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Abstract: We develop and analyze a variational model for laminated paperboard. The model consists
of a number of elastic sheets of a given thickness, which – at the expense of an energy per unit area –
may delaminate. By providing an explicit construction for possible admissible deformations subject to
boundary conditions that introduce a single bend, we discover a rich variety of energetic regimes. The
regimes correspond to the experimentally observed: initial purely elastic response for small bending
angle and the formation of a localized inelastic, delaminated hinge once the angle reaches a critical
value. Our scaling upper bound then suggests the occurrence of several additional regimes as the angle
increases. The upper bounds for the energy are partially matched by scaling lower bounds.
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1. Introduction and motivation

Paperboard is an important engineering material, widely used for packaging, e.g., in the food
industry. Due to its sustainability, paper-based materials have more recently gained in interest also
for other applications [22]. Paperboard is essentially a comparatively thick material made of processed
wood pulp. The present article is concerned with laminated paperboard, which consists of multiple
layers of paper bonded by an adhesive.

The deformation of paperboard is a complex process taking place on multiple scales. Deep drawing
of paperboard to achieve a desired geometry – similar to deep drawing of metals – is an important
technique that is the subject of current research [18]. For an overview of current modeling approaches,
from the individual fiber level to the laminate structures in laminated paperboard, see [22].
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Figure 1. Bending of laminated paperboard (BRAMANTE Buchbinderhartpappe 2mm) with
increasing angle. a) unbent, b) purely elastic deformation, c,d) increasing delamination (red
arrows), e),f) bending concentrates on delaminated hinge (red arrow). Images by D. Valainis.

Of particular interest is the formation of individual hinges in laminated paperboard when it
undergoes bending. In [4,5,11,18,21], the formation of such hinges has been closely examined. As one
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can see in Figure 1, even in a simple experiment, such a hinge in laminated paperboard is characterized
by a localized delamination of the individual sheets together with a localization of the deformation.
A close up of the formed hinge is shown in Figure 2 (left). One can clearly see that the delaminated
layers on the inside of the bend buckle, and thus release compressive stress. For experiments in a
more controlled environment with an added crease to determine the exact location of the hinge, see,
e.g., [4, Figure 3]. In particular in [4, 5], the experimental observations are complemented by a finite
element model, where the delamination is treated using cohesive zones. A variational model, together
with a rigorous mathematical treatment, resulting in a rich phase diagram of different energetic scaling
regimes for laminated paperboard undergoing a simple bend, is provided in this article.

Figure 2. Left: closeup of the hinge formed in the experiment shown in Figure 1f). One can
clearly see the concentration of the bending angle to the hinge as well as the delaminated
layers of paperboard. Image by D. Valainis. Right: hinge construction with energetically
optimal scaling.

In our variational approach, the individual sheets are modeled using a nonlinearly elastic energy.
The entire paperboard, but also of course the individual sheets of paper it consists of, are treated as
slender elastic objects [2, 3]. More specifically, the rigorous methods used to derive plate energies
from nonlinear bulk elasticity [10,16,17] are used here to show lower scaling bounds for the deformed
paperboard.

Delamination is treated as Griffith-type fracture, with a fixed energetic cost per delaminated unit
area [7,15], but the fracture surface is restricted to the interfaces of the individual sheets of paper in the
laminated paperboard. We refer to [1] for an overview of the treatment of spaces of bounded variation
which naturally occur in the mathematical treatment of fracture problems.

The competition between these two energies, a bulk elastic energy and a surface fracture energy,
leads to the emergence of different scaling regimes, depending on parameters. In this sense, our article
is inspired by the seminal work of Kohn and Müller [14]. More closely related is the treatment of the
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blistering of thin films on a rigid substrate under compression [6, 8, 12], where the formation of self-
similar, branching channels was observed. The scaling regimes observed in the present work should
be compared to the energy scaling for the folding of single sheets of paper [9, 19, 23].

Our main results can be summarized as follows. In our model, laminated paperboard exhibits
different scaling regimes when subjected to bending boundary conditions, depending on the bending
angle α, the paperboard thickness h and length L, number of sheets N and Griffith energy coefficient
γ. For simplicity we focus here on the regime described by (3.74) below, which requires h > γN3,
h5N5 > γL4, and h5 < γL4N3. Corresponding results for the other cases are discussed in Section 3, see
in particular Remark 3.8 and Remark 3.9.

- First, for very small bending angle, no delamination occurs and a usual, energy minimizing single
arch is formed. This purely elastic deformation, which corresponds to the bending of a thin plate,
has an energy of order α2h3

L .
- Then, sharply localized delamination occurs for all layers at a length scale α1/3h4/3

γ1/3N . The energy
scales as α1/3γ2/3h4/3.

- For even larger bending angle, the delamination length increases to αh3/2

γ1/2N3/2 and the energy scales

as αγ1/2h3/2

N1/2 .
- Finally, for larger bending angles, if the cost for delamination is small the entire paperboard may

delaminate, which results in the standard bending energy for each of the N sheets individually,
yielding a total energy of α2h3

LN2 .

The occurrence of each individual regime depends on the magnitude of the model parameters. The
second and third regime above correspond to the localized hinges observed in experiment. For most
regimes, we provide rigorous lower bounds contingent on some assumptions on the delaminated sets.
Explicit constructions realizing all energetic regimes by ensuring that individual delaminated sheets’
midplanes deform isometrically are provided. These constructions introduce an additional fold on the
inside of the hinges, which allows the individual delaminated sheets to deform isometrically, as seen
in the buckling visible in Figure 2, where the experiment is shown on the left, and a construction with
energetically optimal scaling is shown on the right.

The remainder of this article is organized as follows. In Section 2 we introduce our mathematical
model. Scaling upper and lower bounds for the energy are proved in Sections 3 and 4, respectively. We
close with a brief discussion in Section 5.

2. Problem setting and model

2.1. The three-dimensional model

We consider a paperboard sample of thickness h, consistings of N layers, so that at most N − 1
delamination surfaces are possible. We let 2L be the length of the sample in the direction of bending,
and consider a section of unit length in the third direction, which will be irrelevant for our results. We
thus obtain a reference configuration Ωh := (−L, L) × (0, h) × (0, 1).

The set of admissible deformations consists of maps U : Ωh → R
3 which jump only on (a subset

of) N −1 prescribed planes which correspond to the delamination surfaces between layers, in the sense
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that the set JU of jump points of U obeys (up to null sets)

JU ⊂ Ωh ∩ {x : x2 ∈
h
N
Z} = (−L, L) × {

h
N
,

2h
N
, . . . ,

(N − 1)h
N

} × (0, 1). (2.1)

Outside its jump set the function is assumed to have a weak gradient which is square integrable.
Mathematically, this means that U belongs to S BV2

N(Ωh;R3), which we define as the space of functions
in S BV(Ωh;R3) such that (2.1) holds and ∇U ∈ L2(Ωh;R3×3). We recall that S BV(Ωh;R3) is the set
of special functions of bounded variation, i.e., the set of integrable functions U : Ωh → R

3 such
that the distributional gradient DU is a measure of the form DU = ∇UL3 + [U] ⊗ νH2 JU , with
∇U ∈ L1(Ωh;R3×3), JU theH2-rectifiable jump set of U, [U] : JU → R

3 its jump, and ν : JU → S 2 the
normal to JU . We refer to [1] for details of this definition and the relevant properties of the space.

In order to introduce a boundary condition for the hinge, we prescribe the deformation gradient on
both ends of the domain, i.e.,

DU(x) = R̂α for x1 < −
L
2
, DU(x) = R̂−α for x1 >

L
2
, (2.2)

where R̂α ∈ SO(3) is a rotation of angle α around x3,

R̂α =


cosα − sinα 0
sinα cosα 0

0 0 1

 . (2.3)

The energy of a deformation U ∈ S BV2
N(Ωh;R3) consists of the sum of an elastic energy, depending

on the absolutely continuous part of the deformation gradient ∇U, and a delamination energy, which is
proportional to the total area of the delaminated set JU . Specifically,

E3D
h [U] :=

∫
Ωh

W3D(∇U)dx + γH2(JU), for U ∈ S BV2
N(Ωh;R3). (2.4)

Here W3D : R3×3 → [0,∞) is an elastic energy density which obeys for some c > 0
1
c

dist2(ξ,SO(3)) ≤ W3D(ξ) ≤ c dist2(ξ,SO(3)) for all ξ ∈ R3×3. (2.5)

The parameter γ > 0 is the delamination energy per unit area, which in the present setting has the
dimensions of a length, andH2 denotes the Hausdorff measure. In particular,H2(JU) is the area of the
delaminated set.
Remark 2.1. A number of comments are in order.

1) If one assumes that the material is inhomogeneous, with moderate changes of the elastic energy
W3D from layer to layer, the analysis is unchanged, up to a modification in the constant c in (2.5).

2) The aim of this paper is to derive bounds from geometrically admissible delaminated states,
using the Griffith-type delamination energy γH2(JU). More refined fracture models, for example
including a cohesive zone, are beyond the scope of this paper.

3) Although the manufacturing process of paperboard makes the material highly orthotropic, with
different elastic properties in the lamination direction compared to in-plane, the key ingredient in
the chosen model is the competition between the delamination energy and the effective bending
stiffness. The introduced Griffith parameter γ can be seen as a delamination energy normalized
by the bending stiffness, which in turn depends largely on the in-plane uniaxial compressive
modulus.
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2.2. Reduction to two dimensions

In this paper we assume that no structure arises in the x3-direction, in the sense that the deformation
U takes the form

U(x1, x2, x3) = u(x1, x2) + x3e3 (2.6)

for some u ∈ S BV2
N(ωh;R2), with ωh := (−L, L) × (0, h). The latter set is defined as the set of S BV

functions such that ∇u ∈ L2(ωh;R2×2) and

Ju ⊂ {x ∈ ωh : x2 ∈
h
N
Z} = (−L, L) × {

h
N
,

2h
N
, . . . ,

(N − 1)h
N

}, (2.7)

and one easily sees that U ∈ S BV2
N(Ωh;R3) if and only if u ∈ S BV2

N(ωh;R2).
The energy then reduces to

Eh[u] := E3D
h [U] =

∫
(−L,L)×(0,h)

W2D(∇u)dx + γH1(Ju), for u ∈ S BV2
N(ωh;R2), (2.8)

where W2D is defined by W2D(ξ) := W3D(ξ + e3 ⊗ e3) for ξ ∈ R2×2, andH1 denots the one-dimensional
Hausdorff measure, which measures length. Here and below we identify ξ ∈ R2×2 with the matrix
ξ̂ ∈ R3×3 characterized by ξ̂i j = ξi j for i, j = 1, 2, zero otherwise, and correspondingly for vectors.
From (2.5) one easily obtains that the two-dimensional reduced energy obeys

1
c

dist2(ξ,SO(2)) ≤ W2D(ξ) ≤ c dist2(ξ,SO(2)) for all ξ ∈ R2×2. (2.9)

The boundary condition (2.2) in turn is equivalent to

Du(x) = Rα for x1 < −
L
2
, Du(x) = R−α for x1 >

L
2
, (2.10)

where we denote by Rα ∈ SO(2) the two-dimensional rotation of angle α,

Rα :=
(
cosα − sinα
sinα cosα

)
. (2.11)

3. Scaling upper bounds for the energy

The objective is to find critical bending angle and energy bounds for the interplay of bending and
delamination in terms of h, L, γ.

3.1. First construction: Plate bending without delamination

We first consider the case that no delamination occurs. Then it is natural to expect that the
deformation has constant curvature. We use here the classical construction for plate theories, with
some simplifications which do not alter the scaling of the energy (for example, in (3.4) we simply use
x2 as a factor, and not x2 −

h
2 ). We refer to [10] for a more general mathematical treatment.
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Lemma 3.1. For all h, L > 0 and α ∈ [0, π2 ] there is a map u ∈ W1,∞(ωh;R2) which obeys the boundary
condition (2.10) and such that

Eh[u] ≤ c
α2h3

L
. (3.1)

The map u is injective, and W1,∞(ωh;R2) ⊆ S BV2
N(ωh;R2) for all N.

Proof. We first fix an arc of circle for the central part,

f (x1) :=
L

2α

(
sin(2αx1/L)
cos(2αx1/L)

)
, (3.2)

which obeys | f ′(x1)| = 1 for all x1, and then extend it piecewise affine in the two boundary regions,
setting

v(x1) :=


f (− L

2 ) + (x1 + L
2 ) f ′(− L

2 ), if − L < x1 < −
L
2 ,

f (x1), if − L
2 ≤ x1 ≤

L
2 ,

f ( L
2 ) + (x1 −

L
2 ) f ′( L

2 ), if L
2 < x1 < L.

(3.3)

One easily verifies that v ∈ W2,∞((−L, L);R2), with |v′| = 1 and |v′′| ≤ 2α/L almost everywhere. We
then define u : ωh → R

2 by
u(x1, x2) := v(x1) + x2(v′)⊥(x1), (3.4)

where (a1, a2)⊥ := (−a2, a1) denotes counterclockwise rotation by 90 degrees. One easily verifies that
u ∈ W1,∞(ωh;R2), Du(x1, x2) = R∓α for ±x1 ∈ ( L

2 , L), and, for x1 ∈ (− L
2 ,

L
2 )

Du(x) = v′(x1) ⊗ e1 + (v′)⊥(x1) ⊗ e2 + x2(v′′)⊥(x1) ⊗ e1 (3.5)

so that dist(Du(x),SO(2)) ≤ |x2| |v′′(x1)|. Recalling the upper bound in (2.9) we obtain the desired
bound

Eh[u] ≤
∫ L

−L

∫ h

0
c|x2v′′(x1)|2dx2dx1

=L
∫ h

0
c
(
2αx2

L

)2

dx2 ≤ c
α2h3

L
.

(3.6)

Injectivity can be easily verified from the definition of u. �

3.2. Continuous, piecewise affine construction

We start by constructing a continuous piecewise affine map ucpa that illustrates the basic structure of
the deformation. This construction is not admissible for the functional considered here, but represents
a deformation for the limiting case N → ∞. Before starting we introduce the notation

Rϕ :=
(
cosϕ − sinϕ
sinϕ cosϕ

)
for ϕ ∈ R. (3.7)

We fix α ∈ (0, π2 ), h, L > 0. We seek a map ucpa that obeys the boundary conditions (2.10), and that
is symmetric with respect to the x2-axis, in the sense that

ucpa(−x1, x2) =

(
−ucpa

1 (x1, x2)
ucpa

2 (x1, x2)

)
. (3.8)
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Therefore we can focus on {x1 ≥ 0}, provided that we impose the condition ucpa
1 (0, x2) = 0. We fix a

parameter ζ ∈ (0, L/(2h)], and assume that

Ducpa = R−α for ζ(h − x2) < x1 < L, 0 < x2 < h, (3.9)

where R−α was defined in (2.11) (see Figure 3 for a sketch of the geometry). This ensures that the
boundary condition (2.10) is fulfilled. In the region 0 < x1 < ζ(h − x2) the material is allowed to
shear and to open across the possible delamination lines, and of course to rotate by some angle β
to be determined. However, to ensure global injectivity in the delaminated construction following in
section 3.3, volumetric compression must be prevented. In other words we assume that the deformation
gradient takes the form

F∗ := Rβ

(
1 a1

0 a2

)
(3.10)

for some a1 ∈ R (representing shear) and a2 ∈ [1,∞) (representing opening across the delamination
lines). The symmetry condition (3.8) requires that ucpa

1 (0, x2) = 0 for all x2 ∈ (0, h). Since we already
fixed ucpa

1 (0, h) = 0, it suffices to require ∂1ucpa(0, x2) = 0 for all x2 ∈ (0, h), which is equivalent to
F∗12 = 0 and therefore to a := (a1, a2) = |a|(sin β, cos β). Denoting d := |a| we obtain

F∗ = Rβ

(
1 d sin β
0 d cos β

)
=

(
cos β 0
sin β d

)
(3.11)

with the condition d cos β ≥ 1. The construction is concluded if we impose continuity across the line
{x1 = ζ(h − x2)}, which is equivalent to

0 = (R−α − F∗)
(
ζ

−1

)
=

(
ζ cosα − sinα − ζ cos β

−ζ sinα − cosα − ζ sin β + d

)
. (3.12)

In turn, this can be rewritten as the two conditions

ζ =
sinα

cosα − cos β
(3.13)

and
d = cosα + ζ(sin β + sinα) =

1 − cosα cos β + sinα sin β
cosα − cos β

(3.14)

which define ζ and d in terms of the angle β. It remains to verify the conditions a2 = d cos β ≥ 1 and
0 ≤ ζ ≤ L/(2h), which limit the admissible choices of the angle β. We observe that this condition
is needed to ensure injectivity of the final construction. We assume that α, β ∈ (0, π2 ); by ζ > 0 we
necessarily have β > α.

The condition d cos β ≥ 1 can be rewritten as

fα(β) :=
1 − cosα cos β + sinα sin β

cosα − cos β
cos β ≥ 1. (3.15)

A short computation shows that

fα(β) =
sin α+β

2

sin β−α

2

cos β (3.16)
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and

f ′α(β) =
(cos β − cosα) sin β − cos β sinα

2 sin2 α−β

2

< 0 (3.17)

so that for any α ∈ (0, π2 ) the function fα : (α, 1
2π] → R is strictly decreasing with fα(π2 ) = 0 and

fα(α+) = ∞. Therefore we can define βeq(α) ∈ (α, π2 ) as the unique solution to fα(β) = 1. By the
implicit function theorem, βeq ∈ C1((0, π2 )), and from

∂ fα(β)
∂α

=
sin β cos β

1 − cos(α − β)
> 0 (3.18)

we obtain β′eq > 0. The condition d cos β ≥ 1 is equivalent to β ∈ (α, βeq(α)]. We summarize and extend
these results in the following statement.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

Figure 3. Piecewise affine construction. The angle formed by the segments with the x axis
is α on the left, −β in the first (downward) part of the central fold, then β, and finally −α on
the right.

Lemma 3.2. (i) There is a continuous, increasing function βeq : (0, π2 ) → (0, π2 ) such that α < βeq(α)
for all α and

1 − cosα cos βeq(α) + sinα sin βeq(α)
cosα − cos βeq(α)

cos βeq(α) = 1. (3.19)

It obeys
βeq(α) = 41/3α1/3 + o(α1/3) as α→ 0. (3.20)

(ii) For any α, β ∈ (0, π2 ), h, L > 0, if

α < β ≤ βeq(α) and ζ :=
sinα

cosα − cos β
≤

L
2h

(3.21)

Mathematics in Engineering Volume 5, Issue 2, 1–28.



10

then the map ucpa : ωh → R
2 defined by

ucpa(x) :=



 x1 cos β
|x1| sin β + dx2

 , if |x1| < ζ(h − x2), x1 cosα + (x2 − h) sinα sgn x1

−|x1| sinα + (x2 − h) cosα + dh

 , if ζ(h − x2) ≤ |x1| ≤ L,

(3.22)

is continuous, injective, obeys the boundary conditions and |∂1ucpa| = 1 almost everywhere.

Proof. (i) The function βeq is defined by fα(βeq(α)) = 1, with f as in (3.15). In order to verify (3.20),
we write (3.19) as

(1 − cosα cos β + sinα sin β) cos β = cosα − cos β, (3.23)

expand both sides to second order in α and rearrange terms, to obtain

α sin β cos β +
1
2
α2(cos2 β + 1) = (1 − cos β)2 + O(α3). (3.24)

In particular, limα→0 βeq(α) = 0. Expanding to leading order in β leads to αβ + α2 = (β2/2)2 + O(α3) +

O(αβ3) + O(α2β2) + O(β6), which implies (3.20).
(ii) We define ζ and d by (3.13) and (3.14), respectively. One verifies that ucpa as defined in (3.22)

obeys the symmetry condition (3.8), ucpa
1 (0, x2) = 0, and Ducpa = F∗ for 0 < x1 < ζ(h− x2), Ducpa = R−α

for x1 ≥ ζ(h − x2), and that the function is continuous on the point (0, h). As is apparent from the
construction above (see in particular (3.10)) this map is injective and transforms horizontal lines in a
length-preserving way, in the sense that |∂1ucpa| = 1. The rest follows from the computations above. �

3.3. Second construction: Multilayered folding with partial delamination

The construction arises as a discretization and regularization of the continuous piecewise affine
construction of Section 3.2. The final result of the construction, for two choices of β, is illustrated in
Figure 4.

We assume that in the inner region the material is partially delaminated, and use this to replace the
non-isometric gradient F∗ by a deformation which is isometric away from the discontinuity set. We
then replace the sharp corners by regularized corners, in which each layer smoothly bends. The angle
with the x1-axis is α at first, then gradually becomes −β, then β, and finally −α.

We consider a construction with n ≤ N layers of paperboard which have been separated across
n − 1 delamination surfaces. We assume n ≥ 1; the case n = 1 without delamination has already been
treated in Section 3.1. To this end, we fix a subset {b1 < b2 < · · · < bn−1} ⊆ (0, h) ∩ h

NZ and assume
that delamination occurs only on the surfaces {x2 = b1, . . . bn−1}, in the sense that Ju ⊆ (−L, L) ×
{b1, . . . , bn−1}. For notational convenience we denote b0 := 0 and bn := h. We label by h j := b j+1 − b j,
0 ≤ j < n, the thickness of the j-th layer. The map we construct will be in C1([−L, L] × [b j, b j + h j))
for each j < n.
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-0.5

0

0.5

1

-2 -1 0 1 2
-0.5

0

0.5

1

Figure 4. Construction of the multilayered folding construction. Top: β = βeq, bottom:
β < βeq. This is a smoother version of the backbone structure from Figure 3. Also in this
case the angle formed by the straight segments with the x axis is α, −β, β and α (from left to
right).

Step 1. The first step is a piecewise affine construction. We first construct the map on the set {x2 = b j}

using the continuous piecewise affine construction as background. Recalling (3.22) we define maps
f̂0, . . . , f̂n−1 : [−L, L]→ R2 by

f̂ j(x1) := ucpa(x1, b j) =



 x1 cos β
|x1| sin β + db j

 , if |x1| < l j, x1 cosα + (b j − h) sinα sgn x1

−|x1| sinα + (b j − h) cosα + dh

 , if l j ≤ |x1| ≤ L,

(3.25)

where l j := ζ(h − b j) and ζ is defined in (3.13). These maps are illustrated in Figure 3. The inner part
of the construction, for |x1| ≤ l j, will be referred to as the “down slope”.

Step 2. In a next step we round the corners. This could be done by mollification, but it is important
to (i) check the length, and keep the deformation isometric in the longitudinal direction, and (ii) be
able to verify global injectivity of the two-dimensional deformation. Therefore we take a more explicit
path and insert a circular arc of length `arc > 0 at each of the points of discontinuity of f̂ ′j , namely, at
x1 = ±l j and at x1 = 0.

In order to do this, we first give in (3.26) an explicit expression for the orientation ϕ j(x1) of f ′j (x1) as
a function of x1, and then in (3.27) construct f j, so that it is automatically parametrized by arc length.
The position of the arcs is chosen so that, in the limit of small arc length `arc → 0, we recover the
piecewise affine function f̂ j, and that the boundary condition is fulfilled also for positive `arc.
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The centers as well as radii are chosen such that the tangents of the arc match the respective left
and right tangents of f̂ j, as illustrated in Figure 4. In particular, we can see that the radii are given by
`arc
α+β

and `arc
β

, respectively – independently of the layer index j. The requirement that the deformation
is a rigid body motion for |x1| > L/2 results in the constraint that 2`arc + max{l j} ≤ L/2, as neither the
down-slope part nor the arcs can fulfill this condition.

For each j, we first define the orientation function ϕ j ∈ W1,∞(R) by

ϕ j(x1) :=


x1
`arc
β, if |x1| ≤ `arc,

β sgn x1, if `arc < |x1| < l j + `arc,

β sgn x1 −
|x1 |−l j−`arc

`arc
(α + β) sgn x1, if l j + `arc ≤ |x1| ≤ l j + 2`arc,

−α sgn x1, if |x1| > l j + 2`arc,

(3.26)

and then define the arc-length preserving map of the j-th layer’s mid-plane f j : [−L, L]→ R2 by

f j(x1) := f̂ j(0) +

∫ x1

0
Rϕ j(x′1)e1dx′1. (3.27)

We observe that f j ∈ W2,∞([−L, L];R2), with | f ′j | = 1 and | f ′′j | ≤ (α + β)/`arc almost everywhere. By
comparison with the derivative of f̂ j as defined in (3.25) we see that f j(0) = f̂ j(0), f ′j (x1 + `arc) =

f̂ ′j (x1) = Rβe1 for x1 ∈ (0, l j) and f ′j (x1 +2`arc) = f̂ ′j (x1) = R−αe1 for x1 > l j. A short computation shows
that if x1 ≥ max{l j + 2`arc, l j+1 + 2`arc} then

f j+1(x1) − f j(x1) = f̂ j+1(0) − f̂ j(0) + (l j+1 − l j)(Rβe1 − R−αe1)

= f̂ j+1(x1) − f̂ j(x1) = R−αe2h j.
(3.28)

Further, we observe that

l j ≤ l0 = hζ = h
sinα

cosα − cos β
. (3.29)

Step 3. We are now ready to define the required mapping u : ωh → R
2. We use the same construction

used in (3.4) in the proof of Lemma 3.1 with f j in place of v and set

u(x1, x2) := f j(x1) + (x2 − b j)( f ′j )
⊥(x1), for x2 ∈ [b j, b j + h j). (3.30)

This map clearly belongs to S BV2
N(ωh;R2).

Assume now that l0 + 2`arc ≤
1
2 L. Then for x1 ≥

L
2 we have f ′j = R−αe1, and (3.28) holds. Therefore

u is continuous for x1 ≥
L
2 , with Du = R−α. The same holds (flipping some signs) on the other side,

and therefore u fulfills the boundary condition (2.10).
The energy is estimated by the same argument as in Section 3.1, see in particular (3.6). In particular,

each of the 4n individual arcs in the construction has a change in angle of magnitude bounded by a
universal constant times β, an arc-length no less than `arc, and a thickness h j. In the rest of the domain
the function f j is affine. Therefore

Eh[u] ≤
n−1∑
j=1

2γ(l j + 2`arc) +

n−1∑
j=0

∫ L

−L

∫ b j+1

b j

c|(x2 − b j) f ′′j (x1)|2dx2dx1

≤4nγ(hζ + `arc) + c
n−1∑
j=0

β2h3
j

`arc
.

(3.31)
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Step 4. We finally show that the map u defined in (3.30) is injective. This leads to an additional
constraint.

We first consider injectivity inside a single layer. For the affine parts and the arcs around ±(l j + `arc)
this follows by the same easy argument as in Lemma 3.1. For the central arc, with a different concavity,
injectivity of the expression in (3.30) is equivalent to the fact that the layer thickness h j is not larger
than the radius of the arc of circle described by f j, which is `arc/β. Therefore injectivity is equivalent
to

h j ≤
`arc

β
for j = 0, . . . , n − 1. (3.32)

We next focus on the interaction between different layers. The boundary data automatically imply
injectivity for |x1| ≥

1
2 L; we can easily extend the construction to R× [0, h) and we see that it suffices to

show that the set u(R × [b j, b j + h j)) does not intersect the curve (x1, f j+1(x1)) = u(x1, b j+1). To ensure
global injectivity we therefore need to show

f j(x1) + λ( f ′j )
⊥(x1) , f j+1(x′1) for all j and x1, x′1 ∈ R, λ ∈ [0, h j). (3.33)

Hence, it suffices to prove that

| f j(s) − f j+1(t)| ≥ h j for all j and s, t. (3.34)

We first consider the inner part of the construction. For |s|, |t| ≤ `arc + l j+1, we have f j+1(t) =

f j(t) + dh je2. We recall that |ϕ j| ≤ β everywhere, so that (3.27) implies

|e2 · ( f j(s) − f j(t))| ≤ |e1 · ( f j(s) − f j(t))| tan β. (3.35)

Therefore, writing for brevity A := f j(s) − f j(t) ∈ R2,

| f j+1(t) − f j(s)|2 =A2
1 + (A2 + dh j)2 ≥

cos2 β

sin2 β
A2

2 + (A2
2 + 2A2dh j + d2h2

j)

=
1

sin2 β
A2

2 + 2A2dh j + d2h2
j

≥d2h2
j − d2h2

jsin2 β = d2h2
j cos2 β ≥ h2

j

(3.36)

where in the last step we used the condition d cos β ≥ 1 which follows from β ≤ βeq(α). For an
illustration see Figure 5b.

For the outer part of the construction now let |s|, |t| ≥ `arc. We argue similarly as for the inner part
and for notational simplicity only consider t, s < 0, the other side being a symmetric analog. Fix

δ := tan−1(ζ) and orthogonal unit vectors ē1 := Rα−δe1, ē2 := Rα−δe2 =

(
sin(δ − α)
cos(δ − α)

)
. From (3.28) and

l j = l j+1 + ζh j we have, for t + ζh j ≤ −L/2, f j+1(t + ζh j) − f j(t) = h jRα(e2 + ζe1) = h j

√
1 + ζ2ē2. As

f ′j+1(t+ζh j) = f ′j (t) for t+ζh j < −`arc, we conclude that in this range f j+1(t+ζh j) = f j(t)+h j

√
1 + ζ2ē2.

We next show that
|ϕ j(x1) − α + δ| ≤ δ for all x1 ∈ [−L, 0]. (3.37)

To see this, note that the angle between the up-slope and ē1 is exactly equal to δ, where cos δ =
h j√

1+ζ2h j
. The angle δ̄ between the down-slope and ē1 satisfies cos δ̄ =

(d cos β)h j√
1+ζ2h j

≥ cos δ, since β ≤ βeq
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and therefore d cos β ≥ 1. For an illustration, see Figure 5a. Alternatively, (3.37) can be proven
algebraically. First, ϕ j ∈ [−β, α] for x1 ≤ 0, so that it suffices to prove that p := α+β

2 ≤ δ. We set
m := β−α

2 and express α and β in terms of m and p. As tan δ = ζ, by monotonicity of tan we need to
check

tan p ≤ ζ =
sinα

cosα − cos β
=

1
2

(
1

tan m
−

1
tan p

)
. (3.38)

On the other hand, by (3.16) the assumption β ≤ βeq (in the form fα(β) ≥ 1) is the same as

1
tan m

≥
1 + sin2 p
sin p cos p

= 2 tan p +
1

tan p
. (3.39)

As these two conditions are easily seen to be equivalent, (3.37) holds.

Thus we have |ē2·( f j(s)− f j(t))| ≤ |ē1·( f j(s)− f j(t))| tan δ for s, t ≤ 0. Setting Ā :=
(
ē1 · ( f j(s) − f j(t))
ē2 · ( f j(s) − f j(t))

)
,

we calculate

| f j+1(t + h jζ) − f j(s)|2 = Ā2
1 + (Ā2 +

√
1 + ζ2h j)2

≥

(
1

tan2 δ
+ 1

)
Ā2

2 + 2Ā2

√
1 + ζ2h j + (1 + ζ2)h2

j

=
1 + ζ2

ζ2 Ā2
2 + 2Ā2

√
1 + ζ2h j + (1 + ζ2)h2

j

≥ h2
j .

(3.40)

For the mixed case where s, t are in different parts of the we note that the minimal distance between
two consecutive layers is achieved (again, on the left side of the folding construction) between diagonal
corners of the red quadrilateral in Figure 5c, as, within this area, both the inner and the outer estimate
are valid. It is clear that the respective distances are bounded by min{dh,

√
1 + ζ2h}.

Figure 5. Illustration of injectivity estimates. On the left, the location of subfigures a), b),
and c) in the construction is shown. a) relevant trigonometric quantities for the outer part’s
construction, b) for the inner part, c) in area marked in red, both constructions are valid.
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Lemma 3.3. Fix α ∈ (0, π4 ], h > 0, L ≥ h, N ∈ N, N ≥ 1. For any n ∈ N with 1 ≤ n ≤ N, any
β ∈ (α, βeq(α)], and any `arc > 0, if

2βh
n
≤ `arc ≤

1
8

L and ` :=
sinα

cosα − cos β
h ≤

1
4

L (3.41)

then there exists a map u ∈ S BV2
N(ωh;R2), which obeys (2.10), is injective, and such that

Eh[u] ≤ c
(
γ(` + `arc)n +

β2h3

`arcn2

)
= c

(
γn

(
h sinα

cosα − cos β
+ `arc

)
+
β2h3

`arcn2

)
(3.42)

with a constant c > 0 only depending on the elastic energy density W2D.

Proof. For n = 1 there is no delamination, the assertion follows from Lemma 3.1, α ≤ β, and `arc ≤ L.
Therefore we can assume n ≥ 2 in the following.

We first choose a subset {b1, . . . , bn−1} ⊆ {h 1
N , . . . , h

N−1
N } such that, setting b0 = 0 and bn = h, we

have h j = b j+1−b j ≤
2h
n for all j = 0, . . . , n−1. We immediately notice that the map u given in (3.30) is

a member of S BV2
N(ωh;R2), with its jump set contained in the set (−2`arc − `, 2`arc + `)× {b1, . . . , bn−1}.

The energy estimate follows then from (3.31).
The conditions in (3.41) imply in particular that 2`arc + ` ≤ L/2, and therefore that the boundary

condition (2.10) is fulfilled. The condition (3.32), required for injectivity around the central arc, follows
from the first inequality in (3.41) and the condition h j ≤ 2h/n. �

Remark 3.4. In reality we expect that buckling only appears in the lower layers in Figure 4, while the
upper layer may still be under small tension. A more complex construction taking this into account
would, however, only yield a constant factor in the energy and is therefore not needed in order to derive
the scaling bounds.

3.4. Scaling upper bounds

Theorem 3.5. There are C > 0 and η ∈ (0, 1] such that for 0 < h ≤ ηL, α ∈ (0, π/2] there is
u ∈ S BV2

N(Ω;R2) which obeys (2.10), u ∈ W1,∞(Ω \ Ju;R2) withH1(Ju \ Ju) = 0, is injective, and obeys

Eh[u] ≤ C min{
α2h3

L
, α1/3γ2/3h4/3 +

αγ1/2h3/2

N1/2 +
α2h3

LN2 +
αh4

L2N2 }. (3.43)

Proof. The result in Theorem 3.5 will follow from Propositions 3.6 and 3.7. The first proposition
considers the case where the angle α is large, the second treats the case of small α. As h3

LN2 ≤
h4

L2N2 , in
the case of large α the last term does not appear. �

Proposition 3.6. There are C > 0 and η ∈ (0, 1) such that for 0 < h ≤ ηL, α ∈ (0, π/2] there is
u ∈ S BV2

N(Ω;R2) which obeys (2.10), is W1,∞ in Ω \ Ju, injective, and obeys

Eh[u] ≤ C min{
h3

L
, γ2/3h4/3 +

γ1/2h3/2

N1/2 +
h3

LN2 }. (3.44)

Proof. We prove the proposition in 3 steps.
Step 1. If α > π

4 we can combine two folds with L′ := L/4 and α′ := α/2. Therefore we assume in
the remainder of the proof that α ∈ (0, π4 ].
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Step 2. By Lemma 3.1 there is an injective map u ∈ W1,∞(ωh;R2) with Eh[u] ≤ Ch3/L. This proves
the first bound.

Step 3. We intend to use Lemma 3.3 with β := βeq(α). We first check the second condition in (3.41).
The function

α 7→
sinα

cosα − cos βeq(α)
(3.45)

is continuous on (0, π4 ], and as βeq = O(α1/3) for small α, it converges to 0 for α → 0. Therefore there
is C > 0 such that

0 <
sinα

cosα − cos βeq(α)
≤ C for all α ∈ (0,

π

4
]. (3.46)

By Lemma 3.3 we thus know that for any n ∈ {1, . . . ,N} and `arc > 0, if

2βh
n
≤ `arc ≤

1
8

L and Ch ≤
1
4

L (3.47)

then

inf
u
Eh[u] ≤ c

(
γhn + γ`arcn +

h3

`arcn2

)
. (3.48)

We assume that
h
L
≤ min

{
1

4C
,

1
8π

}
, (3.49)

which is guaranteed if η is chosen appropriately. Noting that reducing `arc below O(h) does not reduce
the energy, due to the first term in (3.48), we can choose

`arc ∈

[
πh,

L
8

]
. (3.50)

Since β ≤ π
2 , we are automatically assured that all requirements in (3.47) are satisfied. At the same

time, if `arc is chosen in this range then we can ignore the first term in (3.48). Condition (3.49) ensures
that the set of possible values of `arc is nonempty.

We first optimize the choice of n. Set

n := min
{

N,
⌈

h

γ1/3`2/3
arc

⌉}
∈ {1, . . . ,N}. (3.51)

Inserting in (3.48) leads to

inf
u
Eh[u] ≤


c
(
γ`arc + γ2/3h`1/3

arc

)
, if h ≤ Nγ1/3`2/3

arc ,

c
h3

`arcN2 , otherwise,
(3.52)

where the term γ`arc stems from the fact the n ≥ 1.
It remains to choose the value of `arc. Since the first expression is strictly increasing, and the

second one strictly decreasing, if the critical value is admissible then it is optimal. Precisely, if `crit
arc :=
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γ−1/2h3/2N−3/2 ∈ [πh, L/8] then we obtain a bound of the form h3/2γ1/2/N1/2. Otherwise, the relevant
constraint is the one that prevents this optimal value from being chosen. Specifically,

inf
u
Eh[u] ≤


c
(
γh + γ2/3h4/3

)
, if γ−1/2h3/2N−3/2 < πh,

c
γ1/2h3/2

N1/2 , if γ−1/2h3/2N−3/2 ∈ [πh, L/8],

c
h3

LN2 , if L < 8γ−1/2h3/2N−3/2,

(3.53)

or, equivalently,

inf
u
Eh[u] ≤


c
(
γh + γ2/3h4/3

)
, if h < γN3,

c
γ1/2h3/2

N1/2 , if γN3 ≤ h ≤ γ1/3L2/3N,

c
h3

LN2 , if γ1/3L2/3N < h.

(3.54)

We remark that the first and the last regime are disjoint, since γ1/3L2/3N < h and h ≤ L imply
γ1/3h2/3N < h, which is equivalent to γN3 < h.

The calculation above thus reveals energetic regimes as follows, which differ in the number of
delaminated layers and the delamination length.

Sharp fold partial delamination: The energy scaling γh+γ2/3h4/3 has the shortest possible delamination
length `arc = πh and n ∼ dγ−1/3h1/3e. It originates by balancing the two terms γ`arcn + h3

`arcn2 after
setting `arc = h.

The term γh, corresponding to n = 1, can be dropped. To see this, we first note that it is only
relevant if h ≤ γ. In this regime, however, it would be convenient not to delaminate at all,
obtaining an energy h3L−1. Indeed, as h ≤ L, h ≤ γ implies h3L−1 ≤ h2 ≤ γh.

Localized full delamination: The energy scales as γ1/2h3/2

N1/2 . As n = N, each layer is delaminated,
however only over a length `arc = γ−1/2h3/2N−3/2. This originates by balancing the two terms
γ`arcn + h3

`arcn2 after setting n = N. All layers are delaminated, but only over a length `arc. The
energy corresponds to N plates of thickness h/N bent over a length `arc, the value is determined
so that this exactly balances the delamination energy.

Total delamination: The energy scales as h3

LN2 , there are N separate plates of thickness h/N, each
bending over the entire available length L, the delamination energy is smaller.

Since the powers of h are increasing, and the expression is continuous, one can also write the above
regimes concisely as in (3.44). �

Proposition 3.7. There are C > 0, α0 ∈ (0, π/2] such that for 0 < h ≤ L, α ∈ (0, α0] there is
u ∈ S BV2

N(Ω;R2) which obeys (2.10), is W1,∞ in Ω \ Ju, injective, and obeys

Eh[u] ≤ C min
{
α2h3

L
, α1/3γ2/3h4/3 +

αγ1/2h3/2

N1/2 +
α2h3

LN2 +
αh4

L2N2

}
. (3.55)
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Proof. As above, we prove the two bounds separately.
Step 1. Again, we use Lemma 3.1 to obtain an injective map u ∈ W1,∞(ωh;R2) with Eh[u] ≤

Cα2h3/L.
Step 2. The delaminated construction is obtained with Lemma 3.3 with a careful choice of the

parameters. In this regime of small α, any delaminated construction must also satisfy that β is small, as
β ≤ βeq(α) ' (4α)1/3 for α → 0. A straightforward Taylor series expansion of the delamination length
factor ζ leads to

ζ =
sinα

cosα − cos β
=

2α + O(α3)
β2 − α2 + O(β4) + O(α4)

. (3.56)

Since α ≤ β, the O(α4) in the denominator can be ignored. It is however important to avoid that β2−α2

in the denominator becomes too small. For this reason we shall restrict the choice of β by assuming
β ≥ 2α, which implies cosα − cos β ≥ cos β

2 − cos β = 3
8β

2 + O(β4). For β sufficiently small, this is
larger than β2/3. Therefore there is α0 > 0 such that for all α ∈ (0, α0] one has 2α ≤ βeq(α) and for all
β ∈ [2α, βeq(α)]

ζ =
sinα

cosα − cos β
≤ 3

α

β2 . (3.57)

By Lemma 3.3 we know that for any n ∈ {1, . . . ,N} and `arc > 0, if

2βh
n
≤ `arc ≤

1
8

L and 3
α

β2 h ≤
1
4

L (3.58)

(noting that h ≤ L guarantees that the set of admissible β ≤ βeq is not empty, after potentially decreasing
α0 again) then

inf
u
Eh[u] ≤ c

(
α

β2γhn + γ`arcn +
β2h3

`arcn2

)
. (3.59)

We assume that
α

β2 h ≤ `arc ≤
1
8

L (3.60)

so that the first term in the energy can be ignored. We next compare the first lower bound in (3.58)
with the one in (3.60). Since we know that β ≤ βeq(α) ≤ cα1/3, and n ≥ 1, we obtain for some c∗ > 0

2βh
n
≤ c∗

α

β2 h. (3.61)

Without loss of generality we can assume c∗ ≥ 3
2 . We then see that all conditions in (3.58) and in (3.60)

are satisfied provided

c∗
α

β2 h ≤ `arc ≤
1
8

L. (3.62)

By the same argument we see that this condition is optimal (up to a factor). We choose

n := min
{

N,
⌈
β2/3h

γ1/3`2/3
arc

⌉}
∈ {1, . . . ,N}. (3.63)
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Inserting in (3.59) leads to

inf
u
Eh[u] ≤


c
(
γ`arc + β2/3γ2/3h`1/3

arc

)
, if β2/3h ≤ γ1/3`2/3

arc N,

c
β2h3

`arcN2 , otherwise,
(3.64)

noting again that the term γ`arc stems from rounding n up to the next integer, which is needed as we
require n ≥ 1. As in Step 3 of the proof of Proposition 3.6, the first expression is increasing in `arc,
the second decreasing. Therefore the optimal value is the critical one, `crit

arc := βγ−1/2h3/2N−3/2, if it is
admissible in the sense of (3.62). If not, the optimal value is the admissible value closest to the critical
one.

Assume now that `arc = `crit
arc is admissible. Then one obtains n = N, and infu Eh[u] ≤ c

βγ1/2h3/2

N1/2 .

Restating the requirements on `arc from (3.62), this is possible if `crit
arc ≥ c∗αh/β2 and `crit

arc ≤ L/8, which
is the same as

h ≥ c2
∗α

2β−6γN3 (3.65)

and
h ≤

1
4
β−2/3γ1/3L2/3N. (3.66)

Assume now that one of these two conditions is violated (one can easily check that if c∗ αβ2 h ≤ 1
8 L,

so that (3.62) gives a nonempty set of admissible values of `arc, then it is not possible for both (3.65)
and (3.66) to be violated at the same time).

• If (3.65) is violated, then `arc = c∗αβ−2h, n =

⌈
β2/3h
γ1/3`2/3

arc

⌉
, and infu Eh[u] ≤ c(αβ−2γh + α1/3γ2/3h4/3).

• If (3.66) is violated, then `arc = L/8, n = N, and infu Eh[u] ≤ c
β2h3

LN2 .

Summarizing, this leads to

E := inf
u
Eh[u] ≤



c
(
αγh
β2 + α1/3γ2/3h4/3

)
, if h < c2

∗α
2β−6γN3,

c
βγ1/2h3/2

N1/2 , if c2
∗α

2β−6γN3 ≤ h ≤ 1
4β
−2/3γ1/3L2/3N,

c
β2h3

LN2 , if h > 1
4β
−2/3γ1/3L2/3N,

(3.67)

or, equivalently,

E ≤



c
(
αγh
β2 + α1/3γ2/3h4/3

)
, if β < α1/3γ1/6h−1/6N1/2,

c
βγ1/2h3/2

N1/2 , if α1/3γ1/6h−1/6N1/2 ≤ β ≤ γ1/2h−3/2LN3/2,

c
β2h3

LN2 , if β > γ1/2h−3/2LN3/2.

(3.68)

It remains to choose β ∈ [2α, βeq(α)] with c∗αβ−2h ≤ 1
8 L (from (3.62)), i.e.,

max{2α, (8c∗αh/L)1/2} ≤ β ≤ βeq(α). (3.69)
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These bounds scale as α + α1/2(h/L)1/2 and α1/3, respectively, and in particular, possibly reducing α0,
we can ensure that the set is not empty for all values of the parameters.

We observe that the expression in (3.68) is minimized at βcrit := α1/3γ1/6h−1/6N1/2, and that –
provided α0 is chosen sufficiently small – α1/3 ≤ βeq(α) for all α ∈ (0, α0]. There are different regimes,
both of which are characterized by the delamination length being at the minimum value still satisfying
the injectivity conditions. In these two regimes the optimal scaling is attained by the choice β = βeq(α),
which corresponds to the fact that the layers touch each other, as illustrated in Figure 4. The first one
delaminates some of the layers, the second one all layers.

Sharp fold partial delamination: If βcrit > α1/3, which is the same as h < γN3, then we take β = α1/3,
and we are in the first regime in (3.68). This gives E ≤ cα1/3γh + cα1/3γ2/3h4/3. The first term
does not contribute. Indeed, if α1/3γ2/3h4/3 ≤ α2h3/L then necessarily γ2/3L ≤ α5/3h5/3, which,
since h ≤ L and α ≤ 1, implies γ ≤ h. Therefore we can drop the α1/3γh term and obtain
E ≤ c min{α1/3γ2/3h4/3, α2h3/L}. In this regime `arc = α1/3h and n ' γ−1/3h1/3 ≤ N, so that the
energy bound behaves as γ`arcn.

Sharp fold full delamination: If max{2α, (8c∗αh/L)1/2} ≤ βcrit ≤ α1/3, then β = βcrit is optimal and
E ≤ cα1/3γ2/3h4/3. In this regime n = N and `arc = α1/3γ−1/3h4/3N−1 (indeed, the bound on E is of
the form γ`arcN).

If βcrit < max{2α, (8c∗αh/L)1/2} then we take β = max{2α, (8c∗αh/L)1/2}, and we are in the second or
third regime in (3.68). This gives in principle four subcases, one of which cannot occur. The first of the
three possible cases still delaminates only locally, the other two are delaminated over the entire length
of the specimen. In any case, all layers are delaminated.

Localized full delamination: Assume first that α ≥ 2c∗h/L, so that β = 2α. If 2α ≤ γ1/2h−3/2LN3/2

then we are in the second regime in (3.68) (with n = N and `arc = `crit
arc = 2αγ−1/2h3/2N−3/2) and

E ≤ cαγ
1/2h3/2

N1/2 .

Total delamination: If α ≥ 2c∗h/L and 2α > γ1/2h−3/2LN3/2, then we are in the third regime in (3.68)
(with n = N and `arc = L/8) and E ≤ cα

2h3

LN2 .

Small-angle total delamination: If instead α < 2c∗h/L then β = (8c∗αh/L)1/2. A short computation
shows that βcrit ≤ (αh/L)1/2 is equivalent to (αh/L)1/2 ≥ γ1/2h−3/2LN3/2, so that we are necessarily
in the third regime in (3.68) (with n = N and `arc = L/8) and E ≤ c αh4

L2N2 .

In all cases we may conclude

inf
u
Eh[u] ≤ c min

{
α2h3

L
, α1/3γ2/3h4/3 +

αγ1/2h3/2

N1/2 +
αh4

L2N2 +
α2h3

LN2

}
. (3.70)

�

Remark 3.8. A more precise summary of the cases above shows that for h ≤ γN3, then only the
“localized partial delamination” regime is relevant, and one obtains (for α ∈ (0, α0])

inf
u
Eh[u] ≤ c min

{
α2h3

L
, α1/3γ2/3h4/3

}
. (3.71)
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Recalling (3.54) one can see that this holds for all α ∈ (0, π2 ]. As the delamination length is proportional
to α1/3h, it is always smaller than L. In turn, the number of delaminated layers n ' γ−1/3h1/3 does not
depend on the opening α. Both the delamination length and the number of delaminated layers are
discontinuous at yielding point α ' γ2/5L3/5/h.

Remark 3.9. The statement in Theorem 3.5 (analogously in Propositions 3.6 and 3.7), can also be
written in the form

Eh[u] ≤ C min
{
α2h3

L
,max

{
α1/3γ2/3h4/3,

αγ1/2h3/2

N1/2 ,
αh4

L2N2 ,
α2h3

LN2

}}
. (3.72)

To see this, it suffices to observe that max{a, b} ∼ a + b for any a, b ≥ 0.
In order to gain some understanding in these many regimes we sort them in increasing values of α

(see also Figure 6 below). For definiteness let us assume that the first linear term is the relevant one,
in the sense that γ1/2h3/2N−1/2 ≥ h4L−2N−2, so that the last term in the maximum can be ignored. The
condition is equivalent to h5 ≤ γL4N3. A simple computation shows that the maximum is then equal to

α1/3γ2/3h4/3, if α < γ1/4N3/4/h1/4,
αγ1/2h3/2

N1/2 , if γ1/4N3/4/h1/4 ≤ α ≤ γ1/2LN3/2/h3/2,
α2h3

LN2 , if α > γ1/2LN3/2/h3/2.

(3.73)

It remains to take the minimum between this expression and α2h3/L. This is always larger than the
third expression, and one easily computes the points where this intersects the other two. There are two
cases. If γ2/5L3/5/h < γ1/4N3/4/h1/4 (which is the same as γL4 < h5N5) then we obtain

1
c
Eh[u] ≤


α2h3

L , if α < γ2/5L3/5/h,

α1/3γ2/3h4/3, if γ2/5L3/5/h ≤ α < γ1/4N3/4/h1/4,
αγ1/2h3/2

N1/2 , if γ1/4N3/4/h1/4 ≤ α < γ1/2LN3/2/h3/2,
α2h3

LN2 , if α ≥ γ1/2LN3/2/h3/2.

(3.74)

whereas for γ2/5L3/5/h ≥ γ1/4N3/4/h1/4 the α1/3 regime disappears and

1
c
Eh[u] ≤


α2h3

L , if α < γ1/2LN−1/2/h3/2,
αγ1/2h3/2

N1/2 , if γ1/2LN−1/2/h3/2 ≤ α < γ1/2LN3/2/h3/2,
α2h3

LN2 , if α ≥ γ1/2LN3/2/h3/2.

(3.75)

Remark 3.10. It is interesting to compute the optimal delaminated length ` in the different regimes.
Collecting the results from the above computations we obtain (in the setting of (3.74) and with h ≥
γN3) the scaling

` ≈


0 if α < γ2/5L3/5/h,

α1/3γ−1/3h4/3N−1 if γ2/5L3/5/h ≤ α < γ1/4h−1/4N3/4,

αγ−1/2h3/2N−3/2 if γ1/4h−1/4N3/4 ≤ α < γ1/2h−3/2LN3/2,

L, if α ≥ γ1/2h−3/2LN3/2.

(3.76)
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4. Lower bound

Theorem 4.1. Let α ∈ (0, π2 ], h ≤ 1
4 L. Assume that u ∈ S BV2

N(ωh;R2) obeys the boundary condition
(2.10) and has jump set contained in the product of an interval and a finite set,

Ju ⊆ (x−, x+) × {b1, . . . bn−1} (4.1)

(up toH1-null sets) for some n ≥ 1 and x−, x+ with − L
2 ≤ x− ≤ x+ ≤

L
2 . Assume additionally

H1(Ju) ≥ cJ(n − 1)(x+ − x−) (4.2)

for some cJ > 0. Then

Eh[u] ≥ c min
{
α2h3

L
,
αγ1/2h3/2

N1/2 +
α2h3

LN2 ,
α2h2

N

}
, (4.3)

where c may depend on cJ.

As in the construction of the upper bound, n ≥ 1 denotes the number of layers, n−1 ≥ 0 the number
of interfaces.

Remark 4.2. We note that the all regimes obtained here, except for the last one, are matched by upper
bounds. In the proof below, we will see that this last regime corresponds to a very short delamination
length. In the upper bound, this is forbidden by the injectivity constraint `arc ≥

2βh
n , which however

only arises from our specific construction.
The upper bound Eh[u] ≤ cα1/3γ2/3h4/3 arises from the lower bound in (3.60). This was introduced

to take into account the first term in the energy bound in (3.42). In particular, it represents the fact
that choosing `arc ≤ ` does not save any delamination energy. This fact is not considered in the lower
bound estimate. Finally, the bound Eh[u] ≤ cαh4L−2N−2 arises in the regime of small-angle total
delamination as discussed before (3.70), where the scaling β ∼ (αh/L)1/2 is induced by the injectivity
constraint. This is also not considered in the lower bound estimate.

Lemma 4.3. Let α ∈ (0, π2 ], h ≤ 1
4 L. Assume that u ∈ W1,2(ωh;R2) obeys the boundary condition

(2.10). Then

Eh[u] ≥ c
α2h3

L
. (4.4)

This result follows easily from the compactness result for plates in [10]; we present here the short
argument since it will be reused in the following.

Proof. We consider the rectangles Qk := (hk, h(k + 2)) × (0, h), for k = 0, . . . ,K := b L
h − 2c. By (2.9)

and the Friesecke-James-Müller rigidity estimate [10], there is a universal constant c > 0 such that for
every k there is Rk ∈ SO(2) with∫

Qk

|Du − Rk|2dx ≤ c
∫

Qk

dist2(Du,SO(2))dx ≤ c
∫

Qk

W2D(Du)dx. (4.5)

By (2.10), we can assume R0 = Rα and RK = R−α. With a triangular inequality and L2(Qk ∩Qk+1) = h2

we obtain
h2|Rk − Rk+1|2 ≤ 2

∫
Qk

|Du − Rk|2dx + 2
∫

Qk+1

|Du − Rk+1|2dx. (4.6)
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By a triangular inequality and Hölder’s inequality,

|R0 − RK |2 ≤

K−1∑
k=0

|Rk − Rk+1|

2

≤ K
K−1∑
k=0

|Rk − Rk+1|2. (4.7)

Combining the previous estimates and K ≤ L/h,

|R0 − RK |2 ≤ c
K
h2

∫
ωh

W2D(Du)dx ≤ c
L
h3

∫
ωh

W2D(Du)dx. (4.8)

With |Rα − R−α| ≥ 2 sinα ≥ α the proof is concluded. �

Lemma 4.4. Let α ∈ (0, π2 ], h ≤ 1
4 L. Assume that u ∈ S BV2

N(ωh;R2) obeys the boundary
condition (2.10) and has jump set contained in the product of an interval and a finite set,

Ju ⊆ (x−, x+) × {b1, . . . bn−1} (4.9)

for some n ≥ 1 and x−, x+ with − L
2 ≤ x− < x+ ≤

L
2 . Then, with ` := x+ − x−,∫

ωh

W2D(Du)dx ≥ c min
{
α2h3

L
,

α2h3

n2(` + h/n)

}
. (4.10)

Proof. By (4.9), u ∈ W1,2((−L, x−) × (0, h)). This set can be treated as in Lemma 4.3. We consider the
rectangles Q−k := (x− − (k + 2)h, x− − kh) × (0, h), k = 0, . . . ,K− := b x−+L

h − 2c, and obtain rotations
Rk
− ∈ SO(2) such that RK−

− = Rα,

|R0
− − Rα|

2 ≤ K−
K−−1∑
k=0

|Rk
− − Rk+1

− |
2 ≤ c

L
h3

∫
ωh

W2D(Du)dx. (4.11)

Analogously, (4.9) also gives u ∈ W1,2((x+, L) × (0, h)). The same computation, using the sets Q+
k :=

(x+ + kh, x+ + (k + 2)h) × (0, h), leads to

|R0
+ − R−α|2 ≤ K+

K+−1∑
k=0

|Rk
+ − Rk+1

+ |
2 ≤ c

L
h3

∫
ωh

W2D(Du)dx. (4.12)

By a triangular inequality,

|R0
+ − R−α| + |R0

+ − R0
−| + |R

0
− − Rα| ≥ |Rα − R−α| ≥ 2 sinα ≥ α. (4.13)

If max{|R0
+ − R−α|, |R0

− − Rα|} ≥
1
4α, then (4.10) holds and the proof is concluded. Therefore for the rest

of the proof we can assume

|R0
− − R0

+| ≥
1
2
α, (4.14)

and we only need to deal with the central part of the domain. As in the proof of the upper bound we set
b0 := 0, bn+1 := h, and h j := b j+1−b j. We treat each layer (x−, x+)×(b j, b j+1) separately, for j = 0, . . . , n.
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We consider the sets Q j
k := (x−+ (k−1)h j, x−+ (k + 1)h j)× (b j, b j + h j), for k = 0, . . . ,K j := b x+−x−

h j
+ 1c,

and obtain rotations Rk
j ∈ SO(2) with

|R0
j − RK j

j |
2 ≤ c

K j

h2
j

∫
(−L,L)×(b j,b j+1)

W2D(Du)dx (4.15)

as well as ∫
Q j

0

|Du − R0
j |

2dx +

∫
Q j

K j

|Du − RK j

j |
2dx ≤ c

∫
Q j

0∪Q j
K j

W2D(Du)dx. (4.16)

Since L2(Q j
0 ∩ Q−0 ) ≥ h2

j and L2(Q j
K j
∩ Q+

0 ) ≥ h2
j ,

h2
j |R

0
j − R0

−|
2 ≤ c

∫
Q j

0

W2D(Du)dx + c
∫

Q j
0∩Q−0

|Du − R0
−|

2dx, (4.17)

and the same on the other side. With (4.15) we obtain

h2
j |R

0
− − R0

+|
2 ≤c

∫
Q j

0∪Q j
K j

W2D(Du)dx + c
∫

Q j
0∩Q−0

|Du − R0
−|

2dx + c
∫

Q j
K j
∩Q+

0

|Du − R0
+|

2dx

+ cK j

∫
(−L,L)×(b j,b j+1)

W2D(Du)dx.
(4.18)

Let A := { j ∈ {1, . . . , n − 1} : h j ≥
h

2n }. Then
∑

j<A h j ≤
h
2 , which implies

∑
j∈A

h2
j ≥

1
#A

(
∑
j∈A

h j)2 ≥
h2

4n
. (4.19)

We sum (4.18) over all j ∈ A, use that the domains of integration for different j are disjoint and that
j ∈ A implies K j ≤ 1 + `/h j ≤ 1 + 2n`/h ≤ 2(h + n`)/h, and obtain

h2

4n
|R0
− − R0

+|
2 ≤

∑
j∈A

h2
j |R

0
− − R0

+|
2 ≤ c(1 +

n`
h

)
∫
ωh

W2D(Du)dx. (4.20)

Recalling (4.14), ∫
ωh

W2D(Du)dx ≥ c
α2h3

n2(` + h/n)
(4.21)

which concludes the proof. �

Proof of Theorem 4.1. If n = 1 or ` = 0 then u ∈ W1,2(ωh;R2) and the assertion follows from
Lemma 4.3. Therefore we can assume n ≥ 2, ` > 0.

By (4.2) and Lemma 4.4 we have

Eh[u] ≥ cJnγ` + c min
{
α2h3

L
,

α2h3

n2(` + h/n)

}
, (4.22)
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where ` := x+ − x− ∈ (0, L], n ∈ [1,N]. As 1/(a + b) ≥ min{1/2a, 1/2b} for a, b > 0 we have, with
c′ := min{cJ, c/2},

Eh[u] ≥ c′
[
nγ` + min

{
α2h3

L
,
α2h3

`n2 ,
α2h2

n

}]
, (4.23)

which implies

Eh[u] ≥ c′min
{
α2h3

L
, nγ` +

α2h3

`n2 ,
α2h2

n

}
. (4.24)

We treat the three terms separately. For the first one there is nothing to do, for the last one we simply
use n ≤ N. For the middle one we use two estimates. From n ≤ N and ` ≤ L, we get

nγ` +
α2h3

`n2 ≥
α2h3

LN2 (4.25)

and using ab ≥ 2
√

ab first, and then n ≤ N,

nγ` +
α2h3

`n2 ≥ 2
αh3/2γ1/2

n1/2 ≥ 2
αh3/2γ1/2

N1/2 . (4.26)

Therefore

nγ` +
α2h3

`n2 ≥ max
{
αh3/2γ1/2

N1/2 ,
α2h3

LN2

}
≥

1
2

(
αh3/2γ1/2

N1/2 +
α2h3

LN2

)
, (4.27)

and inserting this bound in (4.24) yields

Eh[u] ≥
1
2

c′min
{
α2h3

L
,
αγ1/2h3/2

N1/2 +
α2h3

LN2 ,
α2h2

N

}
(4.28)

which concludes the proof. �

Remark 4.5. We remark that the first inequality in (4.26) corresponds to the choice ` :=
αh3/2/(γ1/2n3/2). Therefore in the regime in which the energy scales as αγ1/2h3/2

N1/2 , delamination
necessarily occurs over a length which is (up to a factor) equal to ` := αh3/2/(γ1/2n3/2). This
implies localization of delemination to a small part of the sample, in agreement with the upper bounds
discussed above and the experimental observations in Figure 2.

Analogously, the lower bound shows that bending localizes. Indeed, from (4.12) and the
corresponding equation we obtain

h3

L

[
|R0

+ − R−α|2 + |R0
− − Rα|

2
]
≤ cEh[u]. (4.29)

We recall that R0
+−R−α and R0

−−Rα are the differences in rotation inside the two non-delaminated parts
of the sample. Therefore if the energy is significantly smaller than cα2h3/L the two non-delaminated
parts of the sample carry a small part of the total rotation, and bending localizes to the delaminated
part.
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Figure 6. Left: sketch of the upper bound of the energy from Theorem 3.5, depending on the
bending angle α, in the regime of (3.74). Right: sketch of the moment (i.e., the derivative
of the energy) depending on the bending angle α. In both figures, the colors indicate the
respective regime (blue: non-delaminated, red: localized full delamination. yellow: localized
full delamination redux, purple: total delamination). The plots are a representation of an
energy with the respective scaling regimes. Multiplicative and additive constants have been
applied to produce a graph with continuity properties in line with physical considerations.
The parameters for the plots displayed here are h = 1, L = 10, N = 8, γ = 10−6.

5. Discussion

We have devised a variational model for the study of the delamination of paperboard undergoing
bending. As illustrated in Figure 6 (left), a rich variety of energy scaling regimes emerges (non-
delaminated, locally delaminated, and totally delaminated), where the locally delaminated regime
exhibits the inelastic hinge found in experiments. In the case of a small coefficient γ for the
delamination energy, our model exhibits total delamination, where each layer deforms independently
(apart from injectivity constraints). The small-angle total delamination regime is not included in the
figure. This regime would replace the full delamination regime with linear growth, but only occurs for
extremely small γ.

The bending moment is displayed in Figure 6. We expect that the moment is continuous in the
bending angle α, apart from the point of the first order phase transition when delamination becomes
energetically favorable. At the other scaling regime transitions, the minimizer is continuous, therefore
we expect the energy to exhibit a smooth crossover with continuous moment. This figure should be
compared to [4, Figure 18] – the initial undelaminated elastic response, the flat regime of increasing
delamination, and the final increase of the moment are all displayed there – although the final increase
seems to be of a different origin in the experiments (where it is an artefact of the set-up) than in
our variational model (where it is due to total delamination, which may only occur for unphysically
small γ). The moment discontinuity we observe in our variational model at the onset of delamination,
however, seems to be prevented by the introduction of an initial crease in the experiments in [4]. What
is observed, however, is a softening behavior (see, e.g., [13, Figure 4]) in the dependence of the moment
on the bending angle. A more detailed analysis of the time-dependent processes of the delamination
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or a cohesive zone model may regularize the discontinuity to recover a softening instead, but this is
beyond the scope of this work.

Future work should include a more detailed study of the paperboard material, taking into account
the effect of its constituent cellulose fibers. This could involve also a treatment via the theory of
homogenization, which was applied to the study of strength and fatigue of materials for example
in [20]. From a mathematical perspective, some open problems remain for the lower bound energy
estimate: currently, it is not completely ansatz-free, as we make assumptions on the delamination sets.
Furthermore, the lower bound corresponding to the partially delaminated regime is not yet available.
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