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1. Introduction

Let Rd, d ≥ 1, be a Euclidean space of points x = (x1, ..., xd). In 1975 D. Adams [1] among
many other things proved that, if d ≥ 2 and we are given u ∈ C∞0 = C∞0 (Rd) with its gradient Du =

(D1u, ...,Ddu), Di = ∂/∂xi, satisfying ∫
|x−y|<ρ

|Du(y)|q dy ≤ ρd−βq, (1.1)

with q > 1, 1 < β ≤ d/q, and any ρ ∈ (0,∞) and x ∈ Rd, then for all ρ ∈ (0,∞) and x ∈ Rd we have∫
|x−y|<ρ

|u(y)|r dy ≤ Nρd−(β−1)r (1.2)

with a constant N independent of u and r satisfying (β − 1)r = βq.
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This fact played a crucial role in [10] where the author investigated the solvability of elliptic
equations

ai jDi ju + biDiu + u = f (Di j = DiD j) (1.3)

with b < Ld,loc but rather satisfying for a sufficiently small b̂, all sufficiently small ρ and all balls B of
radius ρ ∫

B
|b|d0 dx ≤ b̂ρd−d0

with certain d0 ∈ (d/2, d).
Our goal in this paper is to prepare necessary tools for developing a similar theory for parabolic

equations. In Section 2 we prove an analog of Adams’s intermediate estimate, which is the main
starting point. Section 3 contains the parabolic analog of the embedding theorem mentioned in the
beginning of the article. It also contains “local” interpolation inequalities in Morrey spaces allowing
one to deal with Morrey’s norms of expressions like biDiu in domains when b is bounded. Section 4 is
devoted to the parabolic analog of a Chiarenza-Frasca theorem allowing to estimate the Lp-norm rather
than Morrey’s norm of biDiu. In Section 5 we treat parabolic Morrey spaces with mixed norms. The
main object of investigation is the term biDiu and the ways to estimate it in various Morrey and Lp

spaces in order to be able to treat it as a perturbation term in the parabolic analog of (1.3).
We finish the introduction with some notation and a remark. Define Bρ(x) = {y ∈ Rd : |x − y| < ρ},

Rd+1 := {z = (t, x) : t ∈ R, x ∈ Rd},

Cρ(t, x) =
{
(s, y) ∈ ×Rd+1 : |x − y| < ρ, t ≤ s < t + ρ2}, Cρ = Cρ(0)

and let Cρ be the collection of Cρ(z), z ∈ Rd+1, C = {Cρ, ρ > 0}. For measurable Γ ⊂ Rd+1 set |Γ| to be
its Lebesgue measure and when it makes sense set

fΓ = –
∫

Γ

f dz =
1
|Γ|

∫
Γ

f dz.

Similar notation is used for f = f (x).

Remark 1.1. Formally, Adams proved (1.2) assuming that d ≥ 2. However, it is also true if d = 1.
To show this it suffices to take u depending only on one coordinate. The reader may wonder how the
restriction β ≤ d/q will become β ≤ 1/q. The point is that if d = 1 and β > 1/q, we have d − βq < 0
and condition (1.1) becomes only possible if u = 0.

2. Preliminary estimates

An important quantity characterizing Lp = Lp(Rd+1) is what we call the index which is the exponent
of ρ in the expression

‖ICρ
‖Lp that is

d + 2
p

.

For domains Q ⊂ Rd+1, p ∈ [1,∞), and β ∈ (0, (d + 2)/p], introduce Morrey’s space Ep,β(Q) as the
set of g such that

‖g‖Ep,β(Q) := sup
ρ<∞,(t,x)∈Q

ρβ –‖gIQ‖Lp(Cρ(t,x)) < ∞, (2.1)
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where
–‖g‖Lp(Γ) =

(
–
∫

Γ

|g|p dz
)1/p

.

We abbreviate Ep,β = Ep,β(Rd+1). Observe that if Q = CR one can restrict ρ in (2.1) to ρ ≤ R since
β ≤ (d+2)/p. Also in that case one can allow (t, x) to be arbitrary, because, if |x| ≥ R, then BR∩Bρ(x) ⊂
BR∩Bρ(Rx/|x|). It is also useful to observe that, in case Q = CR, one gets an equivalent norm by adding
to the restrictions ρ < ∞, (t, x) ∈ CR, the requirement that the geometric center of Cρ(t, x) be in CR.
This follows from the fact that the Lp(Cρ(t, x))-norm of gICR will only increase if we pull Cρ(t, x) down
the t axis to {t = 0} (if ρ2 > 2R2) or to the moment that the shifted Cρ(t, x) has its geometric center
inside CR.

There are many different notations for the norms in Morrey spaces. The convenience of the above
notation is well illustrated by Theorem 3.1 and Corollary 5.7.

We will often, always tacitly, use the following formulas in which u(t, x) = v(t/R2, x/R):

–‖u‖Lp(CR) = –‖v‖Lp(C1), ‖u‖Ep,β(Q) = Rβ‖v‖Ep,β(QR),

where QR = {(t, x) : (R2t,Rx) ∈ Q},

‖Du‖Ep,β(CR) = Rβ−1‖Dv‖Ep,β(C1), ‖D2u‖Ep,β(CR) = Rβ−2‖v‖Ep,β(C1).

For s, r > 0, α > 0, and appropriate f (t, x)’s on Rd+1 define

pα(s, r) =
1

s(d+2−α)/2 e−r2/sIs>0,

Pα f (t, x) =

∫
Rd+1

pα(s, |y|) f (t + s, x + y) dyds.

Observe that, if f is independent of t, then

Pα f (t, x) = Pα f (x) = N(α)
∫
Rd

1
|y|d−α

f (x + y) dy = NIα f (x),

where Iα is the Riesz potential. Therefore, one can get the Adams estimate found in the proof of
Proposition 3.1 of [1] from (2.3) below. In our investigation the most important values of α are 1
and 2. Set

Mβ f (t, x) = sup
ρ>0

ρβ –
∫

Cρ(t,x)
| f (z)| dz, 0 ≤ β ≤ d + 2,

M f = M0 f .

The following lemma is obtained by integrating by parts.

Lemma 2.1. Let β > 0 be a finite number, f (t) ≥ 0 be a function on [0,∞) such that

t−β
∫ t

0
f (s) ds→ 0

as t → ∞. Then, for any S ≥ 0,∫ ∞

S
t−β f (t) dt ≤ β

∫ ∞

S
t−β−1

( ∫ t

S
f (s) ds

)
dt.
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Lemma 2.2. For any α ∈ (0, β), β ∈ (0, d + 2] there exist constants N (< ∞) such that for any f ≥ 0
and ρ ∈ (0,∞) we have

Pα(ICρ
f )(0) ≤ NραM f (0), Pα(ICc

ρ
f )(0) ≤ Nρα−βMβ f (0), (2.2)

Pα f ≤ N(Mβ f )α/β(M f )1−α/β. (2.3)

In particular (by Hölder’s inequality), for any p ∈ [1,∞], q ∈ (1,∞], and measurable Γ

‖Pα f ‖Lr(Γ) ≤ N‖Mβ f ‖α/βLp(Γ)‖ f ‖
1−α/β
Lq

, (2.4)

provided that
1
r

=
α

β
·

1
p

+
(
1 −

α

β

)1
q
.

Proof. We basically mimic the proof of Proposition 3.1 of [1]. Observe that (2.3) at the origin is easily
obtained from summing up the inequalities in (2.2) and minimizing with respect to ρ. At any other
point it is obtained by changing the origin. Furthermore clearly, we may assume that f is bounded with
compact support. Set Q1 = {(s, y) : |y| ≥

√
s}, Q2 = {(s, y) : |y| ≤

√
s}. Dealing with Pα( f IQ1) we

observe that pα(s, r) ≤ Nr−(d+2−α) if r ≥
√

s. Therefore,

Pα( f IQ1∩Cc
ρ
)(0) ≤ N

∫ ∞

ρ

1
rd+2−α

∫ r2

0

( ∫
|y|=r

f (s, y) dσr

)
dsdr,

where dσr is the element of the surface area on |y| = r. By Lemma 2.1 (α < d + 2)

Pα( f IQ1∩Cc
ρ
)(0) ≤ N

∫ ∞

ρ

1
rd+3−α

∫ r

ρ

( ∫ ρ2

0

( ∫
|y|=ρ

f (s, y) dσρ

)
ds

)
dρdr

≤ N
∫ ∞

ρ

1
rd+3−α

∫ r

0

( ∫ r2

0

( ∫
|y|=ρ

f (s, y) dσρ

)
ds

)
dρdr

= N
∫ ∞

ρ

1
rd+3−α I(r) dr,

where
I(r) =

∫
Cr

f (s, y) dyds.

We use that I(r) ≤ Nrd+2−βMβ f (0) and that α < β. Then we see that

Pα( f IQ1∩Cc
ρ
)(0) ≤ Nρα−βMβ f (0). (2.5)

Next, by using Lemma 2.1 we obtain that

Pα( f IQ2∩Cc
ρ
)(0) ≤

∫ ∞

ρ2

1
s(d+2−α)/2

∫
|y|≤
√

s
f (s, y) dyds

≤ N
∫ ∞

ρ2

1
s(d+4−α)/2 I(

√
s) ds = N

∫ ∞

ρ

1
rd+3−α I(r) dr.
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This along with (2.5) prove the second inequality in (2.2).
As long as the first inequality is concerned, observe that similarly to Lemma 2.1 using that α > 0

we have

Pα( f IQ1∩Cρ
)(0) ≤ N

∫ ρ

0

1
rd+2−α

∫ r2

0

( ∫
|y|=r

f (s, y) dσr

)
dsdr

= N
∫ ρ

0

1
rd+2−α

( ∂
∂r

∫ r

0

( ∫ τ2

0

∫
|y|=τ

f (s, y) dστ ds
)

dτ
)
dr

= J1 + N
∫ ρ

0

1
rd+3−α

∫ r

0

( ∫ τ2

0

( ∫
|y|=τ

f (s, y) dστ

)
ds

)
dτdr

≤ J1 + N
∫ ρ

0

1
rd+3−α I(r) dr,

where

J1 = N
1

ρd+2−α

∫ ρ

0

( ∫ τ2

0

∫
|y|=τ

f (s, y) dστ ds
)

dτ ≤ N
1

ρd+2−α I(ρ)

Here I(r) ≤ Nrd+2M f (0) and α > 0, so that

Pα( f IQ1∩Cρ
)(0) ≤ NραM f (0). (2.6)

Furthermore,

Pα( f IQ2∩Cρ
)(0) ≤ N

∫ ρ2

0

1
s(d+2−α)/2

∫
|y|≤
√

s
f (s, y) dyds

≤ J2 + N
∫ ρ2

0

1
s(d+4−α)/2 I(

√
s) ds = J2 + N

∫ ρ

0

1
rd+3−α I(r) dr,

where

J2 = N
1

ρd+2−α

∫ ρ2

0

∫
|y|≤
√
τ

f (τ, y) dydτ ≤ N
1

ρd+2−α I(ρ).

This and (2.6) prove the first inequality in (2.2). The lemma is proved.

Remark 2.3. If d = α = 1 and f is independent of t, the inequalities (2.2) and (2.3) are useless, because
the first one in (2.2) follows by definition and the second one and (2.3) are trivial because Mβ f = ∞

(β > α = 1) unless f = 0.

If α is strictly less than the index of Lq, we have the following.

Corollary 2.4. If α ∈ (0, (d + 2)/q), q ∈ (1,∞), then there exists a constant N such that for any f ≥ 0
we have

‖Pα f ‖Lr ≤ N‖ f ‖Lq

as long as
d + 2

q
− α =

d + 2
r

.

In particular, (a classical embedding result) if 1 < q < d + 2 and u ∈ C∞0 = C∞0 (Rd+1), then

‖Du‖Lr ≤ N‖∂tu + ∆u‖Lq (∂t = ∂/∂t)
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as long as
d + 2

q
− 1 =

d + 2
r

.

Indeed, the first assertion follows from Hölder’s inequality and (2.4) with p = ∞ and β = (d + 2)/q
(> α). The second assertion follows from the first one with α = 1 (< β) and the fact that for f = ∂tu+∆u
we have

Du(t, x) = c
∫
Rd+1

+

y
s(d+2)/2 e−|y|

2/(4s) f (t + s, x + y) dyds,

where c is a constant and (|y|/s1/2)e−|y|
2/(4s) ≤ Ne−|y|

2/(8s).

Remark 2.5. After Corollary 2.4 a natural question arises as to what power of summability b = (bi)
will be sufficient for the term biDiu to be considered as a perturbation term in ∂tu + ∆u + biDiu in the
framework of the Lq-theory. Observe that, in the notation of Corollary 2.4

‖biDiu‖Lq ≤ ‖b‖Ld+2‖Du‖Lr ≤ N‖b‖Ld+2‖∂tu + ∆u‖Lq . (2.7)

It follows that b should be of class Ld+2 and q < d + 2. Of course, if b contains just bounded part, this
part in biDiu is taken care of by interpolation inequalities.

In the next section we will also need the following result.

Corollary 2.6. For any α ∈ (0, β), β ∈ (0, d + 2] there exists a constant N such that for any g ≥ 0,
ρ ∈ (0,∞), and (t, x) ∈ Cρ we have

Pα(ICc
2ρ

g)(t, x) ≤ Nρα−βMβg(t, x).

Indeed, since
{t + s ≥ 4ρ2 or |x + y| ≥ 2ρ} ⊂ {s ≥ ρ2 or |y| ≥ ρ}

for f = g(t + ·, x + ·) we have

Pα(ICc
2ρ

g)(t, x) ≤
∫
Rd+1

ICc
ρ
(s, y)pα(s, y)g(t + s, x + y) dyds = Pα(ICc

ρ
f )(0)

≤ Nρα−βMβ f (0) = Nρα−βMβg(t, x).

3. A parabolic analog of the Adams Theorem 3.1 of [1]

Theorem 3.1. For any α ∈ (0, β), β ∈ (0, (d + 2)/q], q ∈ (1,∞), and r such that

r(β − α) = qβ,

there is a constant N such that for any f ≥ 0 we have

‖Pα f ‖Er,β−α ≤ N‖ f ‖Eq,β . (3.1)
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Proof. It suffices to prove that for any ρ > 0

ρβ−α
(

–
∫

Cρ

|Pα f |r dz
)1/r
≤ N‖ f ‖Eq,β ,

that is
ρβ−α−(d+2)/r

( ∫
Cρ

|Pα f |r dz
)1/r
≤ N‖ f ‖Eq,β , (3.2)

Observe that by Hölder’s inequality Mβ f ≤ N‖ f ‖Eq,β and by definition

( ∫
Rd+1

IC2ρ f q dz
)1/q
≤ Nρ(d+2)/q−β‖ f ‖Eq,β .

It follows from Lemma 2.2 with p = ∞ that( ∫
Cρ

|Pα(IC2ρ f )|rdz
)1/r
≤ Nρ((d+2)/q−β)(1−α/β)‖ f ‖Eq,β

= Nρ(d+2)/r−β+α‖ f ‖Eq,β .

Furthermore, by Corollary 2.6( ∫
Cρ

|Pα(ICc
2ρ

f )|rdz
)1/r
≤ Nρ(d+2)/r sup

Cρ

Pα(ICc
2ρ

f )

≤ Nρ(d+2)/r+α−βEq,β f .

By combining these estimates we come to (3.2) and the theorem is proved.

Remark 3.2. We did not explicitly used that β ≤ (d + 2)/q and formally the proof is valid for any
β ∈ (0,∞) if in Definition 2.1 we allow any β > 0. However, if β > (d + 2)/q and f , 0, the right-hand
side of (3.1) is infinite. Therefore, to make Theorem 3.1 nontrivial one requires β ≤ (d + 2)/q.

Remark 3.3. There is a simple relation of Pα1 Pα2 to Pα1+α2 , which, in light of Theorem 3.1, implies that,
if β > α2 ≥ α1 > 0, q1, q2 ∈ (1,∞), q1(β−α1) = q2(β−α2) ≤ d +2, then ‖Pα2 f ‖Eq2 ,β−α2

≤ N‖Pα1 f ‖Eq1 ,β−α1
.

We leave details of the proof to the reader and we do not use this fact in what follows.

The following, obtained similarly to Corollary 2.4, was communicated to the author by Hongjie
Dong.

Corollary 3.4. If 1 < q < d + 2, β ∈ (1, (d + 2)/q], and u ∈ C∞0 , then

‖Du‖Er,β−1 ≤ N‖∂tu + ∆u‖Eq,β

as long as

r(β − 1) = qβ, that is
1
r

=
1
q
−

1
βq
. (3.3)

Remark 3.5. For β = (d + 2)/q Corollary 3.4 yields the second part of Corollary 2.4 once more. This
is because Eq,(d+2)/q = Lq.
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Remark 3.6. In the framework of the Morrey spaces Corollary 3.4 opens up the possibility to treat
the terms like biDiu as perturbation terms in operators like ∂tu + ∆u + biDiu even with rather low
summability properties of b = (bi). To show this, observe that for f , g ≥ 0 in the notation of
Corollary 3.4

ρβ –‖ f gICρ
‖Lq ≤ ρ –‖ f ICρ

‖Lβq · ρ
β−1 –‖gICρ

‖Lr .

It follows that
‖biDiu‖Eq,β ≤ ‖b‖Eβq,1‖Du‖Er,β−1 ≤ N‖b‖Eβq,1‖∂tu + ∆u‖Eq,β . (3.4)

For β = (d + 2)/q estimate (3.4) coincide with (2.7), but for β < (d + 2)/q in the framework of Morrey
spaces we allow b to be summable to the power βq < d + 2 in contrast with Remark 2.5. However, we
need ‖b‖Eβq,1 < ∞ and, if we ask ourselves what r should be in order for b ∈ Lr to have ‖b‖Eβq,1 < ∞, the
answer is r = d + 2 at least. Still we gain the possibility to have higher singularities of b than functions
from Ld+2. Elliptic versions of (3.4) for usual or generalized Morrey spaces are found in many papers,
see, for instance, [5] and the references therein.

Next we move to deriving “local” versions of the above results. A statement somewhat weaker than
Corollary 3.4 can be obtained from the following general result by taking (S ,T ) to be large enough and
then sending S → −∞,T → ∞.

Theorem 3.7. Let 1 < q < d + 2, β ∈ (1, (d + 2)/q] and let (3.3) hold. Then there is a constant N such
that for any u ∈ C∞0 , −∞ < S < T < ∞, and QS ,T = (S ,T ) × Rd

‖Du‖Er,β−1(QS ,T ) ≤ N‖|∂tu| + |∆u| ‖Eq,β(QS ,T ) + N(T − S )−1‖u‖Eq,β(QS ,T ). (3.5)

Proof. Shifting and changing the scales in Rd+1 allow us to assume that S = −1 = −T . In that case
consider the mapping Φ : [−3/2, 3/2] → [−1, 1], Φ(t) = t

(
2/(|t| ∨ 1) − 1

)
that preserves [−1, 1], is

Lipschitz continuous and has Lipschitz continuous inverse if restricted to [−3/2, 3/2] \ (−1, 1). Then,
obviously, for w(t, x) = v(Φ(t), x) we have

‖wIQ−3/2,3/2‖Eq,β ≤ N‖v‖Eq,β(Q−1,1), (3.6)

where N = N(q).
Now take (t, x) ∈ Q−1,1, ρ ∈ (0,∞), and take ζ ∈ C∞0 (R) such that ζ = 1 on (−1, 1), ζ = 0 outside

(−3/2, 3/2), and |ζ | + |ζ′| ≤ 4.
Although the function ζw, where w(s, y) = u(Φ(s), y), is not as smooth as required in Corollary 3.4

the argument leading to it applies to ζ(s)w(s, y) (we have a general Remark 5.14 to that effect) and
since r(β − 1) = qβ we have

ρβ−1 –‖DuIQ−1,1‖Lr(Cρ(t,x)) ≤ Nρβ−1 –‖D(ζw)‖Lr(Cρ(t,x))

≤ N‖IQ−3/2,3/2(|∂t(ζw)| + |ζ∆w|)‖Eq,β .

It only remains to note that the last expression is less than the right-hand side of (3.5) in light of (3.6).
The theorem is proved.

To prove an interpolation theorem in CR we need two lemmas.
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Lemma 3.8. Let 0 < R1 < 1 < R2 < ∞, 1 ≤ q < ∞, β ∈ (0, (d + 2)/q]. Define Γ1 = B̄1 \ BR1 ,
Γ2 = B̄R2 \ B1 and let Φ : Γ2 → Γ1 be a smooth one-to-one mapping with |DΦ|, |DΦ−1| ≤ K, where K is
a constant. Let v(t, x) ≥ 0 be zero outside G2 := (0, 1) × Γ2 and set u(t, x) = v(t,Φ−1(x))IΓ1(x). Then

‖v‖Eq,β((0,1)×BR2 ) ≤ N(d, q, β,K)‖u‖Eq,β(C1). (3.7)

Proof. Take (t, x) ∈ (0, 1) × BR2 and ρ > 0. Then

ρβ
( 1
ρd+2

∫
Cρ(t,x)

I(0,1)×BR2
vq dyds

)1/q

≤ Nρβ
( 1
ρd+2

∫
Ψ(Cρ(t,x)∩G2)

IC1u
q dyds

)1/q
=: I,

where Ψ(s, y) = (s,Φ(y)). Observe that, if Cρ(t, x) ∩ G2 , ∅, then |y1 − y2| ≤ 2ρ for any y1, y2 ∈

Cρ(t, x) ∩ G2. It follows that Φ(Cρ(t, x) ∩ G2) ⊂ B, where B is a ball of radius 2Kρ with center in B1,
and

I ≤ N(2Kρ)β
( 1
(2Kρ)d+2

∫
(t,t+(2Kρ)2)×B

IC1u
q dyds

)1/q
≤ N‖u‖Eq,β(C1).

This proves the lemma.
The following lemma about the interpolation inequality (3.9) is quite natural and obviously useful,

but its elliptic counterpart was proved only rather late in [10]. One of its goals is to be able to treat
biDiu, when b is bounded, as a perturbation term.

Lemma 3.9. Let p ∈ (1,∞), 0 < β ≤ (d+2)/p. Then there is a constant N such that, for any R ∈ (0,∞),
ρ ≤ 2R, C ∈ Cρ with its geometric center in CR, ε ∈ (0, 1], and u ∈ C∞0 , we have

ρβ –‖ICR Du‖Lp(C) ≤ NεR sup
ρ≤s≤2R

sβ –‖ICR(|∂tu| + |D2u|)‖Lp(C(s))

+ Nε−1R−1 sup
ρ≤s≤2R

sβ –‖ICR(u − c)‖Lp(C(s)), (3.8)

where c is any constant and C(s) ∈ Cs with the geometric center the same as C. In particular,

‖Du‖Ep,β(CR) ≤ NεR‖|∂tu| + |D2u| ‖Ep,β(CR) + Nε−1R−1‖u‖Ep,β(CR). (3.9)

Proof. Changing scales shows that we may assume that R = 1. Obviously we may also assume that
c = 0. Then denote v = Du, w = |∂tu| + |D2u|, Gs = C(s) ∩C1,

U = sup
ρ≤s≤2

sβ –‖u‖Lp(Gs), W = sup
ρ≤s≤2

sβ –‖(|∂tu| + |D2u|)‖Lp(Gs),

By Poincaré’s inequality (see, for instance, Lemma 5.9), for ρ ≤ s ≤ 2,

–‖v − vGs‖Lp(Gs) ≤ N(d, p)s –‖w‖Lp(Gs) ≤ Ns1−βW.

Also by interpolation inequalities, there exists a constant N = N(d, p) such that, for ε ∈ (0, 1] and
ε ≤ s ≤ 2 ,

–‖v − vGs‖Lp(Gs) ≤ 2 –‖v‖Lp(Gs) ≤ N –‖w‖1/2Lp(Gs)
–‖u‖1/2Lp(Gs)
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+ Ns−1 –‖u‖Lp(Gs) ≤ N –‖w‖1/2Lp(Gs)
–‖u‖1/2Lp(Gs)

+ Nε−1 –‖u‖Lp(Gs), (3.10)

which for 2 ≥ s ≥ ε ∨ ρ yields

sβ –‖v − vGs‖Lp(Gs) ≤ NW1/2U1/2 + Nε−1U.

Hence, for any ε ∈ (0, 1] and ρ ≤ s ≤ 2

sβ –‖v − vGs‖Lp(Gs) ≤ N1εW + N2ε
−1U,

where N1 = N1(d, p), N2 = N2(d, p).
Following Campanato, one can transform this result to estimate vGs going along ρ, 2ρ,... and, since

β ∈ (0, (d + 2)/p], by Campanato’s results (cf. for instance, Proposition 5.4 in [8]) one gets that

ρβ –‖v‖Lp(Gρ) ≤ N3(N1εW + N2ε
−1U) + N3 –‖v‖Lp(G2),

where N3 = N3(d, p, β). We estimate the last term as in (3.10) and come to what implies (3.8). The
lemma is proved.

The following is a local version of Corollary 3.4. It allows us to draw the same conclusions as in
Remark 3.6 in bounded domains.

Theorem 3.10. Let 1 < q < d + 2, β ∈ (1, (d + 2)/q] and let r(β − 1) = qβ. Then there is a constant N
such that for any R ∈ (0,∞], u ∈ C∞0 ,

‖Du‖Er,β−1(CR) ≤ N‖|∂tu| + |D2u| ‖Eq,β(CR) + NR−2‖u‖Eq,β(CR). (3.11)

Proof. The case of R = ∞ is obtained by passing to the limit. In case R < ∞, as usual, we may assume
that R = 1. In that case, mimicking the Hestenes formula, for 1 ≤ |x| ≤ 6/5 define

v(t, x) = 6u(t, x(2/|x| − 1)) − 8u(t, x(3/|x| − 2)) + 3u(t, x(4/|x| − 3))

=: 6v1 − 8v2 + 3v3

and for |x| ≤ 1 set v(t, x) = u(t, x). One can easily check that v ∈ C1,2([0, 1] × B6/5). In light of
Lemmas 3.8 and 3.9, for instance,

‖D2v‖Eq,β((0,1)×B6/5) ≤ ‖D2u‖Eq,β(C1) + N‖IB6/5\B1 D2v1‖Eq,β((0,1)×B6/5) + ...

+N‖IB6/5\B1 D2v3‖Eq,β((0,1)×B6/5) ≤ N‖D2u‖Eq,β(C1) + N‖Du‖Eq,β(C1)

≤ N‖D2u‖Eq,β(C1) + N‖u‖Eq,β(C1). (3.12)

Now take (t, x) ∈ C1, ρ ∈ (0,∞), and take ζ ∈ C∞0 (Rd) such that ζ = 1 on B1, ζ = 0 outside B6/5, and
|ζ | + |Dζ | + |D2ζ | ≤ N = N(d).

By using Theorem 3.7 we get

ρβ−1 –‖DuIC1‖Lr(Cρ(t,x)) ≤ Nρβ−1 –‖IQ0,1 D(ζv)‖Lr(Cρ(t,x))

≤ N‖D(ζv)‖Er,β−1(Q0,1) ≤ N‖ |∂t(ζv)| + |∆(ζv)| ‖Eq,β(Q0,1) + N‖ζv‖Eq,β(Q0,1)

≤ N‖ |∂t(ζv)| + |∆(ζv)| ‖Eq,β((0,1)×B6/5) + N‖v‖Eq,β((0,1)×B6/5)

It only remains to note that the last expression is less than the right-hand side of (3.11) as is well
seen from (3.12). The theorem is proved.
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Remark 3.11. By considering functions depending only on x we naturally obtain “elliptic” analogs of
our results. For instance, for G ⊂ Rd by defining

‖g‖Ep,β(G) = sup
ρ<∞,x∈G

ρβ –‖gIG‖Lp(Bρ(x)),

we get from (3.11) for u ∈ C∞0 (Rd) that

‖Du‖Er,β−1(BR) ≤ N‖|D2u ‖Eq,β(BR) + NR−2‖u‖Eq,β(BR), (3.13)

whenever 1 < q < d, β ∈ (1, d/q] and r(β − 1) = qβ. Actually, formally, one gets (3.13) even for
β ≤ (d + 2)/q, but for β > d/q, both sides of (3.13) are infinite unless u = 0.

After that arguing as in (3.4) we see that for 1 < q < d, β ∈ (1, d/q]

‖biDiu‖Eq,β(B1) ≤ N‖b‖Eβq,1(B1)‖∆u‖Eq,β(B1) + N‖u‖Eq,β(B1). (3.14)

From the point of view of the theory of elliptic equations the most desirable version of (3.14) would
be

‖biDiu‖Eq,β(B1) ≤ ε‖∆u‖Eq,β(B1) + N(ε)‖u‖Eq,β(B1) (3.15)

for any ε > 0 with N(ε) independent of u. This fact is, actually, claimed in Theorem 5.4 of [5]. We
will show that (3.15) cannot hold if ε is small enough.

Let h(t) be a smooth nondecreasing function on R such that h(t) = 0 for t ≤ 0, h(t) = t for t ≥ 1 and
for δ > 0 set uδ(x) = h(ln(δ/|x|)). Let 1 < q < d/2, β = 2, b(x) = 1/|x|.

Then
‖u‖Eq,β(B1) ≤ N(d)‖uδ‖Ld(B1) → 0

as δ ↓ 0. At the same time

Diuδ = −
xi

|x|2
h′, Di juδ =

1
|x|2

(
2

xix j

|x|2
− δi j

)
h′ +

1
|x|2

xix j

|x|2
h′′.

It is seen that |D2uδ| ≤ N(d)/|x|2 and, since q < d/2, the Eq,β(B1)-norm of D2uδ is bounded as δ ↓ 0.
Also, for |x| ≤ δ/e, we have b|Duδ| = 1/|x|2, so that for r ≤ δ/e(

–
∫
|x|≤r

bq|Duδ|q dx
)1/q

= N(d, p)r−2.

It follows that the Eq,β(B1)-norm of b|Duδ| is bounded away from zero as δ ↓ 0 and this shows that
(3.15) cannot hold for all δ > 0 if ε is small enough.

4. A parabolic version of Chiarenza–Frasca result [4]

In Remark 3.6 we have shown how to estimate a Morrey norm of |b| |Du| in terms of a Morrey
norm of b. Here, following [4], we show how to estimate an Lp-norm of the same quantity through the
Lp-norms of ∂tu and D2u.
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Theorem 4.1. Let d + 2 ≥ q > p > 1, b ∈ Eq,1. Then for any f ≥ 0 we have

I :=
∫
Rd+1
|b|p(P1 f )p dz ≤ N‖b‖p

Eq,1
‖ f ‖Lp , (4.1)

where N depends only on d, p, q. In particular (see the proof of Corollary 2.4), for any u ∈ C∞0∫
Rd+1
|b|p|Du|p dz ≤ N‖b‖p

Eq,1
K, (4.2)

where K = ‖D2u, ∂tu‖
p
Lp

and N depends only on d, p, q.

Observe that we already know this result if q = d + 2 from Remarks 2.5 or 3.6.
In the proof we are going to use “parabolic” versions of some results from Real Analysis associated

with balls and cubes. These versions are obtained by easy adaptation of the corresponding arguments
by replacing balls with parabolic cylinders and cubes with parabolic boxes. To make the adaptation
more natural we introduce the “symmetric” maximal parabolic function operator by

M̂ f (t, x) = sup
C∈C,

C3(t,x)

–
∫

C
| f | dz,

where (recall that) C is the set of Cr(z), r > 0, z ∈ Rd+1. To prove the theorem we need the following.

Lemma 4.2. a) For r ∈ (0,∞) define Dr = {|t| ≤ r2, |x| ≤ r}. Then

M̂IDr (t, x) ≤ ID2r + NIDc
2r

rd+2

|t|(d+2)/2 ∨ |x|d+2 ≤ N2M̂IDr (t, x), (4.3)

where N = N(d).
b) For any nonnegative g(t, x), q ∈ [1,∞), β ∈ (0, d + 2], α > 0, α > 1 − qβ/(d + 2), and r ∈ (0,∞)∫

Rd
gq(M̂IDr

)α dz ≤ N(d, q, α, β)rd+2−qβ‖g‖qEq,β
. (4.4)

Proof. Assertion a) is proved by elementary means. To prove b), we use a) and split Dc
2r into two parts

Dc
2r∩{|x|

2 ≥ |t|} and Dc
2r∩{|x|

2 < |t|} and, taking into account obvious symmetries, we see that it suffices
to show that

I1 :=
∫ ∞

4r2

∫
B√t

gq(t, x)
tα(d+2)/2 dxdt ≤ Nr(d+2)(1−α)−qβ‖g‖qEq,β

,

I2 :=
∫
|x|≥2r

∫ |x|2

0

gq(t, x)
|x|α(d+2) dtdx ≤ Nr(d+2)(1−α)−qβ‖g‖qEq,β

.

By observing that

1
tα(d+2)/2

∫ t

4r2

( ∫
B√s

gq(s, x) dx
)
ds ≤

t(d+2)/2−qβ/2

tα(d+2)/2 ‖g‖
q
Eq,β
→ 0

as t → ∞, we have

I1 =

∫ ∞

4r2

1
tα(d+2)/2

d
dt

( ∫ t

4r2

( ∫
B√s

gq(s, x) dx
)
ds

)
dt
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= N
∫ ∞

4r2

1
tα(d+2)/2+1

( ∫ t

4r2

∫
B√s

gq(s, x) dxds
)

dt

≤ N‖g‖qEq,β

∫ ∞

4r2

t(d+2)/2−qβ/2

tα(d+2)/2+1 dt = Nr(d+2)(1−α)−qβ‖g‖qEq,β
.

Also as is easy to see

I2 = N
∫ ∞

2r

1
ρα(d+2)

∫ ρ2

0

( ∫
|x|=ρ

gp(t, x) dσρ

)
dtdρ

≤ N
∫ ∞

2r

1
ρα(d+2)

∂

∂ρ

( ∫ ρ2

4r2

( ∫
|x|≤ρ

gp(t, x) dx
)

dt
)
dρ

≤ N‖g‖qEq,β

∫ ∞

2r

ρd+2−qβ

ρα(d+2)+1 dρ = Nr(d+2)(1−α)−qβ‖g‖qEq,β
.

This proves the lemma.
Proof of Theorem 4.1. We follow some arguments in [4] and may assume that b ≥ 0. First set
r0 = (p + q)/2 and assume that there is a constant N0 such that M̂(|b|r0) ≤ N0|b|r0 , that is, |b|r0 is in
the class A1 of Muckenhoupt. Observe that by Hölder’s inequality ‖b‖Er0 ,1

≤ ‖b‖Eq,1 . It is convenient to
prove the following version of (4.1) (notice r0 in place of q)

I ≤ N‖b‖p
Er0 ,1
‖ f ‖Lp , (4.5)

Then assume that b ≥ 0, set u = P1 f , and write

I =

∫
Rd+2

(
bpup−1)P1 f dz =

∫
Rd+2

P∗1
(
bpup−1) f dz ≤ ‖ f ‖Lp

∥∥∥P∗1
(
bpup−1)∥∥∥

Lp′
, (4.6)

where p′ = p/(p − 1) and P∗1 is the conjugate operator for P1, namely, for any g ≥ 0,

(P∗1g)(s, x) =
(
P1(g(−·,−·)

)
(−s,−x). (4.7)

Next, take γ > 0, such that (1 + γ)p ≤ r0, 1 + γp′ ≤ r0, and p ≥ 1 + γ. Note that

P∗1
(
bpup−1) = P∗1

(
b1+γ(bp−1−γup−1)) ≤ (

P∗1
(
b(1+γ)p)

)1/p(
P∗1

(
bp−γp′up

)(p−1)/p
.

It follows that ∥∥∥P∗1
(
bpup−1)∥∥∥

Lp′
≤

( ∫
Rd

bp−γp′upP1

[(
P∗1

(
b(1+γ)p)

)1/(p−1)]
dz

)(p−1)/p
.

Now in light of (4.6) we see that, to prove (4.5) in our particular case, it only remains to show that

P1

[(
P∗1

(
b(1+γ)p)

)1/(p−1)]
≤ Nbγp′‖b‖p′

Er0 ,1
. (4.8)

For α = 1 and β = (1 + γ)p (> α) it follows from (2.3) and (4.7) that

P∗1
(
b(1+γ)p) ≤ N‖b‖Eβ,1

(
M̂

(
b(1+γ)p))1−1/(p+γp)

.
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where the last factor by assumption (and Hölder’s inequality) is dominated by Nb(1+γ)p−1 and ‖b‖Eβ,1 ≤
‖b‖Er0 ,1

. After that to obtain (4.8) it suffices to use again (2.3) with α = 1 and β = 1 + γp′ to see that

P1
(
b1+γp′) ≤ N‖b‖E1+γp′ ,1

(
M

(
b1+γp′))1−1/(1+γp′)

≤ N‖b‖Er0 ,1
bγp′ .

We now get rid of the assumption that M̂(|b|r0) ≤ N0|b|r0 as in [4].
For r1 = (r0 + q)/2 we have |b|r0 ≤ (M̂(|b|r1))r0/r1 := b̃r0 and since r0/r1 < 1, b̃r0 is an A1-weight with

N0 = N0(r0/r1) (see, for instance, [7] p. 158). Therefore, (4.5) holds with b̃ in place of b and it only
remains to show that

‖b̃‖Er0 ,1
≤ N‖b‖Eq,1 ,

that is, for any t, x, ρ, ∫
Cρ(t,x)

b̃r0 dz ≤ Nρd+2−r0‖b‖r0
Eq,1
. (4.9)

Of course, we may assume that t = 0, x = 0. Then by Hölder’s inequality we see that the left-hand side
of (4.9) is less than

Nρ(d+2)(q−r0)/q
( ∫
Rd+1

(M̂(|b|r1))q/r1 ICρ
dz

)r0/q
,

where the integral by a Fefferman-Stein Lemma 1, p. 111 of [6] and the fact that q/r1 > 1 is dominated
by

N
∫
Rd+1
|b|qM̂ICρ

dz ≤ Nρd+2−q‖b‖qEq,1
,

where we used Lemma 4.2 b) for α = β = 1. Hence,∫
Cr

b̃r0 dz ≤ Nρ(d+2)(q−r0)/q+(d+2−q)r0/q‖b‖r0
Eq,1
,

which is (4.9).
An alternative way to get the result is to follow the proof of Theorem 3 of [3]. We have∫

Rd+1
(M̂(|b|r1))q/r1 ICρ

dz ≤
∫
Rd+1

(M̂(|b|r0))q/r0(M̂ICρ
)α dz =: J,

where α ∈ (0, 1). An easy exercise leads to the well-known result that (M̂ICρ
)α is an A1-weight, and,

hence, an Aq/r0-weight. By the Muckenhoupt theorem

J ≤ N
∫
Rd+1
|b|q(M̂ICρ

)α dz

and it only remains to use Lemma 4.2 b) again with β = 1 and any appropriate α. The theorem is
proved.

Remark 4.3. In the above proof we tacitly assumed that I < ∞. One can easily avoid it by taking f
with compact support, replacing |b| with |b| ∧ bn, where n−1bn = 1∧ (

√
|t|+ |x|)−1, observe that br0

n ∈ A1,
and while checking that the new I is finite use Hölder’s inequality and Corollary 2.4.
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5. Mixed-norm estimates

For q1, q2 ∈ [1,∞] and measurable f and Γ ⊂ Rd+1 introduce

‖ f ‖Lq1 ,q2
=

( ∫
R

( ∫
Rd
| f (t, x)|q1 dx

)q2/q1
dt

)1/q2
,

–‖ f ‖Lq1 ,q2 (Γ) = ‖IΓ‖
−1
Lq1 ,q2
‖ f IΓ‖Lq1 ,q2

.

Here the index of Lq1,q2 which is the exponent of ρ in the expression

‖ICρ
‖Lq1 ,q2

is
d
q1

+
2
q2
.

If in addition 0 < β ≤ d/q1 + 2/q2, set

‖ f ‖Eq1 ,q2 ,β(Q) = sup
ρ<∞,(t,x)∈Q

ρβ –‖IQ f ‖Lq1 ,q2 (Cρ(t,x)).

We also introduce the spaces Lq1,q2(Q) and Eq1,q2,β(Q) as the spaces of functions whose respective norms
are finite. We abbreviate Lq1,q2 = Lq1,q2(R

d+1), Eq1,q2,β = Eq1,q2,β(R
d+1).

The following is certainly well known.

Lemma 5.1. Let f be a nonnegative function on Rd+1, p, q ∈ (1,∞). Then for any wx(x),wt(t) which
are Ap Muckenhoupt weights on Rd and R, respectively, we have∫

Rd+1
|M̂ f |pwxwt dxdt ≤ N

∫
Rd+1
| f |pwxwt dxdt, (5.1)

where N depends only on d, p, and the Ap-constants of wx,wt. Furthermore,∫ ∞

−∞

( ∫
Rd
|M̂ f |p dx

)q/p
dt ≤ N

∫ ∞

−∞

( ∫
Rd
| f |p dx

)q/p
dt, (5.2)

where N depends only on d, p, q.

Proof. Estimate (5.1) follows by application of the Muckenhoupt theorem to wxwt, which is an Ap-
weight on Rd+1. Then observe that in the particular case that wx ≡ 1, (5.1) means that∫ ∞

−∞

[( ∫
Rd
|M̂ f |p dx

)1/p]p
wt dt ≤ N

∫ ∞

−∞

[( ∫
Rd
| f |p dx

)1/p]p
wt dt

for any Ap-weight wt, which implies (5.2) by the Rubio de Francia extrapolation theorem. The lemma
is proved.

This lemma, (2.3), and Hölder’s inequality immediately yield the following.

Lemma 5.2. For any α ∈ (0, β), β ∈ (0, d + 2], p ∈ [1,∞], q1, q2 ∈ (1,∞], there exists a constant N
such that for any f ≥ 0 and measurable Γ we have

‖Pα f ‖Lr1 ,r2 (Γ) ≤ N‖Mβ f ‖α/βLp(Γ)‖ f ‖
1−α/β
Lq1 ,q2

, (5.3)

provided that
1
ri

=
α

β
·

1
p

+
(
1 −

α

β

) 1
qi
, i = 1, 2.
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Similarly to Corollary 2.4 we have

Corollary 5.3. Let q1, q2 ∈ (1,∞],

β :=
d
q1

+
2
q2

> 0,

α ∈ (0, β). Then for any f ≥ 0 we have

‖Pα f ‖Lr1 ,r2
≤ N‖ f ‖Lq1 ,q2

as long as qiβ = ri(β − α), i = 1, 2.
In particular, (almost follows from Theorem 10.2 of [2]) if β > 1, and u ∈ C∞0 , then

‖Du‖Lr1 ,r2
≤ N‖∂tu + ∆u‖Lq1 ,q2

(5.4)

as long as qiβ = ri(β − 1), i = 1, 2.

Corollary 5.4. Under the assumptions of Corollary 5.3, if β > 1, there is a constant N such that, for
any b = (bi) ∈ Lβq1,βq2 and u ∈ C∞0 ,

‖biDiu‖Lq1 ,q2
≤ N‖b‖Lβq1 ,βq2

‖∂tu + ∆u‖Lq1 ,q2
. (5.5)

Indeed, by Hölder’s inequality

‖biDiu‖Lq1 ,q2
≤ ‖b‖Lβq1 ,βq2

‖Du‖Lr1 ,r2
.

Remark 5.5. It is instructive to compare this result with Remark 2.5. Now we can treat b ∈ Ls1,s2 with
si ∈ (1,∞] satisfying d/s1 + 2/s2 = 1.

Since Eq1,q2,β = Lq1,q2 if β = d/q1 + 2/q2, the following is a generalization of Corollary 5.3.

Theorem 5.6. Let q1, q2 ∈ (1,∞],
d
q1

+
2
q2
≥ β > 0,

α ∈ (0, β). Then there is a constant N such that for any f ≥ 0 we have

‖Pα f ‖Er1 ,r2 ,β−α
≤ N‖ f ‖Eq1 ,q2 ,β

, (5.6)

where ri(β − α) = qiβ, i = 1, 2.

Proof. It suffices to prove that for any ρ > 0

ρβ−α
(

–
∫ ρ2

0

(
–
∫

Bρ
|Pα f |r1 dy

)r2/r1
ds

)1/r2
≤ N‖ f ‖Eq1 ,q2 ,β

,

that is

ρβ−α−(d/r1+2/r2)
( ∫ ρ2

0

( ∫
Bρ
|Pα f |r1 dy

)r2/r1
ds

)1/r2
≤ N‖ f ‖Eq1 ,q2 ,β

. (5.7)
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Observe that by Hölder’s inequality Mβ f ≤ N‖ f ‖Eq1 ,q2 ,β
and by definition

‖IC2ρ f ‖Lq1 ,q2
= Nρd/q1+2/q2

(
–
∫ 4ρ2

0

(
–
∫

B2ρ

| f |q1 dy
)q2/q1

ds
)1/q2

≤ Nρd/q1+2/q2−β‖ f ‖Eq1 ,q2 ,β
= Nρ(d/r1+2/r2)β/(β−α)−β‖ f ‖Eq1 ,q2 ,β

.

It follows from Lemma 5.2 with p = ∞ that (5.7) holds with IC2ρ f in place of f on the left.
Furthermore, by Corollary 2.6 we have |Pα(ICc

2ρ
f )| ≤ Nρα−βMβ f in Cρ. Therefore,

ρβ−α
(

–
∫ ρ2

0

(
–
∫

Bρ
|Pα(ICc

2ρ
f )|r1 dy

)r2/r1
ds

)1/r2
≤ N sup Mβ f ≤ N‖ f ‖Eq1 ,q2 ,β

.

By combining these results we come to (3.2) and the theorem is proved.

Corollary 5.7. Under the assumptions of Theorem 5.6, if β > 1, for any u ∈ C∞0 , we have

‖Du‖Er1 ,r2 ,β−1 ≤ N‖∂tu + ∆u‖Eq1 ,q2 ,β
,

where ri(β − 1) = qiβ, i = 1, 2. This coincides with (5.4) if β is equal to the index of Lq1,q2 .

Remark 5.8. Corollary 5.7 opens up the possibility to treat the terms like biDiu as perturbation terms in
operators like ∂tu + ∆u + biDiu with even lower summability properties of b = (bi) than in Remark 5.5.
To show this observe that for q1, q2, β as in Theorem 5.6 with β > 1 and si = βqi ∈ (1,∞], i = 1, 2, we
have

ρβ –‖ICρ
biDiu‖Lq1 ,q2

≤ ρ –‖bICρ
‖Ls1 ,s2

· ρβ−1 –‖ICρ
Du‖Lr1 ,r2

implying that

‖biDiu‖Eq1 ,q2 ,β
≤ ‖b‖Es1 ,s2 ,1

‖Du‖Er1 ,r2 ,β−1 ≤ N‖b‖Es1 ,s2 ,1
‖∂tu + ∆u‖Eq1 ,q2 ,β

, (5.8)

where d/s1 + 2/s2 ≥ 1.
However, note that we also need

ρ –‖bICρ(t,x)‖Ls1 ,s2

to be bounded as a function of ρ, t, x. If we ask ourselves what τ > 0 should be to guarantee this
boundedness if b ∈ Lτs1,τs2 , if d/s1 + 2/s2 > 1, the slightly disappointing answer is that τ = d/s1 + 2/s2,
so that d/(τs1) + 2/(τs2) = 1. Still functions in Es1,s2,1 may have higher singularities than those in
Lτs1,τs2 .

Another advantage of (5.8) in comparison with (5.5) is seen when b depends only on t or |b(t, x)| ≤
b̂(t). In that case (5.8) becomes

‖biDiu‖Eq1 ,q2 ,β
≤ N‖b̂‖Eβq2 ,1/2(R)‖∂tu + ∆u‖Eq1 ,q2 ,β

,

and if βq2 = 2, then
‖b̂‖Eβq2 ,1/2(R) = ‖b̂‖L2(R).

Thus for any q1 ∈ (1,∞] and q2 ∈ (1, 2)

‖biDiu‖Eq1 ,q2 ,2/q2
≤ N‖b̂‖L2(R)‖∂tu + ∆u‖Eq1 ,q2 ,2/q2

.
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In case q1 ∈ (1, d), q2 ∈ (1,∞], 1 < β ≤ d/q1, and ‖b(·, t)‖Eβq1 ,1(Rd) ≤ b̂ < ∞ for any t, we also have

‖biDiu‖Eq1 ,q2 ,β
≤ Nb̂‖∂tu + ∆u‖Eq1 ,q2 ,β

.

An application of the last inequality in case u, b are independent of t, β = d/q1, q1 ∈ (1, d), and q2 = ∞,
yields the well-known estimate

‖biDiu‖Lq1 (Rd) ≤ N‖b‖Ld(Rd)‖∆u‖Lq1 (Rd).

To extend the embedding and interpolation results to Morrey spaces with mixed norms we need the
following result very useful also in other circumstances.

Lemma 5.9 (Poincaré’s inequality). Let 1 ≤ r1, r2 < ∞, u ∈ C∞0 , ρ ∈ (0,∞). Then

–‖Du − (Du)Cρ
‖

r2
Lr1 ,r2 (Cρ) ≤ N(d, r1, r2)ρr2 –‖ |∂tu| + |D2u|‖r2

Lr1 ,r2 (Cρ). (5.9)

Proof. We follow the usual way (see, for instance, Lemma 4.2.2 of [9]). First, due to self-similar
transformations, we may take ρ = 1. In that case, for a ζ ∈ C∞0 (B1) with unit integral, introduce

v(t) =

∫
B1

ζ(y)Du(t, y) dy.

Then by the usual Poincaré inequality∫
B1

|Du(t, x) − v(t)|r1 dx =

∫
B1

∣∣∣ ∫
B1

[Du(t, x) − Du(t, y)]ζ(y) dy
∣∣∣r1 dx

≤ N
∫

B1

∫
B1

|Du(t, x) − Du(t, y)|r1 dxdy ≤ N
∫

B1

|D2u(t, x)|r1 dx. (5.10)

Next, observe that for any constant vector v the left-hand side of (5.9) is less than a constant times
(recall that ρ = 1) ∫ 1

0

( ∫
B1

|Du(t, x) − v|r1 dx
)r2/r1

dt

≤ N
∫ 1

0

( ∫
B1

|Du(t, x) − v(t)|r1 dx
)r2/r1

dt + N
∫ 1

0
|v(t) − v|r2 dt.

By (5.10) the first term on the right is less than the right-hand side of (5.9). To estimate the second
term, take

v =

∫ 1

0
v(t) dt.

Then by Poincaré’s inequality∫ 1

0
|v(t) − v|r2 dt ≤ N

∫ 1

0

∣∣∣ ∫
B1

ζ∂tDu dx
∣∣∣r2 dt = N

∫ 1

0

∣∣∣ ∫
B1

(Dζ)∂tu dx
∣∣∣r2 dt

and to finish the proof it only remains to use Hölder’s inequality. The lemma is proved.
The usual Poincaré inequality was used in the proof of Lemma 3.9. Also observe that mixed-norms

estimates like (3.10) are available in [2] (see Theorem 9.5 there). Therefore, by using Lemma 5.9 and
following very closely the proofs of Lemmas 3.8, 3.9, and Theorems 3.10 we arrive at the following
results about interpolation and embedding for Morrey spaces with mixed norms.
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Lemma 5.10. Let q1, q2 ∈ (1,∞), 0 < β ≤ d/q1 + 2/q2. Then there is a constant N such that, for any
R ∈ (0,∞), ε ∈ (0, 1], and u ∈ C∞0 ,

‖Du‖Eq1 ,q2 ,β(CR) ≤ NεR‖|∂tu| + |D2u| ‖Eq1 ,q2 ,β(CR) + Nε−1R−1‖u‖Eq1 ,q2 ,β(CR). (5.11)

Theorem 5.11. Let q1, q2 ∈ (1,∞), 1 < β ≤ d/q1 + 2/q2 and let ri(β − 1) = qiβ, i = 1, 2. Then there is
a constant N such that for any R ∈ (0,∞], u ∈ C∞0 we have

‖Du‖Er1 ,r2 ,β−1(CR) ≤ N‖|∂tu| + |D2u| ‖Eq1 ,q2 ,β(CR) + NR−2‖u‖Eq1 ,q2 ,β(CR). (5.12)

Remark 5.12. By taking u depending only on x we recover from Lemma 5.10 and Theorem 5.11 their
“elliptic” counterpart stated as Lemmas 4.4 and 4.7 in [10], respectively.

Remark 5.13. Theorem 5.11 is the most general results of the paper containing as particular cases
our previous results on embeddings. Thus, Corollary 5.7 (in an obvious rougher form) follows from
Theorem 5.11 when R = ∞ and contains embedding results for Lebesgue spaces with mixed norms as
β = d/q1 + 2/q2 and for Lq-spaces as q = q1 = q2.

Remark 5.14. We stated our results only for u ∈ C∞0 just for convenience. Let us show why, for
instance, Theorem 5.11 is valid as long as ∂tu,Du,D2u ∈ Eq1,q2,β(CR). For that, it suffices to prove that
for any R′ < R, ρ > 0, (t, x) ∈ CR′ the quantity

I := ρβ –‖ICR′Du‖Lr1 ,r2 (Cρ(t,x))

is less than the right-hand side of (5.12) with (R′)−2 in place of R−2. For ε > 0 define u(ε) = (ICRu) ∗ ζε,
where ζε(x) = ε−d−1ζ(t/ε, x/ε), nonnegative ζ ∈ C∞0 has integral one and ζ(t, x) = 0 for t ≥ 0. Also
introduce Iε by replacing u in the definition of I with u(ε). Of course, Iε → I as ε ↓ 0 and by
Theorem 5.11

Iε ≤ N‖|∂tu(ε)| + |D2u(ε)| ‖Eq1 ,q2 ,β(CR′ ) + N(R′)−2‖u(ε)‖Eq1 ,q2 ,β(CR′ ) =: Jε.

Observe that if ε is small enough and (s, y) ∈ CR′ , then ∂tu(ε)(s, y) = (ICR∂tu) ∗ ζε(s, y). Similar
formulas are valid for D2u(ε) and by Minkowski’s inequality (the norm of a sum is less then the sum of
norms) we have

Jε ≤
∫
Rd+1

ζ(s, y)
(
N‖ICR(|∂tu| + |D2u|)(· − ε(s, y) ‖Eq1 ,q2 ,β(CR′ )

+N(R′)−2‖ICRu(· − ε(s, y)‖Eq1 ,q2 ,β(CR′ )

)
dyds

=

∫
Rd+1

ζ(s, y)
(
N‖ICR(|∂tu| + |D2u|) ‖Eq1 ,q2 ,β(CR′−ε(s,y))

+N(R′)−2‖ICRu‖Eq1 ,q2 ,β(CR′−ε(s,y))

)
dyds.

Since in the last integral CR′ − ε(s, y) ⊂ CR if ε is small enough, it follows that for small ε

Jε ≤ N‖ICR(|∂tu| + |D2u|) ‖Eq1 ,q2 ,β(CR) + N(R′)−2‖ICRu‖Eq1 ,q2 ,β(CR)

which yields the desired result.
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