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1. Introduction

One classical problem in convex geometry is the Minkowski problem, which is to find convex
hypersurfaces in R"*! whose Gaussian curvature is prescribed as a function defined on S in terms of
the inverse Gauss map. It has been settled by the works of Minkowski [23], Alexandrov [1], Fenchel
and Jessen [28], Nirenberg [25], Pogorelov [26], Cheng and Yau [3], etc.. In smooth catagory, the
Minkowski problem is equivalent to solve following Monge-Ampere equation

det(V’u + ugs) = f on S,

where u is the support function of the convex hypersurface, V?u + ugs. the spherical Hessian matrix
of the function u. If we take an orthonormal frame on S”, the spherical Hessian of u is W,(x) :=
u;j(x) + u(x)o;;, whose eigenvalues are actually the principal radii of the hypersurface.

The general problem of finding a convex hypersurface, whose k-th symmetric function of the
principal radii is the prescribed function on its outer normals for 1 < k < n, is often called the
Christoffel-Minkowski problem. It corresponds to finding convex solutions of the nonlinear Hessian
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equation
o(W,)=f onS"

This problem was settled by Guan et al [14, 15]. In [16], Guan and Zhang considered a mixed Hessian
equation as follows

k-2
TUW(2) + e (W) = D (D)o (Wa(x), xe§", (L.1)
=0

where a(x),a(x)(0 < [ < k — 1) are some functions on S". By imposing some group-invariant
conditions on those coefficient’s functions as in [11], the authors proved the existence of solutions.

Let M be a hypersurface of Euclidean space R**! and M = graphu in a neighbourhood of some
point at which we calculate. Let A be the second fundamental form of M, A(A) = (4,---,4,) € R?
the eigenvalues of A with respect to the induced metric of M C R"*!, i.e., the principle curvatures of
M, and o7 (A1) the k-th elementary symmetric function, og(1) = 1. It is natural to study the prescribing
curvature problems on this aspect. In 1980s, Caffarelli, Nirenberg and Spruck studied the prescribing
Weingarten curvature problem. The problem is equivalent to solve the following equation

o(DX) = f(X), XeM

When k = n, the problem is just the Minkowski problem; when k£ = 1, it is the prescribing mean
curvature problem, c.f. [30,33]. The prescribing Weingarten curvature problem has been studied by
many authors, we refer to [2,9, 11-13,29, 37] and references therein for related works. Recently,
Zhou [36] generalised above mixed prescribed Weingarten curvature equation. He obtained interior
gradient estimates for

k=2
Ti(A) + a(x)o-1(A) = Z a(x)o(A), x€B/(0)CcR" (1.2)

=0

where 0 (A) := 0(4A(A)), and the coefficients satisfy o, > 0and a; > 0 for 0 </ < k- 3.

Mixed Hessian type of equations arise naturally from many important geometric problems. One
example is the so-called Fu-Yau equation arising from the study of the Hull-Strominger system in
theoretical physics, which is an equation that can be written as the linear combination of the first and
the second elementary symmetric functions

o1(i00(e" + &’'e™)) + &' 0, (id0u) = ¢ (1.3)

on n-dimensional compact Kédhler manifolds. There are a lot of works related to this equation recently,
see [6,7,27] for example. Another important example is the special Lagrangian equations introduced
by Harvey and Lawson [18], which can be written as the alternative combinations of elementary
symmetric functions

(2] 5
sin 6 Z(—l)kazk(Dzu)) + cos §( Z(—l)kazk+1(D2u)) - 0.

k=0 k=0
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This equation is equivalent to
F(D*u) := arctan A, + - - - + arctan 1, = 6

where A;’s are the eigenvalues of D?u. It is called supercritical if 6 € (@, “8) and hypercritical if
XS (@, 2%). The Lagrangian phase operator F' is concave for the hypercritical case and has convex
level sets for the supercritical case, while in general F fails to be concave. For subcritical case, i.e.,
0<6< @ solutions of the special Lagrangian equation can fail to have interior estimates [24, 35].
Jacob-Yau [20] initiated to study the deformed Hermitian Yang-Mills ({AHYM) equation on a compact
Kéhler manifold (M, w):

Re(y, + V-1w)" = cotpIm(y, + V-1w)",

where y is a closed real (1, 1)-form, y, = xy + \/—_laéu, and 6, is the angles of the complex number
fM()( + V—1w)", u is the unknown real smooth function on M. Jacob-Yau showed that dHYM equation
has an equivalent form of special Lagrangian equation. Collins-Jacob-Yau [5] solved the dHYM
equation by continuity method and Fu-Zhang [8] gave an alternative approach by dHYM flow, both
of which considered in the supercritical case. For more results concerning about dHYM equation and
special Lagrangian equation, one can consult Han-Jin [17], Chu-Lee [4] and the references therein.
Note that for n = 3 and hypercritical 6 € (r, 3Z), the special Lagrangian equation (1.3) is

o3(D*u) + tan o (D*u) = o-1(D*u) + tan Ooo(D*u)

which is included in (1.1).

In this paper we derive interior curvature bounds for admissible solutions of a class of curvature
equations subject to affine Dirichlet data. Let Q be a bounded domain in R”, and let u € C*(Q)NC*'(Q)
be an admissible solution of

(D) + g(x, w1 (D) = Y75 alx, wyo () in Q, (1.4)

u=4a¢ on 0Q, )
where g(x, u) and a;(x,u) > 0,1=0,1,--- ,k — 2, are given smooth functions on Q xR and ¢ is affine,
A= (4, ,4,) is the vector of the principal curvatures of graph u. u is the admissible solution in the

sense that A € I'; for points on the graph of u, with
Iy ={1eR" o (D) >0, ,0) > 0}.

For simplicity we denote F = G, — Y a,G; and G; = (2)/0_1(d) for I = 0,1,--- ,k — 2, k. The
ellipticity and concavity properties of the operator F have been proved in [16]. Our main result is as
follows.

Theorem 1.1. Assume that for every [ (0 <1 < k—2), a;,g € C"'(QxR), a; > 0, and g > 0 or g < 0.
¢ is affine in (1.4). For any fixed B > 0, if u € C*Q) N C*N(Q) is an admissible solution of (1.4), then
there exists a constant C, depending only on n, k, B, ||ullc1 (o), @1, & and their first and second derivatives,
such that the second fundamental form A of graph u satisfies

C

A .
Al= G —up
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Remark 1.1. Comparing with [16], here we require g > 0 or g < 0 additionally. Also our curvature
estimates still hold if a; = 0 for some 0 < | < k —2. More over, if a; = 0 forall l =0,1,--- k-2,
Eq (1.4) becomes the Hessian quotient equation and the results can be followed from [29].

To see that this is an interior curvature estimate, we need to verify that ¢ —u > 0 on Q. We apply the
strong maximum principle for the minimal graph equation. Since ¢ is affine, it satisfies the following
minimal graph equation

Qu = (1 +|Dul)au — ujuz; = nH(1 +|Du)> =0 on Q.

Since u is k-admissible solution, and n > k > 2, graph of u is mean-convex and Qu > Q¢ = 0. By the
comparison principle for quasilinear equations (Theorem 10.1 in [10]), we then have ¢ > u on Q.

The main application of the curvature bound of Theorem 1.1 is to extend various existence results
for the Dirichlet problem for curvature equations of mixed Hessian type.

Theorem 1.2. Let Q be a bounded domain in R", let a;, g € C"'(QxR) satisfying inf |g| > 0, 0,8(x, u) <
0, a; > 0 and d,a/(x, u) > 0. Suppose there is an admissible function u € C*(Q) N CO*\(Q) satisfying

Flu] > —g(x,u) in Q, u=0 onoQ. (1.5

Then the problem
Flu]l = —g(x,u) in Q, u=0 on0Q. (1.6)

has a unique admissible solution u € C>*(Q) N CON(Q) for all a € (0, 1).

Remark 1.2. 9,8 < 0, d,a;(x,u) > 0 and the existence of sub-solutions are required in the C°
estimate. The C! interior estimate is a slightly modification of the result in Theorem 5.1.1 [36] since
the coefficients g, a; of (1.2) are independent of u. We use conditions d,g < 0 and d,a,(x,u) > 0 again
to eliminate extra terms in the C' estimate.

As a further application of the a priori curvature estimate we also consider a Plateau-type problem
for locally convex Weingarten hypersurfaces. Let  be a finite collection of disjoint, smooth, closed,
codimension 2 submanifolds of R"*!. Suppose £ bounds a locally uniformly convex hypersurface M,
with

n-2

ot o
funA%) = =) = Y a—(") 2 c,
Op-1 =0 n—1
where 2° = (19,---, 2°) are the principal curvatures of M, and a;’s are positive constants, ¢ # 0
is a constant. Is there a locally convex hypersurface M with boundary ¥ and f,)(1) = ¢, where
A= (44, ,4,) are the principal curvatures of M?

Theorem 1.3. Let %, f,(1) be as above. If ¥ bounds a locally uniformly convex hypersurface My
with f,(1°) > ¢ at each point of My. Then T bounds a smooth, locally convex hypersurface M with
fi(A) = ¢ at each point of M.
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2. Proof of the curvature bound

We compute using a local orthonormal frame field €;,--- ,€, defined on M = graph u in a
neighbourhood of the point at which we are computing. The standard basis of R™*! is denoted by
e, - ,e,.1. Covariant differentiation on M in the direction €; is denoted by V,. The components of
the second fundamental form A of M in the basis &;,- - , &, are denoted by (A;;). Thus

hij = <Dé,-éj’ V),

where D and (-, -) denote the usual connection and inner product on R**!, and v denotes the upward

unit normal
(—Dl/l, 1)

V1 + |Dul?

The differential equation in (1.4) can then be expressed as

FA,X) = —g(X). 2.1)

As usual we denote first and second partial derivatives of F with respect to ;; by F” and F"'*. We
assume summation from 1 to n over repeated Latin indices unless otherwise indicated. Following two
lemmas are similar to the ones in [29] with minor changes, so we omit the proof.

Lemma 2.1. The second fundamental form h, satisfies

FINY ihyy = = F9V by Vyhys + FUhyhaphy,
k=2
_ Fijhiphpjhah -V, Vg + Z(Vaa/,VbGl + Vo ViGy)
1=0
k=2

+ Z VaVbozl -Gy
=0

Lemma 2.2. Foranya =1,--- ,n+ 1, we have

k-2
Fijvivjva + Fijhiphpjva = <Vg7 ea) - Z(Val’ ea>Gl-
=0

Lemma 2.3. There is a constant C > 0, depending only on n,k,inf @, |g|co, so that for any | =
0,1,--- k-2,
G| < C.
Proof. Proof by contradiction. If the result is not true, then for any integer i, there is an admissible
solution u;, a point x;, € Q and an index 0 < [;, < k — 2, so that
Ty

—Aluy]) >i  at xg.
O'k—1( [u@]) ()

By passing to a subsequence, we may assume ;) — ., and x; — X € Q as i — +oo. Therefore
(O

lim
i—+00 Op_|

(Aupy D (x)) = +oo,
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or we may simply write ‘T"’“ — 400 if no ambiguilty arises. Since @;, > 0, and g is bounded, by (1.4)
we have k" — +00, For i large enough, o > 0. By Newton-MacLaurin inequalities, we have

Ol Ol Ok-2 O k-1 \f—1—-
= < C(—=)1 - 0.
Ok-1  Oly+l Ok-1 Ok
We therefore get a contradiction. O

Proof of Theorem 1.1. Here the argument comes from [29]. Letn = ¢ — u. n > 0 in Q. For a function
@ to be chosen and a constant 8 > 0 fixed, we consider the function

W(X, &) = 1P (exp O(vp)hge

for all X € M and all unit vector & € Ty M. Then W attains its maximum at an interior point Xy € M,
in a direction & € Tx, M which we may take to be €. We may assume that (;;) is diagonal at X, with
eigenvalues 4; > A, > --- > 4,. Without loss of generality we may assume that the &, - - - , &, has been
chosen so that V;é; = O at X, forall i, j = 1,--- ,n. Let T = &;. Then W(X) = W(X, 1) is defined near
Xy and has an interior maximum at X,. Let Z := h,,7,7,. By the special choice of frame and the fact
that A;; is diagonal at X in this frame, we can see that

V,‘Z = Vihll and V,'VJ'Z = Vivjhll ath

Therefore the scalar function Z satisfies the same equation as the component /;; of the tensor 4;;. Thus

at Xy, we have
V.W Vin Vihi,
— =B—+ D'V, +
W B 7 Vil i

=0 (2.2)

and

VV,W VWVW :ﬁ(V,-an ~ Vme)
W W2 n n*
+ Q"Y1 Vv + OV, V vy
. ViVi  Vihi Vi

(2.3)
huy h%l
is nonpositive in the sense of matrices at X,. By Lemmas 2.1 and 2.2, we have, at X,
- V,V; VinV; y
0 ZﬁFu( i _ 772 177) + (I)l,FUViVn+1VjVn+1
n n
y g V.V
— (d>'v,,+1 + 1)Fljhiphpj + F”I’ll’jhll — ;l 18
11
’ 1 ijrs i'Vihllvjhll
+O(Vg, e,.1) — —F PN iV ihys — F]T
11
=1 o
- Z @’ (Va,,en+1)— + Z —(2Vya; - v, 2L 4V V- —). (2.4)
=0 h11 Ok-1 Ok-1

Using Gauss’s formula
ViVan = hiij

Mathematics in Engineering Volume 5, Issue 2, 1-27.



we have
ntl n+1 &g
V,V,g(X) = Z X Z T, — L _VX,V\X;
n+l n+l &g
- Z ax e+ Z o axﬁv 1 X, V1 Xg.
Consequently,
|V1V18| <cC
hiy
For the same reason, we have forall [ =0,--- ,k— 2,
ViViq
| . | < C.

Taking Lemma 2.3 into count, we estimate the two terms in the last line of (2.4) as

k=2 o k=2 1 o
= >V (Vag, ey )——+ ) —ViVia; —— > ~ClO| - C.
=0 Ok-1 ‘= hiy Ok-1

Recall that F = G, -} @;G; and it is well-known that the operator (‘Tff'—;l)ﬁ is concave for0 < [ < k-2.
It follows that

1
(E)ﬁ is a concave operator forV/ =0,1,--- ,k — 2.
I

For any symmetric matrix (B;;) € R™", we have
(2=))"" BB, <.
G !

Direct computation shows that

1 k-1
G” "B, B > _ G”B,
G1 k—1-1 ( ’)
Note that G, is also a concave operator.
1
— FUSY i Vb, + —Via V—
11 ! Z hi e 10'k—1
1 2, -
=— — GV, h;V h,, + G””V hiVihe + Y —Via -V ——
hi k i Z Z hi 1 l0'k—1
\Y \Y
5 lalG,) b = (Viy)? G,
hiy C hu —~ Cuy

v

k=2

Z G;'a/C/(V( Gy +
Q
h

Mathematics in Engineering Volume 5, Issue 2, 1-27.



where C; = By the homogeneity of G,’s, we see that

kll

Fiih; = Gk+Zal(k— 1 - DG, >Gk+Za,— > inf|g| > 0.
=0 Ok-1

Using Lemma 2.3 again, we have
FYh;; < C.
Next we assume that ¢ has been extended to be constant in the e, direction.

2

_ 9¢
V.V = ZaanVXVXB+Z V.V, X, - ViV X

0

(9X ahij - hijVn+1-

Consequently,
FV; Vﬂ] = (Z aX Vn+1)Fl

Using above estimates in (2.4), we have, at X,

C v ViV
05— L _gpi YN | 4 pig.y, (v - p L
n n? hi,

— (D1 + I)F’jh,-phpj +inf |glh; — C(1 + |D)).

Next, using (2.2), we have
Fijvihllzvjh“
hi,

Vin

= Fi(p— b o'V, n+1)(ﬂ— + 'V )

V,an

<1 +y DB F —5= + (1 + Y@V F Vv Vv

for any y > 0. Therefore at X, we have, since |Vn| < C,

C ?l: Fii
0= L cip+ 14y =L

+ D"~ (1 + Y@V IFIV 1V v
— [®' Vst + LIFYRyph,; + inf [glhy — C(1 + |@')).

We choose a positive constant a, so that

(2.5)

(2.6)
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We now choose
®(1) = —log(t — a).

Then . |
Ot)= —, ()= ——,
=0 0= —
and
@+ 1) = ——
t—a
Y
O — (1 +y) (D) = - .
(1 +7@) =~
By direct computation, we have V;v,.; = —h;,(€,, €,,1), and therefore

FijViVn+1VjVn+l = Fljhl h]q<ep’en+l><eqaen+1> < F]h h

Next we choose 0 <y < é, then we have

y o
(t—a)  (t—a)?

(@t + 1)+ [@ — (1 +y)(@)] = t > 0.

Thus we have
G 2\ N
0> _Tﬁ - C(B,a)n Z(Z F") +inf |g|h;, — C(a). (2.7)
i=1
In the following we show that ", F' < C. By the definition of operator F and Lemma 2.3, we have

n k-2

ZF” Z(U“"'—Z ()"

i=1 i=1 [=0 -

1Al
= Z O-kO_L(_lll) Tk Z Or2(Ali) + —— Z O -2(Ali)

=1 Uk1,1 k111

N Z 2. 01052 (i) = X o101 (i)

0'

k-1
—n—k+1=(n—k+272 4 (n— ke + 2y 22
b Th-1
k=2
n—k+2000—(n—1+ 1D)ow_10-
+ZQ’[ 1V k-2 . k—=1U [-1

=1 01

<n-k+1+ (l’l —k+ 2)|—Gk 2| + (l’l k + 2)|(}’0|C0|Gk 2G()|
Ok-1
k-2

+(n—k+2)|Geal ) lalerlGil.
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From Eq (1.4) we have |G| < C, therefore 3, F < C. At X,,, we get an upper bound

C(B,a)
772

A <

Consequently, W(X)) satisfies an upper bound. Since W(X) < W(X,), we get the required upper bound
for the maximum principle curvature. Since A € I'y and n > k > 2, u is at least mean-convex and

Zn: A; > 0.
i=1

. C
Al = 2 <CmAy < )
JZ G-y

Therefore A4, > —(n — 1)4, and

3. The Dirichlet problem

In this section we prove Theorem 1.2. By comparison principle, we have 0 > u > u. For any
Q € Q,infgu < u < c(Q) < 0. First we show the gradient bound of admissible solutions of (1.6).
We need following lemmas to prove the gradient estimate.

Lemma 3.1. Suppose A = {a;j},x, satisfies A(A) € I'r_y, ayy < 0 and {a;;}2<; j<n is diagonal, then

- OF
—ay; 0. (3.1
P Oay;
Proof. Let
a; O 0 0 an ain
0 axn 0 ay O 0
B: . 5 C:
0 0 - a, a; 0 -+ 0

A(t) == B+1tC, f(t) :== F(A(?)). Suppose a;; = a;; for all 2 < i < n. Directly we have
THAW) = o4(B) — £ ) aloia(BILi),
i=2

where (B|ij) is the submatrix of B formed by deleting i-th, j-th rows and columns. Easily we see that
fort € [-1,1], A(A(t)) € I',_; and f is concave on [—1, 1]. f(—=1) = f(1) = F(A). So f’(1) < 0. While

~ OF
'‘MH=2 ) —a;.
£ ;aaul
O
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Remark 3.1. By the concavity of %, we can prove following inequality with A(B) € I'i_;
Ok2(B|li)o -1 (B) — 04—3(B|li)or(B) >0 V2 <i<n. (3.2)
We let f(t) = (ri—fl(A(t)).

22 aiok2(BI10) o(AXL, aj,o-3(B|10)) <0
or-1(A) o7 (A) -

[ =

Equivalently,
T (B ) aloia(BI1D) — ou(B) ) atos(BI1D)) = 0. (3.3)
i=2 i=2
We can choose ay; > 0 small enough and a,; = 0 for j # iand 2 < j < n, so that A(A) € I'_;.
Then (3.3) implies (3.2).

Lemma 3.2. Let aj» > O and a; > 0 for 0 < | < k — 3. Suppose symmetric matrix A = {a;j}nxn
satisfying
A(A) € T'i_1, a1 < 0,and {a;j}r<; j<n is diagonal.

Then
——>Co( ) ) (34)

where Cy depends on n, k, |u|co, |g|co, inf a;_s.

Proof. Note that

0 1Ak (A) = (Aol
—(——(4)) =
gary 7 o2 (A)
n az[ . |
- ; m[m_zmllz)w_z(fm) — o (ADo s (Al1D)]

+ 0 2 (Ao (AT (Al = oAl oo (Al

ForO<I<k-2,

0 Ao (Al
- ( o (A) < _CnJO'l( | 2)0'k 2(Al )_
a1 T (A)
As for [ =k, )
o o o (All)
F (= () 2 Cu— 5= 2 Coue
ap -1 T (A)
Therefore 5
oF o (Al
— 2 Cn,k + Cn,k infak_2k;Ll).
ﬁall O-k—l(A)
Next we compute Y7, 2= as

TTE2 (A) + (1 — k + Dy =2 (4)

k=1 Ok

=~ OF
Za—:n—k+1—(n—k+2)
ilaa“
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+ i o (n—k+2)0(A)o2(A) —(n—1+ 1)or_1(A)o -1 (A)

= i1 (A)

ok-2(4), o S o
<n—k+1l-(—-k+ z)ak_l(A)(E(A) - ; Olza(A))

k-2

< Cop + Crilgleo (A)

Tk-1

< C(n, k, |gleo) + Cn, k, |glco)(—=

(A)?
k-1
o, (All)

o, (A)

o
o
< C(n, k, 1glco) + C(n, k, |glco)

oF
< C(n,k,|glco, Inf aj_p) —.
dayy

O

Lemma 3.3. For any Q' € Q, there is a constant C depending only on Q',n,k,a;, g and their first
derivatives, such that if u is an admissible solution of (1.6), then

|Du| < C
on €Y.

Proof. Since we require that d,¢ < 0 and d,a; > 0, we only need to modify the equation (5.42) in [36]
(i.e., (A.6)), where extra terms Zf;g lg’g’l“l (r‘:(r(‘j‘) - lo‘z“ul should be included. These terms are all good
terms and Zhou’s proof will also hold in our case. For reader’s convenience, we sketch the proof in the

appendix below. O

Now we give the proof of Theorem 1.2.

Proof of Thorem 1.2. The theorem can be proved by solving uniformlly elliptic approximating
problems.

Flu] = —ge(x,uc) inQ, u. =0 onoQ,

for € > 0 small, and u is an admissible subsolution for each of the approximating problems. By
the comparison principle and Theorem 1.1, the interior gradient estimates in [36](modified), we have
uniform C? interior estimates for u.. Then Evans-Krylov’s theory, together with Schauder theory,
imply uniform estimates for ||uc|[cse(y) for any " € €. Theorem 2 then follows by extracting a
suitable subsequence as € — 0.

m]

4. The Plateau problem

In this section we prove Theorem 1.3. The notion of locally convex hypersurface we use is the same
as that in [29].

Mathematics in Engineering Volume 5, Issue 2, 1-27.
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Definition 4.1. A compact, connected, locally convex hypersurface M (possibly with boundary) in
R™! is an immersion of an n-dimensional, compact, oriented and connected manifold N (possibly
with boundary) in R"™', that is, a mapping T : N — M C R"!, such that for any p € N there is a
neighbourhood w, C N such that

e T is a homeomorphism from w, to T(w,);
e T(w)) is a convex graph;
e the convexity of T(w),) agrees with the orientation.

Since M is immersed, a point x € M may be the image of several points in N. Since M and
N are compact, T~!(x) consists of only finitely many points. Let » > 0 and x € M. For small
enough r, T-'(M N B™!(x)) consists of several disjoint open sets Uy, -+, U; of N such that Ty, is a
homeomorphism of U; onto T'(U;) for eachi = 1,---,s. By an r-neighbourhood w,(x) of x in M we
mean any one of the sets 7'(U;). We say that w,(x) is convex if w,(x) lies on the boundary of its convex
hull.

We shall use following lemma (see [32] Theorem A) to prove Theorem 1.3.

Lemma 4.1. Let My C Bg(0) be a locally convex hypersurface with C*-boundary M. Suppose that
on OM, the principal curvatures 1%, - - - , A° of My satisfy

Cy' <A <Cy, i=12,-,n,

for some Cy > 0. Then there exist positive constants r and «, depending only on n,Cy, R and O M,
such that for any point p € My, each r-neighbourhood w,(p) of p is convex, and there is a closed cone
C,o with vertex p and angle a such that w,(p) N C, , = {p}.

Note that for any point p € M, if one chooses the axial direction of the cone C,, as the x,,.;-axis,
then each d-neighbourhood of p can be represented as a graph,

Xpr1 = u(x), |x] <6,
for any 0 < rsin(a/2). The cone condition also implies
[Du(x)| < C, x| <,

where C > 0 only depends on . Lemma 4.1 holds not just for M, but also for a family of locally
convex hypersurfaces, with uniform r and a.
For 2 < k < n, denote

n—-2
(7% (on]
H=—-> a——.
Sy (D) O_k—l( ) 2. Cngk_l( )

a;’s are positive constants. With the aid of Lemma 4.1, we use the Perron method to obtain a viscosity
solution of the Plateau problem for the curvature function f,, using the following lemma.

Lemma 4.2. Let Q be a bounded domain in R" with Lipschitz boundary. Let ¢ € C*'(Q) be a k-convex
viscosity subsolution of

k=2
_ Tk oy TN .
f(k)m)_o_k_lu) ;alak_l(z)_c inQ, 4.1)

where a; > 0 and ¢ # 0 are all constants. Then there is a viscosity solution u of (4.1) such that u = ¢
on 0Q.
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Proof. The proof uses the well-known Perron method. Let ¥ denote the set of k-convex subsolutions
v of (4.1) with v = ¢ on Q. Then ¥ is not empty and the required solution u is given by

u(x) = sup{v(x) : v € ¥}.

It is a standard argument. The key ingredient that needs to be mentioned is the solvability of the
Dirichlet problem
Jow@) =c in B, u=uy onoB, 4.2)

in small enough balls B, c R”", if u, is any Lipschitz viscosity subsolution of (4.2). This is a
consequence of [31] Theorem 6.2 with slight modification. O

Using Lemma 4.2 and the argument of [32], we conclude that there is a locally convex hypersurface
M with boundary ~ which satisfies the equation f,)(1) = c in the viscosity sense; that is, for any point
p € M, if M s locally represented as the graph of a convex function u (by Lemma 4.1), then u is a
viscosity solution of f,)(1) = c.

Following we discuss the regularity of M. The interior regularity follows in the same way as [29].

Boundary regularity

The boundary regularity of M is a local property. The boundary estimates we need are contained
in [19,21]. However, they can not be applied directly to M. Since we are working in a neighbourhood
of a boundary point py € M, which we may take to be the origin, we may assume that for a smooth
bounded domain Q c R” with 0 € JQ and small enough p > 0 we have

Mn (B, xR) = graphu, M,nN (B, xR) = graphuy,
where u € C*(Q,) N C*1(Q,), and ug € C*(Q,) are k-convex solutions of
Jwlul =c inQ,, Jwluol = ¢ inQ,,

with
u>uy in€, u=uy ondQNB,.

We may choose the coordinate system in R” in such a way that Q is uniformly convex, and moreover,
so that for some ¢, > 0 we have

T ®) S 50 4.3)
Or-2(k)
on 0Q N B, where k" = («},--- ,k/_,) denotes the vector of principal curvatures of Q2. We recall that

the principal curvatures of graph(u) are the eigenvalues of the matrix

Du® Du)( D?u )
L+ Dul™ T+ |DuP”

We denote o (p, r) as the k-th elementary symmetric function of the eigenvalues of the matrix

0

__P®p
1+ |pl?

v ), p=(pi, s Pn)s ¥ = (Fij)uxn-
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Let fio(p,r) = %(p, r) = Yl + Iplz)% U‘k’—jl(p, r). A(r) is the vector formed by eigenvalues of r.
For any p € R" and symmetric matrices r, s with A(r), A(s) € I';, we have

af k=2 o
=E(p,1)si; 2 fuop, ) + ) (k= Day(1 + p/)
=0

i orij

gy

(p,r). (4.4)
Ok-1

For later purposes we note the simple estimate, if r > 0,

1

Tlplzo-k(o’ r) < oi(p,r) < o (0,r),

and the development

1+|pf -
or(p,r) = Tlplzrnno-k—l(pa 7) + O((r sl sy

where pP= (pl’ e 7pn) € Rna r= (rij)ana ﬁ = (ph e 7pn—1) € Rn_l’ F= (rij)i,j=1,--~,n—1-
We suppose that 0Q is the graph of w : BZ“(O) c R" - R and u(X, w(X)) = ¢(%). Furthermore,
w(0) = 0, Dw(0) = 0, Dp(0) = 0 and w is a strictly convex function of X¥. The curvature equation is

equivalent to
fuo(Du, D*u) = ¢ /1 + |Dul? (4.5)

defined in some domain Q C R”. We have following boundary estimates for second derivatives of u.

Lemma 4.3. Let u € C3(Q) be a k-convex solution of (4.5). We assume (4.3) with € > 0. Then the
estimate
ID*u(0)] < Cn, k, ay, ¢, €, ||wlles, llelics, luller, Amin(D*w(0))) (4.6)

holds true where A, denotes the smallest eigenvalue.
Remark 4.1. On 0Q, we have fori,j=1,--- ,n—1,

U + Uw; = @i,

l/ll'j + uina)j + unjwi + u,ma),-a)j + una)ij = (,0,]

Therefore u;;j(0)] = |¢;j(0) — u,(0)w;;(0)| < C. It remains to show that |u;,(0)| < C and |u,,(0)] < C.
We follow [19, 21] to obtain mixed second derivative boundary estimates and double normal second
derivative boundary estimate.

Proof. Let
Qux = {x(X, x,) € QlIX] < d, w(X) < x, < O(X) + gdz}

where 0 < d < p, @(X) = w(X) — glfclz, and « > 0 is chosen small enough such that @ is still strictly
convex. We decompose 0Q;, = 01Q;, U 0,Q4, U 05Q,, with

algzd,K = {)C € an,len = U.)()E)},
0200, = (x € I lx, = W(D) + gdz},
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03Q4, = {x € 0Q,I%] = d}.
Our lower barrier function v will be of the form
v(x) = (%) + h(p(x)) 4.7)

where (%) is an arbitrary C>-function, i(p) = exp{Bp} — exp{kBd*} and p(x) = xd* + &(X) — x,. Denote
Fii = w®DuDl)
ou;j .

Mixed second derivative boundary estimates

By (4.4) and Lemma 2.3, we have

Fijvij > fuo(Du, D*V) +C

Dp

where C depends only on n, k, a;’s,c, || Dul|co. We choose an orthonormal frame {b;}! | with b, = — i

and denote v, = & Directly, we have
(s) b, y

Vis) = Q(S) + h'p(s), (1<s<n-1) Vi) = 9(,1) —h A1+ |D(I)|2,
Vst = O + 0 Oy (8, 1) # (1, 1);

~ -2
Vi) = 9(,m) + h’w(,m) + h”(l + |Dw| )

We may choose d small so that |Du| is also small. Note that |[D®| is small since we can choose d, k
small. By choosing large enough B, we caculate

k-2
-1 T
Fao(Du, D*v) ==~ (Du, D*) = 3" ay(1 +1DuP)’¥ =~ (Du, D*v)
Ok-1 =0 Ok-1

k=2
>(1 — 6)-Z5.(0. D) - 2 > a,-ZL (0, D*)
O-1 =0 O-1

k-2
>(1 = Ph 210, @) = 2 Y )1 2L (0, o) = 0(B™)
Ok-2 = Ok-2

where in the last line, 1 < 5,7 < n — 1. Finally, we see that for large enough B and small enough d and
k the estimate
(1=6K <|Dv|<(1+6N

is valid for small 6. Therefore

T, 0, @)DV + C. (4.8)

File'j > (1 - 6)
k-2

Let 7 be a C2-smooth vector field which is tangential along Q. Following [19,21] we then introduce
the function

w =1 —exp(—aw) — blx?
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where W = u, — % f;ll u? and a, b are positive constants. Since on 0;Q,,, u = ¢, and

~12
Wl(?]Qd,K > apr — C|x| s W(O) = 09 Wlazad,KU63Qd,,( > _M

for suitable constants ¢, M depending on a, b, ||u||c: and ||¢||c1. By differentiation of Eq (4.5), we obtain
Fijl/lijp + Fil/tip = C\_/p

i . Ofi =
where F' ;= ﬁ’? and v := /1 + |Dul?.

n—1
ij~ _pij ij ij ij
FJW,']' =F ]l/t,'jpr + Fj(l/tpij,' + I/tpﬂ'pj) + F JTl'jpl/tp — E F’(u,-sujs + ux,-jus)

s=1

n—1 n—1
=c(V,T, — Z Vilty) — Fiuipr + Z F"uisus + Fij(u,,iji + UpiTpj) 4.9)
s=1 s=1
n—1
+ FijTiij/tp - Fiju,-sujs.
s=1
By the definition of W, we have
n—1
c -
ety = Y Fyty) = =((DW, Duy - Hess(t)(Du, Du)). (4.10)
Y,

s=1

Then we compute F'. Denote b; =0 — % and c;j = bj,u,;. fi can be rewritten as

k-2
- O-k k] O-I
Jw = fw(cijsv) = ——(cij) = § v ——(cij).
k-1 1=0 Ok-1

Directly we have

Fi zaf(k) _ 0w 9¢pq + Afw OV
ou; dcpy Ou; ov Ju;

k=2
1 i 1 2 g
q Pq Pq —k—-1-2 Y1
= — = foUgy — = fo Uighty, + — [ Uiy i — E a )k =1y —(cipu;
sz(k) q vzf(k) iqUp v3f(k) pUiliqU; 4 ooy M
F
where 779 := %® Therefore
(k) Ocpg
n—1

. . 1 1 2
i E : i _(_ 21 fiq _ 2 erq, “ g ,
- Fluj,t, + Fluju, = ( ‘_}Zf(k)uqlul ‘_)Zf(k) Uigltp, + ‘_}3f(k) U, U gU;
s=1
k-2

= 3 etk = DF2 () (< + ). (411
1=0 The-1

In order to derive the right hand side of (4.11), we use the same coordinate system as [21], which
corresponds to the projection of principal curvature directions of the graph of u onto R” > Q. Fixing
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a point y € Q, we choose a basis of eigenvectors &y, -- ,e, of the matrix (c;;) at y, corresponding
to the eigenvalues A4;,--- , 4, and orthonormal with respect to the inner product given by the matrix
I + Du ® Du. Using a subscript « to denote differentiation with respect to é,, @ = 1,--- , n, so that

N N ]
Uy = e ut; = (Du,ey), Upe = Ay = €,8)u;j.

Then we obtain

iq . _1ofw N .
aj;k)uqlul(wi - l/tpr,') —Tzﬁﬂaua(a)a - HCSS(T)(DM, ea))
f(k) f(k) P f(k)
67 A+ COZ 2, + C) Z

The second term of (4.11) can be estimated in the same way as above. As for the third term of (4.11),
we calculate as

2
|f(11:;1”p”l”lq| = Lf(i;!(upq — Cpg)l < C|Dul".

Thus
f(k)

— Fiu,-prp + Z Fiu,-sus < 25 f(k) ~a +C(5) Z Ofw

s=1

— Tijuiul. 4.12)

Let (n) denote the inverse matrix to (&;,), we write

N _ a
Usog = € Uis = /Llns .

Furthermore,
n—1
af(k) W2 af(k) 22 a2
- (9/7. m - Z( ) .
Now we reason similarly to [21]. If forall@ = 1,--- , n, we have
n—1
> ze>0 (4.13)
s=1

where € is a small postive number. Then we clearly have

= O 2 3f<k>
8/1(, Hsa = 3/1(,

(4.14)

On the other hand, if (4.13) is not true, then

Z(n)<e

for some 7y, which implies

n—1
2,1 2 60> 0

s=1
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for all @ # y. Hence

~1
dfw dfw
—_— . 4.1
Z 04, Hsa = 0, ¢ .15
s=1 aFy
Then we use Theorem 3,4 in [22] to deduce that

Z(;M o> C( o

aFy
g 2 1

- 0/1 > /1
Z( 0'k—1)’ ¢ C(n,k,l)( O 1)
aFy

1 1 1 (o]

—_— /12 0/12 e

;( T 1) -~ C(n,k, 0)( Uk_l)’ ¢ C(n,k,0) o4y

where subscript ‘, @’ denotes differentiation with respect to A,. Therefore,

-1
< 5f(k) 2 S f(k>

-C 4.16
o, =00, (4.16)

Combing (4.9), (4.10), (4.12), (4.16), we have
FUi;; < CKDW, Du)| + CFWoiv; + C Z Fi (4.17)

i=1

where we have chosen § << ¢, so that %ﬂﬁ can be discarded. Note that in (4.17), we also have used

the fact that 3", F" > C, > 0. By choosing a, b large, we conclude that
F"-"w,-j < CKDw, Du)|. (4.18)

From (4.8), (4.18), by comparison principle, we have at 0,
1 1

urn(o) = _Wn(o) = _Vn(o)-
a a

Since 7 is an arbitrary tangential direction at 0 € 0Q, if we replace T by —7, we get an upper bound for
U (0).

Double normal second derivative boundary estimate

We turn to estimate |u,,(0)|. The idea is to estimate u,, in a first step at some optimally chosen
point y and in a second step conclude from this the estimate in the given point. We introduce a smooth
moving orthonormal frame {by, - - - , b,} with b, = (—ws, 1)/ 4/1 + |w;|* being the upward normal to 9.
Here wy is the gradient of w(X). Let

O k-1 k 1
G= O_—(M(x), Uzn) — Z V1 + |Duf? _(M(x)’ Usx) — c V1 +|Dul?
k-2
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on 4Q, where ug;) = (2 Bby

&u . .. ~
., ab (W)lg, j<n—1. For simplicity, we denote p = u),

= Uz, v = V1 + [Dul. First we observe that

fio(por) < Tm_fug(psr) = Z=(p7) = Zal-’” T (5.7
Fpp—>+00 (o)

from what we see that G > 0. Hence the function

4|z

G =Gx)+ —G
ok
with G = max{G(x)|x € 0Q, |%| < p} and 0 < p < p attains its minimum over dQ N B,(0) at some point
y € 0Q N B;2(0). If u,,(y)| < C, then G(y) > C™' > 0.
G(0)=G0)>Gy) >G@y)>C'>0.
Therefore G(0) is strictly positive and we have
|2 (0)] < +o00.

To check that |u,,(y)| < +c0, we proceed in essentially the same way as in mixed second derivative
estimates. The point y plays the role of the origin and the function W is defined as

W(x) = =(up(x) = () = KIDu(x) = Du(y)l’

where K is a sufficiently big constant. In order to apply the comparison principle, we need to obtain
that
w(x) > 6(%) — C|x — §1*(x € 0Q N B,(0))

where 6 is some C?-smooth function. We reason similarly to Lemma 2.5 in [19]. The choice of the
moving frame gives

Uis) = Psy» Ust) = P(st) — an(sz)(S,f =1,---,n-1).

By the concavity of %(ﬁ, 7), —%(ﬁ, A =0,---,k—3)in 7 and the convexity of /1 + |p|?> in p, we
compute

0 < G(x) = GO) < 80, D (wa(¥) = n(x)) + h(y, ) (4.19)
with
k=2 o
g0y, x) ( =) (Px), FO)wen(¥) = Z ()" (P(x), FO)wisn(0)

-2 = Ok-2

k—

Z ayk - DV 2@) —(PO)FOD + 7)) W) — () (0)

I=
and

h(y, %) =L (020, F0)) = 2L (030, F)) + (L) (0(x), F() Py (7, X)
T2 (o) Ok-2

Mathematics in Engineering Volume 5, Issue 2, 1-27.



21

k=2

- Z P o), FO) W3, 0)

+ Z (0,700 = = e, 7))
=1

k=2

4G
v =) ek — D2 ”(p(y) FONI-A+ = (%2 - 5P
=1

where Wi (y, X) = @51 (%) = (s () = tn () (@50 (X) =050 (1)), A = [0i(3) =i (X) = 1t (V) (i (y) =i () Jui(y).
We may take 6(%) = —g(y, x) if we can show that g(y, x) > 0. This is true since |Du| is small and —((‘:;—:'l)s’
is semi-positive definite, together with condition (4.3). This completes the proof of the boundary
regularity. O
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A. Appendix. Proof of Lemma 3.3

In this appendix, we sketch the proof of Lemma 3.3 for reader’s convenience. For the original proof,
see [36].

Without loss of generality, we assume Q = B,(0). Let p = r* — |x, M = oscgu, §(u) = (M + u -
infp u), p(x, &) = p(x)g(u) log(ug(x)). This auxiliary function ¢ comes from [34]. Suppose ¢ attains its
maximum at (xo, ;). Furthermore, by rotating e,, - - - , e,, we can assume that {u;;(xo)}2<; j<, 1s diagonal.
Thus ¢(x) = logp(x) + log g(u(x)) + loglogu, also attains a local maximum at xy € B,(0). At xy, we
have

0=g=248 S (A1)
p & ulogu
i PiPj 8ij  8&j Ui 1 Uity
OZSDij:&—p—SJ‘i‘gTJ—g~§J+ L1+ e — (A.2)
Jo, o, g g uy log u, log uy " ujlog u,

Only in this proof we denote that F/ := £ F'/ is positive definite. Taking trace with ¢;; and

using (A.1), we have !

OZFijQDij
.. ii I-N' NI" .. Ui 2 Uil
:F”(&+2&g—f+g—f)+F”(%— 1+ i) )
o pg g uy log u; logu; " uf log u,
=A+ B. (A.3)
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It is well-known that the principal curvatures of graph u are the eigenvalues of matrix A =

1( L uaguy W jUUy; u,-ujupuqupq)
ij

W\ W ) T WW 1) | WRW 1)

a,-j =

where W = /1 + |Du|?. Next we compute F'/ at xo.

da;; # i=j=1
S-=\ i=lLj22oerix2j=1,
Uij - i>22,j>2.

= 0. Therefore

For two different sets {p, g} # {i, j},

(’)u

LI ==
. W- (901] ’
,-,:aﬁ_F%: Lo o j>20ri>2,j=1,
a;i OU;; -/ . .
S %a% i>2,j=>2.
Direct computation shows that
2bt1 - oF
=—( Uij) + —— o Pis
Z (‘)u” Z ou U / Mpg P ouy;
OF  OF 1 OF 1 _ 1 \n 0F
= 01/1” (96111 VV3 — 661,',‘ W~ W P (961,',"
n o k=2 o
k !
ajj=—A) - ) a(l-k+1)—(A).
ij= 16 ij Z da aijj / Ok-1 ; : Ok-1

By (A.1), suppose that u; > 1, then we have u;; < 0 and

2u, oF 2u1(8F . o OF )
Mpg & duy 7 Mpg oun ™ T 45w

_ 2w oF p = OF uyp

Mpg aa“ VV3 Py (96111' W2M1 lOg u

dru; OF 2 = OF
- - a
MW3p§ (96111 Mglog u; s (9611,' :
4ru; ~n OF
MW3pg P Oa;;
where we have used (3.1). Therefore
1
Az (- )(Z a—) * e Z a(k - z)—(A))

(aij)nxn :

(A4)
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In the following we turn to estimate 8. By the definition of a;;, we have at xo,

oa 1 3u
Wlll = W”lll W51 u%l W3(W+ 1) ;uil’
fori > 2,
0ay; 1 2u4 Ui U
8_xl = ﬁum - W”lluli - muuuﬁ - munuu,
Oa;; 1 Uy 2u, 5
8_x] = W“m W3M11Mu - muli,
fori>2,j>2,i# ],
daij 1 Wil jUy
o W T P Ty

Taking derivatives with respect to x; on both sides of (1.4), we have

k=2

OF 0a;
zai&Zm_—hm

For the first term of B, we calculate as

Uij 1 oF Ui oF Ui oF Uij
Z - ( +2 — + —
ﬁu,] u log U U log u; 6a11 w3

. oF (96111 3M1 2 oF (9611, 2141
FU il =/ + — +2 i
Hijt (9a11((9x1 ws W3<W+1)Z“’<1 Zaal o gt

U Uy U;i Uiy Uy OF ,0a;; Uil U
+ + + +2
W2(W+1) W3(W+ 1)) Z>2 8a,-j(6x1 W2(W + 1))

OF (day;  uyuyu;; 2uuy,
+ + +
Z aau(ﬁxl w3 W2(W + 1))

:—g1+Z(a/l)1o_—(A) s Z(k l)a,—(A))

6F 2uy 2 2uy WU Ui
M )+2 e L
" ba 1(W5 N W W Z Z@al 2 T

UyUi Uy Z Uil U ) 5_F U U3,
W3(W + 1) ) Oa;; W2 (W + 1) P Oa; WA(W + 1)

For the second term of B, we calculate

oF OF ”11 N N OF upuy; N OF uyiuy
— U — — .
duy T Ban WE T L day W W

ij=1

257 <n O
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Therefore
= (- +kZ_2:(a) L)+ (- +§(k—l)aﬂm))
[Z31 IOg up 2 =0 ! ’10'/{_1 w2 lOg [Z31 g =0 lO'k_l
2 1 OF 2 OF
+(— -1+ 2 4 2
(WS log u; log ul)u% log u1W3)8a11u” W3 (W + 1)log u; e 6a11uk1
2 2 2 2 =~ OF
+ + -(1+ i
(W4logu1 W3(W + 1)logu, ( logul)W2u%10gu1) 5 8a1,»u“u1
2 =~ OF 2 1 + 2/ log u;
+ U + ( )X
W2(W + 1)logu, i day; W2(W + Dlogu;  Wujlogu,
oF
o Uiy
2<ij<n
Since {2£ da }1<, _j<n 18 positive definite, so is (4E e }2<, Jjene W= /1 + u% ~ u;. Therefore

g1+ Z(a» o) + g+ Z(k D (4))

ul log u W2logu; log

1-6 OF , 2 OF
+ uy, + (
Ww> lOg U aan WZ(W + l)lOg U = 6a1,-

Mliuii) (A.S5)

where ¢ > 0 is a small constant, depending only on u;. By (A.3), (A.4), (A.5), we have

2 Cl/tl OF 1 (o]
0>2(———-— —)+ (— + k—1)—
W~ W )(Z(9 O+ G wzmgu ———)(-g Zm( )
1-6 OF ,
+ A.6
I/t] IOg U ( &1 Z(a/l) 1O'k_l W5 log [Z3] (96111 “n ( )
N 2 ( OF )
Uillii).
W2(W + Dlogu; & day;
Since we require that g, < 0 and (), > 0,
k-2 -2
oy og oa; o
— + > _-° -
8.1 ;(01),1 SR T
We claim that S
=~ OF uylog” uy |Dpl* OF
OF iy > 1208 1 1DF OF (A7)
6all~ w /32 aall

i=2

We deter the proof of (A.7). By (A.l), we see that the leading term in (A.6) is Wim%”ﬁ ~
logu 9F

W o 0. Other terms have order at most O(W~"), therefore

logu; < C.
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The interior gradient estimate is proved after we check (A.7). Let T =

an < 0 and /l(A) eTIy.

oF
a ay;

Ul =

{2 < j < nlaj; > 0}. Note that

or-3(A|l))or(A)

-

[Gk 2(Alli)oy- 1 (A) -

) O'k—l(A)
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=1 Ty (A)
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4+ T AT = g (Al A) |
p O'i_l(A) w
L v @i Allho i 4) kZ aioi3(Alloy(A) | uf;
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o Y| iAo () N3 n,kak_2<A|1>m<A>] ui
= = l —
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[cn,kak_1<A|1)ak_1<A) S Cuioi z(All)th(A)] v,
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+ ) aiCyy > -
= o (A) = W

2 C(n k)Z W@a“
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> —C(n, k) W

p? day’

Thus (A.7) holds and the gradient estimate is proved.
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