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Abstract: We consider elastic thin shells without through-the-thickness shear and depict them as
Gauss graphs of parametric surfaces. (We use the term shells to include plates and thin films therein.)
We consider an energy depending on the first derivative of the Gauss map (so, it involves curvatures)
and its second-rank minors. For it we prove existence of minimizers in terms of currents carried by
Gauss graphs. In the limiting process we adopt sequences of competitors that satisfy a condition that
prevents self-penetration of matter.
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1. Introduction

Shells are three-dimensional bodies with one dimension that is largely smaller than the others.
This geometric class of bodies includes plates, the relaxed shape of which is flat, and thin films,
characterized by vanishing thickness. Such geometric features suggest to represent shells by looking
at their middle surface only, with the proviso of assigning to each point of such a surface information
on the through-the-thickness behavior. Every point of the middle surface is thus endowed with
degrees of freedom that are additional to those natural for a point in 3D space; they summarize the
through-the-thickness behavior in a way rendered precise in each specific model. The variability of
possible choices generated a number of models, each implying peculiar analytical problems.
However, pertinent analyses appear in a sense more manageable than those based on looking at shells
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as genuine three-dimensional bodies. A related question concerns the rigorous justification of such
approximate models. In the elastic case, non trivial relevant results are available. For them, the energy
scaling with the thickness plays a crucial role (pertinent analyses are in reference [10]; see
also [9, 16, 21] on this matter).

In 1958 [8], Jerald LaVerne Ericksen and Clifford Ambrose Truesdell III resumed the 1909 theory
by Eugène and François Cosserat, noticing that Cosserat’s surfaces were an appropriate ground for
models of beams and shells. Such surfaces are endowed with out-of-surface vector field. Every element
of this field is in principle free to rotate independently of its neighbors, along any deformation, but
constrained to avoid falling within the tangent plane to the surface at each point. In this way, looking
at shells, one considers at each point on the middle surface any out-of-middle-surface material fiber as
a rigid body. Of course the scheme can be further enriched but also reduced, as, for example, when we
consider such an additional vector field to coincide with the fields of normal to the middle surface that
we consider to be smooth.

This last choice is the one that we adopt in the analyses presented here. With it we avoid considering
through-the-thickness shear. We have however the advantage to look at the deformed shell as the Gauss
graph of a smooth surface. Such a graph is the set of pairs (y, ν(y)), where y ∈ R3 is a point over the
deformed surface and ν(y) the pertinent normal to the surface itself. Of course, with u a deformation
from Ω, a bounded domain in R2, into R3, we have a map Φu assigning to each x ∈ Ω the pair
(u(x), νu(x)) = (y, ν(y)). In such a setting, we consider an elastic shell with an energy given by

Fq(u) :=
∫

Ω

(
|DΦu(x)|q + f (| adj2 ∇u(x)|)

)
dx + E (u) , (1.1)

where adj2 ∇u indicates the second-rank minors of ∇u, E (u) is a potential of external body actions, f
a convex function, and |DΦu(x)|2 = |∇u(x)|2 + |∇νu(x)|2 (in (1.1) unitary dimensional constants are left
understood, for the sake of simplicity). With this energy we account for bending and in-tangent-plane
stretching and shear. We leave a part out-of-tangent-plane shear and thickness stretching, the latter due
to Poisson’s effect.

We prove here existence of minimizers for such an energy in terms of currents carried by Gauss
graphs. For this reason we speak of our result as describing weak deformations for shells. In the proof
we adopt minimizing sequences of deformed shells with non-vanishing thickness. Physics suggests
the existence of at least subsequences of this type. Roughly speaking, under elongation in the middle
surface tangent plane, Poisson’s effect does not allow a reduction of shell thickness below the one of a
single atomic layer.

With this type of sequences, we are able to assure that each their element avoids self-penetration of
matter. And such a property is stable in the limit process.

2. Background analytical material

First, we collect some basic aspects concerning currents associated with graphs of approximately
differentiable maps. Then, we connect them with Gauss graphs of surfaces in the Euclidean space.
Eventually, we recall some structure properties about weak limits of currents carried by Gauss graphs.
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2.1. Currents carried by approximately differentiable maps

The theory of currents is systematically discussed in the two-volume treatise [13,14] (see also [15]).
Here, we limit ourselves to maps u : Ω → R3, where Ω is a bounded domain in R2. We indicate by y
points in R3 while with x those in R2.

For u ∈ L1(Ω,R3) an almost everywhere (a.e.) approximately differentiable map, we denote by
∇u its approximate gradient. Measurable functions into topological spaces with a countable basis
can be approximated by continuous functions on arbitrarily large portions of their domain (this is
Lusin’s theorem). Such continuous functions are what we call the Lusin representatives of the original
functions. So, the map u has a Lusin representative on the subset Ω̃ of Lebesgue points pertaining to
both u and ∇u. Also, we have L 2(Ω \ Ω̃) = 0. We shall thus denote by adj2 F ∈ R3 the 3-vector given
by the 2 × 2 minors of a matrix F ∈ M3×2.

Definition 2.1. We say that u belongs to A 1(Ω,R3) if ∇u ∈ L1(Ω,M3×2) and adj2 ∇u ∈ L1(Ω,R3).

The graph of a map u ∈ A 1(Ω,R3) is defined by

Gu :=
{
(x, y) ∈ Ω × R3 | x ∈ Ω̃ , y = ũ(x)

}
,

where ũ(x) is the Lebesgue value of u. It turns out that Gu is a countably 2-rectifiable set of Ω×R3, with
H 2(Gu) < ∞, where H k denotes the k-dimensional Hausdorff measure. The approximate tangent
plane at (x, u(x)) is generated by the vectors t1(x) = (1, 0, ∂1u(x)) and t2 = (0, 1, ∂2u(x)), where the
partial derivatives are the column vectors of the gradient ∇u, and we take ∇u(x) as the Lebesgue value
of ∇u at x ∈ Ω̃. Therefore, the 2-vector

ξ(x) :=
t1(x) ∧ t2(x)
|t1(x) ∧ t2(x)|

provides an orientation to the graph Gu.
Integration of compactly supported smooth 2-forms ω in D2(Ω × R3) on Gu defines the current Gu

carried by the graph of u, namely

〈Gu, ω〉 :=
∫

Gu

〈ω, ξ〉 dH 2 .

Gu is called an integer multiplicity (in short i.m.) rectifiable current in R2(Ω × R3), with mass M(Gu)
equal to the area H 2(Gu) pertaining to the graph of u, so a finite mass. (We write R2 instead of the
common (natural) notation D2 to recall the rectifiable nature of the current.) Since the Jacobian of the
graph map x 7→ (x, u(x)) is equal to |t1(x) ∧ t2(x)|, by the area formula we get

M(Gu) = H 2(Gu) =

∫
Ω

√
1 + |∇u|2 + |adj2∇u|2 dx < ∞ .

By duality, the boundary of Gu is the 1-current ∂Gu acting on D1(Ω × R3), the space of compactly
supported smooth 1-forms η in Ω × R3, as

〈∂Gu, η〉 := 〈Gu, dη〉, η ∈ D1(Ω × R3) ,
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where dη is the differential of η. By Stokes theorem we get

∂Gu = 0 on D1(Ω × R3) (2.1)

if u is of class C1. However, in general, the boundary ∂Gu does not vanish and may not have finite
mass in Ω × R3. On the other hand, if ∂Gu has finite mass, the boundary rectifiability theorem states
that ∂Gu is an i.m. rectifiable current in R1(Ω × R3).

Example 2.1. If u is a Sobolev map in W1,q(Ω,R3), with q ≥ 1, the approximate gradient agrees with
the density of the weak derivative of u. Moreover, since | adj2 ∇u| ≤ c |∇u|2, we get W1,2(Ω,R3) ⊂
A 1(Ω,R3).

The null-boundary condition (2.1) holds true for Sobolev maps u ∈ W1,2(Ω,R3), by approximation.
In fact, if {uh} ⊂ C1(Ω,R3) is such that uh → u strongly in W1,2, by dominated convergence we infer
that Guh converges to Gu weakly as currents, i.e., 〈Guh , ω〉 → 〈Gu, ω〉 for each ω ∈ D2(Ω × R3). So,
condition (2.1) is preserved in the weak limit process.

Take Ω = B2, with B2 the unit disk centered at the origin O, and u : B2 → R3 as the zero-
homogeneous map

u(x) = ϕ
( x
|x|

)
, x , O

for some Lipschitz-continuous map ϕ : ∂B2 → R3. Then, u ∈ W1,q(B2,R3) for each q < 2, and
adj2 ∇u = 0, by the area formula, whence u ∈ A 1(B2,R3). However (compare Example 2 in reference
[13, Sec. 3.2.2]), we compute

(∂Gu) B2 × R3 = −δO × ϕ#[[ ∂B2 ]] , (2.2)

where δO is the Dirac mass at the origin and ϕ#[[ ∂B2 ]] is the image through the map ϕ of the 1-current
[[ ∂B2 ]] associated with the naturally oriented unit circle ∂B2. Therefore, condition (2.1) fails to hold
whenever ϕ#[[ ∂B2 ]] is non-trivial (see Examples 7.1 and 7.2 below).

2.2. Gauss graphs of smooth surfaces

We summarize in this section some issues concerning Gauss graphs of surfaces with codimension
one. Our main reference is [5] (see also [4]). Such notions are essential for the rest of this work because
we refer to functionals depending on curvatures.

Given a smooth (say C2), bounded, and oriented surface M ⊂ R3, with smooth boundary ∂M , the
Gauss map ν : M → S2 associates to each point y in M the unit normal ν(y) ∈ S2, where

S2 := {z ∈ R3 : |z| = 1} .

The graph of such a map, or Gauss graph, is the 2-dimensional surface in R6 given by

GM := {(y, ν(y)) | y ∈M } ⊂M × S2 ⊂ R3 × R3
z ' R

6 ,

where R3
z is the isomorphic copy of R3 in which we consider embedded the sphere S2.

Therefore, we shall denote by (ε1, ε2) and (e1, e2, e3) the canonical bases of R2 and R3
y , respectively,

and by (ε1, ε2) and (e1, e2, e3) the natural dual bases defined by εi · ε
j = δ

j
i and eh · ek = δ k

h , where the
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interposed dot means dual pairing. In particular, we will identify the dual bases with (dx1, dx2) and
(dy1, dy2, dy3), which are naturally dual to ( ∂

∂x1 ,
∂
∂x2 ) and ( ∂

∂y1 ,
∂
∂y2 ,

∂
∂y3 ). We also correspondingly denote

by (ε1, ε2, ε3) the canonical basis of R3
z , and by (dz1, dz2, dz3) the dual basis, after adopting the previous

identification.
The Hodge star, applied to the normal vector ν(y), defines a 2-form over the tangent space at y.

We then have a field, that we call a tangent 2-vector field τ : M →
∧2 TM ⊂

∧2 R3
y with values

τ(y) = ∗ν(y). Denoting by Φ : M → R3
y × R

3
z the graph map Φ(y) := (y, ν(y)), a continuous tangent

2-vector field ξ : GM →
∧2(R3

y ×R
3
z ) is given by ξ(y, ν(y)) :=

∧2 dΦ(τ(y)). Since |ξ| ≥ 1 on GM , the

normalized 2-vector field
−→
ζ := ξ/|ξ| determines an orientation to GM . Therefore, the corresponding

i.m. rectifiable 2-current [[ GM ]] in R2(R3
y × R

3
z ) carried by the Gauss graph has multiplicity one and

support contained in M × S2. Its action on compactly supported smooth 2-forms ω in R3
y × R

3
z is (by

integration) given by

〈[[ GM ]], ω〉 =

∫
GM

〈ω(y, z),
−→
ζ (y, z)〉 dH 2 , ω ∈ D2(R3

y × R
3
z ) .

By Stokes’ theorem, the boundary current ∂[[ GM ]] acts by integration of 1-forms on the naturally
oriented boundary of GM , so that ∂[[ GM ]] = 0 if M is a closed smooth surface.

The tangential Jacobian JM
Φ

of the graph map is given by

JM
Φ (y) =

(
1 + (k1

2 + k2
2) + (k1k2)2

)1/2
, y ∈M

where k1 = k1(y) and k2 = k2(y) are the principal curvatures at y ∈ M . In fact, we have JM
Φ

(y) =

|ξ(y, ν(y))|. Moreover, denoting by τ1 and τ2 the principal directions, and considering the natural
homomorphism v 7→ ṽ from R3

y onto R3
z , we get

ξ(y, ν(y)) = τ1 ∧ τ2 +
(
k2τ1 ∧ τ̃2 − k1τ2 ∧ τ̃1

)
+ k1k2 τ̃1 ∧ τ̃2 . (2.3)

Also, with the mean curvature and the Gauss curvature given by

H :=
1
2

(k1 + k2) , K := k1k2 ,

so that k1,2 = H ±
√

H2 −K, we may equivalently write

(JM
Φ )2 = 1 + (2H)2 − 2K + K2 = 4H2 + (1 −K)2 .

Therefore, by the area formula, area of the Gauss graph is

H 2(GM ) =

∫
M

(
1 + (k1

2 + k2
2) + (k1k2)2

)1/2
dH 2 =

∫
M

√
1 + (4H2 − 2K) + K2 dH 2 . (2.4)

It agrees with the mass M([[ GM ]]) of the current [[ GM ]].
The curvature functional ‖M ‖ of a smooth surface M ⊂ R3

y is defined in reference [5] to be

‖M ‖ := H 2(M ) +

∫
M

√
k2

1 + k2
2 dH 2 +

∫
M

|k1k2| dH 2 . (2.5)
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It can be equivalently written as

‖M ‖ :=
∫

M

(
1 +
√

4H2 − 2K + |K|
)

dH 2

so that, by formula (2.4), we obtain bounds such as

1
2
‖M ‖ ≤H 2(GM ) ≤ ‖M ‖ , H 2(GM ) = M([[ GM ]]) .

Also, two real measures on R3
y × R

3
z are naturally associated with mean and Gauss curvatures [5]:

χM
1 := −Φ#(H H 2 M ) , χM

2 := Φ#(K H 2 M ) . (2.6)

Consequently, for any ψ ∈ C0(R3
y × R

3
z ) we have

〈χM
1 , ψ〉 = −

∫
M

H(y)ψ(y, ν(y)) dH 2(y) ,

and

〈χM
2 , ψ〉 =

∫
M

K(y)ψ(y, ν(y)) dH 2(y) .

In terms of the current [[ GM ]], such curvature measures read

〈χM
` , ψ〉 = (−1)`〈[[ GM ]], ψΘ`〉 , ∀ψ ∈ C∞c (R3

y × R
3
z ) , ` = 1, 2 .

Θ` = Θ`(y, z) are 2-forms in R3
y × R

3
z , defined in [5]. For two-dimensional surfaces they are explicitly

given by

Θ1 :=
1
2

(
z1(dy2 ∧ dz3 − dy3 ∧ dz2) + z2(dy3 ∧ dz1 − dy1 ∧ dz3) + z3(dy1 ∧ dz2 − dy2 ∧ dz1)

)
,

Θ2 := z1dz2 ∧ dz3 + z2dz3 ∧ dz1 + z3dz1 ∧ dz2 .
(2.7)

Remark 2.1. The dependence of mean curvature from the sign of principal curvatures motivates the
introduction of a factor −1 in order to recover, for parametric surfaces, standard notations (see
expression (3.13) below).

2.3. Weak limits of Gauss graphs

Weak limits Σ of sequences of currents carried by Gauss graphs of smooth surfaces {Mh} are
analyzed in reference [5]. Assuming for simplicity that each Mh is closed, supported in a given
compact set K ⊂ R3, and suph ‖Mh‖ < ∞, it turns out that possibly passing to a subsequence the
currents [[ GM h ]] weakly converge in D2(R3

y × R
3
z ) to an i.m. rectifiable current Σ in R2(R3

y × R
3
z ),

with null boundary, ∂Σ = 0, and with support contained in K × S2.
We thus have

〈Σ, ω〉 =

∫
R
θ 〈ω,−→η 〉 dH 2 , ∀ω ∈ D2(R3

y × R
3
z ) ,
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for some 2-rectifiable subset R of K × S2, some positive and integer-valued H 2 R-measurable
multiplicity function θ : R → N+, and some H 2 R-measurable function −→η : R →

∧2(R3
y × R

3
z ) such

that −→η (y, z) is a unit 2-vector orienting the approximate tangent 2-space T(y,z)R to R at (y, z), for
H 2-a.e. (y, z) ∈ R. In that case, one usually writes Σ = [[ R, θ,−→η ]]. We also denote by

p : R3
y × R

3
z → R

3
y (2.8)

the orthogonal projection onto the first factor. Therefore, P := p(R) is a 2-rectifiable set. Finally, ϕ and
ϕ∗ denote the canonical 1-form and 2-form, respectively given by

ϕ(y, z) := z1dy1 + z2dy2 + z3dy3 ,

ϕ∗(y, z) := z1dy2 ∧ dy3 + z2dy3 ∧ dy1 + z3dy1 ∧ dy2 .

Theorem 2.1. ( [5]) With the previous notation, the following statements hold:

1) 〈Σ, η ∧ ϕ〉 = 0 for each η ∈ D1(R3
y × R

3
z ) ;

2) 〈Σ, ψ ϕ∗〉 ≥ 0 for each ψ ∈ C(R3
y × R

3
z ) such that ψ ≥ 0 ;

3) for H 2-a.e. y ∈ P
p|R−1({x}) ⊂ {(x, ν(x)), (x,−ν(x))} ,

where ν : P→ S2 is an H 2 P-measurable map with ν(y) orthogonal to the approximate tangent
2-space TyP, for H 2-a.e. y ∈ P.

Remark 2.2. We finally recall from reference [5] that property (1) is equivalent to the orthogonality
condition

v • (z, 0R3
z
) = 0 ∀ v ∈ T(y,z)R

for H 2-a.e. (y, z) ∈ R, where • denotes the scalar product in R6. As in reference [5], the stratification

−→η = η(0) + η(1) + η(2)

holds, where according to the number of ε j-entries we have set

η(0) =
∑

1≤i< j≤3

ηi jei ∧ e j , η(1) =

3∑
i, j=1

ηi
jei ∧ ε j , η(2) =

∑
1≤i< j≤3

ηi jεi ∧ ε j .

Then, it turns out that properties (1) and (2) are equivalent to

〈Σ, ψ ϕ∗〉 =

∫
R
ψ |η(0)| θ dH 2 , ∀ψ ∈ C(R3

y × R
3
z ) .

3. Two-dimensional representation of plates and shells, and the related Gauss graphs

As already recalled in the Introduction, shells (we include plates and thin films in the nomenclature,
as special cases) are bodies for which one dimension is largely smaller with respect to the others.
This geometric peculiarity suggests approximate representations of shells as two-dimensional bodies,
each point of which is endowed with additional information on what happens in the (real) thickness
(essential references on the matter are [2, 8, 22, 23]; see also [3, 17, 19, 20]).
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In this view, we consider a planar reference configuration for the shell middle surface, i.e., we refer
in essence to something that can be a plate in some configuration. So, we select a two-dimensional
smooth domain Ω in R2, where Cartesian coordinates x = (x1, x2) are fixed. A differentiable map
u : Ω → R3, say u = (u1, u2, u3), represents a deformation. It is taken to determine an immersion
of Ω into R3. The tangent plane to the deformed shape is assumed not to degenerate. Formally, it is
tantamount to impose |adj2∇u(x)| > 0 for any x ∈ Ω. In other words, if ∂iu denotes a column vector
of the gradient matrix ∇u, the previous condition is equivalent to say that the vector product ∂1u × ∂2u
does not vanish at every point. Normal to the deformed configuration

Mu = u(Ω)

is the unit vector
νu(x) :=

∂1u(x) × ∂2u(x)
|∂1u(x) × ∂2u(x)|

. (3.1)

It can be considered as a descriptor of out-of-middle-surface shell behavior. However, such an
information can be carried out by an S2-valued vector field x 7→ ζ(x) defined over Ω and constrained
to be at every x ∈ Ω such that

(∂1u(x) × ∂2u(x)) • ζ(x) > 0 , (3.2)

where • is the scalar product in R3. In both cases we are representing a shell as a Cosserat surface
(see [8, 22, 23]). By choosing ζ we allow the description of through-the-thickness shear, while with
νu we exclude it. We adopt here this last choice so that smooth deformed shells are represented by
parametric surfaces.

3.1. Gauss graphs of parametric surfaces

In the present setting, the Gauss graph of the surface Mu = u(Ω) is described by

GM u = {Φu(x) | x ∈ Ω} , (3.3)

where Φu : Ω→ R3
y × R

3
z is the smooth map

Φu(x) := (u(x), νu(x)) . (3.4)

The first fundamental form of Mu is given by the symmetric matrix

I =

(
E F
F G

)
:=

(
|∂1u|2 ∂1u • ∂2u

∂1u • ∂2u |∂2u|2

)
,

with determinant
g = gu := EG − F2 = |∂1u × ∂2u|2 = | adj2 ∇u|2 . (3.5)

Second derivatives ∂2
i, ju of the deformation map u, where ∂2

2,1u = ∂2
1,2u, determine the second

fundamental form given by the symmetric matrix

II =

(
` m
m n

)
:=

(
∂2

1,1u • νu ∂2
1,2u • νu

∂2
2,1u • νu ∂2

2,2u • νu

)
=

1
√

gu

(
∂2

1,1u • n ∂2
1,2u • n

∂2
2,1u • n ∂2

2,2u • n

)
,
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where, for short-hand notation, we have denoted n := ∂1u × ∂2u, so that gu = |n|2. Therefore, the mean
curvature at u(x) becomes

Hu =
1

2g
(En + G` − 2Fm) =

1
2gu

3/2

(
|∂1u|2∂2

2,2u + |∂2u|2∂2
1,1u − 2(∂1u • ∂2u)∂2

1,2u
)
• n (3.6)

and the Gauss curvature is then

Ku =
`n − m2

EG − F2 =
1

gu
2

(
(∂2

1,1u • n)(∂2
2,2u • n) − (∂2

1,2u • n)2
)
. (3.7)

The tangent space at a point (y, z) in the Gauss graph GM u is oriented by the wedge product

ξu(x) := ∂1Φu(x) ∧ ∂2Φu(x) , x ∈ Ω , (y, z) = (u(x), νu(x)) .

We have

∂αΦu = (∂αu1, ∂αu2, ∂αu3, ∂ανu
1, ∂ανu

2, ∂ανu
3) , α = 1, 2 ,

and hence, according to the number of ε j-entries, we can write as before the stratification

ξu = ξ(0)
u + ξ(1)

u + ξ(2)
u ,

where

ξ(0)
u =

∑
1≤i< j≤3

det
(
∂1ui ∂2ui

∂1u j ∂2u j

)
ei ∧ e j ,

ξ(1)
u =

3∑
i, j=1

det
(
∂1ui ∂2ui

∂1νu
j ∂2νu

j

)
ei ∧ ε j ,

ξ(2)
u =

∑
1≤i< j≤3

det
(
∂1νu

i ∂2νu
i

∂1νu
j ∂2νu

j

)
εi ∧ ε j .

(3.8)

As a consequence of the expression (2.4), by the area formula we can write the Gauss graph area
H 2(GM u) as∫

Ω

√
gu

√
1 + (4H2

u − 2Ku) + K2
u dx =

∫
Mu

√
1 + (4H2

u − 2Ku) + K2
u dH 2 =

∫
Ω

|ξu| dx , (3.9)

which yields a formula for the Jacobian JΦu of Φu:

JΦu = |ξu| =
√

gu

√
1 + (4H2

u − 2Ku) + K2
u . (3.10)

Finally, by the expression (2.3) we infer

|ξ(0)
u |

2 = gu , |ξ(1)
u |

2 = gu (4H2
u − 2Ku) , |ξ(2)

u |
2 = gu K2

u . (3.11)
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3.2. Currents carried by Gauss graphs of parametric surfaces

Let u : Ω → R3 a smooth function with ∂1u × ∂2u , 0 everywhere. Assume ‖u‖∞ ≤ K < ∞. The
current [[ GM u ]] in R2(R6) is defined as above, with Mu = u(Ω). The Gauss graph surface GM u is
equipped with the natural orientation induced by the function u, so that

−→
ζu(y, z) :=

ξu

|ξu|
(x) , (y, z) = (u(x), νu(x)) ∈ GM u .

We shall restrict to the action of compactly supported forms in R3 × S2. By the definition (3.3) we thus
equivalently have [[ GM u ]] = Φu #[[ Ω ]], that is

〈[[ GM u ]], ω〉 =

∫
Ω

Φu
#ω , ∀ω ∈ D2(R3 × S2) .

Moreover, recalling the notation (2.8), we have (see also formula (5.1) below)

p#[[ GM u ]] = p#(Φu #[[ Ω ]]) = (p ◦ Φu)#[[ Ω ]] = u#[[ Ω ]] .

3.3. Absence of cancellations

A property that we call the absence of cancellations plays a role here. So far we left a part direct
references to the shell thickness, considering it implicitly very thin. Take it to be vanishing, i.e.,
infinitesimal. Take also circumstances in which two pieces of the deformed shell Mu = u(Ω) are in
contact, with the same or opposite orientation. More precisely, we have two pairwise disjoint and
connected open sets A, B ⊂ Ω such that both the restrictions u|A and u|B are injective, but u(A) = u(B).
Then, for each x ∈ A there exists a unique point x̃ = x̃(x) ∈ B such that u(x) = u(x̃), and the map
x 7→ x̃(x) is a diffeomorphism from A to B. Moreover, notice that a unit 2-vector field orienting the
tangent plane to Mu at y = u(x) is

τu := ∗νu =
ξ(0)

u

|ξ(0)
u |

=
1

|∂1u × ∂2u|

∑
1≤i< j≤3

det
(
∂1ui ∂2ui

∂1u j ∂2u j

)
ei ∧ e j .

Therefore, one of the two following alternatives holds: either τu(x) = τu(x̃(x)) for all x ∈ A, or
τu(x) = −τu(x̃(x)) for all x ∈ A, according to the fact that the diffeomorphism from A to B preserves
or reverses the natural orientation. In both cases, the tangent plane to u(Ω) at u(x) agrees with the one
at u(x̃(x)). In the first case, u#[[ A ]] = u#[[ B ]] and the image current u#[[ A ∪ B ]] has multiplicity two,
whereas in the second one u#[[ A ]] = −u#[[ B ]], whence u#[[ A ∪ B ]] = 0, a cancellation occurs and
actually

M(u#[[ Ω ]]) <
∫

Ω

|ξ(0)
u | dx , |ξ(0)

u | = | adj2 ∇u| .

However, since in the second case νu(x) = −νu(x̃(x)) for each x ∈ A, by the expressions (3.8) we infer

ξ(0)
u (x) = −α ξ(0)

u (x̃(x)) , ξ(2)
u (x) = β ξ(2)

u (x̃(x)) ,

for some α, β > 0, whence ξu(x) , ±ξu(x̃(x)), and definitely no cancellation occurs in the Gauss
graph current [[ GM u ]]. In conclusion, even in the presence of cancellations for the projected current
u#[[ Ω ]] = p#[[ GM u ]], we always have

M([[ GM u ]]) = H 2(GM u) =

∫
Ω

|ξu| dx < ∞ . (3.12)

Compare Example 7.2 below for a deformation with folding.
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3.4. Action of the Gauss graph current and curvature measures formulas

For the sake of completeness, we compute the action of a current [[ GM u ]] over the Gauss graph
and explicit formulas for the curvature measures χMu

` .
Since for i, j = 1, 2, 3

Φu
#dyi = ∂1ui dx1 + ∂2ui dx2 , Φu

#dz j = ∂1νu
j dx1 + ∂2νu

j dx2

the pull-back of the basis of 2-forms in R3
y × R

3
z gives the fifteen formulas

Φu
#(dyi ∧ dy j) = det

(
∂1ui ∂2ui

∂1u j ∂2u j

)
dx1 ∧ dx2 , 1 ≤ i < j ≤ 3 ,

Φu
#(dyi ∧ dz j) = det

(
∂1ui ∂2ui

∂1νu
j ∂2νu

j

)
dx1 ∧ dx2 , i, j = 1, 2, 3 ,

Φu
#(dzi ∧ dz j) = det

(
∂1νu

i ∂2νu
i

∂1νu
j ∂2νu

j

)
dx1 ∧ dx2 , 1 ≤ i < j ≤ 3 .

Therefore, for each compactly supported smooth function ψ ∈ C∞c (R3 × S2) we obtain

〈[[ GM u ]], ψ dyi ∧ dy j〉 =

∫
Ω

ψ(Φu) det
(
∂1ui ∂2ui

∂1u j ∂2u j

)
dx , 1 ≤ i < j ≤ 3 ,

〈[[ GM u ]], ψ dyi ∧ dz j〉 =

∫
Ω

ψ(Φu) det
(
∂1ui ∂2ui

∂1νu
j ∂2νu

j

)
dx , i, j = 1, 2, 3 ,

〈[[ GM u ]], ψ dzi ∧ dz j〉 =

∫
Ω

ψ(Φu) det
(
∂1νu

i ∂2νu
i

∂1νu
j ∂2νu

j

)
dx , 1 ≤ i < j ≤ 3 .

By referring to the expressions (2.6), if M = Mu for some smooth and injective function u : Ω →

R3 as above, we may write

χMu
1 := −Φu #(Hu H 2 Mu) , χMu

2 := Φu #(Ku H 2 Mu) ,

where Hu and Ku are given by (3.6) and (3.7). In terms of the Gauss graph current [[ GM u ]], on account
of definitions (2.7) we thus get

〈χMu
` , ψ〉 = (−1)`〈[[ GM u ]], ψΘ`) , ∀ψ ∈ C∞c (R3 × S2) , ` = 1, 2 .

In fact, recalling that [[ GM u ]] = Φu #[[ Ω ]] we obtain the following formulas:

−Φu
#Θ1 =

√
gu Hu dx1 ∧ dx2 , Φu

#Θ2 =
√

gu Ku dx1 ∧ dx2 ,

where gu is given by (3.5). Therefore, for any ψ ∈ C∞c (R3 × S2) we have

χMu
1 (ψ) =

∫
Ω

ψ(Φu)
√

gu Hu dx , χMu
2 (ψ) =

∫
Ω

ψ(Φu)
√

gu Ku dx . (3.13)

We omit any further detail and address to reference [18] for a similar computation involving Gauss
graphs of smooth Cartesian surfaces.
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4. The energy

If we consider only pure bending, the energy refers to the curvature functional ‖GM u‖ defined by
the expression (2.5). By the area formula, it agrees with the energy functional E (u) defined by

E (u) :=
∫

Ω

√
gu

(
1 +

√
4H2

u − 2Ku + |Ku|
)

dx .

On account of the expressions (3.9), (3.10), and (3.11), we get

E (u) =

∫
Ω

(
|ξ(0)

u | + |ξ
(1)
u | + |ξ

(2)
u |

)
dx , (4.1)

where |ξu|
2 = |ξ(0)

u |
2 + |ξ(1)

u |
2 + |ξ(2)

u |
2 and, by (3.8),

|ξ(0)
u |

2 = gu = |∂1u × ∂2u|2 = | adj2 ∇u|2 ,

|ξ(1)
u |

2 = gu (4H2
u − 2Ku) =

3∑
i, j=1

(
∂1ui ∂2νu

j − ∂2ui ∂1νu
j)2
,

|ξ(2)
u |

2 = gu K2
u =

∑
1≤i< j≤3

(
∂1νu

i ∂2νu
j − ∂2νu

i ∂1νu
j)2
.

(4.2)

On account of the expression (3.12), we have

1
2

E (u) ≤M([[ GM u ]]) ≤ E (u) .

We aim at a bound for the total variation of the function u and of the Gauss map νu. Also, we wish
to preserve condition ∂1u×∂2u , 0, where |∂1u×∂2u| = | adj2 ∇u|. These two issues suggest us to work
with an expression of the energy given by

Fq(u) :=
∫

Ω

(
|DΦu(x)|q + f (| adj2 ∇u(x)|)

)
dx + E (u) (4.3)

for some real exponent q > 1. The map Φu is given by formula (3.4), so that

|DΦu(x)|2 = |∇u(x)|2 + |∇νu(x)|2 , x ∈ Ω , (4.4)

and f :]0,+∞[→ R+ is a positive and convex function with linear growth at +∞ and such that f (ρ)→
+∞ as ρ→ 0+, as e.g., f (ρ) = ρ−1 ∨ ρ.

Here, the presence of ∇u implies considering middle surface stretch and shear. We leave a part
the consequent thickness stretching (due to the Poisson’s effect), considering it not prominent from an
energetic point of view as the thickness is thin and possibly vanishing in the minimizing sequences.

5. Closure properties

Theorem 5.1. For q > 1 and K > 0, let {uh} ⊂ C2(Ω) a sequence satisfying suph Fq(uh) < ∞ and
suph ‖uh‖∞ ≤ K. There exists a map u ∈ W1,q(Ω,R3), with ‖u‖∞ ≤ K, and a (not relabeled) subsequence
such that
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1) uh ⇀ u weakly in W1,q(Ω,R3
y),

2) for L 2-a.e. x ∈ Ω, one has ∂1u × ∂2u , 0, and | adj2 ∇u| ∈ L1(Ω), and
3) νuh ⇀ νu weakly in W1,q(Ω,R3

z ), where the approximate normal νu(x) is defined for L 2-a.e. x ∈ Ω

by (3.1), but in terms of the approximate gradient ∇u.

Proof. We repeatedly pass to not relabeled subsequences. The first assertion is trivial. Since

M(Guh) ≤
∫

Ω

(1 + |∇uh| + | adj2 ∇uh|) dx ,

by formulas (4.1) and (4.2) we get suph M(Guh) < ∞. Therefore, by the closure theorem for Cartesian
currents (see [13, 14]) there exists a current T such that

T = Gu + S T

with Guh ⇀ T weakly in D2(Ω × R3) and S T ∈ D1(Ω × R3), which we write in short T ∈ cart(Ω × R3).
This implies | adj2 ∇u| ∈ L1(Ω). Moreover, since the integrand f is a convex function, by L 2-a.e.
convergence of the gradients ∇uh to the approximate gradient ∇u, which follows from Lq-convergence,
we get ∫

Ω

f (| adj2 ∇u|) dx ≤ lim inf
h→∞

∫
Ω

f (| adj2 ∇uh|) dx < ∞ .

Hence, condition ∂1u× ∂2u , 0 holds a.e. in Ω. We finally obtain weak W1,q and L 2-a.e. convergence
of νuh to νu. �

If u is the limit function in Theorem 5.1, we can express the energy E (u) by equation (4.1), where
the three terms |ξ(`)

u |, ` = 0, 1, 2, are defined L 2-a.e. on Ω by the right-hand side of the system (4.2),
now in terms of the approximate gradient of u and νu.

We impose Dirichlet-type boundary conditions as follows:

(H) there exists an open set Ω̃ ⊂ R2, with Ω ⊂ Ω̃, and an injective function ũ ∈ C2(Ω̃) such that each
uh can be smoothly extended to Ω̃ so that uh = ũ on Ω̃ \Ω.

Recalling the notation (2.8), we also denote by π̃ : R2 × R3
y → R

3
y the orthogonal projection onto the

second factor.

Theorem 5.2. Let {uh} as in Theorem 5.1. Assume that condition (H) holds. Then, passing to a (not
relabeled) subsequence, the Gauss graphs [[ Muh ]] weakly converge to a current Σ ∈ R2(R3 × S2)
satisfying the properties listed in Theorem 2.1. Moreover,

p#Σ = π̃#T = u#[[ Ω ]] + π̃#S T , (5.1)

where T = Gu + S T is the current in cart(Ω × R3) obtained in Theorem 5.1. In addition, the estimates
‖Σ‖ ≥ E (u) and E (u) ≤ lim inf

h→∞
E (uh) hold. Eventually, Fq(u) ≤ lim inf

h→∞
Fq(uh).

Proof. The boundary condition (H) yields a uniform bound on mass and curvatures of the boundary
currents ∂uh#[[ Ω ]] = uh#[[ ∂Ω ]]. Therefore, we can apply the closure theorem on Gauss graphs proven
in reference [5], obtaining the current Σ that satisfies the properties listed in Theorem 2.1. Since

p#[[ Muh ]] = uh#[[ Ω ]] = π̃#Guh ,
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by the weak convergence Guh ⇀ T in the proof of Theorem 5.1, we get the projection formula (5.1).
Even if a cancellation may occur in the projected current p#Σ, the argument exploited in Section 3.3

(see relations (3.12)) allows us to conclude that

M(Σ) = M(Φu#[[ Ω ]]) + M(Σ − Φu#[[ Ω ]]) .

As a consequence, by lower semicontinuity we get

‖Φu#[[ Ω ]]‖ ≤ ‖Σ‖ ≤ lim inf
h→∞

‖[[ Muh ]]‖ ,

where ‖Φu#[[ Ω ]]‖ = E (u) and ‖[[ Muh ]]‖ = E (uh) for each h. The lower semicontinuity inequalities
readily follow. �

6. Avoiding self-penetration

Under large bending, distant portions of shells may touch. Physics, however, suggests that an
appropriate model should avoid solutions describing self-penetration of the matter. A constraint
excluding such a possibility is then required in the setting represented here. Evidently, for it the shell
thickness – otherwise not exploited directly so far – should play a role. We propose a way to obtain
such a necessary constraint on the basis of what is done for fully three-dimensional bodies.

Let u : Ω → R3 be a map of class C2(Ω), with ∂1u × ∂2u , 0 on Ω. For s > 0 let vu,s : U → R3,
where U := Ω × (−h

2 ,
h
2 ), h the constant shell thickness, be given by

vu,s(x1, x2, x3) := u(x1, x2) + s x3 νu(x1, x2) . (6.1)

We compute
det∇vu,s = s |∂1u × ∂2u| + s2x3 λu(x) + s3x2

3 µu(x)

on U, where
λu(x) := ν1

u
(
∂1u2 ∂2νu

3 − ∂2u2 ∂1νu
3 + ∂1νu

2 ∂2u3 − ∂2νu
2 ∂1u3)

+ ν2
u
(
∂1u3 ∂2νu

1 − ∂2u3 ∂1νu
1 + ∂1νu

3 ∂2u1 − ∂2νu
3 ∂1u1)

+ ν3
u
(
∂1u1 ∂2νu

2 − ∂2u1 ∂1νu
2 + ∂1νu

1 ∂2u2 − ∂2νu
1 ∂1u2)

and

µu(x) := νu
1(∂1νu

2 ∂2νu
3 − ∂2νu

2 ∂1νu
3) + νu

2(∂1νu
3 ∂2νu

1 − ∂2νu
3 ∂1νu

1) + νu
3(∂1νu

1 ∂2νu
2 − ∂2νu

1 ∂1νu
2) .

By the equiboundedness of λu(x) and µu(x), we infer that s−1 det∇vu,s → |∂1u × ∂2u| as s → 0+

uniformly on U. Hence, we get

det∇vu,s(x1, x2, x3) > 0 , ∀ (x1, x2, x3) ∈ U ,

if s > 0 is sufficiently small. On account of the relations (4.2) and (4.4), we also estimate

|∇vu,s| + | adj2 ∇vu,s| + | det∇vu,s| ≤ c
(
|DΦuh | + |ξ

(0)
u | + |ξ

(1)
u | + |ξ

(2)
u |

)
(6.2)

for some absolute constant c > 0 not depending on u.
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Moreover, since the principal curvatures of the deformed surface u(Ω) are bounded, there exists
s = s(u) > 0 such that for each (x1, x2) ∈ Ω we can find a neighborhood V of (x1, x2) in Ω such that the
restriction of vu,s to V × (−h

2 ,
h
2 ) is injective.

In order to obtain global injectivity, one may e.g., impose the well-known Ciarlet-Nečas
condition [6]. In reference [7], under suitable additional hypotheses, the inequality∫

Ω

| adj2 ∇u| dx ≤H 2(u(Ω))

is proposed. However, it is violated by a folding deformation. Then, what is suggested in reference [7]
is to adopt a notion of approximately injective deformations. It requires (in a sense not specified here)
that the parametric surface u : Ω → R3 can be approximated by sequences of functions uh such that
each uh can be seen as a parameterization of the middle surface of a thick shell satisfying the Ciarlet-
Nečas condition, and we can take the thickness so that it gradually disappears. This property yields to
a more reasonable scenario from a physical point of view.

6.1. Possible admissible deformations

We go along the path summarized above to avoid self-penetration of matter. We start by a condition
introduced in 1989 by M. Giaquinta, G. Modica, and J. Souček [11,12] (see also [14, Sec. 2.3.2]). It is
equivalent to Ciarlet-Nečas’ one.

For a sufficiently smooth map v : U → R3 with det∇v > 0 a.e. in U, a fit region in R3, by setting
w = (x1, x2, x3), the global invertibility condition above mentioned reads∫

U
f (w, v(w)) det∇v(w) dw ≤

∫
R3

sup
w∈U

f (w, y) dy (6.3)

for every compactly supported smooth function f : U × R3 → [0,+∞). Weak convergence in terms of
currents preserves such condition. It implies L 3-a.e. injectivity.

Theorem 6.1. Let {uh} satisfy assumptions in Theorems 5.1 and 5.2. Assume that, for every h, the
function vh = vuh,sh given by expression (6.1) satisfies the global invertibility condition (6.3), for some
sh ∈ (0, 1). The weak limit deformation map u is the trace on x3 = 0 of a function v : U → R3 satisfying
|∇v|, | adj2 ∇v|, det∇v ∈ L1(U), det∇v ≥ 0 a.e. in U, and condition (6.3).

Proof. For every h, we have already seen that by taking sh ∈ (0, 1) sufficiently small, the function
vh = vuh,sh also satisfies det∇vh > 0 on U. Furthermore, on account of the estimate (6.2), we infer that
the current Gvh carried by the graph of vh has finite mass, which satisfies the bound

M(Gvh) ≤ c
(∫

Ω

(1 + |∇Φuh |) dx + E (uh)
)
, ∀ h .

Therefore, we get suph M(Gvh) < ∞, whereas, by the smoothness hypothesis, ∂Gvh = 0 on U × R3.
As a consequence, by the closure theorem for Cartesian currents, it turns out that a (not relabeled)
subsequence satisfies Gvh ⇀ T̃ weakly in D3(U ×R3) for some Cartesian current T̃ ∈ cart(U ×R3). Let
v denote the underlying function to T̃ , so that T̃ = Gv + S T̃ . We find that v : U → R3 is approximately
differentiable a.e. in U. Also, all the minors of its approximate gradient ∇v are in L1(U).
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By the weak convergence Gvh ⇀ T̃ , it turns out that the function v satisfies the global invertibility
condition (6.3), too, whereas det∇v ≥ 0 a.e. in U.

In addition, if we look at Gvh as an i.m. rectifiable current in R3
w × R

3
y , slicing theory implies that

the restriction of Gvh to (Ω × {0}) × R3 agrees with the graph current Guh . Therefore, by the weak
convergence of Gvh to T̃ and of Guh to T , where, we recall, T̃ = Gv + S T̃ and T = Gu + S T , it turns out
that the restriction of T̃ to (Ω × {0}) ×R3 agrees with the current T . This property indicates us that u is
the trace of v on Ω × {0}. So, the proof is complete. �

Remark 6.1. A sort of thickness condition holds if we choose a size s0 > 0 and assume that vh = vuh,sh

satisfies the constraint (6.3) and det∇vh > 0 on U for some sh ≥ s0. In this case the function v is given
L 3-a.e. by (6.1), where s ≥ s0 and the unit normal νu is defined L 2-a.e. in Ω by the formula (3.1),
now in terms of the approximate gradient ∇u of the limit deformation u.

Moreover, in order to preserve the local orientation, namely det∇v > 0 a.e. on U, we may add to
the energy functional (4.3) a term of the type∫

U
| det∇vu,s|

−r dx , r > 0 .

6.2. Weak deformations for shells

Fix q > 1, K > 0, and ũ : Ω̃ → R3, together with the boundary condition (H). On account of the
above results, we may say that a function u : Ω → R3 represents a weak deformation for a shell, and
we write for short u ∈ A = A (q,K, ũ), provided that the following properties hold:

1) u ∈ W1,q(Ω,R3) with ‖u‖∞ ≤ K, ∂1u × ∂2u , 0 for L 2-a.e. x ∈ Ω, and | adj2 ∇u| ∈ L1(Ω) (see
Theorem 5.1); moreover, the approximate normal νu belongs to W1,q(Ω,S2) (see definition (3.1));

2) u = ũ on Ω̃ \ Ω (see Theorem 5.2); moreover, there exists a current Σ ∈ R2(R3 × S2) satisfying
Theorem 2.1, such that the projection formula (5.1) holds, where T = Gu + S T ∈ cart(Ω × R3),
and ‖Σ‖ ≥ E (u);

3) u is the trace on x3 = 0 of a function v : U → R3 satisfying |∇v|, | adj2 ∇v|, det∇v ∈ L1(U),
det∇v ≥ 0 a.e. in U, and the global invertibility condition (6.3) (see Theorem 6.1).

For future use, we also denote by Ã = Ã (q,K, ũ) the class of maps u that are generated by a weak limit
process as in Theorems 5.1, 5.2, and 6.1. It may be called the class representing smoothly accessible
weak deformations for shells.

Therefore, Ã ⊂ A , and we expect that equality holds: if u represents a weak deformed shell.
Then, we can find a sequence {uh} as in the above mentioned theorems such that uh ⇀ u weakly in
W1,q(Ω,R3).

The smooth density property for a generic weak deformation u of a shell is an open question.
However, due to the Dirichlet-type boundary condition (H), and to the equiboundedness hypothesis,
all the involved weak convergences as currents, say Guh ⇀ T , [[ GM uh ]] ⇀ Σ, and Gvh ⇀ T̃ are
metrizable. Therefore, we can apply a diagonal argument and prove the following existence result:

Theorem 6.2. For q > 1, K > 0, and ũ as in (H), let Ã denote the class of smoothly accessible weak
deformation of shells. Then, the problem

inf{Fq(u) | u ∈ Ã }
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for the energy defined by formula (4.3) has a solution in the class Ã .

Proof. Let {uk} ⊂ Ã a minimizing sequence. Then, possibly passing to a (not relabeled) subsequence
uk ⇀ u∞ weakly in W1,q to some u∞ ∈ W1,q(Ω,R3), and νuk ⇀ νu∞ weakly in W1,q where, we recall,
νuk is defined L 2-a.e. in Ω as in formula (3.1), for each k ∈ N := N ∪ {∞}. Moreover, for each k ∈ N
we can find a sequence {u(k)

h } that satisfies Theorems 5.1, 5.2, and 6.1, such that u(k)
h ⇀ uk weakly in

W1,q, as h → ∞. Due to the metrizable character of the (weak) convergences involved, by a diagonal
argument we infer that actually u ∈ Ã . Moreover, arguing as in the proof of Theorem 5.2, by the weak
convergences uk ⇀ u∞ and νuk ⇀ νu∞ in W1,q, where q > 1, we obtain

‖Φu∞#[[ Ω ]]‖ ≤ lim inf
k→∞

‖Φuk #[[ Ω ]]‖ ,

where ‖Φuk #[[ Ω ]]‖ = E (uk) for each k ∈ N. We thus get

Fq(u∞) ≤ lim inf
k→∞

Fq(uk) = inf{Fq(u) | u ∈ Ã } ,

and the proof is complete. �

7. Shells with holes and fractures

If u represents a weak deformation for a shell, as in the previous section, where q = 2, the
membership of u to the Sobolev class W1,2(Ω,R3) yields that the graph current Gu satisfies the
null-boundary condition (2.1). On account of the Dirichlet-type condition (H), this implies that
∂u#[[ Ω ]] = u#[[ ∂Ω ]]. Therefore, when q ≥ 2, we are actually avoiding the formation of fractures.

Things change when the growth exponent q is lower than two.
Let Ω = B2 be the unit disk at the origin O. Let u : B2 → R3 be given by

u(x) =
(
|x| + 1

)
ϕ
( x
|x|

)
, x , O ,

for some Lipschitz-continuous map ϕ : ∂B2 → R3. We have u ∈ W1,q(B2,R3) and adj2 ∇u ∈ Lq(B2,R3)
for each q < 2, whence u ∈ A 1(B2,R3).

Consequently, we are presuming the existence of a hole at the origin in B2, and the deformed hole
has a boundary that is described by the map ϕ. Moreover, formula (2.2) continues to hold. More
precisely, viewing the graph Gu as a current in R2(R2 × R3), one gets

∂Gu = Ψ[ϕ]#[[ ∂B2 ]] − δO × ϕ#[[ ∂B2 ]] ,

where Ψ[ϕ] : ∂B2 → R2 × R3 is the Lipschitz map Ψ[ϕ](x) := (x, 2ϕ(x)) parameterizing the exterior
boundary of the graph associated with u.

Example 7.1. We can stretch the hole (without bending) by taking, in polar coordinates,
ϕ(cos θ, sin θ) := (cos θ, sin θ, 0), so that

u(x) =
(
x +

x
|x|
, 0

)
.
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Denoting by [[ D2 ]] the 2-current given by integration of 2-forms on the positively oriented disk

D2 := {(y1, y2) ∈ R2 | y2
1 + y2

2 < 1} ,

we get
ϕ#[[ ∂B2 ]] = ∂[[ D2 ]] × δ0 , Ψ[ϕ](x) = (x, (2x, 0)) .

Example 7.2. We can stretch, bend, and fold the hole by letting

ϕ(cos θ, sin θ) :=


(cos 4θ, sin 4θ, −1) if 0 ≤ θ ≤ π/2 ,
(1, 0, 4θ/π − 3) if π/2 ≤ θ ≤ π ,
(cos 4θ, − sin 4θ, 1) if π ≤ θ ≤ 3π/2 ,
(1, 0, 7 − 4θ/π) if 3π/2 ≤ θ < 2π .

In this case, we get
ϕ#[[ S1 ]] = ∂[[ D2 ]] × (δ1 − δ−1)

and a cancellation occurs. We have the same phenomenon in the image current u#[[ B2 ]]. In fact, let us
denote by Ωk, for k = 1, . . . , 4, the four quarters of the holed unit disk B2 \ {O}. We have

Ωk := {(ρ cos θ, ρ sin θ) | 0 < ρ < 1, (k − 1) π/2 < θ < k π/2} ,

so that it turns out that u(Ω2) = u(Ω4). In other words, folding without self-penetration of matter occurs
but u#[[ Ω2 ]] = −u#[[ Ω4 ]] and, actually,

u#[[ Ω ]] = u#[[ Ω1 ]] + u#[[ Ω3 ]] .

More precisely, coming back to Remark 3.3, the map

x̃(ρ cos θ, ρ sin θ) := (ρ cos(π/2 − θ), ρ sin(π/2 − θ))

is an orientation reversing diffeomorphism from Ω2 to Ω4 such that

u(x) = u(x̃(x)) , τu(x) = −τu(x̃(x)) , ∀ x ∈ Ω2 .

Thus, by formulas (3.8) we have ξ(0)
u (x) = −ξ(0)

u (x̃(x)) and ξ(2)
u (x) = ξ(2)

u (x̃(x)) for each x ∈ Ω2, whence
no cancellation occurs in the Gauss graph current [[ GM u ]].

In our results above collected, when q < 2 we do not consider an energy term accounting for the
occurrence of holes. For it, a physically reasonable choice could be given by the hole boundary size in
the deformed surface u(Ω). In Example 7.1, the latter contribution might be represented by the graph
current boundary mass

H (u) := M((∂Gu) Ω × R3) .

In fact, sequences of currents Guh carried by the graph of functions uh ∈ W1,q(Ω,R3), which satisfy

sup
h

(
Fq(uh) + H (uh)

)
< ∞

for some q > 1, sub-converge (in the sense of currents) to an element Gu in the same class. Two
drawbacks appear.
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In general, the term H (u) does not have a satisfactory physical significance. The map in
Example 7.2, e.g., satisfies H (u) = M(ϕ#[[ S1 ]]) = 4π, but the curve ϕ : ∂B2 → R3

y describing a hole
in the deformed configuration has length equal to 4(π + 1).

Also, an essential difficulty in this framework is that we are not allowed to apply the closure theorem
on Gauss graphs (see results in [5]). In fact, since equality ∂u#[[ Ω ]] = u#[[ ∂Ω ]] fails to hold, the
boundary condition (H) does not guarantee a uniform bound on curvatures of the boundary terms
produced by the holes.

Similar problems appear if one tries to analyze fractured shells. In that case, a natural ambient is
given by suitable deformations u : Ω → R3 that belong to the class of special functions of bounded
variation. Referring to the treatise [1] for an accurate analysis of S BV functions, we only observe here
that the jump set S (u) describes a crack path in the reference configuration, whereas fractures in the
deformed shape may be described again by the term H (u). In fact, a map u ∈ A 1(Ω,R3) satisfying
H (u) < ∞, actually belongs to the class S BV(Ω,R3) (compare [15, Prop. 3.3.1]).

For those reasons, in order to apply the closure theorem on Gauss graphs by reference [5] (that in
Theorem 5.2 – where we worked with Cartesian currents – led to the validity of Theorem 2.1), one
has to introduce a further energy term that bounds the curvature of the Gauss graph boundary of the
deformed surface u(Ω). For these issues, future work is necessary.

8. Additional remarks

The analyses presented here can be extended variously:

• We could consider through-the-thickness shear by opting for an out-of-tangent-plane vector field
ζ in the deformed shape.
• We could look at multi-layer shells, with consequent need of refining the scheme adopted here.
• Different modeling needs would emerge if we would consider a through-the-thickness

microstructure. An example is a thin film of a smectic liquid crystal.

All the previous issues involve both modeling and analytical questions. Looking back to what we
have discussed here, a purely analytical open problem emerges: the regularity of minimizers assured
by Theorem 6.2. This is probably a nontrivial matter of future specialist work.
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