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Abstract: We present a Kolmogorov-like algorithm for the computation of a normal form in
the neighborhood of an invariant torus in ‘isochronous’ Hamiltonian systems, i.e., systems with
Hamiltonians of the formH = H0+εH1 whereH0 is the Hamiltonian of N linear oscillators, andH1 is
expandable as a polynomial series in the oscillators’ canonical variables. This method can be regarded
as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment
on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series
analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov
normal form scheme in which we fix in advance the frequency of the torus.

Keywords: Lindstedt series; KAM theory; Hamiltonian perturbation theory

Foreword

The motivation for this paper stemmed from an exchange of e-mails and discussions that the authors
of refs. [2] and [3] (C. E. and Eleni Christodoulidi) had with Antonio Giorgilli, Sergej Flach and
Giancarlo Benettin several years ago. The discussion was on the meaning of Lindstedt series as a
method to construct invariant tori in perturbed oscillator systems like the celebrated problem of Fermi-
Pasta-Ulam (see Galgani [10] in the present volume). We, as many others, are fond of recognizing
the deep influence of Antonio’s thought on our way of viewing the role of perturbative methods in the
understanding of Hamiltonian dynamical systems. Since this is a paper to appear in the special issue in
his honor, our presentation below is, in turn, strongly shaped by what we hope could be a framework
of discussion interesting to our inspiring and beloved teacher A. Giorgilli.
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1. Introduction and background

In various contexts in the literature, the use of the term ‘Lindstedt series’ for isochronous
Hamiltonian systems often refers to one of two distinct methods, both applicable to the perturbative
study of the dynamics around systems with elliptic equilibria. The difference between these two
methods can be conveniently explained with the help of the following example: consider a
‘Henon-Heiles’ type Hamiltonian

H =
1
2

(p2
x + p2

y) +
1
2
ω2

0,1x2 +
1
2
ω2

0,2y2 + εP3(x, y) (1.1)

where, contrary to the actual Hénon-Heiles model ( [9]) (where ω0,1 = ω0,2 = 1), we first assume that
the frequencies (ω0,1, ω0,2) satisfy no resonance condition. P3 can be any polynomial cubic in x, y.

We are interested in constructing perturbative series solutions in the model (1.1) under the form:

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . . , y(t) = y0(t) + εy1(t) + ε2y2(t) + . . . , (1.2)

where we adopt some periodic form for the functions x0(t), y0(t) and compute iteratively all subsequent
functions xi(t), yi(t), i = 1, 2, . . .. We further want to secure that the iterative scheme used to compute
the functions xi(t), yi(t) preserves the quasi-periodic character of the solutions, i.e., produces no secular
terms (of the form t sin(ωt), etc) for some frequencies ω obtained as discussed below. An elementary
remark in this context is that the nonlinear coupling of the oscillators implies that quasi-periodic orbits
in the above model are expected to evolve, in general, with frequencies ω1, ω2 different from those of
the unperturbed oscillators, ω0,1, ω0,2. As it is well known (see, for example, [13]), recognition of this
fact implies to introduce formal series also for the frequencies:

ω1(A1, A2) = ω0,1 + εω1,1(A1, A2) + ε2ω2,1(A1, A2) + . . . ,

ω2(A1, A2) = ω0,2 + εω1,2(A2, A2) + ε2ω2,2(A1, A2) + . . . . (1.3)

The quantities ωi,1(A1, A2), ωi,2(A1, A2) are functions depending on two parameters A1, A2, called
hereafter the ‘amplitudes’ of the oscillations in x and y respectively. They enter into the calculation
through the choice made for the zero-th order terms x0(t), y0(t), since the iterative procedure starts by
setting

x0(t) = A1 cos(ω1t + φx0), y0(t) = A2 cos(ω2t + φy0) (1.4)

where the initial phases φx0, φy0 can be arbitrary.
The above are common elements of the point of departure for both versions discussed below of

the Lindstedt method. However, at this stage emerges an important bifurcation in the way we define
the iterative scheme by which the functions xi(t), yi(t), ωi,1, ωi,2 are to be computed. We discuss two
distinct possibilities, referred to below as (i) a Lindstedt scheme ‘analogous to the Birkhoff series’, or
(ii) a Lindstedt scheme ‘analogous to the Kolmogorov series’.

As typical in perturbation theory, the formal difference between the above two schemes actually
reflects a real (physical) difference in the way we interpret the meaning of the series (1.3). In summary,
the difference can be posed as follows (see section 2 for details):

(i) in the scheme called below ‘analogous to Birkhoff’, we seek to construct a quasi-periodic
solution valid for any value of the amplitudes A1, A2 within a suitably defined open domain around the
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origin. Thus, the series (1.3) in this scheme are meant to answer the question of what are the values of
the frequencies ω1, ω2 under which the motion takes place for any given and pre-selected sets of
values of the amplitudes A1, A1 in the above domain. The reader is referred to [15] where a clear
exposition of the method is given in the framework of special solutions of the three-body problem
computed via Lindstedt series.

(ii) in the scheme called below ‘analogous to Kolmogorov’, instead, we fix in advance the values
of the frequencies ω1, ω2 (see [13] for a clear exposition of the method in the context of the forced
anharmonic oscillator); this is called by some authors a ‘torus fixing method’. A relevant remark in
the context of this last method is that the series (1.3) are actually purported to answer the question
reverse to the one posed in (i) above. That is, the question now is: with given and pre-selected values
of the frequencies ω1, ω2, invert the series (1.3) and compute which are the corresponding amplitudes
A1, A2 for which we obtain quasi-periodic trajectories with the frequencies ω1, ω2. Thus, in method (i)
the series are parameterized by the amplitudes A1, A2, which can be selected at the beginning of the
construction, while in method (ii) the solutions are parameterized by the frequencies ω1, ω2, which
are the parameters to select at the beginning of the construction. Also, in the latter case the series
inverse to (1.3) turn out to have the form (in the cubic case)

ε2A2
1 =

∞∑
i=1

Ci,1(ω1 − ω0,1)i, ε2A2
2 =

∞∑
i=1

Ci,2(ω2 − ω0,2)i, (1.5)

for some constant coefficients Ci,1,Ci,2 computable from the series (1.3). Thus, with all frequencies of
the problem fixed in advance, establishing the convergence of the inverse series (1.5) suffices to answer
the question posed at (ii).

The question of the convergence of the series is, of course, crucial, and related to the kind, and
pattern of accumulation in the series terms, of small divisors appearing at successive perturbative steps.
As regards the kind of divisors, we can readily see that:

- in scheme (i) we obtain divisors of the form k1ω0,1 + k2ω0,2, with (k1, k2) ∈ Z2, |k1| + |k2| , 0. This
follows from the kind of linear (non-homogeneous) equation to solve iteratively. Deferring details to
the example treated in Section 2, we briefly recall that in scheme (i) we introduce the parametrization
(modulo two unimportant phases) ϕ1 = ω1t, ϕ2 = ω2t, and after introducing the series expressions (1.2)
and (1.3) to the equations of motion and separate terms of like orders we arrive at equations (to be
solved iteratively) of the form:(

ω0,1
∂

∂ϕ1
+ ω0,2

∂

∂ϕ2

)2

xi + xi = Θ1,i(ϕ1, ϕ2) (1.6)(
ω0,1

∂

∂ϕ1
+ ω0,2

∂

∂ϕ2

)2

yi + yi = Θ2,i(ϕ1, ϕ2) i = 1, 2, . . .

where the functions Θ1,i(ϕ1, ϕ2), Θ2,i(ϕ1, ϕ2) contain trigonometric terms in the angles ϕ1, ϕ2 (see [15],
section 4).

- In scheme (ii), instead, we obtain divisors of the form k1ω1 + k2ω2, i.e., depending on the (fixed)
pre-selected new frequencies ω1, ω2. This follows from the fact that the linear non-homogeneous
equations to solve are now of the form (see [13]):

ẍi + ω2
1xi = Φ1,i(ϕ1, ϕ2) (1.7)
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ÿi + ω2
2yi = Φ2,i(ϕ1, ϕ2) i = 1, 2, . . .

again with functions Φ1,i(ϕ1, ϕ2), Φ2,i(ϕ1, ϕ2) containing trigonometric terms in the angles
ϕ1 = ω1t, ϕ2 = ω2t. Note that since the divisors depend on the new frequencies ω1, ω2, choosing
non-resonant values for the latter permits the formal construction to proceed; this, even when the
unperturbed frequencies ω0,1, ω0,2 are, instead, resonant.

As regards convergence, in the case (i) Poincaré ( [19], Ch.IX) already emphasizes that the Lindstedt
series with divisors depending on the original harmonic frequencies ω0,1, ω0,2 are divergent, exhibiting
the well known asymptotic character associated with the series computed via a Birkhoff normal form
(see [5] for a review). Indeed, as shown by example in section 2 below, it possible to construct Birkhoff

series yielding the same individual solutions as those of the Lindstedt series of scheme (i). We note
here that the series originally introduced by Lindstedt ( [16–18]), albeit somewhat different in structure,
exhibit the same divisors as those of the scheme (i) above, thus, according to Poincaré, they are only
asymptotic. On the other hand, Eliasson ( [6]) and Gallavotti ( [11, 12]) established the existence of
convergent Lindstedt series by the ‘torus fixing method’ on the basis of the cancellations between terms
with small divisors (see [14] for an instructive example). A proof of the convergence of scheme (ii) is
actually possible by diagrammatic methods via the following theorem [4]:

Theorem 1.1 ( [4]). Consider the N coupled oscillator equations

ẍ j + ω2
j x j + f j(x1, . . . , xN; ε) + (ω2

0, j − ω
2
j)x j = 0, j = 1, . . . ,N (1.8)

where ε is a real parameter, f (x, ε) is real analytic at x = 0 , ε = 0 and at least quadratic in x, and
the frequency vector ω is diophantine. Let

x(0)
j (t) = c jeiω jt + c∗je

−iω jt, j = 1, . . . ,N (1.9)

be a solution of (1.8) for any choice of the complex constants c j and for ε = 0. Let
Γ(c) = max(|c1|, . . . , |cN |, 1). Then, there exists a positive constant η0 and a function η(ε, c)
holomorphic in the domain |ε|Γ3(c) ≤ η0, real for real ε, such that the system

ẍ j + ω2
j x j + f j(x1, . . . , xN , ε) + η j(ε, c)x j = 0, j = 1, . . . ,N (1.10)

admits a solution of the form
x(t, ε, c) =

∑
ν∈ZN

Aν exp(iν · (ωt)) (1.11)

holomorphic in the domain |ε|Γ3(c)e3|ω||=t| ≤ η0 and real for real ε, t. The constants Aν are O(ε), except
for the constants A1,0,...,0, A0,1,...,0, A0,0,...,1, which are equal to c1, c2, . . . , cN respectively.

A similar proof in action-angle variables in the case N = 2 is discussed in [1]. As a final
introductory remark, the series construction in the isochronous case finds a plethora of applications in
various fields of physics. We mention in particular, the use of the Lindstedt method for the
computation of solutions lying on low-dimensional tori (‘q-tori’) in the celebrated Fermi-Pasta-Ulam
(FPU) problem ( [2, 3]). The FPU model takes, in normal mode space, the form of N harmonic
oscillators coupled with nonlinear terms:

Q̈k + Ω2
kQ = εFk(Q1, . . . ,QN) (1.12)
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where the frequencies Ωk, k = 1, . . . ,N are given in terms of the FPU normal mode spectrum Ωk =

2 sin(kπ/(2(N + 1)), the function F can be cubic or quartic in the variables Qk, and the perturbation ε
satisfies some scaling law with N.

Flach and co-workers ( [7, 8]) emphasized the special role for dynamics played by solutions called
‘q-breathers’. These are periodic orbits of the form Qq(t) = Aq cos(ωqt + φq), and Qk(t) = 0 for k , q.
For the frequencies ωq we obtain series expressions of the form

ωq = Ωq + ∆ωq(Aq; ε), ∆ωq = O(ε). (1.13)

Then, for ε sufficiently small, the Lindstedt method (ii) above allows to represent the q-breathers via
the Fourier expansion

Qq(t) = Aq cos(ωqt + φq) +

∞∑
m=0

f̃q,m(Aq; ε) cos[m(ωqt + φq)] (1.14)

Qk(t) =

∞∑
m=0

f̃k,m(Aq; ε) cos[m(ωqt + φq)], k , q,

where f̃k,m = O(εp(k,q,m)), with integer exponent p(k, q,m) ≥ 1. The relevant point for the FPU problem
is that the rules of propagation of the amplitude Aq in the series terms for all modes allows to find an
analytic formula explaining the phenomenon of ‘energy localization’ observed for particular initial
excitations in the FPU model. In [2] and [3], on the other hand, it was shown that the q-breathers
constitute only the first member in the hierarchy of special FPU solutions that exhibit energy
localization. More general members are the ‘q-tori’, i.e., special solutions with M < N
incommensurable frequencies satisfying

ωqi = Ωqi + ∆ωqi(Aq1 , Aq2 , . . . , AqM ; ε), ∆ωqi = O(ε), (1.15)

where Rq = (q1, . . . qM) ∈ {1, 2, ...,N}M. The corresponding Fourier representation of these special
solutions can again been computed using Lindstedt series, and it obtains the form

Qk(t) = Ak cos(ωkt + φk) +

∞∑
|m|=0

f̃k,m(A; ε) cos[m · (ωt + φ)], k ∈ Rq (1.16)

Qk(t) = 0 +

∞∑
|m|=0

f̃k,m(A; ε) cos[m · (ωt + φ)], k < Rq

with m ≡ (m1, . . . ,mM) ∈ ZM, A ≡ (Aq1 , . . . , AqM ), ω ≡ (ωq1 , . . . , ωqM ), φ ≡ (φq1 , . . . , φqM ), and
f̃k,m = O(ε) for all k = 1, . . .N. Furthermore, the propagation of the amplitudes Ak in the series terms
allows to interpret a variety of complex localization profiles encountered for particular initial mode
excitations in the FPU problem (see the corresponding theorems in [3]).

We mentioned already that for the Lindstedt series analogous to the Birkhoff ones there exists a
Birkhoff normal form yielding the same solutions as those recovered by the Lindstedt method via an
indirect approach, i.e., one based on a sequence of normalizing transformations involving canonical
changes of variables. It is natural to ask whether this correspondence between a direct (Lindstedt) and
indirect (normal form) method extends in the case of the torus-fixing method as well. Due to the lack of
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a twist condition, the torus-fixing process in the isochronous case has to be dealt with using a technique
based on ‘counterterms’ (see [11]), or a KAM algorithm ‘with knobs’ (see [20] in the present volume).
We have developed a Kolmogorov algorithm using counterterms, which is able to recover the solutions
of the direct Lindstedt method in both cases of full or low-dimensional tori. In the present paper we will
discuss in some detail the proposed Kolmogorov algorithm for the full-dimensional case only, deferring
the low-dimensional case to a different publication. Section 2 gives an elementary example allowing
to fix all principle ideas in this comparison. Section 3 gives the general algorithm for the Kolmogorov
method in the isochronous case. This is similar as the algorithm ‘with knobs’ discussed by Sansottera
and Danesi ( [20]) in the present volume. We point out, however, some differences in our viewpoints
regarding what the algorithm actually achieves to compute and how it should be implemented in the
context of isochronous models with given initial unperturbed frequenciesω0. Some results and detailed
proofs are deferred to the Appendix.

2. An elementary example

In order to illustrate the methods discussed above, we will consider an elementary example
stemming from the following one-degree of freedom Hamiltonian with a even power dependence on
the canonical variables

H(x, p) = H0 + εH1 =
ω0

2

(
p2 + x2

)
+ ε

x4

4
. (2.1)

Using the harmonic oscillator action-angle variables (J, q) with x =
√

2J sin(q) , p =
√

2J cos(q) , we
obtain

H(q, J) = ω0 J +
3 ε
8

J2 −
ε

2
J2 cos(2q) +

ε

8
J2 cos(4q) . (2.2)

Let J0 be the label of a given torus (periodic orbit) of the harmonic oscillator model H0. Consider
a real neighborhood Dε = {J = J0 + p with |p| < Dε}, where Dε = O(ε). We will illustrate four
different perturbative methods to treat the dynamics in the phase-space neighborhood T×Dε: these are
i) a Birkhoff normal form construction, with ii) its analog in terms of Lindstedt series, iii) a Lindstedt
series exhibiting the torus-fixing property of the Kolmogorov method, and, finally iv) the normal form
analogue of iii). In the next section, we will give the general formulas for the construction of the
Kolmogorov normal form in the case of n-degree of freedom Hamiltonians with isochronous integrable
partH0.

2.1. Birkhoff normal form

Setting J = J0 + p the Hamiltonian takes the form (apart from a constant)

H(q, p) = ω0 p +
3 ε J2

0

8
+

3 J0 ε

4
p +

3 ε
8

p2 −
ε J2

0

2
cos(2q) − εJ0 p cos(2q)

−
ε

2
p2 cos(2q) +

εJ2
0

8
cos(4q) +

ε J0

4
p cos(4q) +

ε

8
p2 cos(4q) .

(2.3)

A ‘Birkhoff normal form’ for the Hamiltonian (2.3) can be computed by introducing a canonical
transformation eliminating the angle q . Writing the Hamiltonian (2.3) as

H(q, p) = Z0 + ε f1 ,
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where Z0 = ω0 p and f1 =
∑
k,l

ck,l pkeilq we will define a Lie generating function χ(1)(q, p) bringing this

Hamiltonian to normal form up to termsO(ε). In the standard procedure, it is sufficient to set χ(1) = X(1),
where X(1) solves the homological equation LX(1)Z0 + ε f1 = εζ1 , with ζ1 =< f1 >q and LX denoting
the Poisson bracket operator LX = {·, X}. However, comparing the result with the one obtained by the
corresponding Lindstedt method (see next subsection) requires a small modification in the definition
of χ(1). Consider the canonical transformation (q, p)→ (q(r), p(r)) obtained after r normalization steps:
we require that the canonical transformation be such that the initial condition q(r) = p(r) = 0 in the new
variables be mapped to the initial condition

(
q(q(r) = 0, p(r) = 0), p(q(r) = 0, p(r) = 0)

)
= (0, 0)+O(εr+1)

in the original variables. It is easy to see that such a requirement of control on the initial condition can
be fulfilled by setting

χ(n)(q, p) = X(n)(q, p) + K(n) q + S (n) p , n = 1, . . . , r

where K(n), S (n) are constants possible to compute at every step by requiring that(
q(q(n) = 0, p(n) = 0), p(q(n) = 0, p(n) = 0)

)
= (0, 0) + O(εn+1).

Since {ω0 p,K(n) q} = −ω0K(n), this procedure will only alter the normal form at the n-th step by a
constant, adding, however, some trigonometric terms to the remainder at every step. As an example,
we can readily verify the following formulas for the first step (and analogously for subsequent steps)

χ(1)(q, p) = X(1)(q, p) + K(1) q + S (1) p ,

where

X(1)(q, p) =
∑
l,0
k

ck,l

i lω0
pkeilq , K(1) = −

∑
l,0

c0,l

ω0
, S (1) = −

∑
l,0

c1,l

i lω0
.

Omitting details, the formulas obtained after two normalization steps as above are the following: the
Hamiltonian takes the form

H (2)(q(2), p(2)) = expLε2χ(2)expLεχ(1)H

∣∣∣∣q=q(2)

p=p(2)

=

Z0 + εZ1 + ε2Z2 +
∑
i≥3

εi fi

∣∣∣∣∣q=q(2)

p=p(2)

.

For simplicity in the notation, from now on we omit superscripts from the variables q and p unless
explicitly required, adopting, instead, the convention that the symbols (q̃, p̃) in any function of the
form F(r)(q̃, p̃) imply the new canonical variables computed after r normalization steps. Then, up to
order 2 in ε we obtain:

H (2)(q̃, p̃) = Z(2) + R(2) = ω0 p̃ +
3 ε J0

4
p̃ +

3 ε p̃2

8
−

69 ε2 J2
0

64ω0
p̃ −

51 ε2 J0

64ω0
p̃2 −

17 ε2

64ω0
p̃3 + R(2)

where the remainder R(2) is O(ε3). The Hamiltonian Z(2) can now be used to analytically compute
ε2−precise solutions to the equations of motion in the variables (q̃, p̃). The equations of motion are

˙̃q =
∂H (2)

∂ p̃
= ω0 +

3 ε J0

4
+

3 ε
4

p̃ −
69 ε2 J2

0

64ω0
−

51 ε2 J0

32ω0
p̃ −

51 ε2

64ω0
p̃2

˙̃p = −
∂H (2)

∂q̃
= 0

;
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fixing the initial condition p̃(0) = q̃(0) = 0 yields the solution

p̃(t) = 0 , q̃(t) = ω t := ϕB , ω = ω0 +
3 ε J0

4
−

69 ε2 J2
0

64ω0
. (2.4)

This can be back-transformed to the solution in the original variables. We have

q = expLε2 χ(2)expLε χ(1) q̃ , p = expLε2 χ(2)expLε χ(1) p̃ . (2.5)

Substituting the solutions (q̃(t), p̃(t)) in the previous expression, we find

q(t) = ϕB −
ε J0

2ω0
sin(2ϕB) +

31 ε2 J2
0

32ω2
0

sin(2ϕB) +
ε J0

16ω0
sin(4ϕB)

−
ε2 J2

0

32ω2
0

sin(4ϕB) −
ε2 J2

0

32ω2
0

sin(6ϕB) +
ε2 J2

0

512ω2
0

sin(8ϕB) ,

p(t) = −
3 ε J2

0

8ω0
+

13 ε2 J3
0

16ω2
0

+
ε J2

0

2ω0
cos(2ϕB) −

33 ε2 J3
0

32ω2
0

cos(2ϕB)

−
ε J2

0

8ω0
cos(4ϕB) +

3 ε2 J3
0

16ω2
0

cos(4ϕB) +
ε2 J3

0

32ω2
0

cos(6ϕB) ,

J(t) = J0 + p(t) .

(2.6)

Observe that q(0) = 0 and J(0) = J0 , as was required.
Two remarks are in order:

(i) The divisors appearing in all series expressions obtained above depend on the (unique, in the case
of 1DOF systems) unperturbed frequency of the model, i.e., the frequency ω0 of the linear oscillator.
In the case of systems with N > 1 degrees of freedom, the above series will produce divisors of the
form m · ω0, where m ∈ ZN , |m| , 0, and ω0 is the N−vector of the unperturbed frequencies of the
problem. This implies that the method may formally proceed only when the vector ω0 is non-resonant.
As regards the series convergence, this is guaranteed in an open domain in the 1DOF case. However,
when N > 1 the series are in general only asymptotic (see [5] for reviews).

(ii) The value of the initial datum for the action J0 can be chosen at the end of the process, i.e., the
numerical value of J0 need not be fixed in advance. In fact, J0 (or, more generally, the vector J0 ) can
be regarded as a parameter free to transfer in all iterative computations. It is, then, in terms of this
parameter that we obtain an expression for the frequency(ies) ω on the torus with the initial conditions
J(0) = J0, q(0) = 0 as a function of J0. In our example this function is given up to O(ε2) in Eq (2.4).

(iii) Any choice is possible to impose on the initial phase q(0), altering slightly the definition of the
constants S (n).

2.2. Lindstedt solution analogous to Birkhoff

Analytical solutions in the form of formal series obtained like (2.6) above will be hereafter called
‘Birkhoff solutions’. This terminology emphasizes the fact that the solutions are obtained using a
Birkhoff normal form procedure. It is notworthy that Poincaré’s reference to the ‘Lindstedt series’
(Methodes nouvelles, Ch. IX) actually consists of the construction of solutions to coupled oscillator
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problems obtained ‘indirectly’, i.e., via transformations of the variables and the engineering of the
corresponding Hamiltonian function. Hence, the more general term ‘Poincaré-Lindstedt’ series often
encountered in literature. We now give, instead, the ‘direct’ (i.e., without transformations) series
construction of the Birkhoff solution (2.6) by implementing, instead, the original method of Lindstedt
in the framework of the canonical action-angle variables of the harmonic oscillator model.

The Hamilton’s equations of motion for the Hamiltonian (2.2) are
q̇(t) =

∂H

∂J
= ω0 +

3 ε J
4
− ε J cos(2q) +

ε J
4

cos(4q) (2.7a)

J̇(t) = −
∂H

∂q
= −ε J2 sin(2q) +

ε J2

2
sin(4q) . (2.7b)

We perform the following steps:
Step 1: time re-parametrization. Set ϕ = ω t where ω is the (still unknown) frequency on the 1-torus

(periodic orbit) corresponding to the solution with initial conditions J(0) = J0, q(0) = 0.
Step 2: frequency expansion. This is the key element of the Lindstedt method. We expand ω as

ω = ω0 − ε a1(J0) − ε2 a2(J0) + . . . . (2.8)

Note that the corrections ai i = 1, 2, . . . are functions of the parameter J0, i.e., of the ‘amplitude’
(square) of the oscillations.

Step 3: expansion of the solution. We write

q(ϕ) = q0(ϕ) + ε q1(ϕ) + ε2 q2(ϕ) + . . . ,

J(ϕ) = J0(ϕ) + ε J1(ϕ) + ε2 J2(ϕ) + . . . .
(2.9)

Note here a key element of the method, which is the fact that all functions qi, Ji, i = 0, 1, . . . are
considered functions of the phase ϕ = ω t rather than of the time t itself. This is the key point in
the differentiation of the method presented here with respect to the ‘torus-fixing’ method presented in
Subsection 2.3. The relevant fact is that the use of the angle ϕ (or, more generally, of a set of angles
ϕ ∈ TN , with ϕ = ωt in the N-DOF case), instead of time, allows to split the equations of motion in a
sequence of linear non-homogeneous equations, whose iterative solution introduces divisors depending
on the unperturbed frequencies ω0. This is made clear in the next step.

Step 4: splitting of the equations of motion in powers of ε and iterative solution. In our example,
from the definition of ϕ we have:

ω
dq(ϕ)

dϕ
=

dq(t)
dt

, ω
dJ(ϕ)

dϕ
=

dp(t)
dt

.

Substituting (2.8) and (2.9) in the equations of motion (2.7a) and (2.7b) leads to the following
expressions (up to order 2 in ε )(
ω0 − ε a1 − ε

2 a2

) (dq0(ϕ)
dϕ

+ ε
dq1(ϕ)

dϕ
+ ε2 dq2(ϕ)

dϕ

)
(2.10a)

= ω0 +
3 ε J0(ϕ)

4
− ε J0(ϕ) cos(2 q0(ϕ)) +

ε J0(ϕ)
4

cos(4 q0(ϕ)) +
3 ε2 J1(ϕ)

4
− ε2 J1(ϕ) cos(2 q0(ϕ))
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+
ε2 J1(ϕ)

4
cos(4 q0(ϕ)) + 2 ε2 J0(ϕ) q1(ϕ) sin(2 q0(ϕ)) − ε2 J0(ϕ) q1(ϕ) sin(4 q0(ϕ)) ,

(
ω0 − ε a1 − ε

2 a2

) (dJ0(ϕ)
dϕ

+ ε
dJ1(ϕ)

dϕ
+ ε2 dJ2(ϕ)

dϕ

)
(2.10b)

= −ε J0(ϕ)2 sin(2 q0(ϕ)) +
ε J0(ϕ)2

2
sin(4 q0(ϕ)) − 2 ε2 J0(ϕ) J1(ϕ) sin(2 q0(ϕ))

+ ε2 J0(ϕ) J1(ϕ) sin(4 q0(ϕ)) − 2 ε2 J0(ϕ)2 q1(ϕ) cos(2 q0(ϕ)) + 2 ε2 J0(ϕ)2 q1(ϕ) cos(4 q0(ϕ)) .

Now, in order to iteratively determine the functions qi(ϕ), Ji(ϕ), we compare the two sides of the
equations of motion at equal orders. At order 0 we have

ω0
dq0(ϕ)

dϕ
= ω0 , ω0

dJ0(ϕ)
dϕ

= 0 =⇒ q0(ϕ) = ϕ , J0(ϕ) = J0 .

Fixing the initial data as q0(0) = 0 and J(0) = J0 , we then arrive at q0(ϕ) = ϕ and J0(ϕ) = J0 . At
order 1, we now have

ω0
dq1(ϕ)

dϕ
− a1 =

3 J0

4
− J0 cos(2ϕ) +

J0

4
cos(4ϕ)

ω0
dJ1(ϕ)

dϕ
= −J2

0 sin(2ϕ) +
J2

0

2
sin(4ϕ) .

(2.11)

As well known, a1 is determined by the requirement that no secular terms be present in the series. This
yields a1 = −3 J0/4 . Then, the Cauchy problem with the previous differential equations and the initial
constants q1(0) = J1(0) = 0 yields the solution

q1(ϕ) = −
J0

2ω0
sin(2ϕ) +

J0

16ω0
sin(4ϕ) , J1(ϕ) = −

3 J2
0

8ω0
+

J2
0

2ω0
cos(2ϕ) −

J2
0

8ω0
cos(4ϕ) .

The process can be repeated at subsequent orders. We leave to the reader to verify the result at second
order, leading eventually to

q(t) = ϕ −
ε J0

2ω0
sin(2ϕ) +

31 ε2 J2
0

32ω2
0

sin(2ϕ) +
ε J0

16ω0
sin(4ϕ)

−
ε2 J2

0

32ω2
0

sin(4ϕ) −
ε2 J2

0

32ω2
0

sin(6ϕ) +
ε2 J2

0

512ω2
0

sin(8ϕ) ,

J(t) = J0 −
3 ε J2

0

8ω0
+

13 ε2 J3
0

16ω2
0

+
ε J2

0

2ω0
cos(2ϕ) −

33 ε2 J3
0

32ω2
0

cos(2ϕ)

−
ε J2

0

8ω0
cos(4ϕ) +

3 ε2 J3
0

16ω2
0

cos(4ϕ) +
ε2 J3

0

32ω2
0

cos(6ϕ) ,

(2.12)

with ϕ = ω t and ω = ω0 +
3 ε J0

4
−

69 ε2 J2
0

64ω0
. Comparing the result with Eqs (2.4) and (2.6), we can

see that the solutions q(t) , J(t) of the two methods are equal. This is easy to justify by checking the
structure of the l.h.s of Eq (2.10). After the expansion of the frequency, the differential equations to
solve at subsequent steps all involve the operators ω0d/dϕ. Hence, all divisors appearing in the series
terms are in terms of the unperturbed frequency ω0.
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2.3. Lindstedt series analogous to Kolmogorov

It was already pointed out that the Lindstedt series examined so far, as well as their ‘indirect’
(normal form) counterpart, produce, in general, series which are divergent and only have an asymptotic
character. ∗ On the other hand, Eliasson [6] and Gallavotti [12] established the existence of convergent
Lindstedt series in nonlinear Hamiltonian systems satisfying the necessary conditions for the holding
of the Kolmogorov-Arnold-Moser theorem. Gallavotti ( [11]) presented a diagrammatic proof of the
convergence of the Kolmogorov normal form also in the ‘twistless’ case, i.e., when the size of the
Hessian matrix of the unperturbed Hamiltonian H0(J) is not limited from below (it is equal to zero in
the ‘isochronous’ case). A constructive Kolmogorov algorithm able to deal also with the twistless case
is presented, along with the demonstration of its convergence, in the present volume by Sansottera and
Danesi [20]). The convergence of the Lindstedt series in this case is addressed, instead, in [4] (see
remarks in the introduction).

As discussed in the introduction, when series constructions analogous to Kolmogorov are sought for
in the isochronous case, an important point to address is the need for performing, at the final stage of
the construction, a process involving series reversal. This reversal is necessary in order to explicitely
compute the solutions q(t), J(t) whose initial conditions q0, J0 correspond to motion on a torus with
given frequency vector ω. The key remark is that the value of J0, which parametrises the solutions,
cannot be fixed in advance due to the lack of a twist condition allowing to compute the mapping ω(J0).
We now discuss the application of the direct (Lindstedt) method analogous to Kolmogorov in the same
example as in the previous two sections, aiming to illustrate the above points.

Fixing the frequency of the torus in the isochronous case can be implemented as described in [13]:
assume that we target a particular solution of the equations of motion (2.7a) and (2.7b) represented
as a trigonometric series and evolving according to a given pre-selected frequency ω. Inverting the
expansion (2.8) we obtain

ω0 = ω + ε a1(J0) + ε2 a2(J0) + . . . (2.13)

Also, as before we expand the solution as

q(t) = q0(t) + ε q1(t) + ε2 q2(t) + . . .

J(t) = J0(t) + ε J1(t) + ε2 J2(t) + . . . .
(2.14)

Note, however, that this time we perform no time-reparametrization, i.e., the solutions remain
expressed as functions of the time t. Thus, replacing the above expressions in (2.7a) and (2.7b) the
equations of motion lead now to the expressions (up to order 2 in ε )

q̇0(t) + ε q̇1(t) + ε2 q̇2(t) = ω + ε a1 +
3 ε J0(t)

4
− ε J0(t) cos(2 q0(t)) +

ε J0(t)
4

cos(4q0(t)) (2.15a)

+
3 ε2 J1(t)

4
+ ε2 a2 − ε

2 J1(t) cos(2 q0(t)) +
ε2 J1(t)

4
cos(4 q0(t))

+ 2 ε2 J0(t) q1(t) sin(2 q0(t)) − ε2 J0(t) q1(t) sin(4 q0(t)) ,

J̇0(t) + ε J̇1(t) + ε2 J̇2(t) = −ε J0(t)2 sin(2 q0(t)) +
ε J0(t)2

2
sin(4q0(t)) (2.15b)

∗The examples treated in this section are obvious exceptions, since, we deal, for simplicity, with 1DOF systems exhibiting no small
divisors. Small divisors appear, instead, for N > 1.
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− 2 ε2 J0(t) J1(t) sin(2 q0(t)) + ε2 J0(t) J1(t) sin(4q0(t))

− 2 ε2 J0(t)2 q1(t) cos(2q0(t)) + 2 ε2 J0(t)2 q1(t) cos(4 q0(t)) .

Collecting now the terms of equal order we can compute iteratively all the functions qi(t), Ji(t), for
i = 0, 1, 2, setting, at order zero:

q0(t) = ω t , J0(t) = J0

which corresponds to the choice of the initial condition q0(0) = 0 and J0(0) = J0 . Then, at first order
we have

q̇1(t) = a1 +
3 J0

4
− J0 cos(2ω t) +

J0

4
cos(4ω t) ,

J̇1(t) = −J2
0 sin(2ω t) +

J2
0

2
sin(4ω t)

(2.16)

implying a1 = −3 J0/4 and

q1(t) = −
J0

2ω
sin(2ω t) +

J0

16ω
sin(4ω t) , J1(t) = −

3 J2
0

8ω
+

J2
0

2ω
cos(2ω t) −

J2
0

8ω
cos(4ω t).

Note that the integration constants in (2.16) were set as q1(0) = J1(0) = 0 , consistent with our choice
of initial condition. Repeating the procedure at second order yields

q(t) = ω t −
ε J0

2ω
sin(2ω t) +

ε J0

16ω
sin(4ω t) +

19 ε2J2
0

32ω2 sin(2ω t) +
ε2 J2

0

64ω2 sin(4ω t)

−
ε2 J2

0

32ω2 sin(6ω t) +
ε2 J2

0

512ω2 sin(8ω t) ,

J(t) = J0 −
3 ε J2

0

8ω
+
ε J2

0

2ω
cos(2ω t) −

ε J2
0

8ω
cos(4ω t) +

17 ε2 J3
0

32ω2

−
21 ε2 J3

0

32ω2 cos(2ω t) +
3 ε2 J3

0

32ω2 cos(4ω t) +
ε2 J3

0

32ω2 cos(6ω t) ,

ω = ω0 +
3 ε J0

4
−

69 ε2 J2
0

64ω
.

(2.17)

It is instructive to compare the solutions (2.17) above with those (Eq (2.12)) found in the case of the
original Lindstedt method. We have the following remarks:

(i) From second order and beyond the coefficients in front of the harmonics cos(mωt), sin(mωt) for
the same m are not all equal in the two solutions.

(ii) Most importantly, the structure of the divisors in the two solutions is different. In the torus fixing
case (Eq (2.17)), all divisors involve the corrected frequency, ω, instead of the original frequency ω0 of
the linear oscillator. This is not a problem for the method to proceed, since this frequency is known in
advance. In N−DOF systems, in general, with the ‘torus fixing method’ we obtain divisors of the form
m · ω. Thus, the method can proceed even when the original frequencies of the N linear oscillators
ω0 are resonant, as long as we impose a non-resonant detuning in the adopted values for the final
frequencies ω on the torus.

Mathematics in Engineering Volume 5, Issue 2, 1–35.



13

(iii) On the other hand, the value of the initial condition J0 leading to motion on the torus with
frequency ω remains uknown up to the end of the construction. From the point of view of the symbolic
implementation of the method in the computer, J0 is a symbol whole powers have to be carried on
along with the remaining powers of trigonometric monomials in all series terms and at all iterative
steps.

(iv) At the end of the process, however, J0 can be estimated by reversing the series (2.13), given
that the functions an(J0) are monomials of degree n in J0. In an analogous way, in the N−DOF case we
will end up with N series equations of the form

ω0, j − ω j =

∞∑
n=1

εnan, j(J0,1, . . . , J0,N) (2.18)

where the functions an, j(J0,1, . . . , J0,N) have all been specified iteratively up to a maximum truncation
order in n, and they are polynomial in J0 ≡ (J0,1, . . . , J0,N). Thus, the series (2.18) can be formally
inverted, yielding

J0, j =
1
ε

∞∑
n=1

Pn, j(ω − ω0) (2.19)

where the functions Pn, j(ω − ω0) are polynomial of degree n in the differences (ω − ω0). Note that
for the inverse series to converge we must require the difference |(ω − ω0)| to be smaller than ε, a fact
which limits how far we can detune ω from ω0 in order to be able to specify the corresponding initial
condition J0. An obvious choice is |(ω−ω0)| = O(ε2). At any rate, we emphasize that the convergence
of the inverse series (2.18) is an open problem, crucial to the applications.†

2.4. Kolmogorov normal form

We finally arrive at the here proposed Kolmogorov normal form algorithm yielding solutions
equivalent to those discussed in the previous subsection. This is implemented by the following steps:
Step 1: substitution of the frequency series into the Hamiltonian. In our example, we substitute ω0 in
the Hamiltonian (2.3) with the series (2.13). This yields (up to second order, apart from constants)

H(q, p) = (ω + εa1 + ε2a2 + . . .) p +
3 ε J2

0

8
+

3 J0 ε

4
p +

3 ε
8

p2 −
ε J2

0

2
cos(2q) − εJ0 p cos(2q)

−
ε

2
p2 cos(2q) +

εJ2
0

8
cos(4q) +

ε J0

4
p cos(4q) +

ε

8
p2 cos(4q) + . . . .

(2.20)

Step 2: normalization. To set the Hamiltonian into Kolmogorov normal form up to second order, we
fix the value of the constants a1, a2 and we perform a sequence of Lie transformations aiming to give
the Hamiltonian the form (in the transformed variables) H (2)(q, p) = Z(2)(q, p) + R(2)(q, p) where the
remainder R(2) is O(ε3), while Z(2)(q, p) has the form Z(2)(q, p) = ω p + εR1(q, p) + ε2 R2(q, p) with
both Ri(q, p) = O(|| p ||2) i = 1, 2. To this end:

†In the lack of a known answer to this problem, we can adopt two different attitudes: we may fix J0 and claim that our series answer
the question of what was the value of ω0 in the original Hamiltonian corresponding to the motion on the particular torus with frequency
ω (see [20]). On the other hand, in real world applications the only certainty we have is about our initial model (!), i.e., ω0, so, we
must devise a method to propose values of ω for which the method will probably turn to converge. In the case of the FPU problem, a
numerical procedure to move within the space of the parameters ω so at to choose plausible values was proposed in [3].
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- First order: we fix a1 so that the linear term εa1 p acts as counterterm for the term ε(3J0/4)p. This
provides, in the twistless case, a process by which the frequency ω can be kept fixed (in the usual twist
case, instead, this would have been accomplished by exploiting the Hessian matrix of H0 ). Formally,
we require that 〈

h(0)
1,1

〉
q

=

〈
a1 p − J0 p cos(2q) +

J0

4
p cos(4q) +

3 J0 p
4

〉
q

= 0 , (2.21)

leading to a1 = −3 J0
4 . Now, we insert this expression for a1 in the Hamiltonian (2.20), leading to

H(q, p) = ω p +
3 ε J2

0

8
+

3 ε
8

p2 −
ε J2

0

2
cos(2q) − εJ0 p cos(2q) −

ε

2
p2 cos(2q)

+
εJ2

0

8
cos(4q) +

ε J0

4
p cos(4q) +

ε

8
p2 cos(4q) + ε2 a2 p .

(2.22)

We can now eliminate the O(ε) trigonometric terms in the Hamiltonian with the usual procedure.
Namely, we define a generating function X(1)(q) used to eliminate terms not depending on the action
p . These are

h(0)
1,0 =

3 J2
0

8
−

J2
0

2
cos(2q) +

J2
0

8
cos(4q) ,

leading to LX(1)(q) (ω p) + h(0)
1,0 =

〈
h(0)

1,0

〉
q

, that is

X(1)(q) =
J2

0

32ω
sin(4q) −

J2
0

4ω
sin(2q) .

Note that, similarly as in the Birkhoff case (Subsection 2.1), here too we have to fix the initial conditions
so that the relation q(0) = p(0) = 0 is preserved between variables before and after the canonical
transformation. This is achieved by setting the generating function as χ(1)

1 (q) = X(1)(q) + K(1)q , where
K(1) = 3 J2

0/(8ω) is a constant. The general rules for the determination of the constants K( j) will be
discussed in Section 3.

Using the generating function χ(1)
1 (q) we obtain the intermediate Hamiltonian

Ĥ (1) = exp
(
Lε χ(1)

1 (q)

)
H ,

given by

Ĥ (1) = ω p +
3 ε
8

p2 − ε J0 p cos(2q) −
ε

2
p2 cos(2q) +

ε J0

4
p cos(4q) +

ε

8
p2 cos(4q)

−
17 ε2 J3

0

64ω
+ ε2 a2 p −

35 ε2 J2
0

64ω
p +

ε2 J3
0

2ω
cos(2q) +

7 ε2 J2
0 p

8ω
cos(2q) −

11 ε2 J3
0

32ω
cos(4q)

−
7 ε2 J2

0 p
16ω

cos(4q) +
ε2 J3

0

8ω
cos(6q) +

ε2 J2
0 p

8ω
cos(6q) −

ε2 J3
0

64ω
cos(8q) −

ε2 J2
0 p

64ω
cos(8q) .

(2.23)

We will now eliminate the trigonometric terms linear in the momentum in Ĥ (1). These are

ĥ(1)
1,1 = −J0 p cos(2q) +

1
4

J0 p cos(4q)
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and can be eliminated by a generating function of the form χ(1)
2 (q, p) = χ̃(1)

2 (q, p) + S (1) p satisfying the
homological equation Lχ(1)

2 (q,p) (ω p) + ĥ(1)
1,1 = 0 . As before, the value of the constant S (1) is fixed by the

requirement that the initial phase of the solution of q be preserved to zero by the transformation. We
find S (1) = 0 (all constants S (i) = 0 when the Hamiltonian has an even symmetry). Then

χ̃(1)
2 (q, p) = −

J0 p
2ω

sin(2q) +
J0 p
16ω

sin(4q) .

The new Hamiltonian is
H (1) = exp

(
Lε χ(1)

2 (q,p)

)
Ĥ (1)

and it is in Kolmogorov normal form up to order ε .
Repeating the same procedure at second order we arrive at the formulas

a2 =
69 J2

0

64ω
, (2.24)

χ(2)
1 = −

17 J3
0 q

64ω2 +
J3

0

4ω2 sin(2q) −
11 J3

0

128ω2 sin(4q) +
J3

0

48ω2 sin(6q) −
J3

0

512ω2 sin(8q) ,

χ(2)
2 =

37 J2
0 p

64ω2 sin(2q) −
7 J2

0 p
64ω2 sin(4q) +

J2
0 p

64ω2 sin(6q) −
J2

0 p
512ω2 sin(8q) ,

leading to the HamiltonianH (2)(q̃, p̃) = Z(2)(q̃, p̃) + R(2)(q̃, p̃) with the Kolmogorov normal form part

Z(2)(q̃, p̃) = ω p̃ +
3 ε p̃2

8
−
ε p̃2

2
cos(2q̃) +

ε p̃2

8
cos(4q̃) −

51 ε2 J0 p̃2

64ω
+

37 ε2 J0 p̃2

32ω
cos(2q̃)

−
7 ε2 J0 p̃2

16ω
cos(4q̃) +

3 ε2 J0 p̃2

32ω
cos(6q̃) −

ε2 J0 p̃2

64ω
cos(8q̃)

((q̃, p̃) denote again the new variables after new normalization steps).
Step 3: calculation of the solution on the torus. Using the compact notation

Z(2)(q̃, p̃) = ω p̃ + εR1(q̃, p̃) + ε2 R2(q̃, p̃) ,

where R j(q̃, p̃) = O(|| p̃ ||2) j = 1, 2 , the equations of motions under the Hamiltonian Z(2) are
˙̃q =

∂Z(2)

∂ p̃
= ω + ε

∂R1(q̃, p̃)
∂p̃

+ ε2 ∂R2(q̃, p̃)
∂p̃

= ω + O(|| p̃ ||)

˙̃p = −
∂Z(2)

∂q̃
= −ε

∂R1(q̃, p̃)
∂q̃

− ε2 ∂R2(q̃, p̃)
∂q̃

= O(|| p̃ ||2)
.

The torus p̃(t) = 0 , q̃(t) = ω t (where we chose q̃(0) = 0 ) is a solution of this system. This can be
back-transformed in the original variables using

q = expLε2 χ(2)
2

expLε χ(1)
2

q̃ , p = expLε2 χ(2)
2

expLε2 χ(2)
1

expLε χ(1)
2

expLε χ(1)
1

p̃ . (2.25)

Mathematics in Engineering Volume 5, Issue 2, 1–35.



16

Substituting the solution (q̃(t) = ω t, p̃(t) = 0) in the previous expressions, we readily deduce the
solution in the original variables:

q(t) = ω t −
ε J0

2ω
sin(2ω t) +

ε J0

16ω
sin(4ω t) +

19 ε2J2
0

32ω2 sin(2ω t) +
ε2 J2

0

64ω2 sin(4ω t)

−
ε2 J2

0

32ω2 sin(6ω t) +
ε2 J2

0

512ω2 sin(8ω t) ,

p(t) = −
3 ε J2

0

8ω
+
ε J2

0

2ω
cos(2ω t) −

ε J2
0

8ω
cos(4ω t) +

17 ε2 J3
0

32ω2

−
21 ε2 J3

0

32ω2 cos(2ω t) +
3 ε2 J3

0

32ω2 cos(4ω t) +
ε2 J3

0

32ω2 cos(6ω t) ,

J(t) = J0 + p(t) .

(2.26)

Also, using the computed expressions of a1 and a2 (Eqs (2.21) and (2.24)), we obtain the relation
between the torus frequency and the original frequency

ω = ω0 +
3 ε J0

4
−

69 ε2 J2
0

64ω
.

These expressions are identical to the ones found by the Lindstedt method of Subsection 2.3
(see (2.17)).

2.5. Comparisons and numerical tests

In order to better visualize the differences between the methods (i) and (ii) (i.e., respectively,
‘analogous to Birkhoff’ and ‘analogous to Kolmogorov’) we report, in the Tables 1 and 2 below, the
series terms corresponding to the solutions for q(t) and J(t) as obtained by the two methods up to
order ε2 .

Table 1. Comparison between the series terms for the solution q(t) in the Lindstedt series
obtained by the methods (i) and (ii) up to order ε2 .

Method: O(1) O(ε) O(ε2)

(i) ‘Analogous
to Birkhoff’

ω t −
J0

2ω0
sin(2ω t) +

J0

16ω0
sin(4ω t)

31 J2
0

32ω2
0

sin(2ω t) −
J2

0

32ω2
0

sin(4ω t)

−
J2

0

32ω2
0

sin(6ω t) +
J2

0

512ω2
0

sin(8ω t)

(ii) ‘Analogous
to Kolmogorov’

ω t −
J0

2ω
sin(2ω t) +

J0

16ω
sin(4ω t)

19 J2
0

32ω2 sin(2ω t) +
J2

0

64ω2 sin(4ω t)

−
J2

0

32ω2 sin(6ω t) +
J2

0

512ω2 sin(8ω t)
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Table 2. Comparison between the series terms for the solution J(t) in the Lindstedt series
obtained by the methods (i) and (ii) up to order ε2 .

Method: O(1) O(ε) O(ε2)

(i) ‘Analogous
to Birkhoff’

J0 −
3 J2

0

8ω0
+

J2
0

2ω0
cos(2ω t) −

J2
0

8ω0
cos(4ω t)

13 J3
0

16ω2
0

−
33 J3

0

32ω2
0

cos(2ω t)

+
3 J3

0

16ω2
0

cos(4ω t) +
J3

0

32ω2
0

cos(6ω t)

(ii)‘Analogous
to Kolmogorov’

J0 −
3 J2

0

8ω
+

J2
0

2ω
cos(2ω t) −

J2
0

8ω
cos(4ω t)

17 J3
0

32ω2 −
21 J3

0

32ω2 cos(2ω t)

+
3 J3

0

32ω2 cos(4ω t) +
J3

0

32ω2 cos(6ω t)

From Table 1 above, we observe that the solutions q(t) and J(t) obtained by methods (i) and (ii)
have the same form up to order O(ε) , except for the fact that in method (i) all divisors depend on
the frequency ω0 rather than ω . On the other hand, the coefficients found by the two methods start
differing from the order ε2 and beyond. Moreover, the series for the frequency ω obtained by the two
methods are:

ω = ω0 +
3 ε J0

4
−

69 ε2 J2
0

64ω0
, ω = ω0 +

3 ε J0

4
−

69 ε2 J2
0

64ω
,

which differ again as regards their divisors.
The effect of these differences on the precision of the two methods can be seen even in the simplest

case of a system with one degree of freedom in which both series are convergent (the series ‘analogous
to Birkhoff’ are, instead, divergent when N ≥ 2 ). To this end, we report below a comparison between
the numerical solutions and the analytical ones, obtained by the methods (i) and (ii) in the example of
the Hamiltonian (2.1). To produce the Lindstedt series (ii) in this example we work as follows: fixing
the initial and final frequency ω0 and ω , we reverse the series (2.8) according to

dω = −
∑
i≥0

εi ai(J0) := f (J0) =⇒ J0 = f −1(dω) , (2.27)

where dω = ω − ω0 and f −1 denotes the series inverse to f . Then, having specified J0 through the
inverse series (2.27), we compute all numerical coefficients in the Lindstedt series (i) and (ii) up to
order ε4 . We analyze three different cases:

1) ε = 1 , ω0 = 1 and ω = 1.002 ;
2) ε = 1 , ω0 = 1 and ω = 1.02 ;
3) ε = 1 , ω0 = 1 and ω = 1.2 .

Let us note that all results are rescalable to different choices of ε . Reversing the series (2.8) as
prescribed by (2.27), we obtain, respectively, the following values for the amplitude (initial action
datum): J0 = 0.0026769 , 0.0277048 , 0.383509 . Substituting these values of ε , ω , ω0 and J0 in the
solutions q(t) and J(t) we obtain the solutions, as functions of t , produced by methods (i) and (ii).
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At the same time, it is possible to integrate the equations of motion (2.7a) and (2.7b) to produce a
numerical solution, starting from the initial conditions q(0) = 0 , J(0) = J0 .

Figure 1 shows the difference (in Log10 scale) between the semi-analytical solutions obtained by
methods (i) and (ii) as above and the numerical solution for the angle q(t) . Since the only
systematically growing error is due to differences in the frequency estimates, all errors between the
numerical and analytical solutions in the angle q(t) grow linearly in time. We observe, however, that
the Lindstedt method ‘analogous to Kolmogorov’ always produces more precise results than the one
‘analogous to Birkhoff’ with a difference in precision of about one order of magnitude when dω is of
order 10−3 and raising up to two orders of magnitude when dω becomes of the order of unity.

Figure 1. Difference between the numerical solution q(t) and the one produced by the method
‘analogous to Birkhoff’ (in blue, (i)) or ‘analogous to Kolmogorov’ (in red, (ii)). From left
to right for the cases 1) ε = 1 , ω0 = 1 and ω = 1.002 , 2) ε = 1 , ω0 = 1 and ω = 1.02 , 3)
ε = 1 , ω0 = 1 and ω = 1.2 .

2.6. Hamiltonian preparation in the case of odd nonlinear couplings

A particularity of the example treated above is the fact that the original Hamiltonian is analytic in
the whole domain J ∈ R. This changes, however, in more general models in which the Hamiltonian is
of the form

H(q, J) = ω0 · J + εh(q, J; ε)

where the development in powers of the variables J contains semi-integer powers, as is, for example,
the case of polynomial nonlinear couplings containing odd terms in one or more of the oscillator
variables x j, y j. Let us note that physical examples of such Hamiltonian systems, with oscillators
non-linearly coupled through odd polynomial terms, are ubiquitous, and include the
Fermi-Pasta-Ulam α−model, the secular Hamiltonian in resonant cases of perturbed Keplerian
N−body problems, magnetic bottle Hamiltonian models, etc. In the next section, we will present a
formal algorithm applicable to a generic form for the functionH1. The sequence of normalizations in
this algorithm is arranged so that the result agrees with the corresponding one obtained with the
Lindstedt series. A particular example showing this agreement is presented in the Appendix.
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3. KAM algorithm for isochronous systems

We now give the Kolmogorov algorithm for generic isochronous systems with Hamiltonian

H(q, J) = ω0 · J +
∑
i≥1

∑
s≥ 3

εih̃i, s(q, J) (3.1)

where q ∈ Tn , J ∈ B ⊆ Rn , h̃i, s = O(||J || s2 ) . We assume that the Hamiltonian (3.1) has a half-integer
power dependence on J , i.e., admits the expansion, for n→ ∞, of the truncated series

H(q, p; J0) = ω0 · J0 + ω0 · p +
∑
i≥1

∑
s≥ 3

εih̃i, s(q, J0 + p)

= ω0 · J0 + ω0 · p +
∑
i≥1

∑
s≥ 3

n∑
k=0

εi
h̃(k)

i, s(q, J0 + p)|p=0

k!
pk ,

(3.2)

where h̃(k) are the k−th derivatives of h̃ with respect to p = J − J0 .
Apart from constants, the Hamiltonian can be written in the compact notation

H(q, p; J0) = ω0 · p +
∑
i≥ 1

εi hi(q, p; J0) . (3.3)

The algorithm allows to compute quasi-periodic orbits with a frequency ω fixed in advance, given
by

ω = ω0 −
∑
i≥ 1

εi ai(J0) , (3.4)

where the parameters J0, whose values are to be specified in the end of the process, give the initial
conditions for J of a trajectory on the torus with frequenciesω . To this end, along with the normalizing
canonical transformation, the algorith computes ‘on the go’ the functions ai(J0) (‘counter-terms’).

Substituting the series (3.4) in the Hamiltonian (3.3) we arrive at:

H(q, p; J0) = ω · p +
∑
i≥ 1

εi hi(q, p; J0) +
∑
i≥ 1

εi ai(J0) · p . (3.5)

In the following we use the notation

εi h(k)
i (q, p; J0) = εi

h(k)
i,0 (q; J0) + h(k)

i,1 (q, p; J0) +
∑
j≥ 2

h(k)
i, j (q, p; J0)

 , (3.6)

where h(k)
i,0 is independent from p , h(k)

i,1 linear in p and the remaining sum is O(|| p ||2) . To facilitate
reading, the indices (i, j, k) used in all subsequent expressions refer to

i = degree of the corresponding ε ,

h(k)
i, j : j = degree of p ,

k = step of the algorithm .

(3.7)

We now have the following
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Proposition 1. Assume the vector ω is non-resonant. There exist Lie generating functions χ(r)
1 , χ(r)

2
such that, after r normalization steps, the Hamiltonian (3.5) is given by the formal series:

H (r)(q(r), p(r); J0) =

(
exp(Lεrχ(r)

2
)
(

exp(Lεrχ(r)
1

)H (r−1)))∣∣∣∣∣q(r−1)=q(r)

p(r−1)=p(r)

= ω · p + εC1 + . . . + εr−1 Cr−1 + εr Cr

+ ε h(r)
1 (q, p; J0) + . . . + εr h(r)

r (q, p; J0)

+ εr+1 h(r)
r+1(q, p; J0) + εr+1 ar+1(J0) · p + . . . ,

where h(r)
j =

∑
i≥0 h(r)

j,i ∀ j ≥ r + 1 and h(r)
j =

∑
i≥2 h(r)

j,i ∈ O(||p||2)∀ j = 1, . . . , r, with

h(r)
k,0 = Ck =

〈
h(k−1)

k,0

〉
− ω · K(k) ∀ 1 ≤ k ≤ r ,

h(r)
k,0 = h(r−1)

k,0 ∀ r + 1 ≤ k ≤ 2r − 1 ,

h(r)
2r,0 =

b 2r−1
r c∑

j=0

1
j!

L j

χ(r)
1 (q)

(
h(r−1)

2r− jr, j

)

h(r)
k,0 =

b k−1
r c−2∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,s

)
+

1(
b k−1

r c − 1
)
!
Lb(k−1)/rc−1
χ(r)

2 (q,p)

(
h(r−1)

k−(b k−1
r c−1)r,0

)
∀ k ≥ 2r + 1 , k , mr ,m ∈ N ,

h(r)
k,0 =

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,s

)
∀ k ≥ 2r + 1 , k = mr ,m ∈ N ,

h(r)
k,1 = 0 ∀ 1 ≤ k ≤ r ,

h(r)
k,1 =

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,1+s

)
∀ k ≥ r + 1 , k , m r , m ∈ N ,

h(r)
k,1 =

b k−2
r c∑

j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,1+s

)
+

m − 1
m!

Lm−1
χ(r)

2 (q,p)

(
h(r−1)

r,1

)
∀ k ≥ r + 1 , k = m r , m ∈ N ,

h(r)
k,i = h(r−1)

k,i ∀ 1 ≤ k ≤ r , i ≥ 2 ,

h(r)
k,i =

b k−1
r c∑

j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,i+s

)
∀ k ≥ r + 1 , i ≥ 2 .
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Given the Fourier series h(r−1)
r,0 (q) =

∑
k∈Zn

c(r−1)
k eik·q and h(r−1)

r,1 (q, p) =
∑
| j|=1

∑
k∈Zn

c(r)
jk pjeik·q , the generating

functions χ(r)
1 , χ(r)

2 are defined by

χ(r)
1 (q) = X(r)(q) + K(r) · q =

∑
k∈Zn\{0}

 c(r−1)
k

ik · ω
eik·q −

c(r−1)
k

k · ω
k · q

 ,
χ(r)

2 (q, p) = χ̃(r)
2 (q, p) + S(r) · p

= Y(r)(q) · p + S(r) · p =
∑
| j|=1

∑
k∈Zn\{0}

 c(r)
jk

ik · ω
eik·q +

i c(r)
jk

k · ω

 pj .

Proof of the proposition. The generic r-th iterative step of the algorithm is defined as follows: after
r − 1 steps, the hamiltonian (3.5) has the form:

H (r−1)(q, p; J0) =ω · p + εC1 + . . . + εr−1 Cr−1

+ ε h(r−1)
1 (q, p; J0) + . . . + εr−1 h(r−1)

r−1 (q, p; J0)
+ εr h(r−1)

r (q, p; J0) + εr ar(J0) · p

+ εr+1 h(r−1)
r+1 (q, p; J0) + εr+1 ar+1(J0) · p + . . . ,

(3.8)

where C1 . . . Cr−1 are constants and h(r−1)
i ∈ O(|| p ||2) ∀ i = 1, . . . , r − 1 . Taking into account the

notation (3.7), we re-define the quantity h(k)
i according to

h(k)
i,1 ← h(k)

i,1 + ai · p =
(
∇ph

(k)
i,1 + ai

)
· p ∀ i ≥ r . (3.9)

We then have:
First part of the proof: the r-th normalization step consists of two substeps, each involving a

canonical transformation.

• First half step: we set

Ĥ (r) = exp(Lεr χ(r)
1 (q))H

(r−1) =
∑
j≥0

(εr) j

j!
L j

χ(r)
1 (q)
H (r−1) , (3.10)

where the generating function χ(r)
1 is defined as χ(r)

1 (q) = X(r)(q) + K(r) · q , with K(r) an appropriate
constant vector defined below, and X(r) is defined through the homological equation:{

ω · p , X(r)(q)
}
+ h(r−1)

r,0 (q) =
〈
h(r−1)

r,0 (q)
〉
, (3.11)

where 〈.〉 denotes the mean over q . The function X(r)(q) eliminates all terms of order O(εr)
depending only on the angles q in the Hamiltonian H (r−1). Writing h(r−1)

r,0 (q) in the Fourier form

h(r−1)
r,0 (q) =

∑
k∈Zn

c(r−1)
k eik·q from (3.11) we find:

X(r)(q) =
∑

k∈Zn\{0}

c(r−1)
k

ik · ω
eik·q. (3.12)
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We then impose the condition that the terms of order O(εr) linear in p have zero〈
h(r−1)

r,1 (q, p; J0)
〉

= 0 . (3.13)

This specifies ar as a function of J0 via Eq (3.9).
Finally, we specify the constant vector K(r) . To this end, we impose the condition that the solution

in p has the form
∑

k Ak (cos(k · q) − 1) , so that, at time t = 0, we have p(0) = 0. Writing (3.12) as

X(r)(q) =
∑

k∈Zn\{0}

− i c(r−1)
k

k · ω
cos(k · q) +

c(r−1)
k

k · ω
sin(k · q)

 , (3.14)

the poisson bracket of χ(r)
1 (q) with the i-th component pi (1 ≤ i ≤ n ) of the vector p yields the

following expressions for the i-th components K(r)
i and ki of the vectors K(r) and k :

{pi , X(r)(q)} + {pi , K(r) · q} =
∑

k∈Zn\{0}

−{pi ,
i c(r−1)

k

k · ω
cos(k · q)

}
+

{
pi ,

c(r−1)
k

k · ω
sin(k · q)

} − K(r)
i

= −
∑

k∈Zn\{0}

 i c(r−1)
k

k · ω
ki sin(k · q) +

c(r−1)
k

k · ω
ki cos(k · q)

 − K(r)
i =

= −
∑

k∈Zn\{0}

i c(r−1)
k

k · ω
ki sin(k · q) −

∑
k∈Zn\{0}

c(r−1)
k

k · ω
ki (cos(k · q) − 1) .

(3.15)

Hence

K(r)
i = −

∑
k∈Zn\{0}

c(r−1)
k

k · ω
ki , (3.16)

i.e.,

K(r) = −
∑

k∈Zn\{0}

c(r−1)
k

k · ω
k . (3.17)

Finally, we compute Ĥ (r) in (3.10) as:

Ĥ (r)(q, p; J0) =ω · p + εC1 + . . . + εr−1 Cr−1 + εr Cr

+ ε ĥ(r)
1 (q, p; J0) + . . . + εr−1 ĥ(r)

r−1(q, p; J0)

+ εr ĥ(r)
r (q, p; J0) + εr+1 ĥ(r)

r+1(q, p; J0) + . . . ,

(3.18)

where ĥ(r)
j =

∑
i≥0 ĥ(r)

j,i ∀ j ≥ r and ĥ(r)
j =

∑
i≥2 ĥ(r)

j,i ∈ O(|| p ||2) ∀ j = 1, . . . , r − 1 , where:

ĥ(r)
k,0 = Ck =

〈
h(k−1)

k,0

〉
− ω · K(k) ∀ 1 ≤ k ≤ r , (3.19)

ĥ(r)
k,0 = h(r−1)

k,0 ∀ r + 1 ≤ k ≤ 2r − 1 , (3.20)

ĥ(r)
k,0 =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
1 (q)

(
h(r−1)

k− jr, j

)
∀ k ≥ 2r (3.21)
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ĥ(r)
k,1 = 0 ∀ 1 ≤ k ≤ r − 1 , (3.22)

ĥ(r)
r,1 = h(r−1)

r,1 , (3.23)

ĥ(r)
k,i =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
1 (q)

(
h(r−1)

k− jr,i+ j

)
∀ k ≥ r + 1 , i ≥ 1 , (3.24)

ĥ(r)
k,i = h(r−1)

k,i ∀ 1 ≤ k ≤ r , i ≥ 2 . (3.25)

• Second half step (of r-th): We compute

H (r) = exp(Lεr χ(r)
2 (q,p))Ĥ

(r) =
∑
j≥0

(εr) j

j!
L j

χ(r)
2 (q,p)

Ĥ (r) , (3.26)

with a generating function χ(r)
2 (q, p) linear in p. Setting χ(r)

2 (q, p) = χ̃(r)
2 (q, p)+S(r)·p = Y(r)(q)·p+S(r)·p .

The function χ̃(r)
2 (q, p) satisfies the homological equation{

ω · p , χ̃(r)
2 (q, p)

}
+ ĥ(r)

r,1(q, p) = 0 . (3.27)

Setting ĥ(r)
r,1(q, p) =

∑
| j|=1

∑
k∈Zn

c(r)
jk pjeik·q the solution of (3.27) is

χ̃(r)
2 (q, p) =

∑
| j|=1

∑
k∈Zn\{0}

c(r)
jk

ik · ω
pj eik·q. (3.28)

We finally compute the constant vector S(r) by the condition q(0) = 0 at the time t = 0. By the
poisson bracket

{qi , χ
(r)
2 } = {qi , χ̃

(r)
2 (q, p)} + {qi ,S(r) · p}

=
∑
| j|=1

 ∑
k∈Zn\{0}

{qi ,
c(r)

jk

i k · ω
pj cos(k · q)

}
+

{
qi ,

c(r)
jk

k · ω
pj sin(k · q)

} +
{
qi , S (r)

j pj}
=

∑
| j|=1

 ∑
k∈Zn\{0}

 c(r)
jk

i k · ω
ji p ji−1

i cos(k · q) +
c(r)

jk

k · ω
ji p ji−1

i sin(k · q)

 + S (r)
j ji p ji−1

i


=

∑
| j|=1

∑
k∈Zn\{0}

 c(r)
jk

i k · ω
ji p ji−1

i (cos(k · q) − 1) +
c(r)

jk

k · ω
ji p ji−1

i sin(k · q)



(3.29)

we obtain

S (r)
j =

∑
k∈Zn\{0}

i c(r)
jk

k · ω
. (3.30)

The HamiltonianH (r) (Eq (3.26)) is:

H (r)(q, p; J0) =ω · p + εC1 + . . . + εr−1 Cr−1 + εr Cr

+ ε h(r)
1 (q, p; J0) + . . . + εr h(r)

r (q, p; J0)

+ εr+1 h(r)
r+1(q, p; J0) + . . . ,

(3.31)
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where h(r)
j =

∑
i≥0 h(r)

j,i ∀ j ≥ r + 1 and h(r)
j =

∑
i≥2 h(r)

j,i ∈ O(|| p ||2)∀ j = 1, . . . , r , where:

h(r)
k,0 = ĥ(r)

k,0 ∀ 1 ≤ k ≤ 2r , (3.32)

h(r)
k,0 =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,0

)
∀ k ≥ 2r + 1 , (3.33)

h(r)
k,1 = 0 ∀ 1 ≤ k ≤ r , (3.34)

h(r)
k,1 =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,1

)
∀ k ≥ r + 1 , k , m r (m ∈ N) , (3.35)

h(r)
k,1 =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) ∀ k ≥ r + 1 , k = m r (m ∈ N) . (3.36)

h(r)
k,i = ĥ(r)

k,i ∀ 1 ≤ k ≤ r , i ≥ 2 , (3.37)

h(r)
k,i =

b k−1
r c∑

j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,i

)
∀ k ≥ r + 1 , i ≥ 2 . (3.38)

Equation (3.36), using homological equation (3.27), can be written equivalently as:

h(r)
k,1 =

m−2∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,1

)
+

m − 1
m!

Lm−1
χ(r)

2 (q,p)

(̂
h(r−1)

r,1

)
∀ k ≥ r + 1 , k = m r (m ∈ N) (3.39)

where, from (3.36) we have
m−1∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

mr− jr,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) =

m−2∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

mr− jr,1

)
+

1
(m − 1)!

Lm−1
χ(r)

2 (q,p)

(̂
h(r)

r,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) =

m−2∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

mr− jr,1

)
+

1
m!

Lm−1
χ(r)

2 (q,p)

(̂
h(r)

r,1 + Lχ(r)
2 (q,p) (ω · p)

)
+

m − 1
m!

Lm−1
χ(r)

2 (q,p)

(̂
h(r)

r,1

)
.

Second part of the proof: using the formulas (3.19)–(3.25) and (3.32)–(3.38), we can express each
term in the function h(r) in terms of the functions h(r−1) instead of ĥ(r) . From Eq (3.32) we have

h(r)
k,0 = ĥ(r)

k,0 = Ck =
〈
h(k−1)

k,0

〉
− ω · K(k) ∀ 1 ≤ k ≤ r , (3.40)

h(r)
k,0 = ĥ(r)

k,0 = h(r−1)
k,0 ∀ r + 1 ≤ k ≤ 2r − 1 , (3.41)

h(r)
2r,0 = ĥ(r)

2r,0 =

b 2r−1
r c∑

j=0

1
j!

L j

χ(r)
1 (q)

(
h(r−1)

2r− jr, j

)
= h(r−1)

2r,0 + Lχ(r)
1 (q)

(
h(r−1)

r,1

)
, (3.42)

where we used Eqs (3.19), (3.20) and (3.21), respectively. Using (3.25) we have

h(r)
k,i = ĥ(r)

k,i = h(r−1)
k,i ∀ 1 ≤ k ≤ r , i ≥ 2 . (3.43)
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Equation (3.38) can now be written in the form

h(r)
k,i =

b k−1
r c−1∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,i

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(̂
h(r)

k−b k−1
r cr,i

)
(3.44)

∀ k ≥ r + 1 , i ≥ 2 . The indices i, j, k in the first term of the above equation satisfy the relation

k − jr ≥ k − b
k − 1

r
cr + r ≥ r + 1 , (3.45)

where we have used the inequalities j ≤ b(k − 1)/rc − 1 and bk − 1c ≤ k − 1 . Then Eq (3.45) ensures
that the first term of (3.44) satisfies the definition (3.24). For the second term in (3.44), we have the
following useful (also in the sequel) remark: we can write k = mr + f , where 0 ≤ f ≤ r − 1 and
m ∈ N . Thus

k − b
k − 1

r
cr = mr + f − b

mr + f − 1
r

cr = f − b
f − 1

r
cr . (3.46)

Then

k − b
k − 1

r
cr = f − b

f − 1
r
cr = r if f = 0 (3.47)

and

1 ≤ k − b
k − 1

r
cr = f − b

f − 1
r
cr ≤ r − 1 if 1 ≤ f ≤ r − 1 . (3.48)

We can conclude that 1 ≤ k − b(k − 1)/rcr ≤ r , implying that the definition (3.25) holds for the second
term in (3.44). We can then write (3.44) as‡

h(r)
k,i =

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,i+s

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(
h(r−1)

k−b k−1
r cr,i

)
(3.49)

=

b k−1
r c∑

j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,i+s

)
,

∀ k ≥ r + 1 , i ≥ 2 .
Equation (3.33) can be analyzed similarly as above, by splitting it in three different parts

h(r)
k,0 =

b k−1
r c−2∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,0

)
+

1(
b k−1

r c − 1
)
!
Lb(k−1)/rc−1
χ(r)

2 (q,p)

(̂
h(r)

k−(b k−1
r c−1)r,0

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(̂
h(r)

k−b k−1
r cr,0

)
(3.50)

∀ k ≥ 2r + 1 . We study separately the relations satisfied by the indices ( j, k) of each of the three terms
in the previous equality. Following (3.45), we have that

k − jr ≥ k − b
k − 1

r
cr + 2r ≥ 2r + 1 ,

(since j ≤ b(k− 1)/rc − 2 ). Then, the definition (3.21) holds for the first term. For the second and third
terms, we have different formulas according to whether or not k is a multiple of r.

‡Observe that, due to (3.47) and (3.48), we have that if j = b(k − 1)/rc , then 0 ≤ b(k − jr − 1)/rc = b(k − b(k − 1)/rcr − 1)/rc ≤
b(r − 1)/rc = 0 , i.e., s = 0 . This allows to join all terms in a single sum.
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(i) First case: k is not a multiple of r , i.e.,

k = mr + f with 1 ≤ f ≤ r − 1 and m ∈ N .

From (3.48) we have that 1 ≤ k − b k−1
r cr ≤ r − 1 and, consequently, r + 1 ≤ k − b k−1

r cr + r ≤ 2r − 1 .
Then, the definitions (3.19) and (3.20) hold, respectively, for the third and second term of (3.50). Thus,
we can write Eq (3.50) as

h(r)
k,0 =

b k−1
r c−2∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,s

)
+

1(
b k−1

r c − 1
)
!
Lb(k−1)/rc−1
χ(r)

2 (q,p)

(
h(r−1)

k−(b k−1
r c−1)r,0

)
,

∀ k ≥ 2r + 1 , k , mr , m ∈ N .

(ii) Second case: k is a multiple of r , i.e.,

k = mr with m ∈ N .

From (3.47) we now have that k − b k−1
r cr = r and, consequently, k − b k−1

r cr + r = 2r . Then, the
definitions (3.19) and (3.21) hold, respectively, for the third and the second term of (3.50). Thus, we
can write Eq (3.50) as

h(r)
k,0 =

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,s

)
, (3.51)

∀ k ≥ 2r + 1 , k = mr , m ∈ N . By the same argument, we can write Eq (3.35) as:

h(r)
k,1 =

b k−1
r c−1∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,1

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(̂
h(r)

k−b k−1
r cr,1

)
(3.52)

∀ k ≥ r + 1 , k , m r (m ∈ N) . In view of the inequalities (3.45) and (3.48) we then readily find that the
definitions (3.24) and (3.22) hold, respectively, for the first and second part of the previous equation,
i.e., (3.52) leads to

h(r)
k,1 =

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,1+s

)
, (3.53)

∀ k ≥ r + 1 , k , m r (m ∈ N) . Finally, recalling again (3.45) and (3.47), we can write Eq (3.36) as§

h(r)
k,1 =

b k−1
r c−1∑
j=0

1
j!

L j

χ(r)
2 (q,p)

(̂
h(r)

k− jr,1

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(̂
h(r)

k−b k−1
r cr,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) (3.54)

=

b k−1
r c−1∑
j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,1+s

)
+

1
b k−1

r c!
Lb(k−1)/rc
χ(r)

2 (q,p)

(
h(r−1)

k−b k−1
r cr,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p)

§In the last equality, due to (3.47), we have that if j = b(k− 1)/rc , then b(k− jr − 1)/rc = b(k− b(k− 1)/rcr − 1)/rc = b(r − 1)/rc = 0 ,
i.e., s = 0 . Thus, also here we can join the terms in a single sum.
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=

b k−1
r c∑

j=0

b
k− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

k− jr−sr,1+s

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) ,

∀ k ≥ r + 1 , k = m r (m ∈ N) (where we used the definitions (3.24) and (3.23) for the first and second
part of the sum). As before, we can then write the previous equation as

m−1∑
j=0

b
mr− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

mr− jr−sr,1+s

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) =

m−2∑
j=0

b
mr− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

mr− jr−sr,1+s

)
+

1
(m − 1)!

Lm−1
χ(r)

2 (q,p)

(
h(r−1)

r,1

)
+

1
m!

Lm
χ(r)

2 (q,p)
(ω · p) =

m−2∑
j=0

b
mr− jr−1

r c∑
s=0

1
j! s!

L j

χ(r)
2 (q,p)

Ls
χ(r)

1 (q)

(
h(r−1)

mr− jr−sr,1+s

)
+

1
m!

Lm−1
χ(r)

2 (q,p)

(
h(r−1)

r,1 + Lχ(r)
2 (q,p) (ω · p)

)
+

m − 1
m!

Lm−1
χ(r)

2 (q,p)

(
h(r−1)

r,1

)
.

(3.55)

Use of Eq (3.23) and the homological equation (3.27) then concludes the proof. �

4. Concluding remarks

The focus of the present paper is twofold.
i) We emphasize the differences between two distinct methods by which Lindstedt series can be

computed in nonlinearly coupled oscillator Hamiltonian models. In particular, we discussed a
Lindstedt method called ‘analogous to the Birkhoff series’, and another called ‘analogous to the
Kolmogorov series’. In the first case, series expansions are defined in open domains in the action
space around the origin, and the frequencies are represented as (series) polynomial functions of the
action variables. In the second method, instead, the frequencies along any required torus solution
must be fixed in advance (‘torus fixing’), and the series allow (after reversion) to determine a
posteriori the amplitudes (or values of the actions) for which the motion takes place with a given set
of frequencies. We explain how this difference in the physical interpretation of what the series are
meant to compute leads also to formal differences in the way the series terms are computed, as well as
to real differences in the convergence and precision properties of the series.

ii) We propose and give the formal structure of an algorithm viewed as an analogue of the
Kolmogorov scheme within the framework of the ‘torus fixing’ method, but properly dealing with the
lack of the twist property in the Hamiltonian appearing in the kernel of the associated perturbative
scheme. In particular, we demonstrate how the lack of the twist condition can be compensated by a
suitable introduction of counter-terms (in the spirit of the procedures proposed already
in [1, 11, 12, 20]). In fact, we demonstrate how to compute such counter-terms in a way leading to
precisely the same frequency corrections as those obtained by the Lindstedt method called ‘analogous
to Kolmogorov’.

Our formal algorithm given in Section 3 above is accompanied by particular examples offering
some intuition into the subtleties of each examined method. On the other hand, as stressed in the
introduction, the convergence of the Kolmogorov series computed by the algorithm presented in
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Section 3 can only be inferred by an indirect argument, namely, their equivalence with the Lindstedt
series of Subsection 2.3. Thus, we point out the interesting open question of a direct proof of the
convergence of our hereby presented KAM algorithm for isochronous systems (see also [20]).
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A. Example – 1DOF Hamiltonian with an odd (cubic) degree dependence on x

Consider the following one-degree of freedom Hamiltonian, with odd power dependence on the
variable x

H(x, p) =
ω0

2

(
p2 + x2

)
− ε

x3

3
. (A.1)

We pass to action-angle variables (J, q) through the transformation x =
√

2J sin(q) , p =
√

2J cos(q) ,
obtaining

H(q, J) = ω0 J −
ε
√

2
J3/2 sin(q) +

ε

3
√

2
J3/2 sin(3q) . (A.2)

Finally, we define the translation J = J0 + p leading to (apart from constants)

H(q, p) = ω0 p −
ε
√

2
(J0 + p)3/2 sin(q) +

ε

3
√

2
(J0 + p)3/2 sin(3q) . (A.3)

Since the variable J = J0 + p appears in the above Hamiltonian in half-integer powers, we expand the
Hamiltonian in powers of the variable p up to the same order as the maximum normalization order in
ε. This proves to be sufficient since higher powers of p only influence the process at powers (in the
book keeping order) higher than the maximum normalization order. In particular, the following lemma
can be easily proved:
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Lemma 1. Let H(q, J) = ω0 J + ε h(q, J) , where h = O(J
k
2 ) k ≥ 3 . Then, for all n ≥ 1 (with n =

number of normalization steps) χ(n)
1 = O

(
J

(k−2)n+2
2

0

)
and χ(n)

2 = O

(
J

(k−2)n
2

0

)
.

Proof. For the proof, see the appendix B. �

We will now illustrate the method by computing the direct (Lindstedt) and indirect (Kolmogorov)
series up to order 3 in ε in the example above (the reason for reaching order 3 instead of 2 will become
clear below). Starting from the Hamiltonian (A.3) we perform an expansion in p leading to (apart from
constants)

H(q, p) = ω0 p −
ε J3/2

0
√

2
sin(q) −

3 ε
√

J0

2
√

2
p sin(q) −

3 ε

8
√

2
√

J0

p2 sin(q) +
ε

16
√

2 J3/2
0

p3 sin(q)

+
ε J3/2

0

3
√

2
sin(3q) +

ε
√

J0

2
√

2
p sin(3q) +

ε

8
√

2
√

J0

p2 sin(3q) −
ε

48
√

2 J3/2
0

p3 sin(3q) .

(A.4)

A.1. Lindstedt series analogous to Kolmogorov

Following the same procedure as in subsection 2.3, we start with the equations of motion under the
Hamiltonian (A.2) 

q̇(t) =
∂H

∂J
= ω0 −

3 ε
√

J

2
√

2
sin(q) +

ε
√

J

2
√

2
sin(3q) (A.5a)

J̇(t) = −
∂H

∂q
=
ε J3/2

√
2

cos(q) −
ε J3/2

√
2

cos(3q) . (A.5b)

Replacing, as before, the expressions

ω0 = ω + ε a1 + ε2 a2 + ε3 a3 ,

q(t) = q0(t) + ε q1(t) + ε2 q2(t) + ε3 q3(t) ,
J(t) = J0(t) + εJ1(t) + ε2J2(t) + ε3J3(t) ,

(A.6)

into the equations of motion and performing an expansion up to order 3 in ε (having fixed ω) we
compare terms of like orders in ε in the l.h.s and r.h.s of (A.5a) and (A.5b). At order zero we have

q̇0(t) = ω , J̇0(t) = 0 =⇒ q0(t) = ω t , J0(t) = J0 ,

where we fix the initial phase q0(0) = 0 and J0(0) = J0 . At order one, we find

q̇1(t) = a1 −
3
√

J0

2
√

2
sin(ω t) +

√
J0

2
√

2
sin(3ω t),

J̇1(t) =
J3/2

0
√

2
cos(ω t) −

J3/2
0
√

2
cos(3ω t) .

(A.7)

Since no constant terms arise in q̇1(t), we have that a1 = 0. Then

q1(t) = −
2
√

2
√

J0

3ω
+

3
√

J0

2
√

2ω
cos(ω t)−

√
J0

6
√

2ω
cos(3ω t) , J1(t) =

J3/2
0
√

2ω
sin(ω t)−

J3/2
0

3
√

2ω
sin(3ω t)
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yielding the constants q1(0) = J1(0) = 0 . At order two we now get

q̇2(t) = a2 −
5 J0

6ω
+

J0

ω
cos(ω t) +

3 J0

8ω
cos(2ω t) −

J0

ω
cos(3ω t) +

J0

2ω
cos(4ω t) −

J0

24ω
cos(6ω t),

J̇2(t) =
2 J2

0

3ω
sin(ω t) +

4 J2
0

3ω
sin(2ω t) −

2 J2
0

ω
sin(3ω t) +

2 J2
0

3ω
sin(4ω t) ;

(A.8)

To compensate for the constant term in q̇2(t) we now set a2 = 5 J0/(6ω). Then,

q2(t) =
J0

ω2 sin(ω t) +
3 J0

16ω2 sin(2ω t) −
J0

3ω2 sin(3ω t) +
J0

8ω2 sin(4ω t) −
J0

144ω2 sin(6ω t),

J2(t) =
5 J2

0

6ω2 −
2 J2

0

3ω2 cos(ω t) −
2 J2

0

3ω2 cos(2ω t) +
2 J2

0

3ω2 cos(3ω t) −
J2

0

6ω2 cos(4ω t) .
(A.9)

In a similar way, at order 3 we find a3 = 0, and the solutions

q(t) = ω t −
2
√

2 ε
√

J0

3ω
+

3 ε
√

J0

2
√

2ω
cos(ω t) −

ε
√

J0

6
√

2ω
cos(3ω t) +

ε2 J0

ω2 sin(ω t) +
3 ε2 J0

16ω2 sin(2ω t)

−
ε2 J0

3ω2 sin(3ω t) +
ε2 J0

8ω2 sin(4ω t) −
ε2 J0

144ω2 sin(6ω t) −
38
√

2 ε3 J3/2
0

81ω3 +
ε3 J3/2

0
√

2ω3
cos(ω t)

−
ε3 J3/2

0

2
√

2ω3
cos(2ω t) +

145 ε3 J3/2
0

144
√

2ω3
cos(3ω t) −

√
2 ε3 J3/2

0

3ω3 cos(4ω t) +
ε3 J3/2

0

16
√

2ω3
cos(5ω t)

+
ε3 J3/2

0

18
√

2ω3
cos(6ω t) −

ε3 J3/2
0

48
√

2ω3
cos(7ω t) +

ε3 J3/2
0

1296
√

2ω3
cos(9ω t) ,

J(t) = J0 +
ε J3/2

0
√

2ω
sin(ω t) −

ε J3/2
0

3
√

2ω
sin(3ω t) +

5 ε2 J2
0

6ω2 −
2 ε2 J2

0

3ω2 cos(ω t) −
2 ε2 J2

0

3ω2 cos(2ω t)

+
2 ε2 J2

0

3ω2 cos(3ω t) −
ε2 J2

0

6ω2 cos(4ω t) +
7 ε3 J5/2

0

4
√

2ω3
sin(ω t) −

8
√

2 ε3 J5/2
0

9ω3 sin(2ω t)

+
13 ε3 J5/2

0

8
√

2ω3
sin(3ω t) −

4
√

2 ε3 J5/2
0

9ω3 sin(4ω t) +
7 ε3 J5/2

0

72
√

2ω3
sin(5ω t) ,

ω = ω0 −
5 ε2J0

6ω
.

(A.10)

A.2. Kolmogorov normal form

Starting from the Hamiltonian (A.4), we perform canonical transformations in order to bring the
Hamiltonian into Kolmogorov normal form, i.e.,H(q, p) = ω p + εR1(q, p) + ε2 R2(q, p) + ε3 R3(q, p)
where Ri(q, p) = O(|| p ||2) i = 1, 2, 3. Substituting, as in Section 2, the expression ω0 = ω + ε a1 +
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ε2 a2 + ε3 a3 in the Hamiltonian (A.4), we have

H(q, p) = ω p + ε a1 p −
ε J3/2

0
√

2
sin(q) −

3 ε
√

J0

2
√

2
p sin(q) −

3 ε

8
√

2
√

J0

p2 sin(q)

+
ε

16
√

2 J3/2
0

p3 sin(q) +
ε J3/2

0

3
√

2
sin(3q) +

ε
√

J0

2
√

2
p sin(3q) +

ε

8
√

2
√

J0

p2 sin(3q)

−
ε

48
√

2 J3/2
0

p3 sin(3q) + ε2 a2 p + ε3 a3 p .

(A.11)

At first order, we have

〈
h(0)

1,1

〉
q

=

〈
a1 p −

3
√

J0

2
√

2
p sin(q) +

√
J0

2
√

2
p sin(3 q)

〉
q

= 0 =⇒ a1 = 0 ; (A.12)

implying that a1 = 0 for the corresponding counterterm in the Hamiltonian (A.11). In order to eliminate
the terms constant in the actions (depending only in the angle q ) ε h1,0, given by

h(0)
1,0(q) = −

J3/2
0
√

2
sin(q) +

J3/2
0

3
√

2
sin(3 q) ,

we define the generating function X(1)(q) such that LX(1)(q)(ω p) + h(0)
1,0 =

〈
h(0)

1,0

〉
q

. Hence

X(1) =
J3/2

0
√

2ω
cos(q) −

J3/2
0

9
√

2ω
cos(3 q) .

In order to fix the initial value of p at zero, we then set (as in Section 2) χ(1)
1 (q) = X(1)(q) + K(1) q ; in

this case, the constant K(1) = 0 . We can now determine the intermediate Hamiltonian

Ĥ (1) = exp
(
Lε χ(1)

1 (q)

)
H .

Denoting by ε ĥ(1)
1,1 the terms of Ĥ (1) of order one in ε and linear in p , we have

ĥ(1)
1,1 = −

3
√

J0 p

2
√

2
sin(q) +

√
J0 p

2
√

2
sin(3 q) .

These terms are eliminated by the generating function χ(1)
2 (q, p) = χ̃(1)

2 (q, p) + S (1) p satisfying the
homological equation Lχ(1)

2 (q, p)(ω p) + ĥ(1)
1,1 = 0 . In order to fix the initial value of q at zero, we readily

find

S (1) = −
2
√

2
√

J0

3ω
and

χ(1)
2 (q, p) = −

2
√

2
√

J0 p
3ω

+
3
√

J0 p

2
√

2ω
cos(q) −

√
J0 p

6
√

2ω
cos(3 q) .
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Thus, the Hamiltonian

H (1) = exp
(
Lε χ(1)

2 (q, p)

)
Ĥ (1)

is now in Kolmogorov normal form up to first order in ε (it is easy to check that the transformed
Hamiltonian contains the normal form terms

−
3 p2

8
√

2
√

J0

sin(q) +
p2

8
√

2
√

J0

sin(3 q) +
p3

16
√

2 J3/2
0

sin(q) −
p3

48
√

2 J3/2
0

sin(3 q) ).

In a similar way we can proceed at orders 2 and 3, obtaining the formulas:

a2 =
5 J0

6ω
,

χ(2)
1 = −

5 J2
0 q

12ω2 +
5 J2

0

16ω2 sin(2 q) −
J2

0

16ω2 sin(4 q) +
J2

0

144ω2 sin(6 q) ,

χ(2)
2 =

J0 p
2ω2 sin(q) +

13 J0 p
32ω2 sin(2 q) −

J0 p
6ω2 sin(3 q) +

J0 p
288ω2 sin(6 q)

(A.13)

and

a3 = 0 ,

χ(3)
1 =

49 J5/2
0

96
√

2ω3
cos(q) −

5 J5/2
0

6
√

2ω3
cos(2 q) +

43 J5/2
0

432
√

2ω3
cos(3 q) +

J5/2
0

3
√

2ω3
cos(4 q)

−
29 J5/2

0

240
√

2ω3
cos(5 q) −

J5/2
0

18
√

2ω3
cos(6 q) +

7 J5/2
0

192
√

2ω3
cos(7 q) −

11 J5/2
0

5184
√

2ω3
cos(9 q) ,

χ(3)
2 = −

107 J3/2
0 p

162
√

2ω3
+

295 J3/2
0 p

192
√

2ω3
cos(q) −

47 J3/2
0 p

36
√

2ω3
cos(2 q) +

133 J3/2
0 p

288
√

2ω3
cos(3 q)

−
J3/2

0 p

18
√

2ω3
cos(4 q) +

13 J3/2
0 p

288
√

2ω3
cos(5 q) −

J3/2
0 p

36
√

2ω3
cos(6 q) +

7 J3/2
0 p

1152
√

2ω3
cos(7 q)

−
J3/2

0 p

10368
√

2ω3
cos(9 q) ,

(A.14)

for the generating functions. The final Hamiltonian is

H (3)(q̃, p̃) = ω p̃ + εR1(q, p) + ε2 R2(q, p) + ε3 R3(q, p)

where (q̃, p̃) indicate the new variables, and R j(q̃, p̃) = O(|| p̃ ||2) j = 1, 2, 3 . Thus, the torus
p̃(t) = 0, q̃(t) = ω t is a solution for the equations of motion of this Hamiltonian. Using the Lie
transformations, the solution in the original variables reads

q(t) = ω t −
2
√

2 ε
√

J0

3ω
+

3 ε
√

J0

2
√

2ω
cos(ω t) −

ε
√

J0

6
√

2ω
cos(3ω t) +

ε2 J0

ω2 sin(ω t) +
3 ε2 J0

16ω2 sin(2ω t)

−
ε2 J0

3ω2 sin(3ω t) +
ε2 J0

8ω2 sin(4ω t) −
ε2 J0

144ω2 sin(6ω t) −
38
√

2 ε3 J3/2
0

81ω3 +
ε3 J3/2

0
√

2ω3
cos(ω t)
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−
ε3 J3/2

0

2
√

2ω3
cos(2ω t) +

145 ε3 J3/2
0

144
√

2ω3
cos(3ω t) −

√
2 ε3 J3/2

0

3ω3 cos(4ω t) +
ε3 J3/2

0

16
√

2ω3
cos(5ω t)

+
ε3 J3/2

0

18
√

2ω3
cos(6ω t) −

ε3 J3/2
0

48
√

2ω3
cos(7ω t) +

ε3 J3/2
0

1296
√

2ω3
cos(9ω t) ,

p(t) =
ε J3/2

0
√

2ω
sin(ω t) −

ε J3/2
0

3
√

2ω
sin(3ω t) +

5 ε2 J2
0

6ω2 −
2 ε2 J2

0

3ω2 cos(ω t) −
2 ε2 J2

0

3ω2 cos(2ω t)

+
2 ε2 J2

0

3ω2 cos(3ω t) −
ε2 J2

0

6ω2 cos(4ω t) +
7 ε3 J5/2

0

4
√

2ω3
sin(ω t) −

8
√

2 ε3 J5/2
0

9ω3 sin(2ω t)

+
13 ε3 J5/2

0

8
√

2ω3
sin(3ω t) −

4
√

2 ε3 J5/2
0

9ω3 sin(4ω t) +
7 ε3 J5/2

0

72
√

2ω3
sin(5ω t) ,

J(t) = J0 + p(t) . (A.15)

Recalling also the computed values of a1 , a2 and a3 (Eqs (A.12)–(A.14)) we have also

ω = ω0 −
5 ε2J0

6ω
.

Thus, we obtain the same solutions as by the Lindstedt method (Eq (A.10)).
We remark that also in this case the solutions produced by the Birkhoff normal form are equal

to those produced by the Lindstedt method in the version ‘analogous to Birkhoff’. However, if we
compare these solutions with those produced by the KAM algorithm, we also note many differences
from order 3 and beyond. For completeness, we report in the following the solutions with the Birkhoff

method:

q(t) = ω t −
2
√

2 ε
√

J0

3ω0
+

3 ε
√

J0

2
√

2ω0

cos(ω t) −
ε
√

J0

6
√

2ω0

cos(3ω t) +
ε2 J0

ω2
0

sin(ω t) +
3 ε2 J0

16ω2
0

sin(2ω t)

−
ε2 J0

3ω2
0

sin(3ω t) +
ε2 J0

8ω2
0

sin(4ω t) −
ε2 J0

144ω2
0

sin(6ω t) −
83
√

2 ε3 J3/2
0

81ω3
0

+
9 ε3 J3/2

0

4
√

2ω3
0

cos(ω t)

−
ε3 J3/2

0

2
√

2ω3
0

cos(2ω t) +
125 ε3 J3/2

0

144
√

2ω3
0

cos(3ω t) −

√
2 ε3 J3/2

0

3ω3
0

cos(4ω t) +
ε3 J3/2

0

16
√

2ω3
0

cos(5ω t)

+
ε3 J3/2

0

18
√

2ω3
0

cos(6ω t) −
ε3 J3/2

0

48
√

2ω3
0

cos(7ω t) +
ε3 J3/2

0

1296
√

2ω3
0

cos(9ω t) ,

p(t) =
ε J3/2

0
√

2ω0

sin(ω t) −
ε J3/2

0

3
√

2ω0

sin(3ω t) +
5 ε2 J2

0

6ω2
0

−
2 ε2 J2

0

3ω2
0

cos(ω t) −
2 ε2 J2

0

3ω2
0

cos(2ω t)

+
2 ε2 J2

0

3ω2
0

cos(3ω t) −
ε2 J2

0

6ω2
0

cos(4ω t) +
31 ε3 J5/2

0

12
√

2ω3
0

sin(ω t) −
8
√

2 ε3 J5/2
0

9ω3
0

sin(2ω t)

+
97 ε3 J5/2

0

72
√

2ω3
0

sin(3ω t) −
4
√

2 ε3 J5/2
0

9ω3
0

sin(4ω t) +
7 ε3 J5/2

0

72
√

2ω3
0

sin(5ω t) ,

ω = ω0 −
5 ε2 J0

6ω0
. (A.16)
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B. Proof of Lemma 1

Consider the Hamiltonian:
H(q, J) = ω0 J + ε h(q, J) ,

where h = O(J
k
2 ) k ∈ N, k ≥ 3 . Introducing the translation J = J0 + p , h = O((J0 + p)

k
2 ) , if k is even

we obtain a finite expression in the powers of p. If k is odd, define f (p) = ε (J0 + p)
k
2 and suppose

we want to compute the normalization steps by the Kolmogorov algorithm up to order εn n ≥ 1 . The
expansion in p = 0 up to order n yields

f (p) = ε (J0 + p)
k
2 = ε J

k
2
0 + ε

k
2

J
k
2−1
0 p + . . . +

ε

n!
k
2

(
k
2
− 1

)
· · ·

(
k
2
− n + 1

)
J

k
2−n
0 pn .

Moreover, observe that χ(1)
1 ∼ ε J

k
2
0 and χ(1)

2 ∼ ε J
k
2−1
0 . Now, we identify those terms whose Lie

derivatives could modify the generating functions along the normalization process. We have

Ln−1
εχ(1)

1

(
ε J

k
2−n
0 pn

)
. Thus the term of higher degree in p in the expansion of f (p) , denoted by ' f (n)(p) ,

influences h(1)
n,1. In fact, since

Ln−1
εχ(1)

1

(
ε J

k
2−n
0 pn

)
= Ln−2

εχ(1)
1
{ε J

k
2−n
0 pn, εχ(1)

1 (q)}︸                  ︷︷                  ︸
∼ ε2 Jk−n

0 pn−1

= Ln−3
εχ(1)

1
{{ε J

k
2−n
0 pn, εχ(1)

1 (q)}, εχ(1)
1 (q)}︸                                ︷︷                                ︸

∼ ε3 J
3
2 k−n

0 pn−2

' . . . . . .︸︷︷︸
(n−3)times

(B.1)

' εnJ
k
2−n
0

(
J

k
2
0

)n−1
p = εnJ

(k−2)n
2

0 p ,

after n step a contribution stemming from the term f (n)(p) will appear in the generating function χ(n)
2 .

On the contrary, the term Ln−1
εχ(1)

1

(
ε f (n+1)(p)

)
contributes to h(1)

n,2 (which is quadratic in the action p),

while the term Ln
εχ(1)

1

(
ε f (n+1)(p)

)
contributes to h(1)

n+1,1, which is of order εn+1. From (B.1) it follows that

h(n)
n,1 = O

(
J(k−2)n/2

0

)
. Hence, the dependence of χ(n)

2 on the parameter J0 is in the power χ(n)
2 ∼ J

(k−2)n
2

0 .
Also

Ln−1
εχ(1)

2

(
ε J

k
2−1
0 p

)
= Ln−2

εχ(1)
2
{ε J

k
2−1
0 p, εχ(1)

2 (q, p)}︸                    ︷︷                    ︸
∼ ε2 Jk−2

0 p

= . . . . . .︸︷︷︸
(n−2)times

' εnJ
k
2−1
0

(
J

k
2−1
0

)n−1
p = εnJ

(k−2)n
2

0 p ,

thus, again, h(n)
n,1 = O

(
J(k−2)n/2

0

)
. Finally

Ln−1
εχ(1)

1

(
ε J

k
2−n+1
0 pn−1

)
= Ln−2

εχ(1)
1
{ε J

k
2−n+1
0 pn−1, εχ(1)

1 (q)}︸                       ︷︷                       ︸
∼ ε2 Jk−n+1

0 pn−2

= . . . . . .︸︷︷︸
(n−2)times

' εnJ
k
2−n+1
0

(
J

k
2
0

)n−1
p = εnJ

(k−2)n+2
2

0 p ,

implying χ(n)
1 ∼ J

(k−2)n+2
2

0 . This concludes the proof of the lemma. �

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 5, Issue 2, 1–35.

http://creativecommons.org/licenses/by/4.0

	Introduction and background
	An elementary example
	Birkhoff normal form
	Lindstedt solution analogous to Birkhoff
	Lindstedt series analogous to Kolmogorov
	Kolmogorov normal form
	Comparisons and numerical tests
	Hamiltonian preparation in the case of odd nonlinear couplings

	KAM algorithm for isochronous systems
	Concluding remarks
	Example – 1DOF Hamiltonian with an odd (cubic) degree dependence on x
	Lindstedt series analogous to Kolmogorov
	Kolmogorov normal form

	Proof of Lemma 1

