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Abstract: We are concerned with the uniqueness of mild solutions in the critical Lebesgue space
L

n
2 (Rn) for the parabolic-elliptic Keller-Segel system, n ≥ 4. For that, we prove the bicontinuity of the

bilinear term of the mild formulation in the critical weak-L
n
2 space, without using Kato time-weighted

norms, time-spatial mixed Lebesgue norms (i.e., Lq((0,T ); Lp)-norms with q , ∞), and any other
auxiliary norms. Our proofs are based on Yamazaki’s estimate, duality and Hölder’s inequality, as well
as an adapted Meyer-type argument. Since they are different from those of Kozono, Sugiyama and
Yahagi [J. Diff. Eq. 253 (2012)] and it is not clear whether mild solutions are weak solutions in the
critical C([0,T ); L

n
2 ), our results complement theirs in a twofold way. Moreover, the bilinear estimate

together heat semigroup estimates yield a well-posedness result whose dependence with respect to the
decay rate γ of the chemoattractant is also analyzed.
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1. Introduction

We are concerned with the parabolic-elliptic Keller-Segel (or Patlak-Keller-Segel) system
∂tu = ∇ · (∇u − u∇v) , in x ∈ Rn, t ∈ (0,T ),
−4v + γv = κu, in x ∈ Rn, t ∈ (0,T ),
u|t=0 = u0 ≥ 0, in x ∈ Rn,

(1.1)

where 0 < T ≤ ∞, u(x, t) ≥ 0 represents the density of cells and v(x, t) ≥ 0 is the concentration
of the chemoattractant. The parameters γ ≥ 0 and κ > 0 denote the decay and production rate of
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the chemoattractant, respectively. The model works for n ≥ 2 but, as will be seen later, we restrict
themselves to n ≥ 4 due to technical issues.

System (1.1) is a chemotaxis model with a mathematical structure of parabolic-elliptic type. It
is used in the study of aggregation of biological species, describing the behavior of organisms (e.g.,
bacteria) that move towards high concentration of a chemical secreted by themselves.

In view of (1.1)2, we can express v = κ(−∆ + γI)−1u and, according to Duhamel’s principle, the
Cauchy problem (1.1) can be formally converted to the integral equation

u(t) = G(t)u0 + B(u, u)(t), (1.2)

where G(t) = e∆t stands for the heat semigroup and the bilinear term B is given by

B(u,w)(t) = −κ

∫ t

0
∇x ·G(t − s)

[
u∇x(−∆ + γI)−1w

]
(s)ds. (1.3)

Functions u(x, t) satisfying (1.2) are called mild solutions for (1.1). Here the mild formulation (1.2) is
considered in a suitable dual sense, see Section 3 for details.

For γ = 0, Eqs. (1.1)1–(1.1)2 has the scaling

u(x, t)→ λ2u(λx, λ2t), (1.4)

which, for the initial data, induces
u0(x)→ λ2u0(λx). (1.5)

Spaces invariant under the scaling (1.5), namely ‖u0‖X ≈
∥∥∥λ2u0(λx)

∥∥∥
X

for all λ > 0, are called critical
spaces for (1.1).

In the dimension n = 2, it is well-known that there exists a threshold value for the initial mass
M =

∫
u0dx that decides if solutions exist globally (M < 8π/κ) or blow up in a finite time (M > 8π/κ)

(see, e.g., [6, 7]). Note that the space L1(R2) is critical for (1.1). For n ≥ 3, one might wonder if some
critical space could play a similar role as the L1-space in n = 2 (for example, L

n
2 (Rn)), however, it is

still an open problem to know whether there exists such a suitable space. In connection with that, in
dimensions n ≥ 3, there is a huge literature about existence of mild solutions for (1.1) and its parabolic-
parabolic version with smallness conditions on the initial data in critical spaces. Without making a
complete list, we mention the results in L1 ∩ L

n
2 [10], L

n
2 [22] (weak solutions), Marcinkiewicz L

n
2 ,∞

(weak−Lp spaces) [23], PMn−2 [3], Besov Ḃ
n
q−2
q,∞ [18], Triebel-Lizorkin Ḟ−2

∞,2 [19], MorreyMq,n−2q [2],

Fourier-Besov FḂ−2
1,r [18], Besov-Morrey N

n−µ
q −2

q,µ,∞ [13], and Fourier-Besov-Morrey spaces FN
n−2− n−µ

q
q,µ,∞

[9], among others. It is worth noting that most of the above existence results of small mild solutions in
critical spaces were inspired by those for Navier-Stokes equations, see, e.g., [1,11,15,20,21,24,25,30],
and their references.

On the other hand, the uniqueness in critical spaces X is more subtle and needs some care. For
n ≥ 3, most of the above existence results are proved by constructing a fixed point argument in time-
dependent spaces with norms composed of two ou more parts. One is the norm of the persistence space
L∞((0,∞); X) and the others are auxiliary norms such as Kato time-weighted type norms, time-spatial
mixed Lebesgue norms (i.e., Lq((0,T ); Lp)-norms or, more generally, Lq((0,T ); Y) with q , ∞) and
Chemin-Lerner type norms, which are used to control the bilinear term B(u,w). Also, solutions are
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continuous at t > 0 but only time-weakly continuous at t = 0+, since the heat semigroup {et∆}t≥0 is
not strongly continuous at t = 0+. This lack of continuity can be overcome by considering either the
maximal subspace X̃ in which {et∆}t≥0 is continuous or the closure of C∞0 (Rn) in X, and then solutions
belong to C([0,T ); X̃) with large initial data u0 ∈ X̃ and small T > 0. The estimates involving auxiliary
norms in the proof of existence results, in principle, provide only a conditional uniqueness result, that
is, uniqueness in a space more restricted than the natural one C([0,T ); X̃). For the sake of completeness,
in the case n = 2 we would like to mention the uniqueness results of weak/mild solutions for (1.1)
(and its parabolic-parabolic version) with finite mass, finite second moment and finite entropy (see,
e.g., [8, 12, 27] and their references).

A way to obtain unconditional uniqueness in the critical class C([0,T ); X̃) (or uniqueness of small
solutions in L∞((0,∞); X)) is to prove the bilinear estimate

‖B(u,w)‖L∞((0,T );X) ≤ C ‖u‖L∞((0,T );X) ‖w‖L∞((0,T );X) , (1.6)

where C > 0 is a constant. This approach has already been employed in the context of Navier-Stokes
equations. For example, see [11, 14, 25, 26, 28, 30] to results in the framework of critical Lebesgue,
Marcinkiewicz, Morrey and weak-Morrey spaces.

Next, let us discuss in more detail the works [22] and [23], which are more directly related to our
results. In [23], Kozono-Sugiyama proved local well-posedness of mild solutions for (1.1) with small
data u0 ∈ L

n
2 ,∞ and n ≥ 3, where the existence and uniqueness are obtained in the class

u ∈ BC((0,T ); L
n
2 ,∞) and tβu ∈ BC((0,T ); Lq) with

n
2
< q < n, (1.7)

where u is time-weakly continuous at t = 0+ and β = 1 − n
2q . Also, u ∈ BC([0,T ); L

n
2 ) provided that

u0 ∈ L
n
2 ↪→ L

n
2 ,∞. They employed a point-fixed argument by using Kato’s approach (see [20]) and

their bilinear estimates are performed with the help of the auxiliary time-weighted norm
supt∈(0,T ) tα ‖u(·, t)‖Lq . The solution u is global (T = ∞) if ‖u0‖L

n
2 ,∞

is small enough. For the
uniqueness, besides assuming (1.7), it is required a smallness condition in the auxiliary norm, that is,
the uniqueness is obtained in a space more restricted than BC((0,T ); L

n
2 ,∞). Moreover, assuming

additional regularity on the initial data, they obtained the existence of local (or small global) strong
Lp-solutions.

In [22], Kozono-Sugiyama-Yahagi proved the existence of local weak solutions u with respect to a
suitable set of test functions. More precisely, for initial data u0 ∈ L

n
2 (Rn), they obtained local-in-time

solutions in
BC([0,T ); L

n
2 (Rn)) ∩ Lq((0,T ); Lp(Rn)),

where T > 0 is small enough, n ≥ 3, 2/q + n/p = 2, 2 < q < ∞, n/2 < p < n, and p ≤ n2/2(n − 2).
These weak solutions can be extended globally (T = ∞) if ‖u0‖L

n
2

is small enough. They constructed
solutions via an approximation scheme of strong solutions whose existence was obtained in [23]. The
uniqueness was obtained in the class Lq((0,T ); Lp(Rn)) with n ≥ 3, 2/q + n/p = 2 and n/2 < p < n.
For n ≥ 4, the uniqueness in the natural persistence space C([0,T ); L

n
2 (Rn)) was obtained without any

further condition, while the uniqueness in L∞((0,T ); L
n
2 (Rn)) required small conditions on u and u0. For

that, Kozono-Sugiyama-Yahagi converted the uniqueness problem to the one of obtaining global strong
solutions for the associated adjoint equation, where coefficients depend on weak solutions, by using
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maximal regularity of the heat equation and suitable estimates involving Lq((0,T ); Lp(Rn))-norms with
q , ∞.

As pointed out by the authors of [22], it is not clear whether mild solutions satisfy their weak
formulation. So, a natural question is to know if we have unconditional uniqueness of mild solutions
for (1.1) in C([0,T ); L

n
2 (Rn)), as well as the uniqueness in L∞((0,T ); L

n
2 (Rn)) with supt∈(0,T ) ‖u(·, t)‖L n

2

small enough. Another question is to know if it is possible to obtain these uniqueness properties (and
also existence and continuous dependence on initial data) without using auxiliary norms such as, for
example, those in [22] and [23].

In this paper we obtain positive answers for the above questions for n ≥ 4. First, inspired by [30], we
prove estimate (1.6) with X = L

n
2 ,∞(Rn) by means of careful estimates on the predual space of L

n
2 ,∞(Rn),

that is, the Lorentz space L
n

n−2 ,1(Rn) (see Section 2 for the definition). So, adapting arguments found
in [28], we obtain the unconditional uniqueness of mild solutions in the class C([0,T ); L

n
2 (Rn)) with

0 < T ≤ ∞ and initial data u0 ∈ L
n
2 (Rn) (see Theorem 3.1), because L

n
2 (Rn) is contained in X̃ (maximal

subspace of L
n
2 ,∞(Rn) where {et∆}t≥0 is continuous). Moreover, using heat semigroup estimates and

(1.6), we have the well-posedness of small solutions in L∞((0,T ); L
n
2 ,∞(Rn)) with 0 < T ≤ ∞. Since

we have the continuous inclusion L
n
2 ↪→ L

n
2 ,∞, the uniqueness of mild solutions in L∞((0,T ); L

n
2 (Rn))

holds true provided that supt∈(0,T ) ‖u(·, t)‖L n
2

is small enough. Furthermore, we analyze the dependence
of the well-posedness result with respect to the decay rate γ of the chemoattractant (see Remark 3.2).

Finally, we observe that our results work well by considering non-negative u0 and u in (1.1) as well
as without any sign restrictions on them. However, we have considered the former for physical reasons
associated to the model.

This paper is organized as follows. In Section 2, we give some preliminaries about Lorentz spaces
and, in particular, weak-Lp spaces. Section 3 is dedicated to the statements of our results and some
further remarks. The proofs of results are performed in Section 4.

2. Preliminaries

This section is devoted to recalling some basic definitions and properties about Lorentz spaces.
Let | · | stands for the Lebesgue measure and let λ f (s) = |{x ∈ Rn : | f (x)| > s}| be the distribution

function of a measurable function f : Rn → R. The rearrangement of f is defined as

f ∗(t) = inf{s > 0 : λ f (s) ≤ t}, for t > 0. (2.1)

The Lorentz space is the complete quasi-normed space

Lp,d(Rn) =
{
f : Rn → R measurable; ‖ f ‖∗p,d < ∞

}
, (2.2)

where the quasi-norm ‖ f ‖∗p,d is given by

‖ f ‖∗p,d =



[∫ ∞
0

(
t

1
p [ f ∗(t)]

)d dt
t

] 1
d
, 0 < p < ∞, 1 ≤ d < ∞

sup
t>0

t
1
p [ f ∗(t)], 0 < p ≤ ∞, d = ∞.

(2.3)
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Taking d = p and d = ∞ in (2.2), we obtain the Lebesgue space Lp,p(Rn) = Lp(Rn) and the
Marcinkiewicz space Lp,∞, also called weak-Lp, respectively. The case p = ∞ and 1 ≤ d < ∞ was
removed from (2.3) because L∞,d is the trivial space.

In general, the quantity (2.3) is not a norm on Lp,d. Consider the double-rearrangement

f ∗∗(t) =
1
t

∫ t

0
f ∗(s)ds,

and define the quantity ‖·‖p,d exactly as in (2.3) but replacing f ∗ with f ∗∗. For 1 < p ≤ ∞, the quantities
‖ · ‖p,d and ‖ · ‖∗p,d are topologically equivalent on Lp,d, since we have

‖ · ‖∗Lp,d ≤ ‖ · ‖Lp,d ≤
p

p − 1
‖ · ‖∗Lp,d .

The pair (Lp,r, ‖ · ‖p,d) is a Banach space and, unless mentioned otherwise, we consider it when 1 < p ≤
∞. For 0 < p ≤ 1, Lp,d is endowed with ‖ · ‖∗p,d. In the case p = d = 1 we have ‖ · ‖∗1,1 coincides with the
standard L1-norm and L1,1 = L1.

Lorentz spaces have the scaling property

‖ f (λx)‖p,d = λ−
n
p ‖ f (x)‖p,d. (2.4)

For 1 ≤ d1 ≤ p ≤ d2 ≤ ∞ and 1 ≤ p ≤ ∞, we have the continuous strict inclusions

Lp,1 ⊂ Lp,d1 ⊂ Lp ⊂ Lp,d2 ⊂ Lp,∞ (2.5)

and then Lp,d becomes larger as the second index d goes from 1 to∞.
Next we recall the Hölder inequality in Lorentz spaces (see [17, 29]). Let 1 < p1, p2, p3 ≤ ∞ and

1 ≤ d1, d2, d3 ≤ ∞ be such that 1/p3 = 1/p1 + 1/p2 and 1/d1 + 1/d2 ≥ 1/d3. Then, there exists a
constant C > 0 (independent of f and g) such that

‖ f g‖p3,d3 ≤ C‖ f ‖p1,d1‖g‖p2,d2 . (2.6)

For 1 ≤ p, d < ∞ (with d = 1 when p = 1), we have that the dual space of Lp,d is Lp′,d′(see [16]). In
particular, the dual of Lp,1 is Lp′,∞ for 1 ≤ p < ∞. The space of compactly-supported smooth functions
C∞0 (Rn) is dense in Lp,d(Rn) for 1 ≤ p, d < ∞.

Young inequality works well in the framework of Lorentz spaces. In fact, if 1 < p1, p2, p3 ≤ ∞ and
1 ≤ d1, d2, d3 ≤ ∞ with 1/p3 = 1/p1 + 1/p2 − 1 and 1/d1 + 1/d2 ≥ 1/d3, then (see [29])

‖ f ∗ g‖p3,d3 ≤ C‖ f ‖p1,d1‖g‖p2,d2 , (2.7)

where C > 0 is a universal constant. Moreover, for p1 = 1 and 1 < p = p2 = p3 ≤ ∞, we have the
inequality (see [4])

‖ f ∗ g‖p,∞ ≤ p
p+1

p (p − 1)−1‖ f ‖L1‖g‖p,∞. (2.8)

Lorentz spaces has nice interpolation properties. For that, recall that the functor (·, ·)θ,r constructed
via the Kθ,q-method is exact of exponent θ on the categories of quasi-normed and normed spaces. Let
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0 < p1 < p2 ≤ ∞, 0 < θ < 1, 1
p = 1−θ

p1
+ θ

p2
and 1 ≤ d1, d2, d ≤ ∞. Employing (·, ·)θ,r in Lorentz spaces,

we obtain (see [5, Chapter 5]) (
Lp1,d1 , Lp2,d2

)
θ,d

= Lp,d. (2.9)

For 1 < p ≤ ∞ and 1 ≤ d ≤ ∞, by interpolating (2.8), we arrive at the inequality

‖ f ∗ g‖p,d ≤ C‖ f ‖L1‖g‖p,d, (2.10)

where C > 0 is a universal constant.

3. Main results

In this section we state the bilinear estimate (1.6) in weak- L
n
2 and uniqueness result. Also, we make

some comments about global existence and its dependence on the decay rate γ of the chemoattractant,
non-negativity and mass conservation.

Before proceeding, we point out that the mild formulation (1.2) and its bilinear term should be
meant in a suitable dual sense in the L

n
2 ,∞-setting by using its predual space L

n
n−2 ,1 and the duality

pairing 〈 f , g〉 =
∫
Rn f gdx (see [30]). More precisely, for u,w ∈ L∞((0,T ); L

n
2 ,∞) we define B(u,w) by

〈B(u,w), φ〉 = −κ

∫ t

0

〈(
u∇x(−∆ + γI)−1w

)
,∇xG(t − s)φ

〉
ds, (3.1)

for all φ ∈ L
n

n−2 ,1(Rn) and a.e. t ∈ (0,T ). Note also that, for u0 ∈ L
n
2 ,∞(Rn), the convolution G(t)u0 is

well-defined and
〈G(t)u0, φ〉 = 〈u0,G(t)φ〉 , for all φ ∈ L

n
n−2 ,1(Rn). (3.2)

Thus, the formulation (1.2) should be meant as

〈u(·, t), φ〉 = 〈u0,G(t)φ〉 − κ
∫ t

0

〈[
u∇x(−∆ + γI)−1u

]
(s),∇xG(t − s)φ

〉
ds,

for all φ ∈ L
n

n−2 ,1(Rn) and a.e. t ∈ (0,T ). In other words, taking into account (3.2), u verifies (1.2) with
B(u, u) given by (3.1).

Our results read as follows.

Theorem 3.1. Let n ≥ 4, γ ≥ 0, κ > 0 and 0 < T ≤ ∞.

(i) (Bilinear estimate) Let B(·, ·) be the bilinear form (1.3). There exists a constant K > 0
(independent of γ) such that

‖B(u,w)‖L∞((0,T );L
n
2 ,∞) ≤ κg(γ)K ‖u‖L∞((0,T );L

n
2 ,∞) ‖w‖L∞((0,T );L

n
2 ,∞) , (3.3)

for all u, v ∈ L∞((0,T ); L
n
2 ,∞(Rn)), where g(γ) = 1 and g(γ) = γ−(n−1) if γ = 0 and γ > 0,

respectively.

(ii) (Uniqueness) Let u and w be mild solutions of (1.1) in the class C([0,T ); L
n
2 (Rn)) with the same

initial data u0. Then u(·, t) = w(·, t) in L
n
2 (Rn), for all t ∈ [0,T ).
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Remark 3.2. (Further comments)

(i) (The restriction n ≥ 4) Due to the duality arguments in our proofs, we need to employ Lemma 4.3
with p = n

2 and r = n
3 > 1, and then n ≥ 4. In turn, we need r > 1 for Hölder’s inequality (2.6)

and the quantity ‖·‖r,∞ in Lr,∞ to be a norm. An interesting question would be to know whether,
with some suitable relaxed integrability conditions, those arguments could be adapted to obtain
a similar uniqueness result in lower dimensions.

(ii) (Well-posedness) Let 0 < T ≤ ∞, γ ≥ 0, n ≥ 4 and u0 ∈ L
n
2 ,∞(Rn). Under a small assumption on

‖u0‖ n
2 ,∞

and a fixed-point argument, Theorem 3.1 together with heat semigroup estimates (see
(4.1)) imply the well-posedness of small mild solutions in the class L∞((0,T ); L

n
2 ,∞(Rn)). In

particular, we obtain the uniqueness of sufficiently small mild solutions in L∞((0,T ); L
n
2 ,∞(Rn))

or, using the continuous inclusion L
n
2 (Rn) ↪→ L

n
2 ,∞(Rn), in L∞((0,T ); L

n
2 (Rn)). Moreover, the

solution u belongs to BC((0,T ); L
n
2 ,∞(Rn)) with time-weak continuity at t = 0+. For u0 ∈ L

n
2 (Rn),

one obtains u ∈ BC([0,T ); L
n
2 (Rn)) and the smallness condition on u0 can be replaced with a

smallness one on the existence-time T > 0, and u ∈ C([0,T ); L
n
2 (Rn)) can be large. For γ = 0

and T = ∞, the obtained solution is self-similar provided that u0 is homogeneous of degree −2.
(iii) (Non-negativity and mass conservation) Due to the fixed-point argument, the solution u in item (ii)

of this remark can be obtained as the limit of the Picard sequence u(k+1) = u(1) +B(u(k), u(k)), k ∈ N,
and u(1) = G(t)u0. Let u0 ∈ L

n
2 ,∞(Rn) be non-negative. Using the parabolic regularization of the

heat semigroup (see, e.g., (4.1)), an induction procedure, and the divergence structure of B(·, ·),
one can show that u(k) is smooth and non-negative, for each k. Since the convergence u(k) → u in
L∞((0,T ); L

n
2 ,∞(Rn)) preserves non-negativity, it follows that u is non-negative. Furthermore, for

u0 ∈ L1
+(Rn) ∩ L

n
2 ,∞(Rn), using (4.1) and reducing the size of ‖u0‖ n

2 ,∞
(if necessary), one can show

further integrability properties and polynomial time decay of Lp-norms for u(·, t) and B(·, t), for
t > 0, and then obtain u(·, t) ∈ L1

+ and B(u, u)(·, t) ∈ L1. After, using the divergence form of B(·, ·),
one can obtain the mass conservation of the solution, that is,

∫
Rn u(·, t)dx =

∫
Rn u0dx, for t > 0.

(iv) (Large decay rate of the chemoattractant) Let 0 < T ≤ ∞. Considering γ > 0 large enough,
we can make κg(γ)K small enough and then obtain the well-posedness of mild solutions for (1.1)
in L∞((0,T ); L

n
2 ,∞(Rn)), without smallness conditions on the existence-time T and initial data u0.

More precisely, in order to employ a fixed-point argument, we need 4 ‖u0‖ n
2 ,∞

(κg(γ)K) < 1 which
leads us to

γ >
(
4κK ‖u0‖ n

2 ,∞

) 1
n−1
.

4. Proof of Theorem 3.1

4.1. Proof of item (i) (Bilinear estimate)

We start with a lemma that will be useful to handle the coupling operator in (1.1) in Lorentz spaces.

Lemma 4.1. Let n ≥ 2, 1 < p < n, 1 ≤ d ≤ ∞ and 1
q = 1

p −
1
n . The operator L j = ∂ j(−∆ + γI)−1

is continuous from Lp,d(Rn) to Lq,d(Rn), for each j = 1, 2, ..., n. Moreover, for γ > 0, there exists a
constant C > 0 (independent of f and γ) such that∥∥∥L j f

∥∥∥
q,d
≤ Cγ−(n−1) ‖ f ‖p,d .
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Proof. We can write the multiplier operator L j as

L j f = K j,γ ∗ f , where K̂ j,γ(ξ) =
−iξ j

|ξ|2 + γ
.

Taking γ = 0 and γ = 1, we have that

K j,0 =

(
−iξ j

|ξ|2

)∨
∈ L

n
n−1 ,∞ and K j,1 =

(
−iξ j

|ξ|2 + 1

)∨
∈ L

n
n−1 ,∞.

For γ = 0, by using Young’s inequality in Lorentz space (2.7) with p3 = q, p1 = n
n−1 , and p2 = p, we

obtain that ∥∥∥L j f
∥∥∥

q,d
=

∥∥∥K j,0 ∗ f
∥∥∥

q,d
≤ C

∥∥∥K j,0

∥∥∥
p1,∞
‖ f ‖p,d = C ‖ f ‖p,d .

Next we deal with the case γ > 0. By a scaling argument, note that K̂ j,γ(ξ) = γ−1/2K̂ j,1(γ−1/2ξ) and then

K j,γ(x) = γ−1/2γn/2K j,1(γ1/2x) = γ(n−1)/2K j,1(γ1/2x).

Thus, again using (2.7) with the same indexes above, it follows that∥∥∥L j f
∥∥∥

q,d
=

∥∥∥K j,γ ∗ f
∥∥∥

q,d

≤ C
∥∥∥γ(n−1)/2K j,1(γ1/2x)

∥∥∥
p1,∞
‖ f ‖p,d

= Cγ−
n−1

2 γ
− n

2p1

∥∥∥K j,1

∥∥∥
p1,∞
‖ f ‖p,d

= Cγ−(n−1) ‖ f ‖p,d .

�

In the lemma below, we recall some known estimates in Lorentz spaces for the heat semigroup
(see [30]).

Lemma 4.2. (i) Let m ∈ {0} ∪ N, 1 < r ≤ p ≤ ∞, and 1 ≤ d1, d2 ≤ ∞. Then, there exists a constant
C > 0 such that

‖∇m
x G(t)ϕ‖p,d2 ≤ Ct−

m
2 −

n
2 ( 1

r −
1
p )
‖ϕ‖r,d1 , for all ϕ ∈ Lr,d1 . (4.1)

(ii) (Yamazaki’s estimate) Let 1 < r < p < ∞ . There is a constant C > 0 such that∫ ∞

0
s

n
2 ( 1

r −
1
p )− 1

2 ‖∇x ·G(s)φ‖p,1 ds ≤ C‖φ‖r,1, for all φ ∈ Lr,1. (4.2)

In the next lemma, by means of a duality argument and (4.2), we provide estimates for the linear
operator

Q( f )(x) =

∫ ∞

0
∇x ·G(s) f (·, s) ds, (4.3)

which is linked to “Duhamel structure” of (1.3). Just like (1.3), the operator (4.3) is understood in the
sense of duality, as explained in Section 3. Note that the lemma is valid for n ≥ 2.

Mathematics in Engineering Volume 4, Issue 6, 1–14.



9

Lemma 4.3. Let n ≥ 2 and 1 < r < p < ∞ be such that n
r −

n
p = 1. There exists a constant C > 0 such

that
‖Q( f )‖p,∞ ≤ C sup

t>0
‖ f (·, t)‖r,∞, (4.4)

for all f ∈ L∞((0,∞), Lr,∞), where the supremum over t > 0 is taken in the essential sense.

Proof. First, denoting the heat kernel by ς(x, t), we have that G(t)φ = ς(·, t) ∗ φ(·). A duality argument
and Hölder’s inequality (2.6) allow us to estimate the Lp,∞-norm of Q( f ) as

‖Q( f )‖p,∞ ≤ C sup
‖φ‖

Lp′ ,1 =1

∣∣∣∣∣∫
Rn
Q( f )φ(x)dx

∣∣∣∣∣
≤ C sup

‖φ‖
Lp′ ,1 =1

∫
Rn

∫ ∞

0
|((∇ · g) (x, s) ∗ f (x, s))φ(x)| dsdx

≤ C sup
‖φ‖

Lp′ ,1 =1

∫ ∞

0

∫
Rn
|(∇ · g(−x, s) ∗ φ(x)) f (x, s)| dxds

≤ C sup
‖φ‖

Lp′ ,1 =1

∫ ∞

0
‖ f (·, s)‖r,∞‖∇xg(x, s) ∗ φ‖r′,∞ds. (4.5)

Now note that 1 < p′ < r′ < ∞ and that the condition n
r −

n
p = 1 implies

n
2

(
1
p′
−

1
r′

) −
1
2

=
n
2

(
1
r
−

1
p

) −
1
2

= 0. (4.6)

Using (4.6) and (4.2) in order to estimate the integral in the right-hand side of (4.5), we arrive at

‖Q( f )‖p,∞ ≤ C sup
‖φ‖

Lp′ ,1 =1

∫ ∞

0
‖ f (·, s)‖r,∞ s

n
2 ( 1

p′ −
1
r′ )−

1
2 ‖g(x, s) ∗ φ‖r′,∞ds

≤ C sup
t>0
‖ f (·, t)‖r,∞

C sup
‖φ‖

Lp′ ,1 =1
‖φ‖p′,1


= C sup

t>0
‖ f (·, t)‖r,∞,

as required.
�

Proof of item (i). Let 0 < T ≤ ∞. For each t ∈ (0,T ), consider ft(x, s) given by

ft(·, s) = −κ(u∇(−∆ + γI)−1w)(·, t − s), for a.e. s ∈ (0, t),
ft(·, s) = 0, for s ∈ (t,∞),

and note that (1.3) can be rewritten as

B(u,w)(t) = −κ

∫ t

0
∇ ·G(t − s)(s)

[
u∇(−∆ + γI)−1w

]
ds = Q( ft).
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Taking p = n
2 , l = n and r = n

3 , observe that 1
r = 1

p + 1
l and 1

l = 1
p −

1
n . Then, we can employ Hölder’s

inequality and Lemma 4.1 to estimate

sup
0<s<T

‖ ft(·, s)‖r,∞ = κ sup
0<s<t<T

‖(u∇(−∆ + γI)−1w)(·, t − s)‖r,∞

≤ Cκ sup
0<s<T

‖u(·, s)‖p,∞ sup
0<s<T

‖∇(−∆ + γI)−1w(·, s)‖l,∞

≤ Cκg(γ) sup
0<s<T

‖u(·, s)‖p,∞ sup
0<s<T

‖w(·, s)‖p,∞, (4.7)

where g(γ) = 1 and g(γ) = γ−(n−1) if γ = 0 and γ > 0, respectively. It follows that
ft ∈ L∞((0,∞), Lr,∞(Rn)), for all t ∈ (0,T ).

Now, noting that
n
r
−

n
p

= 3 − 2 = 1,

using Lemma 4.3 and afterwards (4.7), we arrive at

sup
0<t<T

‖B(u,w)‖p,∞ = sup
0<t<T

‖Q( ft)‖p,∞

≤ Cκg(γ) sup
0<t<T

(
sup

0<s<T
‖ ft(·, s)‖r,∞

)
≤ κg(γ)K sup

0<t<T
‖u(·, t)‖p,∞ sup

0<t<T
‖w(·, t)‖p,∞.

�

4.2. Proof of item (ii) (Uniqueness)

With the bilinear estimate (3.3) in hands , the uniqueness of solutions in C([0,T ); L
n
2 ,∞) follows by

adapting an argument due to Meyer [28] for our mild formulation (see also [11, 25]).
Let u and w be mild solutions of (1.1) in C([0,T ); L

n
2 (Rn)) such that u(0) = w(0) = u0 ∈ L

n
2 (Rn). We

claim that there exists 0 < T1 < T such that u(·, t) = w(·, t) in L
n
2 (Rn), for all t ∈ [0,T1). Considering

h = u − w, h1 = G(t)u0 − u and h2 = G(t)u0 − w, we can rewrite the difference of the quadratic terms
inside (1.3) as follows

u∇(−∆ + γI)−1u) − w∇(−∆ + γI)−1w) = h∇(−∆ + γI)−1u) + w∇(−∆ + γI)−1h)
= h∇(−∆ + γI)−1G(t)u0) + G(t)u0∇(−∆ + γI)−1h)
− h∇(−∆ + γI)−1h1) − h2∇(−∆ + γI)−1h).

Thus, we can estimate h as

‖h(·, t)‖ n
2 ,∞

=

∥∥∥∥∥∥
∫ t

0
∇x ·G(t − s)

[
u∇(−∆ + γI)−1u) − w∇(−∆ + γI)−1w)

]
ds

∥∥∥∥∥∥ n
2 ,∞

≤

∥∥∥∥∥∥
∫ t

0
∇x ·G(t − s)

[
h∇(−∆ + γI)−1h1) + h2∇(−∆ + γI)−1h)

]
ds

∥∥∥∥∥∥ n
2 ,∞
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+

∥∥∥∥∥∥
∫ t

0
∇x ·G(t − s)

[
h∇(−∆ + γI)−1G(t)u0) + G(t)u0∇(−∆ + γI)−1h)

]
ds

∥∥∥∥∥∥ n
2 ,∞

:= J1(t) + J2(t). (4.8)

Using (3.3), the parcel J1(t) can be estimated as

J1(t) ≤ Kκg(γ) sup
0<t<T

‖h‖ n
2 ,∞

( sup
0<t<T

‖h1‖ n
2 ,∞

+ sup
0<t<T

‖h2‖ n
2 ,∞

). (4.9)

Next we turn to I2. Take 1 < l < n
2 < β < n and b > β satisfying 1

l = 2
n + 1

b ,
1
b = 1

β
− 1

n and let ηβ = 1− n
2β .

Also, note that 1
l = 1

β
+ 1

n and 1
n = 2

n −
1
n . Then, using (4.1), Hölder’s inequality and afterwards (4.1),

we arrive at

J2(t) ≤ C
∫ t

0
(t − s)−

1
2 ( n

l
− n

n/2 )− 1
2 ‖h(·, s)‖ n

2 ,∞
‖∇(−∆ + γI)−1G(t)u0‖b,∞ds

+ C
∫ t

0
(t − s)−

1
2 ( n

l
− n

n/2 )− 1
2 ‖G(t)u0‖β,∞‖∇(−∆ + γI)−1h(·, s)‖n,∞ds

≤ C
∫ t

0
(t − s)−

1
2 ( n

l
− n

n/2 )− 1
2 ‖h(·, s)‖ n

2 ,∞
‖G(t)u0‖β,∞ds

+ C
∫ t

0
(t − s)−

1
2 ( n

l
− n

n/2 )− 1
2 ‖G(t)u0‖β,∞‖h(·, s)‖ n

2 ,∞
ds

≤ C sup
0<t<T

‖h(·, s)‖ n
2 ,∞

( sup
0<t<T

tηβ‖G(t)u0‖β,∞)
∫ t

0
(t − s)−

n
2β s−ηβds

≤ C sup
0<t<T

‖h(·, s)‖ n
2 ,∞

( sup
0<t<T

tηβ‖G(t)u0‖β,∞), (4.10)

for all t ∈ (0,T ), where we used above that − n
2β − ηβ + 1 = 0 and∫ t

0
(t − s)−

n
2β s−ηβds = t−

n
2β−ηβ+1

∫ 1

0
(1 − s)−

n
2β s−ηβds = C < ∞.

Inserting (4.9)–(4.10) into (4.8) yields

sup
0<t<T

‖h(·, t)‖ n
2 ,∞
≤ CM(T ) sup

0<t<T
‖h(·, t)‖ n

2 ,∞
, (4.11)

where
M(T ) = ( sup

0<t<T
‖h1(·, t)‖ n

2 ,∞
+ sup

0<t<T
‖h2(·, t)‖ n

2 ,∞
+ sup

0<t<T
tηβ‖G(t)u0‖β,∞). (4.12)

Using that G(t)u0 → u0 and u, v→ u0 in L
n
2 (Rn), as t → 0+, and L

n
2 (Rn) ↪→ L

n
2 ,∞(Rn), we obtain

lim sup
t→0+

(‖h1(·, t)‖ n
2 ,∞

+ ‖h2(·, t)‖ n
2 ,∞

) = 0. (4.13)

Moreover, since u0 ∈ L
n
2 (Rn), there exists a sequence {u0,k}k ⊂ L

n
2 (Rn)∩ Lβ,∞(Rn) such that u0,k → u0 in

L
n
2 (Rn) ↪→ L

n
2 ,∞(Rn). In fact, it is sufficient to take u0,k = G( 1

k )u0 and use (4.1). Then, we can estimate

lim sup
t→0+

tηβ‖G(t)u0‖β,∞ ≤ sup
0<t<∞

tηβ‖G(t)(u0 − u0,k)‖β,∞ + lim sup
t→0+

tηβ‖G(t)u0,k‖β,∞
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≤ C‖u0 − u0,k‖ n
2 ,∞

+ C‖u0,k‖β,∞ lim sup
t→0+

tηβ

≤ C‖u0 − u0,k‖ n
2
→ 0, as k → ∞. (4.14)

In view of (4.12), (4.13) and (4.14), we can take T = T1 > 0 small enough such that CA(T1) < 1. Now,
estimate (4.11) implies that h(·, t) = 0 for all t ∈ [0,T1),which gives the desired claim.

Finally, we are going to show that the smallness condition on T1 can be removed. For that, consider

T ∗ = sup{T̃ : 0 < T̃ < T, u(·, t) = w(·, t) in L
n
2 for all t ∈ [0, T̃ )}.

If T ∗ = T, then u = w in [0,T ), as desired. If T ∗ < T ≤ ∞, we have that u(·, t) = w(·, t) for all
t ∈ [0,T ∗). By time-continuity, we obtain that u(·,T ∗) = w(·,T ∗) and then, by the first part, there
exists a sufficiently small ρ > 0 such that u(·, t) = w(·, t) for all t ∈ [T ∗,T ∗ + ρ). So, u(·, t) = w(·, t) in
[0,T ∗ + ρ), which contradics the maximality of T ∗ < ∞.

�
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