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1. Introduction

In this article, we introduce a family of games related to second-order partial differential equations
(PDEs) given by arbitrary products of eigenvalues of the Hessian. More precisely, given Ω ⊂ RN , and
k indices i1, . . . , ik ∈ {1, . . . ,N} (which could be repeated), we consider PDEs of the form

Pi1,...,ik(D
2u) :=

k∏
j=1

λi j(D
2u) = f , in Ω,

u = g, on ∂Ω.

(1.1)
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Here, λ1 ≤ · · · ≤ λN denote the eigenvalues of D2u and the right-hand side f is a continuous, non-
negative function. Notice that operators given by Pi1,...,ik are degenerate and do not preserve order in
the space of symmetric matrices, the usual condition for ellipticity. Moreover, we want to emphasize
that the eigenvalues λi1 , . . . , λik in (1.1) could be repeated. For instance, one could take i1 = i2 = 1
and i3 = 3 to produce the equation λ2

1λ3 = f . Similarly, one could also take k = N and i j = j
and consider the product of all the eigenvalues, which corresponds to the classical Monge-Ampère
equation, det(D2u) =

∏N
i=1 λi = f . We refer the reader to [11,13] for general references on the Monge-

Ampère equation.
Our main goal is to design a game whose value functions approximate viscosity solutions to (1.1)

as a parameter that controls the step size of the game goes to zero. The connection between games
and PDEs has developed significantly over the last decade; see [10, 16, 19–21, 24, 25] (and we refer
also to [12] in connection with mean-field games). We also refer to the recent books [6, 15] and the
references therein for general references on this program. The relation between games and PDEs has
proven fruitful in obtaining qualitative results, see [4], and regularity estimates; see [1, 18, 23, 27]. A
game-theoretical interpretation is available in the case of Hamilton-Jacobi equations in the presence
of gradient constraints (both in the convex and non-convex settings), see [28]. The case k = 1 for the
smallest eigenvalue λ1 gives rise to the Dirichlet problem for the convex envelop studied in [22] and it
is also related to the truncated Laplacians considered in [2].

Our starting point is the case of only one eigenvalue and f = 0, which was recently tackled in [5]
and has connections with convexity theory. Let us describe the two-player, zero-sum game called “a
random walk for λ j” introduced there. Given a domain Ω ⊂ RN , ε > 0, and a final payoff function
g : RN \ Ω → R, the game is played as follows. The game starts with a token at an initial position
x0 ∈ Ω. Player I (who wants to minimize the expected payoff) chooses a subspace S of dimension
j, and then Player II (who wants to maximize the expected payoff) chooses a unitary vector v ∈ S .
Then, the token moves to x ± εv with equal probabilities. The game continues until the token leaves
the domain at a point xτ, and the first player gets −g(xτ) while the second receives g(xτ) (we can think
that Player I pays the amount g(xτ) to Player II). This game has a value function uε (see below for the
precise definition) defined in Ω, which depends on the step size ε. One of the main results in [5] is
showing that, under an appropriate condition on ∂Ω, these value functions converge uniformly in Ω to
a continuous limit u characterized as the unique viscosity solution to P j(D2u) = λ j(D2u) = 0, in Ω,

u = g, on ∂Ω.
(1.2)

The right-hand side f is obtained by considering a running payoff, that is, a nonnegative function
f : Ω → R such that 1

2ε
2 f (xn) represents an amount paid by Player II to Player I when the token

reaches xn. Then, the game value approximates viscosity solutions to P j(D2u) = λ j(D2u) = f , in Ω,

u = g, on ∂Ω.
(1.3)

Now, we introduce a new game that allows us to obtain a product of eigenvalues. Assume a list of
eigenvalues (λi j) j=1,...,k is given. We consider the set

Ik
ε =

{
(α j) j=1,...,k ∈ R

k :
k∏

j=1

α j = 1 and 0 < α j < φ
2(ε)

}
, (1.4)
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where φ(ε) is a positive function such that

lim
ε→0

φ(ε) = ∞ and lim
ε→0

ε φ(ε) = 0 (1.5)

(for example one can take φ(ε) = ε−1/2). At every round, Player I chooses k positive real numbers
(α j) j=1,...,k ∈ Ik

ε , after which, an index j ∈ {1, . . . , k} is selected uniformly at random. Then, the players
play a round of the game “a random walk for λi j” described above. Specifically, Player I chooses
a subspace S of dimension i j, Player II chooses a unitary vector v ∈ S , and the token is moved to
x ± ε√α jv with equal probabilities. The running payoff at every round is given by 1

2ε
2[ f (xn)]

1
k (Player

II pays this ammount to Player I) and the final payoff is given by g (if xτ denotes the first position
outside Ω, the game ends and Player I pays g(xτ) to Player II).

Notice that in this game we adjust the length of the token jump according to the corresponding α j,
and Player I may choose to enlarge the game steps associated with λi at the expense of shortening
others (since the product of the α j must equal one). Also notice that the restriction φ(ε) > √α j > 0
implies that the maximum step size is bounded as |x − (x ± ε√α jv)| < εφ(ε)→ 0 as ε→ 0.

When both players fix their strategies, S I for the first player (a choice of (α j) j=1,...,k and
i j−dimensional subspaces S at every step of the game), and S II for the second player (a choice of a
unitary vector v in each possible subspace at every step of the game), then we can compute the
expected outcome (the amount that Player II receives) as

Ex0
S I ,S II

g(xτ) −
1
2
ε2

τ−1∑
n=0

[ f (xn)]
1
k

 .
Then, the value for Player I of the game starting at any given x0 ∈ Ω is defined as

uεI (x0) = inf
S I

sup
S II

Ex0
S I,S II

g(xτ) −
1
2
ε2

τ−1∑
n=0

[ f (xn)]
1
k

 ,
while the value for Player II is

uεII(x0) = sup
S II

inf
S I
Ex0

S I,S II

g(xτ) −
1
2
ε2

τ−1∑
n=0

[ f (xn)]
1
k

 .
When these two values coincide we say that the game has a value.

In our first result, we state that this game has a value and the value verifies an equation in Ω, called
a Dynamic Programming Principle (DPP) in the literature.

Theorem 1. The game has a value
uε := uεI = uεII ,

which is characterized as the unique solution to
uε(x) = inf

α j∈Ik
ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2

uε(x + ε
√
α jv) +

1
2

uε(x − ε
√
α jv)

}
−

1
2
ε2[ f (x)]

1
k x ∈ Ω,

uε(x) = g(x) x < Ω.

(1.6)
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Let us show intuitively why this holds. At each step, Player I chooses (α j) j=1,...,k, and then j ∈
{1, . . . , k} is selected with probability 1

k . Player I chooses a subspace S of dimension i j and then Player
II chooses one unitary vector, v, in the subspace S . The token is then moved with probability 1

2 to
x + ε

√
α jv or x− ε√α jv. Finally, the expected payoff at x is given by −1

2ε
2[ f (x)]

1
k (the running payoff)

plus the expected payoff for the rest of the game. Then, the equation in (1.6) follows by considering all
the possibilities (recall that Player I seeks to minimize the expected payoff and Player II to minimize
it).

Our next goal is to look for the limit as ε→ 0.

Theorem 2. Assume that Ω is strictly convex. Let uε be the values of the game. We have

uε → u as ε→ 0

uniformly in Ω, where u is the unique viscosity solution to (1.1).

We devote Section 3 to proving the theorems. The uniqueness statement in Theorem 2 follows
from [8]; see Remark 5 below. We need the convexity of ∂Ω to prove that the sequence converges by
means of an Arzelà-Ascoli type lemma. In fact, for strictly convex domains, we show that for every
point y ∈ ∂Ω, a game that starts near y ends nearby with a high probability regardless of the players’
strategies. This allows us to obtain a sort of asymptotic equicontinuity near the boundary, which leads
to uniform convergence in the whole Ω. Note that, in general, the value functions uε are discontinuous
in Ω since we take discrete steps.

Observe that the result implies the existence of a solution to the PDE. The strict convexity of Ω is
needed if a solution to the equation λ1 = 0 is to exist for every continuous boundary data; see [5].
Since our general setting includes this case, we require the strict convexity. However, in some cases,
such as λ2 = 0, this hypothesis may be relaxed; see [5].

Let us see intuitively why u is a solution to Eq (1.1). By subtracting uε(x) and dividing by ε2 on
both sides we get the term:

uε(x + ε
√
α jv) − 2uε(x) + uε(x − ε√α jv)

ε2

which in the limit approximates the second derivative of u in the direction of v multiplied by α j. Hence,
by the Courant-Fischer min-max principle, the expression

inf
dim(S )=i j

sup
v∈S ,|v|=1

uε(x + ε
√
α jv) − 2uε(x) + uε(x − ε√α jv)

ε2

approximates the i j eigenvalue of D2u(x) multiplied by α j. Taking into account the running payoff, we
obtain that u is a solution to

[ f (x)]
1
k = inf

α j∈Ik
ε

1
k

k∑
j=1

α jλi j .

Then, the result follows from the identity

(β1β2 . . . βk)
1
k = inf

α j>0,
∏k

j=1 α j=1

1
k

k∑
j=1

α jβ j whenever β1, β2, . . . , βk ≥ 0,
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which is proved in detail in Lemma 7 below.
The Monge-Ampère equation. Notice that when all the eigenvalues are involved, we have a two-

player game that approximates solutions to the Monge-Ampère equation det(D2u) = f . However,
in the special case of the Monge-Ampère equation, we can also design a one-player game (a control
problem) to approximate the solutions. This game is based on a recent asymptotic mean value formula
that characterizes viscosity solutions to the Monge-Ampère equation. In fact, in [3], it is proved that u
is a viscosity solution to the Monge-Ampère equation

det(D2u(x)) = f (x)

if and only if

u(x) = inf
V∈O

inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

u(x + ε
√
αivi) +

1
2

u(x − ε
√
αivi)

 − ε2

2
[ f (x)]

1
n + o(ε2)

as ε → 0, holds in the viscosity sense. Here we denoted by O the set of all orthonormal bases V =

{v1, . . . , vN} of Rn, and IN
ε is given by (1.4).

Now, let us describe a one-player game (control problem). At each play, the player (controller),
who aims to minimize the expected total payoff, chooses an orthonormal basis V = (v1, ..., vN) and
coefficients (αi)i=1,...,N ∈ IN

ε . Then, the new position of the game goes to x ± ε
√
αivi with equal

probability 1/(2N). In addition, there is a running payoff given by − ε
2

2 [ f (x)]
1
N at every play and a final

payoff g(x) (as before the game ends when the token leaves Ω). Then, the value of the game for any
x0 ∈ Ω for is given by

uε(x0) = inf
S I
Ex0

S I

g(xτ) −
1
2
ε2

τ−1∑
i=0

[ f (xi)]
1
N

 .
Here, we take the infimum over all the possible player strategies.

For this game we have the following result.

Theorem 3. The game value uε is the unique solution to
uε(x) = inf

V∈O
inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

uε(x + ε
√
αivi) +

1
2

uε(x − ε
√
αivi)

 − 1
2
ε2[ f (x)]

1
N

x ∈ Ω,

uε(x) = g(x) x < Ω.

Moreover, if we assume that Ω is strictly convex. Then,

uε → u, as ε→ 0,

uniformly in Ω, where u is the unique viscosity solution to det(D2u) =

N∏
i=1

λi(D2u) = f , in Ω,

u = g, on ∂Ω.

(1.7)
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Notice that here the strict convexity of the domain is a natural assumption for the solvability of (1.7);
see [7, 26].

The paper is organized as follows: in Section 2, we collect some preliminary results and include
the definition of viscosity solutions. In Section 3, we prove our main results concerning the two-player
game, Theorems 1 and 2. In Section 4, we include some details for the control problem for Monge-
Ampère. Finally, in Section 5, we present a variant of the game for Monge-Ampère that involves an
integral average in the corresponding DPP.

2. Preliminaries

We begin by stating the definition of a viscosity solution to (1.1). Recall that f : Ω → R is a
non-negative function. Following [8] (see also [14]), we have that the equation is associated with the
cone

F =

M :
k∏

j=1

λi j(M) ≥ f and λi j(M) ≥ 0 for every j = 1, . . . , k

 .
Here we do not state the definition of viscosity solutions with an explicit reference to the cone, but we
prefer to present it using the usual notation; see [9].

We say that P is a paraboloid if for every x, x0 ∈ R
N we have

P(x) = P(x0) + 〈x − x0,∇P(x0)〉 +
1
2
〈D2P(x0)(x − x0), x − x0〉.

Definition 4. A continuous function u verifies

k∏
j=1

λi j(D
2u) = f

in Ω in the viscosity sense if

1) for every paraboloid φ that touches u from below at x0 ∈ Ω (φ(x0) = u(x0) and φ ≤ u), and with
eigenvalues of the Hessian that verify λi j(D

2φ(x0)) ≥ 0, we have

k∏
j=1

λi j(D
2φ(x)) ≤ f (x).

2) for every paraboloid ψ that touches u from above at x0 ∈ Ω (ψ(x0) = u(x0) and ψ ≥ u), we have
λi j(D

2ψ(x0)) ≥ 0 for j = 1, . . . , k and

k∏
j=1

λi j(D
2ψ(x)) ≥ f (x).

Remark 5. The validity of the comparison principle for our equation follows from Theorem 4.9 in [8].
In fact, the map Θ : Ω→ S N×N given by

Θ(x) =

M :
k∏

j=1

λi j(M) ≥ f (x) and λi j(M) ≥ 0 for every j = 1, . . . , k


Mathematics in Engineering Volume 5, Issue 3, 1–26.
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is uniformly upper semicontinuous (since f is continuous) and is elliptic (since the operator is
monotone on non negative matrices and f ≥ 0).

Also observe that the concept of Θ-subharmonic/superharmonic is equivalent to the definition of
subsolution/supersolution that we have given. In fact, if we consider

Φ =
{
M : λi j(M) ≥ 0 for every j = 1, . . . , k

}
Then, we have

Θ(x) = {M ∈ Φ : F(M, x) ≥ 0}

where F is the operator that we are considering here, that is,

F(M, x) =

k∏
j=1

λi j(M) − f (x).

Therefore, the equivalence between being Θ-subharmonic/superharmonic and being
subsolution/supersolution follows from Proposition 2.11 in [8].

To obtain a convergent subsequence uε → u we will require Ω to be strictly convex. Here this
means that we have that for every x, y ∈ Ω, tx + (1 − t)y ∈ Ω for all 0 < t < 1. In particular, in
Lemma 15 we will use a geometric condition over Ω equivalent to the strict convexity. We prove the
equivalence between these two notions of strict convexity in the following lemma which is a variation
of the classical supporting hyperplane theorem.

Lemma 6. Given an open non-empty bounded set Ω ⊂ RN , the following statements are equivalent:

1) Ω is strictly convex (i.e., for every x, y ∈ Ω, tx + (1 − t)y ∈ Ω for all 0 < t < 1).
2) Given y ∈ ∂Ω there exists w ∈ RN of norm 1 such that 〈w, x − y〉 > 0 for every x ∈ Ω \ {y}.
3) Given y ∈ ∂Ω there exists w ∈ RN of norm 1 such that for every δ > 0 there exists θ > 0 such that

{x ∈ Ω : 〈w, x − y〉 < θ} ⊂ Bδ(y).

Moreover, the vector w in statements (2) and (3) is the same one.

Proof. (1) =⇒ (2): We consider yk ∈ R
N \ Ω such that yk → y and zk the projection of xk over Ω

(which exists since Ω is convex). We define the vectors

wk =
zk − yk

‖zk − yk‖
.

Up to a subsequence, we may assume that wk → w ∈ RN . We have that

〈zk − yk, x − zk〉 ≥ 0

for every x ∈ Ω. Hence, for every x ∈ Ω, we have

〈wk, x〉 ≥ 〈wk, zk〉 = 〈wk, zk − yk〉 + 〈wk, yk〉 > 〈wk, yk〉.

Passing to the limit we get
〈w, x − y〉 ≥ 0

Mathematics in Engineering Volume 5, Issue 3, 1–26.
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for every x ∈ Ω.
It remains to prove that 〈w, x − y〉 , 0 when x , y. Suppose, for the sake of contradiction, that

〈w, x − y〉 = 0 for some x , y. By the strict convexity of Ω, we have x+y
2 ∈ Ω. Hence, x+y

2 − εw ∈ Ω for
ε small enough and 〈

w,
( x + y

2
− εw

)
− y

〉
= 〈w,

x − y
2
− εw〉 = −ε < 0,

a contradiction.
(2) =⇒ (3): Given δ, we consider f : Ω \ Bδ(y)→ R given by

f (x) = 〈w, x − y〉.

Since f is continuous and is defined in a compact set it attains its minimum. We consider
θ = minΩ\Bδ(y) f which is positive since 〈w, x − y〉 > 0 for every x ∈ Ω \ {y}. We have that
〈w, x − y〉 ≥ θ for every x ∈ Ω \ Bδ(y), and the result follows.

(3) =⇒ (2): Given x ∈ Ω \ {y} we consider δ =
dist(x,y)

2 > 0 and xk ∈ Ω \ Bδ(x) such that xk → x.
Since xk < Bδ(y), we have 〈w, xk − y〉 ≥ θ. Hence 〈w, x − y〉 ≥ θ > 0.

(2) =⇒ (1): We consider the set

C =
⋂
y∈∂Ω

{x ∈ Rn : 〈wy, x − y〉 ≥ 0}

where wy stands for the w given by statement (2) for each y ∈ ∂Ω. Since C is the intersection of convex
sets, it is also convex. We want to prove that Ω is convex by proving that it is equal to C. It is clear that
Ω ⊂ C, let us show that if z < Ω then z < C. We fix x0 ∈ Ω. Given z < Ω, there exists t ∈ (0, 1) such
that y = tz + (1 − t)x0 ∈ ∂Ω. We know that 〈wy, x0 − y〉 > 0 since x0 ∈ Ω. Hence 〈wy, z − y〉 < 0 and
z < C.

It remains to prove that the convexity is strict. Given x, y ∈ Ω, we know that

tx + (1 − t)y ∈ Ω

for all 0 < t < 1. We want to prove that tx + (1 − t)y ∈ Ω, that is, tx + (1 − t)y < ∂Ω. Suppose, arguing
again by contradiction, that z = tx + (1 − t)y ∈ ∂Ω for some 0 < t < 1. Then, 〈wz, x − z〉 > 0 and
〈wz, y − z〉 > 0, and this implies that 0 < 〈wz, (tx + (1 − t)y) − z〉 = 0, which is a contradiction. �

The idea that allows us to obtain the product of the eigenvalues relies on the following formula.

Lemma 7. Given β1, β2, . . . , βk ≥ 0, we have

(β1β2 . . . βk)
1
k = inf

α j>0,
∏k

j=1 α j=1

1
k

k∑
j=1

α jβ j.

Proof. The inequality

(β1β2 . . . βk)
1
k ≤ inf

α j>0,
∏k

j=1 α j=1

1
k

k∑
j=1

α jβ j.

follows from the arithmetic-geometric mean inequality.

Mathematics in Engineering Volume 5, Issue 3, 1–26.
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In the case that all the βi are strictly positive, the equality is attained for

αi =
(β1β2 . . . βk)

1
k

βi
.

In the case that βi = 0 for some i we have to show that the infimum is zero. For that, we consider
αi = nk−1 and α j = 1

n , which gives

lim
n→∞

1
k

k∑
j=1

α jβ j = βi = 0

as desired. �

Let us recall that in our setting we have the extra restriction αi < φ2(ε). To handle this issue we
require the following two lemmas.

Lemma 8. Given β1, β2, . . . , βk ≥ 0, it holds

(β1β2 . . . βk)
1
k = lim

ε→0
inf
α j∈Ik

ε

1
k

k∑
j=1

α jβ j,

where Ik
ε is given by (1.4).

Proof. If β1, β2, . . . , βk > 0, for ε small enough such that

φ2(ε) >
(β1β2 . . . βk)

1
k

βi

for all i, we have

inf
α j∈Ik

ε

1
k

k∑
j=1

α jβ j = (β1β2 . . . βk)
1
k ,

and the result follows.
Now we consider the case where βi = 0 for some i = 1, . . . , k and k > 1 (if k = 1 the result is

obvious). We take

αi =
φ(ε)

2
and α j =

(
2
φ(ε)

) 1
k−1

.

for j , i. We have

inf
α j∈Ik

ε

1
k

k∑
j=1

α jβ j ≤
1
k

∑
j,i

(
2
φ(ε)

) 1
k−1

β j.

By taking limit as ε→ 0 we conclude the proof. �

Lemma 9. Given β1, β2, . . . , βk ∈ R with βi < 0 for some i = 1, . . . , k, it holds

lim
ε→0

inf
α j∈Ik

ε

1
k

k∑
j=1

α jβ j < 0.
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Proof. If k = 1 we have

lim
ε→0

inf
α j∈Ik

ε

1
k

k∑
j=1

α jβ j = β1 < 0.

If k > 1, we take

αi =
φ(ε)

2
and α j =

(
2
φ(ε)

) 1
k−1

and in the limit we get −∞. �

3. A two-player game for products of eigenvalues

In this section, we describe in detail the two-player zero-sum game presented in the introduction.
Let Ω ⊂ RN be a bounded open set and fix ε > 0. The values k and (i j) j=1,...,k are given along with a
positive function φ(ε) such that

lim
ε→0

φ(ε) = ∞ and lim
ε→0

ε φ(ε) = 0.

A token is placed at x0 ∈ Ω and the game begins with Player I choosing (α j) j=1,...,k ∈ Ik
ε where

Ik
ε =

{
(α j) j=1,...,k ∈ R

k :
k∏

j=1

α j = 1 and 0 < α j < φ
2(ε)

}
.

Then, j ∈ {1, . . . , k} is selected uniformly at random. Given the value of j, Player I chooses a subspace
S of dimension i j and then Player II chooses one unitary vector v ∈ S . Then, the token is moved to
x ± ε√α jv with equal probabilities. After the first round, the game continues from x1 according to the
same rules.

This procedure yields a possibly infinite sequence of game states x0, x1, . . . where every xk is a
random variable. The game ends when the token leaves Ω. At this point the token will be in the
boundary strip of width εφ(ε) given by

Γεφ(ε) =
{
x ∈ RN \Ω : dist(x, ∂Ω) ≤ εφ(ε)

}
.

We denote by xτ ∈ Γεφ(ε) the first point in the sequence of game states that lies in Γεφ(ε). In other words,
τ is the first time we hit Γεφ(ε) (τ is a stopping time for this game). The payoff is determined by two
given functions: g : RN \Ω→ R, the final payoff function, and f : Ω→ R, the running payoff function.
We require g to be continuous, f uniformly continuous and both bounded functions. When the game
ends, the total payoff is given by

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
k .

Player II earns this amount and Player I loses it (Player I earns −g(xτ) + 1
2ε

2 ∑τ−1
l=0 [ f (xl)]

1
k ).

A strategy S I for Player I is a function defined on the partial histories that gives the values of α j at
every step of the game

S I(x0, x1, . . . , xn) = (α j) j=1,...,k ∈ Ik
ε
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and that for a given value of j returns a i j−dimensional subspace S

S I(x0, x1, . . . , xn, j) = S .

We call S I both functions to avoid overloading the notation. A strategy S II for Player II is a function
defined on the partial histories that gives a unitary vector in a prescribed subspace S at every step of
the game

S II

(
x0, x1, . . . , xn, S , α j

)
= v ∈ S .

When the two players fix their strategies S I and S II we can compute the expected outcome as
follows: Given the sequence x0, . . . , xn with x j ∈ Ω the next game position is distributed according to
the probability

πS I,S II(x0, . . . , xn, A) =
1
2k

k∑
j=1

δxn+ε
√
α jv(A) + δxn−ε

√
α jv(A).

where
(α j) j=1,...,k = S I(x0, x1, . . . , xn)

and
v = S II(x0, . . . , xn, S I(x0, . . . , xn, j), α j).

By using the Kolmogorov’s extension theorem and the one-step transition probabilities, we can
build a probability measure Px0

S I,S II
on the game sequences H∞. We denote by Ex0

S I,S II
the corresponding

expectation. Then, when starting from x0 and using the strategies S I, S II, the expected payoff is

Ex0
S I,S II

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
k

 . (3.1)

The value of the game for Player I is given by

uεI (x0) = inf
S I

sup
S II

Ex0
S I,S II

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
k

 ,
while the value of the game for Player II is given by

uεII(x0) = sup
S II

inf
S I
Ex0

S I,S II

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
k

 .
Intuitively, the values uεI (x0) and uεII(x0) are the best expected outcomes each player can guarantee when
the game starts at x0. If uεI = uεII, we say that the game has a value and we denote it by uε := uεI = uεII.

Let us observe that the game ends almost surely, and therefore the expectation (3.1) is well defined.
Let us be more precise at this point. If we consider the square of the distance to x0, at every step,
this quantity increases by at least ε2 with probability 1

2k (a value of j such that α j ≥ 1 is selected
with probability at least 1

k and given a direction v at least one of the vectors xn ± ε
√
α jv is at least at

a distance ε2 greater that the distance from xn to the initial point). As the distance to x0 is bounded
(since we assumed that Ω is bounded), with a positive probability the game ends after a finite number
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of steps. Iterating this argument we get that the game ends almost surely. See Lemma 13 for details
concerning this argument.

To see that the game has a value, we first observe that we have existence of uε, a function that
satisfies the DPP. The existence of such a function can be seen by Perron’s method. In fact, the operator
given by the right-hand side of the DPP, that is,

u 7→ inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2

u(x + ε
√
α jv) +

1
2

u(x − ε
√
α jv)

}
−

1
2
ε2[ f (x)]

1
k ,

is in the hypotheses of the main result of [17].
Now, concerning the value functions of our game, we know that uεI ≥ uεII (this is immediate from

their definition). Hence, to obtain the desired result, it is enough to show that uε ≥ uεI and uεII ≥ uε.
Given η > 0 we can consider the strategy S 0

II for Player II that at every step almost maximize
u(x + ε

√
α jv) + u(x − ε√α jv), that is

S 0
II

(
x0, x1, . . . , xn, S , α j

)
= w ∈ S

such that {
1
2

uε(x + ε
√
α jw) +

1
2

uε(x − ε
√
α jw)

}
≥ sup

v∈S ,|v|=1

{
1
2

uε(x + ε
√
α jv) +

1
2

uε(x − ε
√
α jv)

}
− η2−(k+1).

We have

Ex0

S I,S 0
II
[uε(xk+1) + ε2

k∑
n=0

f (xn) − η2−(k+1)| x0, . . . , xk]

≥ inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2

u(x + ε
√
α jv) +

1
2

u(x − ε
√
α jv)

}

− η2−(k+1) +
1
2
ε2

k∑
n=0

f (xn) − η2−(k+1)

≥ uε(xk) −
1
2
ε2 f (xk) +

1
2
ε2

k∑
n=0

f (xn) − η2−k

≥ uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn) − η2−k,

where we have estimated the strategy of Player I by inf and used the DPP. Then,

Mk = uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn) − η2−k

is a submartingale.
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Now, we have

uεII(x0) = sup
S II

inf
S I
Ex0

S I,S II

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn)


≥ inf

S I
Ex0

S I,S 0
II

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn) − η2−τ


≥ inf
S I

lim inf
k→∞

Ex0

S I,S 0
II
[Mτ∧k]

≥ inf
S I
Ex0

S I,S 0
II
[M0] = uε(x0) − η,

where τ ∧ k = min(τ, k), and we used the optional stopping theorem for Mk. Since η is arbitrary this
proves that uεII ≥ uε. An analogous strategy can be considered for Player I to prove that uε ≥ uεI .

Given a solution to the DPP we have proved that it coincides with the game value. Then, the game
value satisfies the DPP and, even more, any solution coincides with it. Uniqueness follows. We have
proved Theorem 1.

Remark 10. From our argument it can be deduced that

uε(x0) = sup
S II

inf
S I
Ex0

S I,S II

uε(xτ̃) +
1
2
ε2

τ̃−1∑
n=0

f (xn)


for any stopping time τ̃ ≤ τ. That is, as long as the game has not ended we can separate the payoff as
the cumulative amount payed during the game, 1

2ε
2 ∑τ−1

n=0 f (xn) and the expected one for the rest of the
game, uε(xτ̃).

Remark 11. We have a comparison principle for solutions to the DPP. Assume that f1 ≥ f2 and that
g1 ≤ g2 then the corresponding solutions verify

uε1 ≤ uε2

in Ω. In terms of the game this is quite intuitive since playing with g1 and f1 the palyers have a larger
final payoff and a smaller running playoff than playing with g2 and f2.

Now our aim is to pass to the limit in the values of the game. We aim to prove that, along a
subsequence,

uε → u, as ε→ 0

uniformly in Ω and then obtain in this limit process a viscosity solution to (1.1).
To obtain a convergent subsequence uε → u we will use the following Arzela-Ascoli type lemma.

For its proof see Lemma 4.2 from [21].

Lemma 12. Let {uε : Ω→ R, ε > 0} be a set of functions such that

1) there exists C > 0 such that |uε(x)| < C for every ε > 0 and every x ∈ Ω,
2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any x, y ∈ Ω with
|x − y| < r0 it holds

|uε(x) − uε(y)| < η.
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Then, there exists a uniformly continuous function u : Ω → R and a subsequence still denoted by {uε}
such that

uε → u uniformly in Ω,

as ε→ 0.

Our task now is to show that the family uε satisfies the hypotheses of the previous lemma.

Lemma 13. There exists C = C(Ω) > 0 such that

Ex0
S I,S II

[τ] ≤ Cε−2.

for every ε > 0, S I , S II and x0 ∈ Ω.

Proof. Here we write E for Ex0
S I,S II

. We consider R > 0 such that Ω ⊂ BR(0) and Mn = ‖xn‖
2. Given that

the token lies at xn, we have that

E[Mn+1|xn] =
1
2k

k∑
j=1

‖xn + ε
√
α jv j‖

2 + ‖xn − ε
√
α jv j‖

2

=
1
k

k∑
j=1

‖xn‖
2 + ε2α j‖v j‖

2

= ‖xn‖
2 + ε2 1

k

k∑
j=1

α j ≥ ‖xn‖
2 + ε2

k∏
j=1

α j

= ‖xn‖
2 + ε2 = Mn + ε2,

where v j stands for the selected unitary vector when that value of j is chosen.
We have obtained

E[Mn+1|Mn] ≥ Mn + ε2.

Hence,
Mn − nε2

is a submartingale. According to the optional stopping theorem for submartingales

E
[
Mτ∧n − (τ ∧ n)ε2

]
≥ M0.

Therefore
E[τ ∧ n]ε2 ≤ E[Mτ∧n] − M0 ≤ E[Mτ∧n] ≤ R2.

By taking limit in n, we obtain a bound for the expected exit time,

E[τ] ≤ R2ε−2,

as desired. �

Corollary 14. There exists C = C(Ω, f , g) > 0 such that |uε(x)| < C for every ε > 0 and every x ∈ Ω.
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Proof. Since Ex0
S I,S II

[τ] ≤ Cε−2, we have

|uε(x0)| ≤ sup
S II

inf
S I
Ex0

S I,S II

|g(xτ)| +
1
2
ε2

τ−1∑
n=0

| f (xn)|


≤ max g + C max f . �

To prove that uε satisfies the second hypothesis we will make the following geometric assumption
on the domain. Given y ∈ ∂Ω we assume that for every δ > 0 there exists w ∈ RN of norm 1 and θ > 0
such that

{x ∈ Ω : 〈w, x − y〉 < θ} ⊂ Bδ(y). (3.2)

This condition is equivalent to Ω being strictly convex as proved in Section 2.

Lemma 15. Given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any x, y ∈ Ω with
|x − y| < r0 it holds

|uε(x) − uε(y)| < η.

Proof. The case x, y ∈ Γεφ(ε) follows from the uniform continuity of g in Γεφ(ε). Since the rules of the
game do not depend on the point, the case x, y ∈ Ω follows from the case x ∈ Ω and y ∈ Γεφ(ε). The
argument is as follows. Suppose that we want to prove that uε(x) − uε(y) < η, that is

sup
S II

inf
S I
Ex

S I,S II

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn)

 − sup
S̃ II

inf
S̃ I

Ey
S̃ I,S̃ II

g(yτ) +
1
2
ε2

τ−1∑
n=0

f (yn)

 < η.
Then, it is enough to show that given S 0

II and S̃ 0
I (strategies for Player II in the game starting at x and

for Player I in the game starting at y, respectively) there exists S̃ 0
II and S 0

I such that

Ex
S 0

I ,S
0
II

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn)

 − Ey
S̃ 0

I ,S̃
0
II

g(yτ) +
1
2
ε2

τ−1∑
n=0

f (yn)

 < η.
We consider the strategies S̃ 0

II and S 0
I that mimic S 0

II and S̃ 0
I , that is

S̃ 0
II(y, y1, . . . , yn) = S 0

II(x, y1 − y + x, . . . , yn − y + x)

and
S 0

I (x, x1, . . . , xn) = S̃ 0
II(y, x1 − x + y, . . . , xn − x + y).

Even more, we couple the random steps, then we have that when the token lies at xn, in the other games
it lies at yn = xn − x + y. We call E the common expectation of the coupled processes. We proceed in
this way until one of the games ends, at time τ̃, that is for the first time xn ∈ Γεφ(ε) or yn ∈ Γεφ(ε). By
Remark 10 it is enough to show that

E

uε(xτ̃) − uε(yτ̃) +
1
2
ε2

τ̃−1∑
n=0

( f (xn) − f (yn))

 < η.
At every point we have |xl − yl| = |x − y|, and the desired estimate follow from the one for xn ∈ Ω,
yn ∈ Γεφ(ε) or for xn, yn ∈ Γεφ(ε) together with the uniform continuity of f and the bound for the exit time
obtained in Lemma 13.
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Now, we can concentrate on the case x ∈ Ω and y ∈ Γεφ(ε). Due to the uniform continuity of g in
Γεφ(ε), we can assume that y ∈ ∂Ω. In fact, if we have the bound valid for points on the boundary we
can obtain a bound for a generic point y ∈ Γεφ(ε) just by considering z ∈ ∂Ω in the line segment between
x and y and using the triangular inequality.

In this case we have
uε(y) = g(y),

and we need to obtain a bound for uε(x). We observe that, for any possible strategy of the players (for
any possible choice of the direction v at every point) we have that the projection of xn in the direction
of the a fixed vector w of norm 1,

〈xn − y,w〉

is a martingale. We fix an arbitrary pair of strategies S I and S II , we denote by P = Px
S I ,S II

the
corresponding probability playing with these strategies and E = Ex

S I ,S II
the corresponding expectation.

We take δ > 0 and consider xτ, the first time x leaves Ω or Bδ(y). Hence, we have

E 〈xτ − y,w〉 ≤ 〈x − y,w〉 ≤ d(x, y) < r0.

From the geometric assumption on Ω, by choosing w as in Lemma 6, we have that

〈xn − y,w〉 ≥ −φ(ε)ε

because at every step the token moves at most
√
αiε ≤ φ(ε)ε. Therefore, we obtain

P
(
〈xτ − y,w〉 > r1/2

0

)
r1/2

0 −
(
1 − P

(
〈xτ − y,w〉 > r1/2

0

))
φ(ε)ε < r0.

Then, we take ε0 > 0 such that φ(ε)ε ≤ r0 for every ε < ε0 and we get

P
(
〈xτ − y,w〉 > r1/2

0

)
< 2r1/2

0 .

We consider the corresponding θ such that (3.2) holds, this implies

{dist(xτ, y) > δ} ⊂ {〈xτ − y,w〉 > θ}

and hence, for r1/2
0 < θ, we can conclude that

P(d(xτ, y) > δ) < 2r1/2
0 .

Repeating the argument in Lemma 13 for Mn = ‖xn − y‖2 we can show that

E[τ] ≤ δ2ε−2.

Therefore,

|uε(x) − g(y)|

≤ E
[
|g(xτ) − g(y)|

∣∣∣d(xτ, y) ≤ δ
]
P(d(xτ, y) ≤ δ) + P(d(xτ, y) > δ)(2 max g + δ2 max f )

≤ sup
x∈Bδ(y)

|g(x) − g(y)| + 2r1/2
0 (2 max g + δ2 max f ) < η

if r0 and δ are small enough. �
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From Corollary 14 and Lemma 15 we have that the hypotheses of the Arzela-Ascoli type lemma,
Lemma 12, are satisfied. Hence we have obtained uniform convergence of uε along a subsequence.

Corollary 16. Let uε be the values of the game. Then, along a subsequence,

uε → u, as ε→ 0,

uniformly in Ω.

Now, we prove that the uniform limit of uε is a viscosity solution to the limit PDE problem.

Theorem 17. The uniform limit of the game values uε, denoted by u, is a viscosity solution to
k∏

j=1

λi j(D
2u) = f , in Ω,

u = g, on ∂Ω.

(3.3)

Proof. First, we observe that since uε = g on ∂Ω it is immediate, form the uniform convergence, that
u = g on ∂Ω. Also, notice that Lemma 12 gives that a uniform limit of uε is a continuous function.

To check that u is a viscosity supersolution to
∏k

j=1 λi j(D
2u) = f in Ω, let ϕ be a paraboloid that

touches u from below at x ∈ Ω, and with eigenvalues of the Hessian that verify λi j(D
2ϕ(x)) > 0. We

need to check that
k∏

j=1

λi j(D
2ϕ(x)) − f (x) ≤ 0.

As uε → u uniformly in Ω we have the existence of a sequence xε such that xε → x as ε→ 0 and

uε(z) − ϕ(z) ≥ uε(xε) − ϕ(xε) − ε3

(notice that uε is not continuous in general). As uε is a solution to (1.6),

uε(x) = inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2

uε(x + ε
√
α jv) +

1
2

uε(x − ε
√
α jv)

}
−
ε2

2
[ f (x)]

1
k

we obtain

0 ≥ inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2
ϕ(xε + ε

√
α jv) +

1
2
ϕ(xε − ε

√
α jv) − ϕ(xε)

}
−
ε2

2
[ f (xε)]

1
k − ε3.

Now, using the second-order Taylor expansion of ϕ,

ϕ(y) = ϕ(x) + ∇ϕ(x) · (y − x) +
1
2
〈D2ϕ(x)(y − x), (y − x)〉

we get

ϕ(xε + ε
√
α jv) = ϕ(xε) + ε

√
α j∇ϕ(xε) · v + ε2α j

1
2
〈D2ϕ(xε)v, v〉 (3.4)
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and
ϕ(xε − ε

√
α jv) = ϕ(xε) − ε

√
α j∇ϕ(xε) · v + ε2α j

1
2
〈D2ϕ(xε)v, v〉. (3.5)

Therefore,

0 ≥ inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

ε2

2
α j〈D2ϕ(xε)v, v〉 −

1
2
ε2[ f (xε)]

1
k − ε3.

Dividing by ε2

2 we get

[ f (xε)]
1
k ≥ inf

α j∈Ik
ε

1
k

k∑
j=1

α j inf
dim(S )=i j

sup
v∈S ,|v|=1

〈D2ϕ(xε)v, v〉 − 2ε.

We have
inf

dim(S )=i j
sup

v∈S ,|v|=1
〈D2ϕ(xε)v, v〉 = λ j(D2ϕ(xε))

by the Courant-Fischer min-max principle. Even more, since D2ϕ(xε) = D2ϕ(x), we have
λ j(D2ϕ(xε)) = λ j(D2ϕ(x)). Hence, we conclude that

[ f (xε)]
1
k ≥ inf

α j∈Ik
ε

1
k

k∑
j=1

α jλ j(D2ϕ(x)) + o(1).

Using Lemma 8 to pass to the limit as ε→ 0 we get

[ f (x)]
1
k ≥

 k∏
j=1

λi j(D
2ϕ(x))


1
k

,

that is,
k∏

j=1

λi j(D
2ϕ(x)) ≤ f (x).

Now, to check that u is a viscosity subsolution to
∏k

j=1 λi j(D
2u) = f in Ω, let ψ be a paraboloid that

touches u from above at x ∈ Ω. We want to see that λi j(D
2ψ(x)) ≥ 0 for every j = 1, . . . , k and

k∏
j=1

λi j(D
2ψ(x)) − f (x) ≥ 0.

As uε → u uniformly in Ω we have the existence of a sequence xε such that xε → x as ε→ 0 and

uε(z) − ψ(z) ≥ uε(xε) − ψ(xε) − ε3

(notice that uε is not continuous in general). Arguing as before we obtain

0 ≤ inf
α j∈Ik

ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

{
1
2
ψ(xε + ε

√
α jv) +

1
2
ψ(xε − ε

√
α jv) − ψ(xε)

}
−

1
2
ε2[ f (xε)]

1
k − ε3.
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Using a Taylor expansions we arrive to

1
2
ε2[ f (xε)]

1
k ≤ inf

α j∈Ik
ε

1
k

k∑
j=1

inf
dim(S )=i j

sup
v∈S ,|v|=1

ε2

2
α j〈D2ψ(xε)v, v〉 − ε3

=
ε2

2
inf
α j∈Ik

ε

1
k

k∑
j=1

α jλi j(D
2ψ(x)) − ε3.

Since f ≥ 0 by Lemma 9 we get that λi j(D
2ψ(x)) ≥ 0. Dividing by ε2

2 and using Lemma 8 as before to
pass to the limit as ε→ 0 we get

[ f (x)]
1
k ≤

 k∏
j=1

λi j(D
2ψ(x))


1
k

,

that is,
k∏

j=1

λi j(D
2ψ(x)) ≥ f (x).

This concludes the proof. �

Finally, since problem (1.1) has a unique solution, see Remark 5, Theorem 2 follows.

4. A one-player game for the Monge-Ampère equation

In this section we describe a one-player/control problem presented in the introduction in order to
approximate solutions to the Monge-Ampère equation. As before, let Ω ⊂ RN be a bounded open set
and fix ε > 0. Also take a positive function φ(ε) such that

lim
ε→0

φ(ε) = ∞ and lim
ε→0

ε φ(ε) = 0.

A token is placed at x0 ∈ Ω and Player I (the controller) chooses coefficients (αi)i=1,...,N ∈ IN
ε where

IN
ε =

{
(αi)i=1,...,N ∈ R

N :
N∏

i=1

αi = 1 and 0 < αi < φ
2(ε)

}
.

The player/controller also chooses an orthonormal basis of RN , V = (v1, ..., vN). Then, the token is
moved to x ± ε

√
αivi with equal probabilities. After the first round, the game continues from the new

position x1 according to the same rules.
As before, the game ends when the token leaves Ω. We denote by xτ the first point in the sequence

of game states that lies outside Ω, so that τ is a stopping time for this game. The payoff is determined
by two given functions: g : RN \ Ω → R, the final payoff function, and f : Ω → R, the running payoff
function. We require g to be continuous, f uniformly continuous and both bounded functions. When
the game ends, the total payoff is given by

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
N .
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When the player/controller fixes a strategy S I the expected payoff is given by

Ex0
S I

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
N

 . (4.1)

The player/controller aims to minimize the expected payoff, hence the value of the game is defined as

uεI (x0) = inf
S I
Ex0

S I

g(xτ) −
1
2
ε2

τ−1∑
l=0

[ f (xl)]
1
N

 .
Let us observe that the game ends almost surely, and therefore the expectation (4.1) is well defined.
We can proceed as before to prove that the value of the game coincides with the solution to

uε(x) = inf
V∈O

inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

uε(x + ε
√
αivi) +

1
2

uε(x − ε
√
αivi)


−

1
2
ε2[ f (x)]

1
N x ∈ Ω,

uε(x) = g(x) x < Ω.

(4.2)

We first observe that we have existence of solutions to (4.2) and we can apply the main result of [17].
Now, given η > 0 we can consider the strategy S ∗I for the player that at every step of the game xk almost
realizes the infimum, that is, the player chooses coefficients α̂i and an orthonormal basis (v̂i) such that

inf
V∈O

inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

uε(xk + ε
√
αivi) +

1
2

uε(xk − ε
√
αivi)


≥

1
N

N∑
i=1

1
2

uε(xk + ε
√
α̂iv̂i) +

1
2

uε(xk − ε
√
α̂iv̂i) −

η

2k+1 .

Playing with this strategy we have

Ex0
S ∗I

[uε(xk+1) +
1
2
ε2

k∑
n=0

f (xn) −
η

2k+1 | x0, . . . , xk]

≤ inf
V∈O

inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

uε(xk + ε
√
αivi) +

1
2

uε(xk − ε
√
αivi)


−

η

2k+1 +
1
2
ε2

k∑
n=0

f (xn) −
η

2k+1

= uε(xk) −
1
2
ε2 f (xk) +

1
2
ε2

k∑
n=0

f (xn) −
η

2k

≤ uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn) −
η

2k .
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Then,

Mk = uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn) −
η

2k

is a supermartingale.
From this fact, arguing as before, we get

uεI (x0) = inf
S I
Ex0

S I

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn)


≤ Ex0

S ∗I

g(xτ) +
1
2
ε2

τ−1∑
n=0

f (xn)


≤ uε(x0) − η.

(4.3)

Since η is arbitrary we obtain that
uεI (x) ≤ uε(x).

To obtain the reverse inequality, we fix an arbitrary strategy S I for the player and we observe that

Mk = uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn)

is a submartingale. Indeed,

Ex0
S I

[uε(xk+1) +
1
2
ε2

k∑
n=0

f (xn)| x0, . . . , xk]

≥ inf
V∈O

inf
αi∈IN

ε

 1
N

N∑
i=1

1
2

uε(xk + ε
√
αivi) +

1
2

uε(xk − ε
√
αivi)

 +
1
2
ε2

k∑
n=0

f (xn)

= uε(xk) −
1
2
ε2 f (xk) +

1
2
ε2

k∑
n=0

f (xn)

= uε(xk) +
1
2
ε2

k−1∑
n=0

f (xn).

Taking infimum over all the strategies S I we get

uεI (x) ≥ uε(x).

Given a solution to the DPP we have proved that it coincides with the game value. Then, the game
value is characterized as the unique solution to the DPP.

Now our aim is to pass to the limit in the values of the game and obtain that, along a subsequence,

uε → u, as ε→ 0

uniformly in Ω.
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To obtain a convergent subsequence uε → u we will use again the Arzela-Ascoli type lemma,
Lemma 12. So our task now is to show that the family uε satisfies the hypotheses of the previous
lemma.

First, we observe that Lemma 13 still holds here. Hence, we have that there exists a constant
C = C(Ω) > 0 such that

Ex0
S I

[τ] ≤ Cε−2.

for every ε > 0, any strategy S I and x0 ∈ Ω. As an immediate consequence we get that there exists
C = C(Ω, f , g) > 0 such that

|uε(x)| < C

for every ε > 0 and every x ∈ Ω. In fact, using that Ex0
S I,S II

[τ] ≤ Cε−2, we have

|uε(x0)| ≤ inf
S I
Ex0

S I

|g(xτ)| +
1
2
ε2

τ−1∑
n=0

| f (xn)|


≤ max g + C max f .

Now we observe that uε satisfies the second hypothesis of the Arzela-Ascoli type lemma. We want
to see that, given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any x, y ∈ Ω with
|x − y| < r0 it holds

|uε(x) − uε(y)| < η.

The proof of this estimate is analogous to the proof of Lemma 15. In fact, the case x, y ∈ Γεφ(ε)

follows from the uniform continuity of g in Γεφ(ε). As before, since the rules of the game do not depend
on the point, the case x, y ∈ Ω follows from the case x ∈ Ω and y ∈ Γεφ(ε); see the proof of Lemma 15.
For the case x ∈ Ω and y ∈ Γεφ(ε) we can argue as before considering the projection of xk in the direction
of the a fixed vector w of norm 1, choosed as in Lemma 6,

〈xk − y,w〉 .

This projection is a martingale. Then, with the same computations used before (see the proof of
Lemma 15) se obtain

|uε(x) − g(y)| < η

if |x − y| is small enough.
From these computations we have obtained uniform convergence of uε along a subsequence,

uε → u, as ε→ 0,

uniformly in Ω. Finally, we observe that the uniform limit of uε is a viscosity solution to the limit
PDE problem. This follows from the same computation done in the proof of Theorem 3.3. We observe
that Lemmas 7–9 include the case where each eigenvalue is selected once, that is the Monge-Ampère
equation. This concludes the proof of Theorem 3.
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5. A different game for the Monge-Ampère equation

One can also study a game for Monge-Ampère in which the possible movements are not discrete.
In fact, for a small ε and a fixed matrix A ∈ S N consider the following random walk in a bounded

domain Ω, from x the next position is given by x + Ay with y ∈ Bε(0) being chosen with uniform
distribution in Bε(0). If we fix a final payoff function g in RN \Ω and we set

vε(x) = Ex(g(xτ))

with τ the first time when this random walk leaves the domain (τ is a stopping time for this process),
then, it follows that vε verifies

vε(x) = −

∫
Bε(0)

vε(x + Ay) dy

for x ∈ Ω and vε(x) = g(x) for x ∈ RN \Ω. These value functions converge to a solution to trace(AtD2uA) = 0 in Ω,

u = g on ∂Ω.

Now, the game/control problem for Monge-Ampère runs as follows: at each turn the
player/controller choose a matrix A in the set

A =
{
A ∈ S N×N : det A = 1 and 0 < A ≤ φ(ε)I

}
.

Then the new position of the game goes to x + Ay with y ∈ Bε(0) chosen with uniform probability. We
add a running payoff − N

2(N+2) ( f (x))1/N ε2 and a final payoff, g(x). In this case the DPP for the value of
the game reads as

uε(x) = inf
det A=1
A≤φ(ε)I

−

∫
Bε(0)

uε(x + Ay) dy −
N

2(N + 2)
( f (x))1/N ε2. (5.1)

This DPP is related to an asymptotic mean value formula for Monge-Ampère; see [3].
With similar ideas as the ones used before (assuming that Ω is strictly convex) one can show that

uε → u, as ε→ 0,

where the limit u is characterized as the unique convex viscosity solution to det(D2u) = inf
det(A)=1

trace(AtD2uA) = f in Ω,

u = g on ∂Ω.

Remark 18. Observe that for uε to be a solution to (5.1) it must be measurable so that the integral
in the right-hand side is well defined. Therefore, in the construction of a solution to the DPP by
Perron’s method (as in [17]) one has to take into account this measurability issue. The set of sub
solutions should be restricted to bounded measurable functions, and we have to check that if u and f
are bounded measurable functions, then T (x) given by

T (x) = inf
det A=1
A≤φ(ε)I

−

∫
Bε(0)

u(x + Ay) dy −
N

2(N + 2)
( f (x))1/N ε2
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is also measurable. This fact holds since the only problematic term is the uncountable infimum and we
have

inf
det A=1
A≤φ(ε)I

−

∫
Bε(0)

u(x + Ay) dy = inf
A∈QN×N

det A=1
A≤φ(ε)I

−

∫
Bε(0)

u(x + Ay) dy. (5.2)

The right-hand side is a countable infimum and the equality (5.2) follows from the absolute continuity
of the mapping E 7→

∫
E

u(y) dy.
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