ Ωµ, from (3.19) and ∇G = 0, we see that

−
∇iw

w log w
= α1∇iu + ∇id. (3.23)

Together with (3.21), we also have

−w log w(α1∇iu + ∇id) = vwhii∇iu − vhii∇idφ − ur∇i(drφ). (3.24)

We divide the indexes i ∈ I = {1, 2, · · · , n} into two subsets as follows.

J = {i ∈ I : |α1∇iu| ≤ 9}, (3.25)
K = I\J = {i ∈ I : |α1∇iu| > 9}. (3.26)

For i ∈ J, recall |∇d| ≤ 1,

|α1∇iu + ∇id|2 ≤ 100. (3.27)

For i ∈ K, we have

α1|∇iu| >
4
5
|α1∇iu + ∇id| > 6, (3.28)

Now we assume v, w large enough, i.e., v ≥ max{α1
ε
, exp 2

ε
}, then

|vhii∇idφ|| ≤ ε|vwhii∇iu|, (3.29)

and

|ur∇i(drφ)| ≤ εw log w|α1∇iu + ∇id|, (3.30)
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for a small positive number ε. Then, using (3.24), we get

hii ≤ 0, for i ∈ K, (3.31)

and

1 + ε

log w
v|hii∇iu| ≥ (1 − ε)|α1∇iu + ∇id|. (3.32)

Thus, plugging (3.28) into (3.32), we have

−α1vhii|∇iu|2 ≥
3 log w

4
|α1∇iu + ∇id|2, for i ∈ K, (3.33)

provided we set ε = 1
100 .

By the maximum principle, by (3.20), we have

0 ≥ F i j∇ j∇iG

=
1

w log w
F ii∇i∇iw −

1 + log w
(w log w)2 F ii|∇iw|2 + α1F ii∇i∇iu + F ii∇i∇id

≥
1

w log w
F ii∇i∇iw −

9 log w
8

F ii(α1∇iu + ∇id)2 +
α1 f

v
−CF . (3.34)

We use the fact ∇i∇ ju =
hi j

v in the last inequality and assume v large.
From (3.22) we obtain

F ii∇i∇iw = 2v2wF iih2
ii|∇iu|2 + vwF ii∇rhii∇ru + vF iih2

ii − 2v2F iih2
ii∇iu∇idφ

− vF ii∇rhi j∇rdφ − 2vF iihii(∇iuur + er
i )∇i(drφ) − urF ii∇ j∇i(drφ)

= 2vF iihii∇iu(vwhii∇ru − vhii∇idφ − ur∇i(drφ)) + vF iih2
ii

+ vw〈∇ f ,∇u〉 + vw fz|∇u|2 − vφ〈∇ f ,∇d〉

− 2vF iihiier
i∇i(drφ) − urF ii∇ j∇i(drφ). (3.35)

By (3.24), fz ≥ 0, |〈∇ f ,∇u〉| ≤ |D f |
v , and the Cauchy-Schwartz inequality, we have

F ii∇i∇iw = − 2vw log wF iihii∇iu(α1∇iu + ∇id) + vF iih2
ii

+ vw〈∇ f ,∇u > −vφ〈∇ f ,∇d > −2vF iihiier
i∇i(drφ) − urF ii∇ j∇i(drφ)

≥ − 2α1vw log wF iihii|∇iu|2 − 2vw log wF iihii∇iu∇id + vF iih2
ii

− 2vF iihiier
i∇i(drφ) −Cv(1 + F )

≥ − 2α1vw log wF iihii|∇iu|2 − 2vw log wF iihii∇iu∇id + vF iih2
ii

− ε1vF iih2
ii −

Cv
ε1
F −Cv(1 + F ). (3.36)

Multiplying ∇id with both sides of (3.24), we have

−w log w(α1∇iu + ∇id)∇id = vwhii∇iu∇id − vhii|∇id|2φ − ur∇i(drφ)∇id.
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It follows that, by the Cauchy-Schwartz inequality,

2vwF iihii∇iu∇id = 2φvF iihii|∇id|2 + 2F iiur∇i(drφ)∇id

− 2w log wF ii(α1∇iu + ∇id)∇id

≥ − ε1
v

log w
F iih2

ii − −
φ2

ε1
log wF −CvF

− ε2w log wF ii(α1∇iu + ∇id)2 −
w log w
ε2

F . (3.37)

Similarly, multiplying ∇iu with both sides of (3.24), we have

−w log w(α1∇iu + ∇id)∇iu = vwhii|∇iu|2 − vhii∇id∇iuφ − ur∇i(drφ)∇iu.

By the Cauchy-Schwartz inequality, recall |α1∇iu| ≤ 9, for i ∈ J,

−
∑
i∈J

2α1vwF iihii|∇iu|2 = −
∑
i∈J

2α1φvF iihii∇id∇iu −
∑
i∈J

2α1F iiur∇i(drφ)∇iu

+
∑
i∈J

2α1w log wF ii(α1∇iu + ∇id)∇iu

≥ − ε1
v

log w
F iih2

ii − −
81φ2

ε1
log wF −CvF

− ε2w log wF ii(α1∇iu + ∇id)2 −
81w log w

ε2
F . (3.38)

Here we point out that C is independent of α1.
Plugging (3.37) and (3.38) into (3.36), we have

F ii∇i∇iw ≥ −
∑
i∈K

2α1vw log wF iihii|∇iu|2 + v(1 − 3ε1)F iih2
ii −

82φ2

ε1
| log w|2F

− 2ε2w| log w|2F ii(α1∇iu + ∇id)2 −
82w| log w|2

ε2
F −Cv log wF

Cv
ε1
F −Cv(1 + F ). (3.39)

Set ε1 = 1
3 , ε2 = 1

16 , and assume v is sufficiently large, then

F ii∇i∇iw ≥ − 2α1vw log wF iihii|∇iu|2 −
1
8

w| log w|2F ii(α1∇iu + ∇id)2

−Cw| log w|2F , (3.40)

Putting (3.40) into (3.34), we get

0 ≥ F i j∇ j∇iG

≥ −
∑
i∈K

2α1vF iihii|∇iu|2 −
5 log w

4
F ii(α1∇iu + ∇id)2
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−C log wF −CF . (3.41)

In view of (3.28), we see that

−
∑
i∈I

5 log w
4

F ii(α1∇iu + ∇id)2 ≥ −
∑
i∈K

5 log w
4

F ii(α1∇iu + ∇id)2

−C log wF . (3.42)

On the other hand, by (3.31) and (3.33),

−
∑
i∈K

2α1vF iihii|∇iu|2 ≥
∑
i∈K

6 log w
4

F ii(α1∇iu + ∇id)2. (3.43)

Particularly, there is i0 ∈ K, say i0 = 1, such that |∇1u| ≥ 1
2
√

n and F11 ≥ 1
nF .

Plugging (3.42) and (3.43) into (3.41) and choosing α1 = max{4
√

n, 16nC}, we have

0 ≥
log w

4
F11(α1∇1u + ∇1d)2 −C log wF −CF

≥
(α2

1 log w
128n2 −C

)
F . (3.44)

Thus we have (1 − |φ|)v ≤ w ≤ exp 128n2C
α2

1
and finish the proof.
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