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Abstract: We construct generalized solutions for the Keller-Segel system with a degradation source
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1. Introduction

We consider a mathematical model to decribe the dynamics of biological organism influenced by
chemical signal and living in fluid. The original Keller-Segel system was proposed to write the
motion of biological individuals sensing gradient of a chemical substance and moving toward its
higher concentration (see [9]). Such biological organisms often live in fluid, and thus their behaviors
are influenced by motions of viscous fluid flows as well. There are, for example, the bacteria living in
fluid such as Bacillus subtilus ( [1, 2, 7, 11, 18, 24]) or Escherichia coli ( [12, 22]) or phenomena of
coral fertilization in sea resulting from the chemotatic behavior of sperm ( [4, 6, 10, 24]).

In this note, we study the following Keller-Segel system with degradation coupled to the Navier-
Stokes equations in a bounded domain in three dimensions:

nt + u · ∇n = ∆n − ∇· (n∇c) + ρn − µnq, (1.1)
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ct + u · ∇c = ∆c − c + n, (1.2)

ut + (u · ∇) u = ∆u + ∇P + n∇φ, ∇·u = 0 (1.3)

in Ω × (0,T ), where Ω ⊂ R3 is a bounded domain with smooth boundary and T > 0. Here n, c, u, and
P are the population density of the chemotactic organisms, the concentration of signal substances, the
fluid velocity, and the associated pressure, respectively. No flux condition is assigned for n and c at the
boundary, and u has no slip boundary condition there, namely

∂n
∂ν

=
∂c
∂ν

= 0, u = 0 on ∂Ω. (1.4)

We assume that initial data (n0, c0, u0) satisfies
0 6 n0 ∈ C0(Ω) with n0 . 0,
0 6 c0 ∈ W1,∞(Ω),
u0 ∈ W2,2(Ω) ∩W1,2

0 (Ω) with ∇·u0 = 0.

(1.5)

In case that the Eq (1.1) has the logistic degradation, i.e., q = 2, Tao and Winkler [16] proved global
existence and large time behavior of classical solutions to the system (1.1)–(1.3) in two dimensions.
Such result was extended to the case of three dimensions, provided that the fluid equation is given by
the Stokes system, instead of the Navier-Stokes equations, and µ is sufficiently large (see [15]).

For the chemotaxis-Navier-Stokes system (1.1)–(1.3) with q = 2, the existence of generalized
solutions was proved by Winkler [22].

To the best of our knowledge, if q < 2, it is not known whether or not classical solutions exist
globally in time for general data and parameters. Instead of classical solutions, recently it was shown in
[8] that generalized solutions to the chemotaxis-Stokes system exists globally in time for q ∈ (2− 1

d , 2),
where d is dimensions two or three, i.e., d = 2, 3. (the notion of generalized solutions is reminded in
Definition 2). In the absence of fluid, i.e., u = 0, one can refer to [19, 20, 23] for generalized solutions.

The main objective of this note is to establish the existence of generalized solutions globally in time,
in case that the degradation power q is less than 2, and the Navier-Stokes equations are coupled for the
fluid equations in three dimensions.

To begin with, we recall the notion of generalized solution of (1.1)–(1.3). Firstly, we remind the
γ−entrophy super(or sub) solution of the Eq (1.1).

Definition 1. Let γ ∈ (0, 1). Assume that a pair of functions (n, c) and a vector field u satisfy the
following:

∇n and ∇c are measurable in Ω × (0,∞),

nγ, nγ−2 |∇n|2 , nγ−1∇n · ∇c, nq+γ−1 ∈ L1
loc(Ω × [0,∞)),

nγ∇c, nγu ∈ L1
loc(Ω × [0,∞);R3),

∇·u = 0 inD′(Ω × (0,∞)).

Then such (n, c, u) is called a weak γ-entropy super-solution(resp., sub-) of the first equation in (1.1)–
(1.3) if

−

∞∫
0

∫
Ω

nγϕt −

∫
Ω

nγ0ϕ(·, 0) >
(6)
γ(1 − γ)

∞∫
0

∫
Ω

nγ−2 |∇n|2 ϕ +

∞∫
0

∫
Ω

nγ∆ϕ
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+ (1 − γ)

∞∫
0

∫
Ω

nγ∆cϕ +

∞∫
0

∫
Ω

nγ∇c · ∇ϕ

+ ργ

∞∫
0

∫
Ω

nγϕ − µγ

∞∫
0

∫
Ω

nq+γ−1ϕ +

∞∫
0

∫
Ω

nγu · ∇ϕ,

for all nonnegative ϕ ∈ C∞0 (Ω × [0,∞)).

Next, we define the notion of the generalized solutions of (1.1)–(1.3).

Definition 2. A triple of two functions and a vector field

n ∈ L1
loc(Ω × [0,∞)), c ∈ L1

loc([0,∞); W1,1(Ω)), u ∈ L1
loc([0,∞); W1,1

0 (Ω,R3))

satisfying
cu ∈ L1

loc(Ω × [0,∞)), u ⊗ u ∈ L1
loc(Ω × [0,∞);R3 × R3)

is called a generalized solution of (1.1)–(1.3), if

−

∞∫
0

∫
Ω

cϕt −

∫
Ω

c0ϕ(·, 0) = −

∞∫
0

∫
Ω

∇c · ∇ϕ −

∞∫
0

∫
Ω

cϕ +

∞∫
0

∫
Ω

nϕ +

∞∫
0

∫
Ω

cu · ∇ϕ (1.6)

for all ϕ ∈ C∞0 (Ω × [0,∞)) and, if ∇·u = 0 inD′(Ω × (0,∞)) and

−

∞∫
0

∫
Ω

uϕt −

∫
Ω

u0ϕ(·, 0) = −

∞∫
0

∫
Ω

∇u · ∇ϕ +

∞∫
0

∫
Ω

(u ⊗ u) · ∇ϕ +

∞∫
0

∫
Ω

n∇φ · ϕ (1.7)

for all ϕ ∈ C∞0 (Ω× [0,∞);R3) with ∇·ϕ ≡ 0, and if there exist γ1, γ2 ∈ (0, 1) such that (n, c, u) is a weak
γ1-entropy super-solution and a weak γ2-entropy sub-solution of the first equations in (1.1)–(1.3).

For logistic coefficients ρ, µ and the potential function φ, we assume that

ρ ∈ R, µ > 0 and φ ∈ C1(Ω). (1.8)

We are now ready to state our main result.

Theorem 1.1. Let q ∈
(

20
11 , 2

)
. Then the Eqs (1.1)–(1.5) with (1.8) admit at least one generalized

solution in the sense of Definition 2.

Remark 1. The result Theorem 1.1 is an improvemnt of that of [22], which showed the existence of
the generalized solution in case that q = 2. Furthermore, it is also an extension to the result of [8],
since the Navier-Stokes equations are considered instead the Stokes system. In such case, the range
of q is, however, restrictive, compared to the case that q ∈

(
5
3 , 2

)
in [8]. This is mainly due to the fact

that the control of u is more difficult for the Navier-Stokes equations, which causes lower regularity of
u · ∇c and, in turn, ∇c (see Lemma 3.6 for the details). Therefore, passing to the limit for regularized
solutions, convergence to n∇c is well understood only for q ∈

(
20
11 , 2

)
.
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Next, in case that ρ 6 0, we can show that generalized solutions converge to zero in an appropriate
sense, passing time to the limit. More precisely, we obtain the following:

Theorem 1.2. Let (n, c, u) be the generalized solution established in Theorem 1.1. If ρ = 0, then
(n, c, u) vanishes in L1(Ω) × Ll(Ω) × L2(Ω) as time tends to infinity. Furthermore, (n, c, u) satisfies∫

Ω

n(·, t) dx 6 C(1 + t)−
1

q−1 ,

∫
Ω

|u(·, t)|2 dx 6 C(1 + t)−
3q(4−q)−10

3(q−1)2

and
∫
Ω

(c(·, t))l dx 6

 C(1 + t)−
2lq+q−3l
3l(q−1)2 , if 1 6 l 6 3q − 2,

C(1 + t)−
3q−(5−2q)l

l(3q−5)(q−1) , if 3q − 2 < l 6 3q
5−2q .

Morerover, if ρ < 0, then (n, c, u) satisfies∫
Ω

n(·, t) dx 6 Ceρt,

∫
Ω

|u(·, t)|2 dx 6 Ce−δ∗t

and
∫
Ω

(c(·, t))l dx 6 Ce−
3q−(5−2q)l

5(q−1)l ρ∗t, if 1 6 l 6
3q

5 − 2q
.

where ρ∗ = min {−ρ, 1}, δ∗ = 1
2 min

{Cp

2 ,−ρ
5q−6

3(q−1)

}
and Cp is the Poincaré constant for Ω.

Remark 2. The result of Theorem 1.2 can be extended to the case q = 2 and ρ = 0. In such case, in
particular, estimates of c read as follows:∫

Ω

(c(·, t))l dx 6
{

C(1 + t)−
l+2
3l , if 1 6 l 6 4,

C(1 + t)−
6−l

l , if 4 < l 6 6.

This estimate of decay for c is slightly better, compared to those of [22, Section 8]. On the other hand,
in case that q = 2 and ρ > 0, it was also shown in [22] that if µ > χ

√
ρ/4, then

lim sup
t→∞

∥∥∥∥∥n(·, t) −
ρ

µ

∥∥∥∥∥
1

+

∥∥∥∥∥c(·, t) −
ρ

µ

∥∥∥∥∥
p

+ ‖u(·, t)‖2 = 0, 1 6 p < 6.

This convergence is based on stabilization of a certain energy functional (see [22, Section 8]). Although
similar results are expected, such a method doesn’t seem to be valid unless q = 2. Therefore, we leave
the asymptotic behaviors as an open question in case that ρ > 0 and q < 2.

This paper is organized as follows: In Section 2, we introduce an approximated system and recall
some useful lemma for our purpose. Section 3 is devoted to obtaining estimates, independent of a
regularizing parameter, of the approximated system. We then discuss the convergence of
approximated solutions to a generalized solution in Section 4. Finally, in Section 5, asymptotic
estimates are provided.

Throughout this paper, we shall abbreviate ‖ f ‖Lp(Ω) as ‖ f ‖p for simplicity. Further, we denote by
C > 0 generic constants which may be different from line to line.

Mathematics in Engineering Volume 4, Issue 5, 1–25.



5

2. Preliminaries

In the following proposition we define an appropriate approximated system to (1.1)–(1.3), for which
global classical solutions can be verified. The approximated system is given by

∂tnε + uε · ∇nε = ∆nε − ∇·(nε∇cε) + ρnε − µnq
ε − εnκε ,

∂tcε + uε · ∇cε = ∆cε − cε + nε ,

∂tuε + (Yεuε · ∇)uε = ∆uε + ∇Pε + nε∇φ,

∇·uε = 0,
∂nε
∂ν

= ∂cε
∂ν

= uε = 0,
nε(x, 0) = n0, cε(x, 0) = n0, uε(x, 0) = u0.

(2.1)

Here ε ∈ (0, 1), κ > 2 and Yε is the Yosida approximation defined by

Yε f := (I + εA)−1 f , f ∈ L2
σ(Ω),

where A is the realization of the stokes operator in D(A) = W2,2(Ω) ∩W1,2
0,σ(Ω) ⊂ L2

σ(Ω).
Following method of proofs developped in [8] and [22], one can prove the existence of classical

solution of the approximated system (2.1). Since its verification is similar to thoes of [8] and [22], we
skip its proof.

Proposition 1. For each ε ∈ (0, 1), there exist functions
nε ∈ C0(Ω × [0,∞) ∩C2,1(Ω × (0∞)),
cε ∈ C0(Ω × [0,∞) ∩C2,1(Ω × (0∞)),
uε ∈ C0(Ω × [0,∞) ∩C2,1(Ω × (0∞)),
Pε ∈ C1,0(Ω × (0,∞))

such that (nε , cε , uε , Pε) solves (2.1) classically in Ω × (0,∞).

We recall an effective inequality in Sobolev spaces called the Gagliardo-Nirenberg interpolation
inequality. Here we only consider a version of bounded Lipschitz domain Ω in R3. The proof can be
found in [3, Theorem 1.5.2] and [13].

Lemma 2.1. Let 1 6 p, r 6 ∞ and 0 6 n < m ∈ N. Then there exist constants C1 and C2 > 0 such that

‖Dn f ‖q 6 C ‖Dm f ‖θp ‖ f ‖
1−θ
r + C2 ‖ f ‖s , f ∈ D′(Ω) (2.2)

where 1
q −

n
3 =

(
1
p −

m
3

)
θ + 1

r (1 − θ), θ ∈ [ n
m , 1], and s > 0 is arbitrary.

The following two Lemmas named maximal estimates are crutial to obtain a regularity of
approximated solutions (see [5, 8, 14]).

Lemma 2.2. Let T > 0, v0 ∈ W1,p(Ω) and h ∈ Lp(0,T ; Lp(Ω;R3)) for 1 < p < ∞. Then there exists a
unique solution v ∈ Lp(0,T ; W1,p(Ω)) solving

vt − ∆v = ∇·h, (x, t) ∈ Ω × (0,T ),
v(x, 0) = v0(x), x ∈ Ω,
∂v
∂ν

= 0, (x, t) ∈ ∂Ω × (0,T ).

Mathematics in Engineering Volume 4, Issue 5, 1–25.
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Furthermore, v attains the following estimate.

T∫
0

‖v(s)‖p
p ds +

T∫
0

‖∇v(s)‖p
p ds 6 CT


T∫

0

‖h(s)‖p
p ds + ‖v0‖

p
W1,p(Ω)

 . (2.3)

Lemma 2.3. Let T > 0 and p ∈ (1, 2]. Then for every v0 ∈ W1,∞(Ω) and h ∈ Lp (Ω × (0,T )), the
following heat equation with Neumann boundary condition

vt − ∆v = h, (x, t) ∈ Ω × (0,T ),
v(x, 0) = v0(x), x ∈ Ω,
∂v
∂ν

= 0, (x, t) ∈ ∂Ω × (0,T )

(2.4)

has a unique solution v ∈ W1,p((0,T ); Lp(Ω)) ∩ Lp((0,T ); W2,p(Ω)) satisfying

‖vt‖Lp(Ω×(0,T )) + ‖v‖Lp(0,T ;W2,p(Ω)) 6 CT

(
‖h‖Lp(Ω×(0,T )) + 1

)
(2.5)

with some CT > 0.

Proof. Set X = Lp(Ω) and X1 = W2,p
ν (Ω) := { f ∈ W2,p(Ω) : ∂ f

∂ν
= 0 on ∂Ω}. From [14] and [19,

Proposition 2] we have

‖vt‖Lp(Ω×(0,T )) + ‖v‖Lp(0,T ;W2,p(Ω)) 6 CT

(
‖v0‖1− 1

p ,p
+ ‖h‖Lp(Ω×(0,T ))

)
,

where ‖·‖1− 1
p ,p

stands for the norm in the real interpolation space (X, X1)1− 1
p ,p

. Now (2.5) is achieved
from the embedding [21, Lemma 2.1.(ii)]

W1,∞(Ω) ↪→ W1,p(Ω) ↪→ W2(1− 1
p ),p(Ω) � (X, X1)1− 1

p ,p
,

for any p ∈ (1, 2]. �

Remark 3. For the purpose of our analysis, we consider only the case p ∈ (1, 2] in Lemma 2.3. One
can refer to [21] for more general cases, in particular p > 3, where the interpolation space (X, X1)1− 1

p ,p

is not equaivalent to W2(1− 1
p ),p(Ω).

Next, we present a compactness theorem called Aubin-Lions Lemma [17, Theorem 2.1] that will
be used to give convergence results for the approximated solution (nε , cε , uε).

Lemma 2.4. Let T > 0, 1 6 α0, α1 < ∞ and X0, X, X1 be Banach spaces with X0 ⊂ X ⊂ X1. Suppose
further that the embedding X0 ↪→ X is compact and the embedding X ↪→ X1 is continuous. Let

W = {v ∈ Lα0(0,T ; X0) | ∂tv ∈ Lα1(0,T ; X1)} .

Then the embedding W ↪→ Lα0(0,T ; X) is compact.
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3. Regularized solutions

The following basic properties of these solutions are well-known.

Lemma 3.1. Let T > 0. For each ε ∈ (0, 1), the solution of (2.1) fulfills∫
Ω

nε(x, t) dx 6 m for all t < T (3.1)

and

µ

T∫
0

∫
Ω

nq
ε (x, s) dx ds + ε

T∫
0

∫
Ω

nκε(x, s) dx ds 6 (ρ+T + 1)m, (3.2)

where m = max
∫

Ω

n0,
(
ρ+ |Ω|

µ

) 1
q−1

 and ρ+ = max {ρ, 0}.

Proof. Integrating the first equation in (2.1) over Ω, employing the divergence theorem, and using the
Hölder inequality yield that, for all t > 0,

d
dt

∫
Ω

nε = ρ

∫
Ω

nε − µ
∫
Ω

nq
ε − ε

∫
Ω

nκε 6 ρ+

∫
Ω

nε −
µ

|Ω|


∫
Ω

nε


q

. (3.3)

An ODE comparison implies (3.1). Integrating (3.3) with respect to time and then using (3.1), we have

µ

T∫
0

∫
Ω

nq
ε + ε

T∫
0

∫
Ω

nκε 6 ρ+

T∫
0

∫
Ω

nε +

∫
Ω

n0(x) dx −
∫
Ω

nε(x,T ) dx 6 (ρ+T + 1)m,

which implies (3.2). �

The following estimate is easily obtained by (3.1).

Lemma 3.2. For each ε ∈ (0, 1), we have

∫
Ω

cε(x, t) dx 6 max


∫
Ω

c0,m

 for all t > 0. (3.4)

Proof. Integrating the equation for cε in (2.1) and using (3.1), we have

d
dt

∫
Ω

cε +

∫
Ω

cε =

∫
Ω

nε 6 m for all t < T,

which yields (3.4) by the ODE comparison. �

We recall a useful result shown in [22, Lemma 3.4].
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Lemma 3.3. Let T ∈ (0,∞], τ ∈ (0,T ), a > 0 and b > 0. Suppose that a nonnegative function
h ∈ L1

loc(R) be such that
t+τ∫
t

h(s) ds 6 bτ for all t ∈ [0,T − τ).

If a nonnegative function y ∈ C0[0,T ) ∩C1(0,T ) satisfies

y′(t) + ay(t) 6 h(t),

then
y(t) 6 y(0) +

bτ
1 − e−aτ for all t > 0.

The following lemma is a variant of the result with q = 2 in [22, Lemma 3.6].

Lemma 3.4. Let T > 0 and q ∈ (5
3 , 2). Then there exists C > 0 such that for any ε ∈ (0, 1) we obtain∫
Ω

|cε(x, t)|r dx 6 C for all t > 0. (3.5)

Moreover,
T∫

0

( ∫
Ω

|cε(x, s)|3r
) 1

3 dx ds 6 C(T + 1), (3.6)

where r =
3q

5−2q .

Proof. Multiplying the equation for cε in (2.1) by cr−1
ε and integrating over Ω, we have for all t > 0,

d
dt

1
r

∫
Ω

cr
ε +

4(r − 1)
r2

∫
Ω

∣∣∣∣∇c
r
2
ε

∣∣∣∣2 +

∫
Ω

cr
ε =

∫
Ω

nεcr−1
ε 6 ‖nε‖q

∥∥∥cr−1
ε

∥∥∥ q
q−1
, (3.7)

where the Hölder inequality is used. Using the Gagliardo-Nirenberg inequality and (3.4), we note that∥∥∥cr−1
ε

∥∥∥ q
q−1

=
∥∥∥∥c

r
2
ε

∥∥∥∥ 2(r−1)
r

2(r−1)
r

q
q−1

6 C
(∥∥∥∥∇c

r
2
ε

∥∥∥∥ 2(r−1)
r θ

2

∥∥∥∥c
r
2
ε

∥∥∥∥ 2(r−1)
r (1−θ)

2
+

∥∥∥∥c
r
2
ε

∥∥∥∥ 2(r−1)
r

2
r

)
6 C

∥∥∥∥∇c
r
2
ε

∥∥∥∥ 2(r−1)
r θ

2

∥∥∥∥c
r
2
ε

∥∥∥∥ 2(r−1)
r (1−θ)

2
+ C for all t > 0,

where θ = 3
2 (1 − r

r−1
g−1

q ) ∈ (0, 1) since r =
3q

5−2q . Employing Young’s inequality, we have

‖nε‖q
∥∥∥cr−1

ε

∥∥∥ q
q−1
6

2(r − 1)
r2

∥∥∥∥∇c
r
2
ε

∥∥∥∥2

2
+ C ‖nε‖qq

∥∥∥∥c
r
2
ε

∥∥∥∥ 4(q−1)
3

2
+ ‖nε‖qq + C

6
2(r − 1)

r2

∥∥∥∥∇c
r
2
ε

∥∥∥∥2

2
+ C ‖nε‖qq

(∥∥∥∥c
r
2
ε

∥∥∥∥2

2
+ 1

)
+ ‖nε‖qq + C. (3.8)

Combining (3.7) with (3.8) implies that there exist C5 > 0 such that

d
dt

1
r

∫
Ω

cr
ε +

2(r − 1)
r2

∫
Ω

∣∣∣∣∇c
r
2
ε

∣∣∣∣2 +

∫
Ω

cr
ε + 1 6 C

(
‖nε‖qq + 1

) (
‖cε‖rr + 1

)
. (3.9)
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Let y(t) := ‖cε(t)‖rr + 1 and h(t) := ‖nε(t)‖qq + 1, which is in L1 locally in time. Then, dividing (3.9) by
y(t) yields that

d
dt

ln y +
2(r − 1)

r
1
y

∥∥∥∥∇c
r
2
ε

∥∥∥∥2

2
+ 1 6 Ch. (3.10)

We use again the Gagliardo-Nirenberg inequality to obtain that for all t > 0

y(t) 6 C
∥∥∥∥∇c

r
2
ε

∥∥∥∥ 6(r−1)
3r−1

2

∥∥∥∥c
r
2
ε

∥∥∥∥ 4
3r−1

2
r

+ C
∥∥∥∥c

r
2
ε

∥∥∥∥2

2
r

+ 1 6 C
(∥∥∥∥∇c

r
2
ε

∥∥∥∥ 6(r−1)
3r−1

2
+ 1

)
,

which leads that
∥∥∥∥∇c

r
2
ε

∥∥∥∥2

2
>

(
1
C y(t) − 1

) 3r−1
3(r−1) > Cy

3r−1
3(r−1) − 1. Hence, it follows that

1
y

∥∥∥∥∇c
r
2
ε

∥∥∥∥2

2
> Cy

2
3(r−1) −

1
y
> C ln y − 1 for all t > 0, (3.11)

where we use the trivial inequality ln y . yk for k > 0. Putting the above inequality (3.11) into (3.10),
we have

d
dt

ln y + C ln y 6 h.

By Lemma 3.3, we can conclude that there exists C > 0 satisfying y(t) 6 C for all t > 0 which
proves (3.5) as required. Integrating (3.10) with respect to time and exploiting the boundedness of y(t),
guaranteed by (3.5), yield that

T∫
0

∥∥∥∥∇c
r
2
ε

∥∥∥∥2

2
6 C(1 + T )

for some C > 0. Using (2.2) and (3.4), we finally have (3.6). �

We adopt well-known energy estimate for the Navier-Stokes system to gain a bound for uε in energy
class.

Lemma 3.5. Let T > 0 and q ∈
(

5
3 , 2

)
. Then there exists C > 0 such that for each ε ∈ (0, 1), we have∫

Ω

|uε(x, t)|2 dx 6 C for all t > 0 (3.12)

and
T∫

0

∫
Ω

|∇uε(x, s)|2 dx ds 6 C(1 + T ). (3.13)

Proof. We test the fluid equation in (2.1) by uε to find the following L2 estimate

d
dt

∫
Ω

u2
ε +

∫
Ω

|∇uε |2 =

∫
Ω

nεuε∇φ (3.14)

We can estimate the right hand side of (3.14) using the Hölder inequality, the Sobolev embedding
W1,2

0,σ ↪→ L6, and the interpolation inequality for nε that∫
Ω

nεuε∇φ 6 C ‖nε‖ 6
5
‖uε‖6
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6 C ‖nε‖26
5

+
1
2
‖∇uε‖22

6 C ‖nε‖
q

3(q−1)
q ‖nε‖

5q−6
3(q−1)

1 +
1
2
‖∇uε‖22

6 C
(
‖nε‖qq + 1

)
+

1
2
‖∇uε‖22 for all t > 0, (3.15)

where we used that q
3(q−1) 6 q.

Thus, with the aid of (3.15) and the Poincaré inequality, we have for some C

d
dt

∫
Ω

u2
ε + C

∫
Ω

u2
ε 6 C ‖nε‖qq + 1.

(3.12) is proved if we use (3.2) and Lemma 3.3, and then (3.13) can be calculated by integrating (3.14)
with respect to time and using (3.15). �

A direct consequence of Lemma 3.5 is the following.

Corollary 1. Let T > 0 and 3
α

+ 2
β

= 3
2 , 2 6 α 6 6. Then

T∫
0

( ∫
Ω

|uε(x, s)|α
) β
α dx ds 6 C(1 + T ), (3.16)

in particular, if α = β = 10
3 , then

T∫
0

∫
Ω

|uε(x, s)|
10
3 dx ds 6 C(1 + T ). (3.17)

Proof. In view of Lemma 3.5, (3.16), in particular (3.17), is derived from the Gagliardo-Nirenberg
inequality (2.2). �

Since uε only belong to energy class, we have lower regularity of ∇cε , due to difficulties of
controlling convective term u · ∇c, than the case that the Stokes sysem is coupled. Nevertheless, using
the divergence free condtion, we obtain a certain integrability of ∇cε by the following decompsition,
which makes computations easier. More precisely, let wε be a solution satisfying∂twε − ∆wε = −cε + nε , (x, t) ∈ Ω × [0, t),

wε(x, 0) = c0, x ∈ Ω.

Now we set w̃ε := cε − wε . Then, due to the divergence free condition for uε , it follows that w̃ε solves∂tw̃ε − ∆w̃ε = −∇·(uεcε), (x, t) ∈ Ω × [0, t),
w̃ε(x, 0) = 0, x ∈ Ω.

In next lemma, estimating each solutions of the decompsition, we show that∇cε ∈ L10q/(10−q)(Ω×(0,T )).
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Lemma 3.6. Let T > 0 and q ∈
(

5
3 , 2

)
. Then given ε ∈ (0, 1), there exists C = C(T ) > 0 such that

T∫
0

∫
Ω

|∇cε(x, s)|m dx ds 6 C, (3.18)

where m =
10q

10−q .

Proof. We first observe reularity of wε . On account of (2.5), we can find a constant C = C(T ) > 0
satisfying

T∫
0

‖∆wε‖
q
q 6 C

T∫
0

(
‖nε‖qq + ‖cε‖qq + 1

)

6 C


(
sup
t>0
‖cε‖r

)q

+

T∫
0

‖nε‖qq + 1

 . (3.19)

Then the Gagliardo-Nirenberg interpolation inequality (2.2) and (3.5) yield that

T∫
0

‖∇wε‖
5q

5−q
5q

5−q

6 C

T∫
0

(
‖∆wε‖

5q
5−q (1− q

5 )
q ‖wε‖

5q
5−q ·

q
5

3q
5−2q

+ ‖wε‖
5q

5−q
3q

5−2q

)

6 C


T∫

0

‖∆wε‖
q
q + 1

 . (3.20)

Thus, from (3.19) and (3.20) we see that for some C = C(T ) > 0

T∫
0

‖∇wε‖
5q

5−q
5q

5−q

6 C


T∫

0

‖nε‖qq +

(
sup
t>0
‖cε‖r

)q

+ 1

 .
The last term is finite because of (3.2), (3.5) and the fact that q 6 r =

3q
5−2q . Next, let α and β be in

Lemma 3.5 with α =
90q

11q+40 and β =
30q

17q−20 . It can be easily checked that 2 < α < 6 and 2 < β because

q ∈
(

5
3 , 2

)
. Then we can see via the maximal estimate (2.3) and the Hölder inequality that

T∫
0

‖∇w̃‖mm 6 CT

T∫
0

‖uεcε‖mm 6 C


T∫

0

‖uε‖βα


m
β


T∫
0

‖cε‖r3r


m
r

(3.21)

which is valid since 1
m = 1

α
+ 1

3r = 1
β

+ 1
r , where r =

3q
5−2q . The last term in (3.21) is finite due to (3.16)

and (3.6). Hence, we have
T∫

0

‖∇cε‖mm 6

T∫
0

‖∇wε‖
m
m +

T∫
0

‖∇w̃ε‖
m
m ,

which is finite since m < 5q
5−q and (3.21). Then (3.18) is proved. �
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Taking advantage of Lemma 3.6, we can obtain the maximal estimate for cε .

Lemma 3.7. Let T > 0 and q ∈
(

5
3 , 2

)
. Then there exists C = C(T ) > 0 such that for any ε > 0,

T∫
0

‖∂tcε‖
5q

5+q
5q

5+q

+

T∫
0

‖∆cε‖
5q

5+q
5q

5+q

6 C. (3.22)

Proof. Applying (2.5), we obtain

T∫
0

‖∂tcε‖
5q

5+q
5q

5+q

+

T∫
0

‖∆cε‖
5q

5+q
5q

5+q

6 C


T∫

0

‖cε‖
5q

5+q
5q

5+q

+

T∫
0

‖nε‖
5q

5+q
5q

5+q

+

T∫
0

‖uε∇cε‖
5q

5+q
5q

5+q

+ 1


6 C


(
sup
t>0
‖cε‖r

) 5q
5+q

+

T∫
0

‖nε‖qq +

T∫
0

‖uε‖
5q

5+q
10
3
‖∇cε‖

5q
5+q
m + 1


6 C


(
sup
t>0
‖cε‖r

) 5q
5+q

+

T∫
0

‖nε‖qq +

T∫
0

‖uε‖
10
3
10
3

+

T∫
0

‖∇cε‖mm + 1

 < C,

due to (3.2), (3.5), (3.17) and (3.18). This proves (3.22). �

The following two lemmas are crucial to achieving the convergence property for nε .

Lemma 3.8. Let T > 0 and q ∈
(

5
3 , 2

)
. Then for any γ ∈ (0, 1) with γ 6 4q−5

5 , there exists C = C(T ) > 0
satisfying

T∫
0

∫
Ω

∣∣∣∣∇(nε + 1)
γ
2 (x, s)

∣∣∣∣2 dx ds 6 C. (3.23)

Proof. Testing the first equation in (2.1) by γnγ−1
ε and using integration by parts, we obtain

4(1 − γ)
γ

T∫
0

∫
Ω

∣∣∣∣∇n
γ
2
ε

∣∣∣∣2 =

∫
Ω

nγε (·,T ) −
∫
Ω

nγ0 − (1 − γ)

T∫
0

∫
Ω

nγε∆cε

− ργ

T∫
0

∫
Ω

nγε + µγ

T∫
0

∫
Ω

nγ+q−1
ε + εγ

T∫
0

∫
Ω

nκ+γ−1
ε . (3.24)

Using Young’s inequality and (3.2), we have∫
Ω

nγε (·,T ) −
∫
Ω

nγ0 6 C


∫
Ω

nε + 1

 < C,

and

−ργ

T∫
0

∫
Ω

nγε + µγ

T∫
0

∫
Ω

nγ+q−1
ε + εγ

T∫
0

∫
Ω

nκ+γ−1
ε
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6 C

µ
T∫

0

∫
Ω

nq
ε + ε

T∫
0

∫
Ω

nκε + 1

 < C. (3.25)

Since 0 < γ 6 4q−5
5 , we see that 5+q

5q +
γ

q 6 1. This leads

(1 − γ)

T∫
0

∫
Ω

nγε∆cε 6

T∫
0

‖nε‖γq ‖∆cε‖ 5q
5+q

6 C


T∫

0

‖nε‖qq +

T∫
0

‖∆cε‖
5q

5+q
5q

5+q

+ 1

 < C. (3.26)

Collecting (3.24), (3.25) and (3.26), we obtain
T∫

0

∫
Ω

nγ−2
ε |∇nε |2 =

4
γ2

T∫
0

∫
Ω

∣∣∣∣∇n
γ
2
ε

∣∣∣∣2 6 C. (3.27)

Since γ − 2 < 0, we get (nε + 1)γ−2 6 nγ−2
ε , hence (3.23).

�

In the following lemma, we mean by (Wk,2
0 )∗ the dual space of Wk,2

0 .

Lemma 3.9. Let T > 0 and q ∈
(

5
3 , 2

)
. Then for any γ ∈ (0, 1) with γ 6 4q−5

5 , there exists k ∈ N and
C = C(T ) > 0, independent of ε, satisfying∥∥∥∥∂t(1 + nε)

γ
2

∥∥∥∥
L1(0,T ;(Wk,2

0 (Ω))∗)
6 C.

Proof. Fix k ∈ N to be choosen later and let ϕ ∈ Wk,2
0 (Ω) be a test function. We observe that

2
γ

∫
Ω

∂t(nε + 1)
γ
2ϕ =

∫
Ω

(1 + nε)
γ
2−1∂tnεϕ

=

∫
Ω

(1 + nε)
γ
2−1 (

∆nε − uε · ∇nε − ∇·(nε∇cε) + ρnε − µnq
ε − εn

κ
ε

)
ϕ =:

6∑
i=1

Ji.

First, employing integration by parts and Hölder inequality, we can estimate J1 as follows:

|J1| 6 C
∫
Ω

(1 + nε)
γ
2−2 |∇nε |2 |ϕ| + C

∫
Ω

(1 + nε)
γ
2−1 |∇nε | |∇ϕ|

6 C ‖ϕ‖∞
∥∥∥∥∇n

γ
2
ε

∥∥∥∥2

2
+ C ‖∇ϕ‖2

(
1 +

∥∥∥∥∇n
γ
2
ε

∥∥∥∥2

2

)
, (3.28)

where we used the fact that (1 + nε)
γ
2−2 6 (1 + nε)γ−2 6 nγ−2

ε . Similarly, the second and third terms are
controlled as follows:

|J2| 6 C
∫
Ω

(1 + nε)
γ
2−2n2− γ2

ε

∣∣∣∣∇n
γ
2
ε

∣∣∣∣ |uε | |ϕ| + C
∫
Ω

(1 + nε)
γ
2−1 |nε | |uε | |∇ϕ|
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6 C
∥∥∥∥∇n

γ
2
ε

∥∥∥∥
2
‖uε‖ 10

3
‖ϕ‖5 + C ‖1 + nε‖

γ
2
q ‖uε‖ 10

3
‖∇ϕ‖ 10q

7q−5γ

6 C
(∥∥∥∥∇n

γ
2
ε

∥∥∥∥ 10
7

2
+ C ‖uε‖

10
3
10
3

)
‖ϕ‖5 + C

(
‖1 + nε‖

5γ
7

q + ‖uε‖
10
3

10
3

)
‖∇ϕ‖ 10q

3q+5

6 C
(∥∥∥∥∇n

γ
2
ε

∥∥∥∥2

2
+ C ‖uε‖

10
3
10
3

+ 1
)
‖ϕ‖5 + C

(
‖nε‖qq + ‖uε‖

10
3
10
3

+ 1
)
‖∇ϕ‖ 10q

3q+5
(3.29)

because γ < 1 < 7q
5 and 10q

7q−5γ 6
10q

3q+5 .

|J3| 6 C
∫
Ω

(1 + nε)
γ
2−2n2− γ2

ε

∣∣∣∣∇n
γ
2
ε

∣∣∣∣ |∇cε | |ϕ| + C
∫
Ω

(1 + nε)
γ
2−1 |nε | |∇cε | |∇ϕ|

6 C
∥∥∥∥∇n

γ
2
ε

∥∥∥∥
2
‖∇cε‖q ‖ϕ‖ 2q

2−q
+ C ‖1 + nε‖

γ
2
q ‖∇cε‖q ‖∇ϕ‖ 2q

2q−2−γ

6 C
(∥∥∥∥∇n

γ
2
ε

∥∥∥∥2

2
+ ‖∇cε‖mm + 1

)
‖ϕ‖ 2q

2−q

+ C
(
‖nε‖qq + ‖∇cε‖mm + 1

)
‖∇ϕ‖ 2q

2q−2−γ
, (3.30)

where we used the fact that q < m and γ 6 4q−5
5 < 2q − 2. Estimates for J4, J5 and J6 can be easily

obtained by the following calculation

|J4| 6

∫
Ω

(1 + nε)
γ
2 |ϕ| 6 C

(
‖nε‖qq + 1

)
‖ϕ‖∞ , (3.31)

|J5| 6

∫
Ω

(1 + nε)
γ
2 +q−1 |ϕ| 6 C

(
‖nε‖qq + 1

)
‖ϕ‖∞ , (3.32)

|J6| 6 ε

∫
Ω

(1 + nε)
γ
2 +κ−1 |ϕ| 6 C

(
ε ‖nε‖κκ + 1

)
‖ϕ‖∞ . (3.33)

Collecting all of estimates (3.28)-(3.33) and applying the Sobolev embedding theorem, we have∣∣∣∣∣∣∣∣
∫
Ω

∂t(1 + nε)
γ
2ϕ

∣∣∣∣∣∣∣∣ 6 C
(∥∥∥∥∇n

γ
2
ε

∥∥∥∥2

2
+ ‖uε‖

10
3
10
3

+ ‖∇cε‖mm + ‖nε‖qq + ε ‖nε‖κκ + 1
)

× ‖ϕ‖W1,∞
0 (Ω) . (3.34)

Choose k sufficiently large that k > 5
2 . Then Wk,2

0 (Ω) is embedded into W1,∞(Ω) by Sobolev embedding.
Finally, integration of (3.34) over (0,T ) leads, with the help of (3.1), (3.2), (3.18), (3.16) and (3.23),
that ∥∥∥∥∂t(1 + nε)

γ
2

∥∥∥∥
L1(0,T ;(Wk,2

0 (Ω))∗)
6 C,

as desired. �

The estimate for the time derivative of uε is obtained by the simple calculation.

Lemma 3.10. Let T > 0. Then there exists C > 0 such that for any ε > 0,

‖∂tuε‖L1(0,T ;(W1,5
0,σ(Ω))∗) 6 C(1 + T ). (3.35)
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Proof. Given ϕ ∈ C∞0 (Ω × [0,∞);R3) with ∇·ϕ = 0, we compute∣∣∣∣∣∣∣∣
∫
Ω

∂tuεϕ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣−
∫
Ω

∇uε · ∇ϕ −
∫
Ω

(Yεuε ⊗ uε)∇ϕ +

∫
Ω

nε∇φϕ

∣∣∣∣∣∣∣∣
6 ‖∇uε‖2 ‖∇ϕ‖2 + ‖Yεuε ⊗ uε‖ 5

4
‖∇ϕ‖5 + ‖nε‖q ‖ϕ‖ q

q−1
‖∇φ‖∞

6
(
‖∇uε‖22 + 1

)
‖∇ϕ‖2 + C

(
‖Yεuε‖22 + ‖uε‖

10
3

10
3

+ 1
)
‖∇ϕ‖5

+ C
(
‖nε‖qq + 1

)
‖ϕ‖∞

6 C
(
‖∇uε‖22 + ‖uε‖

10
3

10
3

+ ‖nε‖qq + 1
)
‖ϕ‖W1,5

0 (Ω) . (3.36)

Here we used the well-known inequality ‖Yεuε‖22 6 C ‖uε‖22. Thus, integrating (3.36) over (0,T ) yields
(3.35). �

4. Convergence

We are now ready to prove the convergence property for (nε , cε , uε).

Lemma 4.1. Let q ∈ ( 5
3 , 2), γ ∈ (0, 1) with γ 6 4q−5

5 and p ∈ (1, q). A number m is given in Lemma 3.6.
Then the classical solution (nε , cε , uε) of (2.1) satisfies the following convergence property.

nε → n a.e. in Ω × (0,∞) , (4.1)

nε ⇀ n in Lq
loc(Ω × [0,∞)), (4.2)

nε → n in Lp
loc(Ω × [0,∞)), (4.3)

n
γ
2
ε ⇀ n

γ
2 in L2

loc([0,∞); W1,2(Ω)), (4.4)
cε → c a.e. in Ω × (0,∞) , (4.5)

cε ⇀ c in Lm
loc([0,∞); W1,m(Ω)), (4.6)

∆cε ⇀ ∆c in L
5q

5+q

loc (Ω × [0,∞)), (4.7)
uε → u a.e. in Ω × (0,∞) , (4.8)

uε → u in L2
loc(Ω × [0,∞)), (4.9)

uε ⇀ u in L
10
3

loc(Ω × [0,∞)), (4.10)

∇uε ⇀ ∇u in L2
loc(Ω × [0,∞)). (4.11)

Proof. For convenience, we denote a subsequence (ε j) j∈N of ε by ε itself. First, Lemma 2.4 gives the
pointwise convergence of cε in (4.5):

cε → c a.e. in Ω × (0,∞) .

Indeed, using Lemma 2.4, bounds for cε in Lm
loc([0,∞); W1,m(Ω)) and ∂tcε in L

5q
5+q

loc (Ω×[0,∞)), asserted in
Lemma 3.6 and Lemma 3.7, yield the strong convergence of cε in Lm

loc(Ω × [0,∞)) which in particular
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implies (4.5). Similarly, by Lemma 3.8 and 3.9, we see that (1 + nε)
γ
2
ε∈(0,1) is relatively compact in

L2
loc(Ω × [0,∞)) with respect to the strong topology by Lemma 2.4. we can thus see that

nε → n a.e. in Ω × (0,∞) ,

which proves (4.1), as well as (4.4) holds. Likewise, exploiting boundedness of uε and of its time
derivative, as proved in Lemma 3.5 and Lemma 3.10, and using Lemma 2.4 again, we have (4.8) and
(4.9). The convergence properites (4.2), (4.6), (4.7), (4.10) and (4.11) is a direct consequence of (3.2),
(3.18), (3.22), (3.17) and (3.13), respectively. In order to prove (4.3), we use (3.2) again, which implies
that

∫ T

0

∥∥∥np
ε

∥∥∥ q
p
6 C for all t > 0. Hence we have

np
ε ⇀ np in L

q
p

loc(Ω × [0,∞))

as ε ↘ 0. By this weak convergence we have

T∫
0

∫
Ω

np
ε →

T∫
0

∫
Ω

np for all t > 0,

which asserts that nε → n in Lp
loc(Ω × [0,∞)) due to uniform convexity of Lp-space for p > 1. This

proves (4.3). �

We shall prove the limit (n, c, u) in Lemma 4.1 is a solution of our main system (1.1)–(1.3) in the
sense of Definition 2. We first focus on c and u which satisfy (1.1) and (1.2) in the standard weak
sence. In addition, we show that n is a weak sub-solution in the sense of Definition 1.

Lemma 4.2. Let (n, c, u) be the limit function and vector field in Lemma 4.1. Then (1.6) and (1.7) hold.

Proof. We multiply the second equation in (2.1) by the test function ϕ ∈ C∞0 (Ω × [0,∞)) to get, for all
ε ∈ (0, 1),

−

∞∫
0

∫
Ω

cεϕt −

∫
Ω

c0ϕ(·, 0) = −

∞∫
0

∫
Ω

∇cε · ∇ϕ −

∞∫
0

∫
Ω

cεϕ

+

∞∫
0

∫
Ω

nεϕ +

∞∫
0

∫
Ω

cεuε · ∇ϕ.

Applying (4.6) and (4.2), we easily obtain

∞∫
0

∫
Ω

cεϕt→

∞∫
0

∫
Ω

cϕt,

∞∫
0

∫
Ω

cεϕ→

∞∫
0

∫
Ω

cϕ, (4.12)

∞∫
0

∫
Ω

∇cε · ∇ϕ→

∞∫
0

∫
Ω

∇c · ∇ϕ,

∞∫
0

∫
Ω

nεϕ→

∞∫
0

∫
Ω

nϕ (4.13)
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as ε = ε j ↘ 0. On the other hand, combining (4.3) and (4.10) infers that cεuε ⇀ cu in Ls
loc for

s := 10+3p
10p > 1, which proves

∞∫
0

∫
Ω

cεuε · ∇ϕ→

∞∫
0

∫
Ω

cu · ∇ϕ (4.14)

as ε ↘ 0. Next we multiply the third equation in (2.1) by ϕ ∈ C∞0 (Ω × [0,∞);R3) with ∇·ϕ = 0 that
gives

−

∞∫
0

∫
Ω

uε · ϕt −

∫
Ω

u0 · ϕ(·, 0) = −

∞∫
0

∫
Ω

∇uε · ∇ϕ +

∞∫
0

∫
Ω

(Yεuε ⊗ uε) · ∇ϕ +

∞∫
0

∫
Ω

nε∇φ · ϕ

for all ε ∈ (0, 1). Similar to the above, (4.10), (4.11), (4.2) and the condition on ∇φ, as assumed in
(1.8), imply that

∞∫
0

∫
Ω

uε · ϕt→

∞∫
0

∫
Ω

u · ϕt,

∞∫
0

∫
Ω

∇uε · ∇ϕ→

∞∫
0

∫
Ω

∇u · ∇ϕ, (4.15)

∞∫
0

∫
Ω

nε∇φ · ϕ→

∞∫
0

∫
Ω

n∇φ · ϕ (4.16)

as ε ↘ 0. Since it is well known that Yεuε → u in L2
loc(Ω × (0,∞)), with the aid of (4.9), we obtain

Yεuε ⊗ uε → u ⊗ u in L1
loc(Ω × (0,∞)). This proves

∞∫
0

∫
Ω

(Yεuε ⊗ uε) · ∇ϕ→

∞∫
0

∫
Ω

(u ⊗ u) · ∇ϕ (4.17)

as ε ↘ 0. We collect (4.12)–(4.17) to conclude the proof. �

So far, we used that q > 5
3 . In the next Lemma, however, it is necessary to assume that q > 20

11 ,
which is crucial to show convergence of nε∇cε (see the estimate (4.21) below).

Lemma 4.3. Let q ∈
(

20
11 , 2

)
and (n, c, u) be the limit function and vector field in Lemma 4.1. Then n is

a γ−entropy sub-solution of (1.1)–(1.3) with γ = 1, that is, n satisfies the following integral inequality

−

∞∫
0

∫
Ω

nϕt −

∫
Ω

n0ϕ(·, 0) 6

∞∫
0

∫
Ω

n∆ϕ +

∞∫
0

∫
Ω

n∇c · ∇ϕ

+ ρ

∞∫
0

∫
Ω

nϕ − µ

∞∫
0

∫
Ω

nqϕ +

∞∫
0

∫
Ω

nu · ∇ϕ

for all nonnegative ϕ ∈ C∞0 (Ω × [0,∞)).
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Proof. We multiply the first equation in (2.1) by a nonnegative test function ϕ ∈ C∞0 (Ω × [0,∞)) and
integrate over Ω × (0,∞). By suitable integration by parts,

−

∞∫
0

∫
Ω

nεϕt −

∫
Ω

n0ϕ(·, 0) =

∞∫
0

∫
Ω

nε∆ϕ +

∞∫
0

∫
Ω

nε∇cε · ∇ϕ + ρ

∞∫
0

∫
Ω

nεϕ

− µ

∞∫
0

∫
Ω

nq
εϕ − ε

∞∫
0

∫
Ω

nκεϕ +

∞∫
0

∫
Ω

nεuε · ∇ϕ

for all ε ∈ (0, 1). Using (4.2), we see that

∞∫
0

∫
Ω

nεϕt→

∞∫
0

∫
Ω

nϕt,

∞∫
0

∫
Ω

nε∆ϕ→

∞∫
0

∫
Ω

n∆ϕ, (4.18)

and ρ

∞∫
0

∫
Ω

nεϕ→ ρ

∞∫
0

∫
Ω

nϕ (4.19)

as ε ↘ 0. Funthermore, applying strong convergence of (nε)ε∈(0,1), (uε)ε∈(0,1) as asserted in Lemma 4.1,
we have

∞∫
0

∫
Ω

nεuε · ∇ϕ→

∞∫
0

∫
Ω

nu · ∇ϕ (4.20)

as ε ↘ 0. Since q ∈ (20
11 , 2), we can take p < q close to q satisfying 1

p + 1
m < 1. Then, by (4.3) and (4.6)

we see that
∞∫

0

∫
Ω

nε∇cε · ∇ϕ→

∞∫
0

∫
Ω

n∇c · ∇ϕ (4.21)

as ε ↘ 0. Besides, the nonnegativity of nε and ϕ leads that

− ε

∞∫
0

∫
Ω

nκεϕ 6 0 (4.22)

for all ε ∈ (0, 1). Lastly, we observe that by Fatou’s lemma

µ

∞∫
0

∫
Ω

nqϕ 6 lim inf
ε↘0

µ
∞∫

0

∫
Ω

nq
εϕ

 . (4.23)

Hence, combining (4.18)–(4.23), we conclude that n is a γ−entropy sub-solution with γ = 1. �

Now we shall prove that (n, c, u) as in Lemma 4.1 is a γ−entropy super-solution.

Lemma 4.4. Let q ∈
(

5
3 , 2

)
and (n, c, u) be the limit functions and vector field in Lemma 4.1. Then for

any fixed γ ∈
(
0, 4q−5

5

)
, n is a γ−entropy supersolution of (1.1)–(1.3).
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Proof. Let 0 6 ϕ ∈ C∞0 (Ω × [0,∞)) be arbitralily. Testing the first equation in (2.1) by γnγ−1
ε ϕ and

integrating by parts, we have

−

∞∫
0

∫
Ω

nγεϕt −

∫
Ω

nγ0ϕ(·, 0) = γ(1 − γ)

∞∫
0

∫
Ω

nγ−2
ε |∇nε |2 ϕ +

∞∫
0

∫
Ω

nγε∆ϕ

+ (1 − γ)

∞∫
0

∫
Ω

nγε∆cεϕ +

∞∫
0

∫
Ω

nγε∇cε · ∇ϕ

+ ργ

∞∫
0

∫
Ω

nγεϕ − µγ

∞∫
0

∫
Ω

nq+γ−1
ε ϕ − εγ

∞∫
0

∫
Ω

nκ+γ−1
ε ϕ +

∞∫
0

∫
Ω

nγεuε · ∇ϕ

for all ε ∈ (0, 1). Since γ ∈ (0, 1), we obtaing the strong convergence nγε→ nγ in Lp
loc(Ω × (0,∞)) for

p ∈ (1, q) due to (4.3) which follows
∞∫

0

∫
Ω

nγεϕt→

∞∫
0

∫
Ω

nγϕt,

∞∫
0

∫
Ω

nγε∆ϕ→

∞∫
0

∫
Ω

nγ∆ϕ, ρ

∞∫
0

∫
Ω

nγεϕ→ ρ

∞∫
0

∫
Ω

nγϕ (4.24)

as ε ↘ 0. Furthermore, referring to (4.20) and (4.21) we have
∞∫

0

∫
Ω

nγε∇cε · ∇ϕ→

∞∫
0

∫
Ω

nγ∇c · ∇ϕ and

∞∫
0

∫
Ω

nγεuε · ∇ϕ→

∞∫
0

∫
Ω

nγu · ∇ϕ (4.25)

as ε ↘ 0. As nq+γ−1
ε is bounded in Lk

loc(Ω × (0,∞)) for k =
q

q+γ−1 > 1, uniformly in ε, the weak
convergence nq+γ−1

ε ⇀ nq+γ−1 in Lk
loc(Ω × (0,∞)) holds. Thus, we have

∞∫
0

∫
Ω

nq+γ−1
ε ϕ→

∞∫
0

∫
Ω

nq+γ−1ϕ (4.26)

as ε ↘ 0. Since 5+q
5q +

γ

q < 1, it follows from (4.3) and (4.7) that

∞∫
0

∫
Ω

nγε∆cεϕ→

∞∫
0

∫
Ω

nγ∆cϕ (4.27)

as ε ↘ 0. For the regularizing term, we note that from Hölder inequality and (3.2)∣∣∣∣∣∣∣∣−γε
∞∫

0

∫
Ω

nκ+γ−1
ε ϕ

∣∣∣∣∣∣∣∣ 6 C1γε
1−γ
κ ‖ϕ‖∞

ε
∞∫

0

∫
Ω

nεκ


κ+γ−1
κ

6 C2ε
1−γ
κ

for all ε ∈ (0, 1). Hence, we have

− γε

∞∫
0

∫
Ω

nκ+γ−1
ε ϕ→ 0 (4.28)
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as ε ↘ 0. Finally, from (4.4) and the lower semicontinuity of the seminorm ‖·‖ defined by ‖ f ‖ :=

(
∞∫
0

∫
Ω

f 2ϕ)
1
2 with respect to weak convergence, we obtain

γ(1 − γ)

∞∫
0

∫
Ω

nγ−2 |∇n|2 ϕ 6 γ(1 − γ) lim inf
ε↘0

∞∫
0

∫
Ω

nγ−2
ε |∇nε |2 ϕ. (4.29)

Therefore, collecting (4.24)–(4.29) proves that n is a γ−entropy super-solution of (1.1)–(1.3). �

Proof of Theorem 1.1. This is the combination of Lemma 4.2, Lemma 4.3 and Lemma 4.4. �

5. Asymptotic behavior

The following Lemma is elementary, but for clarity, we give its detail.

Lemma 5.1. Let a > 1 and f ∈ L1([0,∞)). Suppose there is t0 > 0 such that f (t) 6 Nt−a for sufficiently
large t > t0. Assume further that a non-negative measurable function y(t) satisfies

y′(t) + y(t) 6 f (t).

Then, y(t) 6 Ct−a for sufficiently large t.

Proof. Firstly we note that y(t) is bounded uniformly in time. Then, using the integrating factor, we
have for t > t0

e2ty(2t) − ety(t) 6

2t∫
t

eτ f (τ) dτ,

which yields, using integration by parts,

y(2t) 6 e−ty(t) + Ne−2t

2t∫
t

eττ−a dτ

6 Ce−t + Ne−2t

e2t (2t)−α − ett−α + α

2t∫
t

eττ−α−1 dτ


6 C(2t)−α.

�

Proof of Theorem 1.2. • (The case ρ = 0) Noting that ρ = 0, we integrate the equation for nε in (2.1)
over Ω to get

d
dt

∫
Ω

nε(·, t) dx 6 −
µ

|Ω|q−1


∫
Ω

nε(·, t) dx


q

.
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A standard argument of ODE implies that∫
Ω

nε(·, t) dx 6 C(1 + t)−
1

q−1 for all t > 0.

Next, integrating the equation of cε , it follows that for all t > 0,

d
dt

∫
Ω

cε(·, t) dx +

∫
Ω

cε(·, t) dx =

∫
Ω

nε(·, t) dx.

Let g(t) =
∫
Ω

nε(·, t) dx. Then, since 1
q−1 > 1, we observe that g ∈ L1([0,∞)), and thus, via Lemma 5.1,

it follows that ∫
Ω

cε(·, t) dx 6 C(1 + t)−
1

q−1 for all t > 0.

On the other hand, putting m = 3q − 2 and testing the equation for cε in (2.1) by cm−1, we get

1
m

d
dt

∫
Ω

cm
ε (·, t) dx +

∫
Ω

∣∣∣∣∇c
m
2
ε

∣∣∣∣2 dx +

∫
Ω

cm
ε dx =

∫
Ω

nεcm−1
ε dx

6 ‖nε‖ 3m
2m+1

∥∥∥cm−1
ε

∥∥∥ 3m
m−1

= ‖nε‖ 3m
2m+1

∥∥∥∥c
m
2
ε

∥∥∥∥ 2(m−1)
m

6

6 C ‖nε‖ 3m
2m+1

(∥∥∥∥∇c
m
2
ε

∥∥∥∥ 2(m−1)
m

2
+ 1

)
6 C ‖nε‖m3m

2m+1
+

1
2

∥∥∥∥∇c
m
2
ε

∥∥∥∥2

2
.

Since m = 3q − 2, we observe that

‖nε‖m3m
2m+1

= ‖nε‖
3q−2
3q−2
2q−1

6 ‖nε‖
2(q−1)
1 ‖nε‖qq 6 C(1 + t)−2 ‖nε(t)‖qq .

Let h(t) = (1 + t)−2 ‖nε(t)‖qq. Then, it is direct that h ∈ L1((0,∞)). Setting Z(t) =
∫
Ω

cm
ε (·, t) dx, we have

Z′(t) + Z(t) 6 h(t), which yields

e2tZ(2t) − etZ(t) =

2t∫
t

eτh(τ)dτ,

which implies that

Z(2t) 6 e−tZ(t) + C(1 + t)−2

2t∫
t

‖nε(τ)‖qq dτ 6 C(1 + t)−2.

Noting that Z(t) 6 C for all t > 0, we have

‖cε(t)‖3q−2 6 C(1 + t)−
2

3q−2 .
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Hence, interpolation gives

‖cε(t)‖l 6 ‖cε(t)‖
1−θ
1 ‖cε(t)‖θ3q−2 6 C(1 + t)−

2lq+q−3l
3l(q−1)2 ,

where 1 6 l 6 3q − 2 and θ =
(l−1)(3q−2)

3l(q−1) . On the other hand, in case that 3q − 2 6 l 6 3q
5−2q , interpolation

gives
‖cε(t)‖k 6 ‖cε(t)‖

θ1
3q−2 ‖cε(t)‖

1−θ1
3q

5−2q

6 C(1 + t)−
3q−(5−2q)k

k(3q−5)(q−1) ,

where θ1 =
(3q−(5−2q)k)(3q−2)

2k(3q−5)(q−1) . Finally, recalling (3.14) and (3.15), we have

d
dt

∫
Ω

|uε(·, t)|2 dx +
1
2

∫
Ω

|∇uε(·, t)|2 dx 6 C


∫
Ω

|nε(·, t)|
6
5


5
3

6 C ‖nε(t)‖
5q−6

3(q−1)

1 ‖nε(t)‖
q

3(q−1)
q ,

where we used
‖nε‖ 6

5
6 ‖nε‖θ1 ‖nε‖

1−θ
q , θ =

5q − 6
6(q − 1)

.

We set h(t) = ‖nε(t)‖
5q−6

3(q−1)

1 ‖nε(t)‖
q

3(q−1)
q 6 C(1 + t)−

5q−6
3(q−1)2 ‖nε(t)‖

q
3(q−1)
q . We note that h ∈ L1((0,∞)), since

nε ∈ Lq(Ω × (0,∞)) and

∞∫
0

h(t) dt 6


∞∫

0

(1 + t)−
5q−6

(3q−4)(q−1) dt


3q−4

3(q−1)

∞∫

0

‖nε(t)‖qq dt


1

3(q−1)

< C.

Using the Poincaré inequality, it follows that

d
dt

∫
Ω

|uε(·, t)|2 dx +
Cp

2

∫
Ω

|uε(·, t)|2 dx 6 h(t). (5.1)

Since h is in L1, we have ‖uε(·, t)‖2 6 C for all t. In addition, we obtain, for sufficiently large t,

‖uε(t)‖2 6 C(1 + t)−
−3q2+12q−10

3(q−1)2 .

Indeed, setting z(t) := ‖uε(t)‖22, it leads that

z(2t) 6e−tz(t) + e−2t

2t∫
t

eτh(τ)dτ 6 e−tz(t) +

2t∫
t

h(τ)dτ

6Ce−t + C


2t∫

t

(1 + t)−
5q−6

(3q−4)(q−1)


3q−4

3(q−1)

6Ce−t + C(1 + t)
3q2−12q+10

3(q−1)2 6 C(1 + t)−
−3q2+12q−10

3(q−1)2 .
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• (The case ρ < 0) Firstly, we integrate the equation for nε over Ω to get

d
dt

∫
Ω

nε − ρ
∫
Ω

nε 6 −µ
∫
Ω

nκε 6 0,

which directly yields ∫
Ω

nε(·, t) dx 6 meρt for all t > 0, (5.2)

where m is as in Lemma 3.1. Next, again integrating the equation for cε over Ω and letting z(t) :=∫
Ω

cε(·, t) dx, it follows that
z′(t) + z(t) 6 meρt,

which leads that for all t > 0,

z(t) 6 e−tz0 + me−t

t∫
0

e(1+ρ)τ dτ 6 C
(
e−t +

1
1 + ρ

(
eρt − e−t)) ,

where C = max
{
m,

∫
Ω

c0

}
. Thus, we have∫

Ω

cε(·, t) dx 6 Ce−ρ∗t for all t > 0, (5.3)

where ρ∗ = min {−ρ, 1} > 0. Using the interpolation inequality, (3.5) and (5.3), we obtain for 1 6 l 6
3q

5−2q ,

‖cε(t)‖l 6 ‖cε(t)‖
3q−(5−2q)l

5(q−1)l

1 ‖cε(t)‖
3q(l−1)
5(q−1)l

3q
5−2q

6 Ce−
3q−(5−2q)l

5(q−1)l ρ∗t for all t > 0.

Lastly, we recall the inequality (5.1):

d
dt

∫
Ω

|uε(·, t)|2 dx + C∗

∫
Ω

|uε(·, t)|2 dx 6 h(t).

Here h(t) = ‖nε‖
5q−6

3(q−1)

1 ‖nε‖
q

3(q−1)
q 6 C3e−δt ‖nε(t)‖

q
3(q−1)
q with δ = −

5q−6
3(q−1)ρ > 0 and C∗ =

Cp

2 > 0, where Cp is
the constant appeared in the Poincaré inequality. Letting z(t) := ‖uε(t)‖22, we have

z(t) 6e−C∗tz(0) + e−C∗t

t∫
0

eC∗τh(τ)dτ

6e−C∗tz(0) + C3e−C∗t

t∫
0

e(C∗−δ)τ ‖nε(τ)‖
q

3(q−1)
q dτ

6e−C∗tz(0) + C3e−C∗te(C∗−δ)+tt
3q−4

3(q−1)


t∫

0

‖nε(τ)‖qq dτ


1

3(q−1)
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6C4

(
e−C∗t + e−min{C∗,δ} t

2
)

6C5e−δ∗t,

where δ∗ = 1
2 min {C∗, δ}. In both cases ρ = 0 and ρ < 0, we finally get the estimates for (n, c, u) in

Theorem 1.2 by passing ε to the limit via the Fatou’s Lemma which is guaranteed by (4.1), (4.5) and
(4.8). �
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