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1. Introduction

The classical Christoffel-Minkowski problem is a problem of prescribing k-th area measure on Sn.
Given a Borel measure µ = f dσSn on Sn, one seeks a convex body K ⊂ Rn+1 such that its k-th area
measure S k(K, x) = µ. It is a fundamental problem in convex geometry. The problem plays important
rule in the development of nonlinear geometric partial differential equations.

The Christoffel-Minkowski problem corresponds to solving the following fully nonlinear elliptic
equation

σk(W(x)) = f (x), W(x) > 0, ∀x ∈ Sn, (1.1)

where u is the support function of K defined on Sn and

W(x) = (ui j(x) + uδi j(x)), ∀x ∈ Sn.

The Christoffel problem and the Minkowski problem correspond to the cases k = 1 and k = n
respectively [1, 2, 4, 7, 15–17]. The notion of area measures in the Brunn-Minkowski theory is based
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on Minkowski summation. Lutwak [12] developed corresponding Lp Brunn-Minkowski-Firey theory
based on Firey’s p-sum [5]. Lp-Minkowski problem has attracted much attention, we refer [3,6,12–14]
and references therein.

The focus of this paper is on the intermediate Lp-Christoffel-Minkowski problem. The problem is
deduced to solve the following PDE on Sn,

σk(W(x)) = up−1 f (x), W(x) > 0, ∀x ∈ Sn. (1.2)

p = 1 is the classical Christoffel-Minkowski problem [7, 17]. The case p ≥ k + 1 was considered by
Hu-Ma-Shen [9] and the case 1 < p < k + 1 was considered by Guan-Xia [8]. Very little is known for
Eq (1.2) in the case 0 < p < 1.

In general, admissible solutions to σk(W) = f is not convex (i.e., W > 0) if k < n. The existence of
geometric solutions of (1.2) relies on two ingredients:

1) A priori upper and lower bounds of solutions,

2) Convexity of solutions (i.e., W > 0).

When p−1 < k < n, in general there is no direct non-collapsing estimate for convex body satisfying
Eq (1.2) when k < n. For p ≥ k + 1, maximum principle implies the upper and lower bounds of
solutions [9]. When p < k + 1, the lower bound of solutions are not true in general as discussed
in examples in [8]. In [8], the upper and lower bounds for even solutions of (1.2) were obtained for
1 < p < k + 1. The estimate relies on a weighted gradient estimate for |∇u|2

(u−mu)γ where mu = minx∈Sn u.
The purpose of this paper is to extend such estimate for the case 0 < p < 1.

Similar to the classical intermediate Christoffel-Minkowski problem, one needs to impose
appropriate appropriate conditions on the prescribed function f in Eq (1.1) to ensure the convexity
of solutions to (1.2). The key is the Constant Rank Theorem established by Guan-Ma in [7]. When
p > 1, a corresponding condition was deduced in [9] from the Constant Rank Theorem in [7]. When
0 < p < 1, it is an open problem to find a clean condition on f to guarantee the convexity of solutions
to (1.2).

2. Weighted gradient estimate

In this section, we modify the arguments in [8] to establish a weighted gradient estimate for
solutions of the intermediate Christoffel-Minkowski problem (1.2) for 0 < p ≤ 1. Specifically, we
extend Proposition 3.1 in [8] to the case 0 < p < 1. Recall Garding’s cone

Γk = {λ = (λ1, · · · , λn) ∈ Rn | σ j(λ) > 0, ∀ j = 1, · · · , k.}

A symmetric matrix W is called in Γk if its eigenvalue vector λW ∈ Γk. A positive function u ∈ C2(Sn)
is called an admissible solution to (1.2) if W(x) ∈ Γk, ∀x ∈ Sn.

In the rest of the paper, we denote

(λ | 1) = (0, λ2, · · · , λn), ∀λ = (λ1, λ2, · · · , λn) ∈ Rn.
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Proposition 2.1. Let 0 < p ≤ 1 and let u be a positive admissible solution to (1.2). Denote mu = min u
and Mu = max u. Set

γ =
2p

k + 4
. (2.1)

Then there exist some positive constants A depending only on n, k, p and ‖ log f ‖C1 , such that

|∇u|2

|u − mu|
γ
≤ AM2−γ

u . (2.2)

The weighted gradient estimate for |∇u|2

uγ was used in [6], later in [8,10,11]. It’s useful tool to obtain
lower bound of solution u.

Proof. After proper rescale, we may assume minx∈Sn f (x) = 1. Maximum principle yields that there is
Cn,k,p > 0, such that

Mu ≥ Cn,k,p.

Set

Φ =
|∇u|2

(u − mu)γ
,

where 0 < γ < 1 as in (2.1). As pointed out in [8] that Φ is well-defined and it makes sense to define
Φ = 0 at the minimum point of u.

Let x0 be a maximum point of Φ. Then u(x0) > mu if u is not a constant. We may pick an
orthonormal frame on Sn such that u1(x0) = |∇u|(x0) and ui(x0) = 0 for i = 2, · · · , n. At x0,

2ululi

|∇u|2
= γ

ui

u − mu
for each i.

Thus u1i = 0 for i = 2, · · · , n and

u11 =
γ

2
u2

1

u − mu
=
γ

2
Φ

1
(u − mu)1−γ . (2.3)

Re-rotating the remaining n − 1 coordinates, we may assume

(ui j) is diagonal, so are (Wi j(x0)) and (F i j)(x0) = (
∂σk

∂Wi j
)(x0).

We may assume Φ

M2−γ
u

is sufficiently large at x0. In the rest of proof, constant C may change line by
line, but under control.

W11 ≤ u11(1 + C(
M2−γ

u

Φ
)). (2.4)

At x0, it follows from (2.3) and (1.2),

0 ≥ F ii(log Φ)ii

= F ii 2u2
ii + 2ululii

|∇u|2
− γ

F iiuii

u − mu
+ γ(1 − γ)

F iiu2
i

(u − mu)2
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=
2F iiu2

ii

u2
1

+
2F iiu1(Wii1 − uiδ1i)

u2
1

− γ
F iiuii

u − mu
+ γ(1 − γ)

F iiu2
i

(u − mu)2

=
2F iiu2

ii

u2
1

+ 2(p − 1)up−2 f +
2up−1 f1

u1
− 2F11 − γ

F iiuii

u − mu
+ γ(1 − γ)

F iiu2
i

(u − mu)2

≥
2F iiu2

ii

u2
1

+ 2(p − 1)up−2 f + γ(1 − γ)
F11u2

1

(u − mu)2 +
2up−1 f1

u1
− 2F11 − γ

F iiWii

u − mu

≥
2F iiu2

ii

u2
1

+ 2(1 − γ)
F11u11

u − mu
+

2up−1 f1

u1
− 2F11 − (kγ − 2(p − 1))

σk(W)
u − mu

≥ 2(1 − γ)
F11u11

u − mu
+

2up−1 f1

u1
+ 2F11(

u2
11

u2
1

− 1) − (kγ − 2(p − 1))
σk(W)
u − mu

. (2.5)

It follows the definition of Φ,

2up−1 f1

u1
≥ −Cup−1 f Φ−

1
2 (u − mu)−

γ
2 ≥ −C

σk(W)
u − mu

M1− γ2
u

Φ
1
2

. (2.6)

Note that M2−γ
u
Φ

sufficiently small by the assumption.
By (2.3) and (2.4),

u2
11

u2
1

− 1 =
γ

2
u11

u − mu
− 1 =

γ

2
W11

u − mu
(1 −C

M2−γ
u

Φ
). (2.7)

W11 ≥
γ

4
Φ

(u − mu)1−γ ≥
γ

4
Φ

M2−γ
u

M2−γ
u

(u − mu)1−γ . (2.8)

Put (2.6) and (2.7) to (2.5),

0 ≥ (2 − γ −C
M2−γ

u

Φ
)F11 W11

u − mu
− (kγ − 2(p − 1) + C

M1− γ2
u

Φ
1
2

)
σk(W)
u − mu

(2.9)

We divide in to two cases.

Case I.
σk(W |1) ≤ γσk−1(W |1)W11.

We have,

σk(W) = σk−1(W |1)W11 + σk(W |1) ≤ (1 + γ)σk−1(W |1)W11 = (1 + γ)F11W11.

Put this into (2.9), we obtain

0 ≥ 2 − γ − (1 + γ)(kγ − 2(p − 1) + C
M1− γ2

u

Φ
1
2

).

By the choice of γ in (2.1),

C
M1− γ2

u

Φ
1
2

≥
p

k + 4
.

(2.2) is verified in this case.
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Case II.
σk(W |1) > γσk−1(W |1)W11.

If k ≥ 2, by the Newton-MacLaurin inequality,

σ
k

k−1
k−1(W |1) ≥ Cn,kσk(W |1).

In turn,
σ

k
k−1
k−1(W |1) ≥ Cn,kσk(W |1) > Cn,kγσk−1(W |1)W11.

Hence, σ
1

k−1
k−1(W |1) ≥ Cn,kγW11. We now have,

up−1 f = σk(W) = σk(W |1) + σk−1(W |1)W11 ≥ (1 + γ)σk−1(W |1)W11 ≥ (Cn,kγ)k−1Wk
11.

Note that the above inequality is trivial for k = 1 in this case. We obtain

W11 ≤ (Cn,kγ)
k−1

k u
p−1

k f
1
k . (2.10)

Then (2.2) follows from (2.10), (2.3) and (2.4).
�

When u is a convex solution of (1.2), estimate (2.2) in Proposition 2.1 can be refined. We will use
this type of refined estimates to establish existence of convex even solutions for Eq (1.2) when 0 < 1−p
is close to 0.

Proposition 2.2. Let 0 < p ≤ 1 and let u be a positive convex solution to (1.2).

a. If k = 1, then

Mγ−2
u

|∇u(x)|2

(u(x) − mu)γ
≤ (

2n
γ

)
γ
p e

γπ
p ‖∇ log f ‖C0 , ∀0 < γ < 1. ∀x ∈ Sn. (2.11)

b. If 2 ≤ k < n, then there exists An,k,p depending only on n, k, p, such that

Mγ−2
u

|∇u|2

|u − mu|
γ
≤ An,k,pe

γπ
k−1+p ‖∇ log f ‖C0 , (2.12)

where
γ =

p
k + 1

. (2.13)

Proof. For 0 < γ < 1, let Φ = |∇u|2

(u−mu)γ as in the proof of Proposition 2.1. We may assume

min
x∈Sn

f (x) = 1.

By Eq (1.2),

Mk+1−p
u ≥

(n − k)!k!
n!

. (2.14)

Set
q = 2 −

γ

p
, β =

1
p

(1 − γ), (2.15)
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and
Aγ =

maxx∈Sn Φ(x)

M2−γ
u

=
Φ(x0)

M2−γ
u

. (2.16)

We want to estimate Aγ.
Suppose x0 is a maximum point of Φ. Let η > 0 is a positive number to be determined. If,

(
u(x0) − mu

Mu
)1−γ ≥ (

γ

η
)β,

then
(u(x0) − mu)γ ≥ Mγ

u (
γ

η
)2−q.

Since u is convex, |∇u(x)|2 ≤ M2
u , ∀x ∈ Sn. We have

Aγ =
Φ(x0)

M2−γ
u

≤
Mγ

u

(u − mu)γ
≤ (

η

γ
)2−q. (2.17)

We now assume that at x0,
(
u − mu

Mu
)1−γ ≤ (

γ

η
)β. (2.18)

As in the proof of Proposition 2.1, one may pick an orthonormal frame on Sn near x0, such that
|∇u(x0)| = u1(x0), (Wi j(x0)) is diagonal,

u11 =
γ

2
u2

1

u − mu
=
γ

2
Aγ

M2−γ
u

(u − mu)1−γ , (2.19)

and

W11 > u11 =
γ

2
Aγ

M2−γ
u

(u − mu)1−γ . (2.20)

We first consider the simple case k = 1.
Case k = 1. Since p ≤ 1, up−1 ≤ (u − mu)p−1. By (2.20), at maximum point x0 of Φ,

(u − mu)p−1 f ≥ up−1 f = σ1(W) ≥ W11 ≥ u11 =
γ

2
Aγ

M2−γ
u

(u − mu)1−γ .

It follows
Aγ ≤

2n
γ

(
u − mu

Mu
)p−γMp−2

u f ≤
2n
γ

(
γ

η
)

(p−γ)(2−q)
γ f ≤

2n
γ

(
γ

η
)

(p−γ)(2−q)
γ eπ‖∇ log f ‖C0 , (2.21)

here we used minx∈Sn f (x) = 1 and (2.14) for k = 1. Use (2.15) to equalize quantities on the right hand
sides of (2.17) and (2.21), we pick

η = 2neπ‖∇ log f ‖C0 .

Thus,
Aγ ≤ γ

−
γ
p (2neπ‖∇ log f ‖C0 )

γ
p , ∀0 < γ < 1.

(2.11) is proved. We may let γ → 1,

|∇u(x)|2

u(x) − mu
≤ (2neπ‖∇ log f ‖C0 )

1
p Mu, ∀x ∈ Sn. (2.22)
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We note that in this case, bound on ‖∇ f ‖ can be replaced by ratio of M f

m f
in above estimate.

Case 2 ≤ k < n. At x0,

W11 = u11(1 +
2
γ

A−1
γ

u(u − mu)1−γ

M2−γ
u

). (2.23)

By (2.5),

0 ≥ 2(1 − γ)
F11u11

u − mu
+

2up−1 f1

u1
+ 2F11(

u2
11

u2
1

− 1) − (kγ − 2(p − 1))
σk(W)
u − mu

. (2.24)

Since f1
f ≥ −‖∇ log f ‖C0 , (2.6) can be refined as

2up−1 f1

u1
≥ −2up−1 f ‖∇ log f ‖C0Φ−

1
2 (u − mu)−

γ
2

= −2‖∇ log f ‖C0 A−
1
2

γ (
u − mu

Mu
)1− γ2

σk(W)
u − mu

. (2.25)

By (2.19), (2.23) and (2.20),

u2
11

u2
1

− 1 =
γ

2
u11

u − mu
− 1 ≥

γ

2
W11

u − mu
(1 −

8
γ2 A−1

γ

u(u − mu)1−γ

M2−γ
u

). (2.26)

Put (2.25) and (2.26) to (2.24), as p ≤ 1,

0 ≥ (2 − γ)
F11W11

u − mu
−

{
kγ − 2(p − 1)

+
(4
γ

A−1
γ

u(u − mu)1−γ

M2−γ
u

+ 2‖∇ log f ‖C0 A−
1
2

γ (
u − mu

Mu
)1− γ2

)}σk(W)
u − mu

. (2.27)

Choose
η = (22k−1(n − k)k−1 n

kk eπ‖∇ log f ‖C0 )
p

k−1+p , (2.28)

and
γ =

p
k + 1

, δ =
1
2
γ

1−p
p . (2.29)

We divide in to two subcases.

Subcase I. Assume that
σk(W |1) > δσk−1(W |1)W11.

If k ≥ 2, by the Newton-MacLaurin inequality,

σ
k

k−1
k−1(W |1) ≥ Cn,kσk(W |1),

where
Cn,k =

k
n − k

(
(n − 1)!

(n − k)!(k − 1)!
)

1
k−1 . (2.30)
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In turn,
σ

k
k−1
k−1(W |1) ≥ Cn,kσk(W |1) > Cn,kδσk−1(W |1)W11.

Hence,
σ

1
k−1
k−1(W |1) ≥ Cn,kδW11.

By Eq (1.2),
up−1 f = σk(W) ≥ σk−1(W |1)W11 ≥ (Cn,kδ)k−1Wk

11. (2.31)

Note that (2.31) is trivial for k = 1 in this subcase. Thus it is true ∀k ≥ 1. As p ≤ 1, u
p−1

k ≤ (u−mu)
p−1

k ,
we deduce from (2.20) and (2.31) that,

Aγ ≤
2
γ

(Cn,kδ)
1−k

k M−1+
p−1

k
u (

u − mu

Mu
)1−γ+

p−1
k f

1
k .

By (2.18), (2.14), (2.28), (2.29) and (2.30), and the fact that min f = 1,

Aγ ≤
2
γ

(Cn,kδ)
1−k

k M−1+
p−1

k
u (

γ

η
)

2−q
γ (1−γ+

p−1
k )e

π
k ‖∇ log f ‖C0 (2.32)

≤ 2(
Cn,k

2
)

1−k
k (

n!
(n − k)!k!

)
1
k (

1
η

)
2−q
γ (1+

p−1
k )e

π
k ‖∇ log f ‖C0 (

γ

η
)q−2

= (
γ

η
)q−2.

Subcase II. Assume that
σk(W |1) ≤ δσk−1(W |1)W11.

We have,

σk(W) = σk−1(W |1)W11 + σk(W |1) ≤ (1 + δ)σk−1(W |1)W11 = (1 + δ)F11W11.

Put this into (2.27), we obtain

0 ≥ 2 − γ − (1 + δ)
{
kγ − 2(p − 1) + (

4
γ

A−1
γ

u(u − mu)1−γ

M2−γ
u

+ 2‖∇ log f ‖C0 A−
1
2

γ (
u − mu

Mu
)1− γ2 )

}
.

From (2.13) and (2.29),
2 − γ − (1 + δ)(kγ − 2(p − 1)) ≥ γ(1 + δ).

Hence

0 ≥ γ −
(4
γ

A−1
γ

u(u − mu)1−γ

M2−γ
u

+ 2‖∇ log f ‖C0 A−
1
2

γ (
u − mu

Mu
)1− γ2

)
.

Again by (2.13) and (2.29),

4
γ

A−1
γ

u(u − mu)1−γ

M2−γ
u

+ 2‖∇ log f ‖C0 A−
1
2

γ (
u − mu

Mu
)1− γ2 ≥ γ.

It follows from (2.18) that,

4
γ

A−1
γ (
γ

η
)

1−γ
p + 2‖∇ log f ‖C0 A−

1
2

γ (
γ

η
)

1− γ2
p ≥ γ.
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We obtain

Aγ ≤ 8
(
η−

1
pγ

1
p−2 + ‖∇ log f ‖2C0η

− 2
pγ

2
p−2)(η

γ
)
γ
p (2.33)

= 8
(
η−

1
pγ

1
p−2 + ‖∇ log f ‖2C0η

− 2
pγ

2
p−2)(η

γ
)2−q.

By (2.13) and (2.28), direct computation yields

η−
1
pγ

1
p−2 + ‖∇ log f ‖2C0η

− 2
pγ

2
p−2
≤ 4ek + 2π−2e−2k4.

We obtain that
Aγ ≤ (4ek + 2π−2e−2k4)(

η

γ
)
γ
p , (2.34)

where γ, η as in (2.13) and (2.28). �

Remark 2.1. Constant An,k,p in Proposition 2.2 can be computed explicitly. We observe that if u is
even, (2.22) and (2.12) in Proposition 2.2 can be improved respectively as

Mγ−2
u

|∇u(x)|2

(u(x) − mu)γ
≤ (

2n
γ

)
γ
p e

γπ
2p ‖∇ log f ‖C0 , ∀0 < γ < 1, ∀x ∈ Sn. (2.35)

and

Mγ−2
u

|∇u|2

|u − mu|
γ
≤ An,k,pe

γπ
2(k−1+p) ‖∇ log f ‖C0 . (2.36)

This is due to the fact that one may choose maximum and minimum points of f such that the distance
is at most π

2 in this case.

Remark 2.2. It is of interest to obtain some form of weighted gradient estimate for Eq (1.2) in the case
p = 0.

3. Non-collapsing estimate

In general, there is no positive lower bound for convex solutions of (1.2) when p < k + 1 [8]. We
may obtain lower bound for even convex solutions of (1.2) in the case of 0 < p < 1.

For convex body Ω ⊂ Rn+1, denote ρ−(Ω) and ρ+(Ω) to be the inner radius and outer radius of Ω

respectively.

Lemma 3.1. If u is a positive convex function on Sn satisfying condition

|∇u(x)|2

(u(x) − mu)γ
≤ AM2−γ

u , ∀x ∈ Sn, (3.1)

for some γ > 0, A > 0. Let Ωu be the convex body with support function u, and suppose there is an
ellipsoid E centred at the origin such that

E ⊂ Ωu ⊂ βE. (3.2)

Then the following non-collapsing estimate holds,

ρ+(Ωu)
ρ−(Ωu)

≤ β
2
γ+1A

1
γ 2

4
γ(2−γ) . (3.3)
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Proof. Write E
x2

1

a2
1

+ · · · +
x2

n+1

a2
n+1

≤ 1

with longest axis a1, and the shortest axis an+1. We have

a1 ≤ Mu ≤ βa1, an+1 ≤ mu ≤ βan+1.

Recall that
uE(x) =

√
a2

1x2
1 + a2

2x2
2 + · · · + a2

n+1x2
n+1, x ∈ Sn

By (3.2), support functions of Ω and E are equivalent.

uE(x) ≤ u(x) ≤ (n + 1)uE(x), ∀x ∈ Sn.

Restrict the support function uE, u to the slice S := {x ∈ Sn|x = (x1, 0, . . . , 0, xn+1)}. Set

v(s) := uE(s, 0, . . . , 0,
√

1 − s2) =

√
a2

1s2 + a2
n+1(1 − s2) =

√
a2

n+1 + (a2
1 − a2

n+1)s2.

We have
ta

γ
2
1 a

2−γ
2

n+1 ≤ v(t(
an+1

a1
)

2−γ
2 ), ∀t ∈ [0, 1].

On the other hand, set q(s) = (u(s, 0, . . . , 0,
√

1 − s2)−mu)
2−γ

2 . By the weighted gradient estimate (3.1),

|
d
ds

q(s)| ≤ A
1
2 M1− γ2

u ≤ A
1
2β1− γ2 a1− γ2

1 .

This implies, ∀0 < t ≤ 1,

q(t(
an+1

a1
)

2−γ
2 ) ≤ tA

1
2β1− γ2 (

an+1

a1
)

2−γ
2 a1− γ2

1 + q(0) = tβ1− γ2 A
1
2 a

2−γ
2

n+1 + q(0).

As q(0) ≤ β
2−γ

2 a
2−γ

2
n+1,

q(t(
an+1

a1
)

2−γ
2 ) ≤ (tβ1− γ2 A

1
2 + β

2−γ
2 )a

2−γ
2

n+1.

Thus,
u((

an+1

a1
)

2−γ
2 , 0, . . . , 0, 1 − (

an+1

a1
)2−γ) ≤ β1− γ2 (tA

1
2 + 1)

2
2−γ an+1.

Since u(x) ≥ uE(x), we obtain

ta
γ
2
1 a

2−γ
2

n+1 ≤ β(tA
1
2 + 1)

2
2−γ an+1.

This yields
a1

an+1
≤

(β
t

(tA
1
2 + 1)

2
2−γ

) 2
γ .

Choose t = A−
1
2 ,

a1

an+1
≤ β

2
γ A

1
γ 2

4
γ(2−γ) . (3.4)

�
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Corollary 3.1. If u is a positive, even, convex solution to (1.2) for 0 < p < k + 1. Then

Mu

mu
≤

(
An,k,pe

γπ
2(k−1+p) ‖∇ log f ‖C0

) 1
γ (n + 1)

1
γ+ 1

2 2
4

γ(2−γ) , (3.5)

where γ and An,k,p as in Proposition 2.2. As a consequence,

|∇u(x)|2

u2(x)
≤

(
An,k,pe

γπ
2(k−1+p) ‖∇ log f ‖C0

) 2−γ
γ +1(n + 1)

4−γ2
2γ 2

4
γ . (3.6)

In the case k = 1,
|∇u(x)|2

u2(x)
≤ 8(n + 1)

3
2 (2n)

2
p e

π
p ‖∇ log f ‖C0 . (3.7)

Moreover, there exist positive constant C1, C2 depending only on n, k, p, ‖ log f ‖C1 , such that

C1 ≤ u(x) ≤ C2 > 0, ∀x ∈ Sn; ‖u‖C1(Sn) ≤ C.

Proof. Since Ωu is even, we may pick β =
√

n + 1 in (3.2). We let A = An,k,pe
γπ

2(k−1+p) ‖∇ log f ‖C0 as in (2.36).
(3.5) follows Lemma 3.1. By (3.5),

|∇u(x)|2

u2(x)
=
|∇u(x)|2

uγ(x)
M−2+γ

u (
Mu

u
)2−γ

≤
|∇u(x)|2

(u − mu)γ
M−2+γ

u (
Mu

mu
)2−γ

≤
(
An,k,pe

γπ
2(k−1+p) ‖∇ log f ‖C0

) 2−γ
γ +1(n + 1)

4−γ2
2γ 2

4
γ .

Inequality (3.7) follows from (2.35). By Eq (1.2), mu is bounded from above and Mu is bounded from
below. Therefore, u is bounded from below and above by (3.5). �

Lemma 3.1 yields a direct estimate of inner radius of the classical Christoffel-Minkowski problem:
convex solutions to Eq (1.1). When k = n, such estimate was proved in [2], it also follows from John’s
lemma. For k < n, we are not aware any such estimate in the literature.

Lemma 3.2. Suppose u is convex solution to (1.1). Let Ω be the convex body determined by u as
the support function, let ρ−(Ω) be the inner radius of Ω. Then there exist positive constants C1, C2

depending only on n, k and ‖ log f ‖C1 , such that

C2 ≥ ρ+(Ω) ≥ ρ−(Ω) ≥ C1.

Proof. As we may shift the origin to the center of the ellipsoid E in (3.2) with β = n + 1. Lemma
follows Lemma 3.1, since mu is bounded from above and Mu is bounded from below by (1.1). �

With the upper and lower bounds of u for solutions of (1.2), the maximum principle (e.g., [8]) yields
C2 estimate. Higher regularity a priori estimates follows the standard elliptic theory.

Proposition 3.1. Let u be a positive, even convex solution to (1.2). For any l ∈ Z+ and 0 < α < 1, there
exists some positive constant C, depending on n, k, p, l, α and ‖ log f ‖Cl , such that

‖u‖Cl+1,α(Sn) ≤ C. (3.8)

Mathematics in Engineering Volume 5, Issue 3, 1–14.
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4. The issue of convexity

For Lp Christoffel-Minkowski problem, we want to find solution u of (1.2) which is convex, i.e.,
W > 0. The sufficient condition introduced in [7] for convexity of solution u to equation (1.1) is

(( f
−1
k )i j(x) + f

−1
k (x)δi j) ≥ 0, ∀x ∈ Sn. (4.1)

Corresponding condition for (1.2) for p > 1 is

(( f̃
−1
k )i j(x) + f̃

−1
k (x)δi j) ≥ 0, ∀x ∈ Sn, (4.2)

where f̃ = up−1 f . Write h̃ = log f̃ = (p − 1) log u + log f , (4.2) is equivalent to

1
k

(h̃
′

)2 + k − h̃
′′

(x) ≥ 0, ∀x ∈ Sn, (4.3)

where derivatives are along any geodesic passing through x. Denote φ = log f , (4.3) is equivalent to

1
k

(φ
′

)2 + k − φ
′′

+ (p − 1)
{
−

u
′′

u
+ (1 +

p − 1
k

)(
u′

u
)2 +

2
k

u′

u
φ
′}
≥ 0. (4.4)

In the case p ≥ 1, it was observed in [9] that (4.2) would be valid if f satisfies

(( f
−1

k+p−1 )i j(x) + f
−1

k+p−1 (x)δi j) > 0, ∀x ∈ Sn. (4.5)

This relies on the fact that the coefficient p − 1 +
(p−1)2

k in front of term ( u′
u )2 in (4.4) is nonnegative

when p ≥ 1. In the case 0 < p < 1, p − 1 +
(p−1)2

k < 0. If

k − 1 + p − φ
′′

+ (p − 1)(
u′

u
)2 ≥ 0, (4.6)

then (4.4) holds, as W is assumed semi-positive definite.
The main problem is to control (p − 1)(u′

u )2 in (4.6) when p < 1. When 0 ≤ 1 − p is small, one may
impose a condition that f is a positive C2 even function on Sn satisfying

k − 1 + p − φ
′′

+ (p − 1)
(
An,k,pe

γπ
2(k−1+p) ‖∇φ‖C0

) 2−γ
γ +1(n + 1)

4−γ2
2γ 2

4
γ ≥ 0. (4.7)

By Corollary 3.1, Condition (4.7) implies Condition (4.6). The Constant Rank Theorem in [7] implies
that there is a convex even solution u ∈ C3,α(Sn), ∀0 < α < 1 of (1.2).

In the case k = 1, one may use (3.7) to deduce a simpler condition for convex even solutions to Lp

Christoffel problem:
p − φ

′′

+ 8(p − 1)(n + 1)
3
2 (2n)

2
p e

π
p ‖∇ log f ‖C0 ≥ 0, (4.8)

Conditions (4.7) and (4.8) are not satisfactory. It only makes some sense when 1− p is small. It is an
open problem to find a clean pointwise condition on f for existence of convexity solutions to equation
(1.2), 0 < p < 1.
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