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ecological corridors (hedges for instance). Actually we plan to study the effect of the fragmentation
of the habitat on biodiversity. A simple neutral model for the evolution of abundances in a
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indicators, the mean extinction time of a species. At the limit, using classical comparison principles,
the exchange process between the communities is proved to slow down extinction. This shows that the
existence of corridors seems to be good for the biodiversity.
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1. Introduction

This article partakes of a research program aimed at understanding the dynamics of a fragmented
landscape composed of forest patches connected by hedges, which are ecological corridors. When
dealing with the dynamics of a metacommunity at a landscape scale we have to take into account the
local competition between species and the possible migration of species.

We are interested here in the mathematical modelling of two species, on two forest patches linked by
some ecological corridor. We model the evolution by a splitting method, performing first the exchange
process (see the definition of the corresponding Markov chain in the sequel) on a small time step, and
then we perform independently on each station a birth/death process according to the Wright-Fisher
model, and we reiterate.

Our first mathematical result is to compute the limit equation of this modelling when the time step
goes to 0 and the size of the population diverges to ∞. This issue, the hydrodynamic limit, i.e., to
pass from the mesoscopic scale to the macroscopic one received increasing interest in the last decades
(see for instance in various contexts [2, 11, 17]). As our main results on extinction times do not
require the convergence in law of the processes, instead of using a martingale problem ( [8]), we prove
directly the convergence of operators towards a diffusion semi-group ( [10]). We find a deterministic
diffusion-convection equation, where the drift comes from the exchange process, while the diffusion
comes from the limit of the Wright-Fisher process. We point out here that the fact that the diffusion
operator Ld satisfies a non standard comparison principle (or a maximum principle) is instrumental:
first the comparison principle ensures the uniqueness of the limit of the approximation process and
then the definition of the Feller diffusion process. Then this comparison principle yields our second
result that is concerned with the comparison of the extinction time of one species for a system with
exchange and a system without exchanges. Assuming that the discrete extinction time converges, we
prove that the limit is solution of the equation −Ldτ = 1. Taking advantage once again of comparison
principles, we prove that the exchange process slows down the extinction time of one species. Thus,
the fragmentation of the habitat seems to be good to the biodiversity.

This article outlines as follows. In a second section we describe the modelling at mesoscopic scale.
We couple a Wright-Fisher model for the evolution of the abundances together with an exchange
process. The third section is devoted to the large population limit of the discrete process. In a fourth
section we discuss the issues related to the extinction time; we compare the extinction time of one
species with and without exchange process. In a final section we draw some conclusion and prospects
for ecological issues, and we address the question of convergence in law for our model.

2. The mathematical model

2.1. Modelling the exchange between patches

Consider two patches that have respectively the capacity to host (N1,N2) individuals, to be chosen
into two different species α and β. Set (yn

1, y
n
2) for the numbers of individuals of type α, respectively in

patch 1 and 2, at time nδt, i.e., after n iterations and δt is the time that will be defined below.
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The exchange process is then simply modelled by

yn+1
1 = (1 − κdδt)yn

1 + κδtyn
2,

yn+1
2 = (κdδt)yn

1 + (1 − κδt)yn
2,

(2.1)

where κ is the instantaneous speed of exchanges and d = N2
N1

represents the distortion between the
patches (the ratio between the hosting capacities); we may assume without loss of generality that
d ≤ 1. With this modelling, and assuming that κδt ≤ 1, it is easy to check that

• The set [0,N1] × [0,N2] is mapped into itself, i.e., stable, by the exchange process.
• The total population of individuals of type α, yn

1 + yn
2, is conserved.

• If we start with only individuals of species α (respectively β) then we remain with only individuals
from α (respectively β); this reads (N1,N2) 7→ (N1,N2) (respectively (0, 0) 7→ (0, 0)).

Set x = (x1 =
y1
N1
, x2 =

y2
N2

) belonging to D = [0, 1]2 for the population densities of a species α on
two separate patches and xn = (xn

1, x
n
2) for these densities at time nδt. Then we have alternatively

xn+1
1 = (1 − κdδt)xn

1 + κdδtxn
2,

xn+1
2 = κδtxn

1 + (1 − κδt)xn
2.

(2.2)

This reads also xn+1 = Axn where A is a stochastic matrix.
Consider now the piecewise constant càdlàg process with jumps X 7→ AX at each time step δt. In

other words, for any continuous function f defined on D = [0, 1]2 then Pex
δt ( f )(x) = f (Ax), where Pex

δt
is the transition kernel of the exchange process.

2.2. Wright-Fisher reproduction model

On each patch we now describe the death/birth process that is given by the Wright-Fisher model.
The main assumption is that the death/birth process on one patch is independent of the other one.

Consider then the first patch that may host N1 individuals. The Markov chain is then defined by the
transition matrix, written for z1 =

j1
N1
∈ [0, 1]

P(xn+1
1 = z1|xn

1 = x1) =

(
N1

j1

)
x j1

1 (1 − x1)N1− j1 . (2.3)

Since the two Wright-Fisher processes are independent, the corresponding transition kernel reads

Pwf
δt ( f )(x) =

N1∑
j1=0

N2∑
j2=0

(
N1

j1

) (
N2

j2

)
x j1

1 (1 − x1)N1− j1 x j2
2 (1 − x2)N2− j2 f

(
j1

N1
,

j2

N2

)
, (2.4)

for any function f defined on D = [0, 1]2. Notice that Pwf
δt is a two-variable version of the usual

Bernstein polynomials. In the sequel, we will also use the notation BN( f ) and write for the sake of
conciseness (

N
j

)
x j(1 − x)N− j f

( j
N

)
=

(
N1

j1

) (
N2

j2

)
x j1

1 (1 − x1)N1− j1 x j2
2 (1 − x2)N2− j2 f

(
j1

N1
,

j2

N2

)
.
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2.3. The full disrete model

Starting from the state x = (x1, x2), during a time step, we apply first the exchange process and then
the Wright-Fisher reproduction process. In this way, the sequence of random variables xn is a Markov
chain with state space {0, 1

N1
, · · · , 1} × {0, 1

N2
, · · · , 1} and the transition kernel reads as follows

E( f (xn+1)|xn = x) = Pwf
δt Pex

δt ( f )(x) =
∑

j

(
N
j

)
x j(1 − x)N− j f ◦ A

( j
N

)
= BN( f ◦ A)(x).

3. From discrete model to continuous one

We consider the same scaling as for the Wright-Fisher usual model, that is N1δt = 1. We set N = N1

in the sequel to simplify the notations. We may consider either the càdlàg process associated to the
reproduction-exchange discrete process defined by xt

= xn if nδt ≤ t < (n + 1)δt or the continuous
piecewise linear function xt such that xt = xn for t = nδt. We consider an analogous interpolation in
space in order to deal with function that are defined on [0,T ] ×D where T > 0 is given.

We set M =

(
d −d
−1 1

)
and then A = Id − κ

N M. For a given continuous function f that vanishes at

(0, 0) and (1, 1), we now define the sequence of functions

uN(t, x) = E( f (xt)|x0 = x). (3.1)

We may also use analogously uN(t, x) = E( f (xt)|x0 = x) = (Pwf
δt Pex

δt )
n( f )(x). The fonctions uN and

uN represent the average densities of the species at a macroscopic level. If XN is the Lagrangian
representation of the densities, then uN represents the densities in Eulerian variables.

3.1. Statement of the result

Theorem 3.1. Let T>0 be fixed. Assume f is a function of class C2 on D, that vanishes at (0, 0) and
(1, 1). The sequence uN converges uniformly in [0,T ] × D to the unique solution u of the diffusion
equation

∂tu = Ldu,

where Ld is defined as, for x = (x1, x2),

Ldu(x) =
x1(1 − x1)

2
ux1 x1(x) +

x2(1 − x2)
2d

ux2 x2(x) − κMx.∇u(x),

and with initial data u(0, x) = f (x).

Remark 3.1. We may have proved that the càdlàg process associated to the reproduction-exchange
process uN converges to a diffusion equation. We will discuss this in the sequel. Besides, we prove
the convergence results for a sufficiently smooth f , and we will extend in the sequel the definition of a
mild solution to the equation for functions f in the Banach space E = { f ∈ C(D); f (0, 0) = f (1, 1) =

0}. The theory for Markov diffusion process and the related PDE equations is well developed in the
litterature (see [1,9, 16] and the references therein). The particularity of our diffusion equation is that
the boundary of the domain is only two points.
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3.2. Proof of Theorem 3.1

The proof of the theorem is divided into several lemmata. The first lemma describes in a way how
the discrete process is close to a martingale.

Lemma 3.1. The conditional expectation of the discrete reproduction-exchange process is

E(xn+1|xn) = Axn. (3.2)

As a consequence E(xn+1 − xn|xn) = o(1) when N diverges to∞.

Proof. Using the properties of the Bernstein polynomials,

E(xn+1|xn) =
∑

j

(
N
j

)
(xn) j(1 − xn)N− jA

 j1
N1
j2

N2

 = Axn.

Then the proof of the lemma is completed, observing that A − Id = o(1).
�

The following lemma is useful to prove that xt and xt are close.

Lemma 3.2. There exists a constant C such that

E(|xn+1 − xn|2) ≤ CN−1.

Proof. Since |A j
N |

2 = |
j

N |
2(1 + O(||A − Id||), then the following conditional expectation reads

E(|xn+1|2|xn) =
∑

j

(
N
j

)
x j(1 − x)N− j|A

j
N
|2 = |xn|2 + O(||A − Id||).

We expand the `2 norm in R2 as

|xn+1 − xn|2 = |xn+1|2 − 2(xn, xn+1) + |xn|2.

We first have by linearity and by the Lemma 3.1 above that

E((xn+1, xn)|xn) = (Axn, xn).

Therefore
E(|xn+1 − xn|2|xn) = 2(xn, xn − Axn) + O(||I − A||) = O(||I − A||) (3.3)

that completes the proof of the lemma.
�

The next statement is a consequence of the inequality |xt
− xt| ≤ |xn − xn+1| for t ∈ (nδt, (n + 1)δt) and

of the previous lemma

Corollary 3.1. The processes xt and xt are asymptotically close, i.e., there exists a constant C such
that

E(|xt
− xt|2) ≤ CN−1.
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As a consequence, when looking for the limit when N diverges towards +∞ of the process, we may
either work with xt or xt.

The next lemma is a compactness result on the bounded sequence uN defined in (3.1).

Lemma 3.3. There exists a constant C that depends on || f ||lip and on T such that for any, x, y inD and
s, t in [0,T ],

|uN(t, x) − uN(t, y)| ≤ C|x − y|,

|uN(t, x) − uN(s, x)| ≤ C|t − s|
1
2 .

Remark 3.2. Since the constants C do not depend on N we can infer letting N → ∞ some extra
regularity results for u, assuming that f is Lipschitz.

Proof. We begin with the first estimate. Introduce n such that nδt ≤ t < (n + 1)δt. Set yt for the process
that starts from y = y0.

|xt − yt| ≤ max(|xn − yn|, |xn+1 − yn+1|),

therefore, proving the first inequality for uN (which amounts to controlling |xn − yn|)) will imply the
inequality for uN . Due to the properties of Bernstein’s polynomials we have that

|∂x1 Pwf
δt ( f )(Ax)| ≤ N ||A||ω( f ,

1
N

), (3.4)

where ω( f , 1
N ) is the modulus of continuity of f . Then, using that ||A − Id|| ≤ CN−1, we infer that

|∂x1 Pwf
δt ( f )(Ax)| ≤ || f ||lip(1 +

C
N

). (3.5)

Iterating in time we have that,

|∂x1(P
wf
δt Pex

δt )
m( f )(x)| ≤ || f ||lip(1 +

C
N

)m ≤ exp(CT )|| f ||lip. (3.6)

The other derivative is similar and then we infer from this computation that the first inequality in the
statement of Lemma 3.3 is proved.

We now proceed to the proof of the second one. Introduce the integers m, n such that mδt ≤ s <
(m + 1)δt and nδt ≤ t < (n + 1)δt. Using that

|xt − xs|2 ≤ 9(|xm+1 − xs|2 + |xm+1 − xn|2 + |xn − xt|2),

and that |xn − xt| ≤ (t − n
δt )|x

n − xn+1| we just have to prove the inequality for t
δt and s

δt in N. Introduce
the increment y j = x j+1 − x j. We have that, for m ≤ i, j ≤ n

E(|xn − xm|2) =
∑

j

E(|y j|2) + 2
∑
i< j

E(yi, y j). (3.7)

On the one hand, by Lemma 3.2 we have that the first term in the right hand side of (3.7) is bounded
by above by C(m−n)

N . On the other hand, using that the E(y j|x j) = (A − Id)x j then∑
i< j

E(yi, y j) =
∑
i< j

E(yi, (A − Id)x j) =
∑

j

E(x j − xm, (Id − A)x j). (3.8)
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Since ||Id − A|| ≤ CN−1 then the right hand side of (3.8) is also bounded by above by C(m−n)
N . This

completes the proof of the lemma.
�

Thanks to Ascoli’s theorem, up to a subsequence extraction, uN converges uniformly to a continuous
function u(t, x). We now prove that u is solution of a diffusion equation whose infinitesimal generator
is defined as the limit of N(Pwf

δt Pex
δt − Id).

Lemma 3.4. Consider f a function of class C2 onD that vanish at (0, 0) and (1, 1). Then

lim
δt→0+

N(Pwf
δt Pex

δt ( f (x)) − f (x)) = lim
N→∞

N(BN( f ◦ A(x) − f (x)) = Ld f (x),

where Ld is defined in Theorem 3.1.

Proof. Due to Taylor formula

Pex
δt ( f )(x) = f (x) − κδt(Mx.∇ f )(x) + O((δt)2), (3.9)

where (O(δt)2) is valid uniformly in x inD.
Using that the linear operator Pwf

δt is positive and bounded by 1 we then have

Pwf
δt Pex

δt ( f )(x) = (Pwf
δt f )(x) − κδtPwf

δt (Mx.∇ f )(x) + O((δt)2), (3.10)

The well-known properties of Bernstein polynomials (see [6]) entail that uniformly in x

[Pwf
δt (Mx.∇ f )(x) − Mx.∇ f (x)| ≤ C

√
δt.

On the other hand, the operator Pwf
δt is the tensor product of two one-dimensional Bernstein operators.

Then by Voronovskaya-type theorem (see [6]), for f (x) = f1(x1) f2(x2) we have the uniform
convergence of N((Pwf

δt f )(x)− f (x)) to x1(1−x1)
2 fx1 x1 +

x2(1−x2)
2d fx2 x2 . By density of the linear combinations

of tensor products f1(x1) f2(x2) this result extend to general f as

lim
δt→0+

Pwf
δt ( f )(x) − f (x)

δt
=

x1(1 − x1)
2

fx1 x1 +
x2(1 − x2)

2d
fx2 x2 . (3.11)

Denoting ∆d the diffusion operator defined by the right hand side of (3.11), the Kolmogorov limit
equation of our coupled Markov process is

∂tu − ∆du = −κ(Mx.∇u)(x), (3.12)

with initial data u(0, x) = f (x). Let us observe that u, the limit of E( f (xt)|x0 = x), vanishes at two
points (0, 0) and (1, 1) in the boundary ∂D.

�

We now complete the proof of the Theorem. Considering f such that the convergence in Lemma
3.4 holds. Then, for n ≤ tN < n + 1,

Mathematics in Engineering Volume 4, Issue 5, 1–17.
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uN(t, x) = f (x) +

n−1∑
k=0

∫ (k+1)δt

kδt
(N(Pwf

δt Pex
δt − Id)(uN(s, .)))(x)ds. (3.13)

Using the uniform convergence of uN , Lemma 3.4 and a recurrence on n we may prove that at the limit

u(t) = f +

∫ t

0
Ldu(s)ds, (3.14)

where we have omitted the variable x for the sake of convenience.
We now state a result that ensures the uniqueness of a solution to the diffusion equation (3.14). Such

a solution is a solution to the diffusion equation in a weak PDE sense.
Introduce D(Ld) = { f ∈ E; Pwf

δt Pex
δt ( f )(x)− f (x)

δt → Ld f in E}.

Remark 3.3. We precise here the regularity of the functions f in D(Ld). Since Ld is a strictly elliptic
operator on any compact subset of the interior ofD then f is C2(D̊)∩C(D) (see [12]). The regularity
of f up to the boundary is a more delicate issue (see [14, 15]). Besides, to determine exactly what
is the domain of Ld is a difficult issue. For PDEs the unbounded operator is also determinated by
its boundary conditions. Here we have boundary conditions of Ventsel’-Vishik type, that are integro-
differential equations on each side of the square linking the trace of the function f and its normal
derivative. This is beyond the scope of this article.

Theorem 3.2 (Comparison Principle). • Parabolic version: Consider a function u in C(R+,D(Ld))
that satisfies

– ut − Ldu ≥ 0 in R+ × [0, 1]2,
– u(0, x) = f (x) ≥ 0 for x in [0, 1]2,

then u(t, x) ≥ 0.
• Elliptic version: Consider u(x) in D(Ld) that satisfies −Ldu ≥ 0 in [0, 1]2. Then u(x) ≥ 0.

We postpone the proof of this theorem until the end of this section. We point out that a comparison
principle for Ld is not standard since it requires only information on two points {(0, 0), (1, 1)} in ∂D
and not on the whole boundary.

Theorem 3.2 implies uniqueness of the limit solution. Therefore the whole sequence uN converge
and the semigroup is well defined. Actually, setting S (t) f = u(t) we then have defined for smooth f
the solution to a Feller semigroup (see [1]) as follows

1). S (0) = Id.
2). S (t + s) = S (t)S (s).
3). ||S (t) f − f ||E → 0 when t → 0+

4). ||S (t) f ||E ≤ || f ||E.

The second property comes from uniqueness, the last one passing to the limit in

||(Pwf
δt Pex

δt )
n f ||L∞ ≤ || f ||L∞ .

The third one is then simple. The third property allows us to extend the definition of S (t) to functions in
E by a classical density argument. Then we have a Feller semigroup in E that satisfies the assumptions
of the Hille-Yosida theorem (see [5]).
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3.3. Proof of the comparison principle

We begin with the comparison principle for the parabolic operator. We use that C2(D) is dense in
D(Ld), i.e., that any function u in D(Ld) can be approximated in E by smooth functions uk up to the
boundary, and such that Luk converges uniformly on any compact subset of D̊. We then prove the
comparison principle for smooth functions and we conclude by density.

Consider u as in the statement of the Theorem for a C2 initial data f . Consider ε small enough. Set
P = ∂t − Ld. Set ψ(x) = (x1 + dx2)(d + 1 − x1 − dx2) and θ(x) = (x1 − x2)2. Introduce the auxiliary
function

v(t, x) = u(t, x) + εψ(x) + ε2θ(x) + ε3. (3.15)

We prove below that v(t, x) ≥ 0 for all t and x. Since u belongs to D(Ld) then v(t, x) = ε3 at the corners
x ∈ {(0, 0), (1, 1)}. We also have v(0, x) ≥ ε3.

Let us then argue by contradiction. Introduce t0 = inf{t > 0;∃x ∈ [0, 1]; v(t, x) < 0}. Then there
exists x0 such that v(t0, x0) = 0. Notice that x0 < {(0, 0), (1, 1)}. We shall discuss below different cases
according to the location of x0.
First case: x0 belongs to the interior ofD.

We then have vt(t0, x0) ≤ 0, vx1(t0, x0) = vx2(t0, x0) = 0, and vx1 x1(t0, x0), vx2 x2(t0, x0) ≥ 0. Therefore
Pv(t0, x0) ≤ 0

0 ≤ Pu(t0, x0) ≤ Pv(t0, x0) + εLd(ψ + εθ)(x0). (3.16)

Let us observe that if ε is chosen small enough

Ld(ψ + εθ)(x0) = − (x1(1 − x1) + dx2(1 − x2)) +

ε

(
x1(1 − x1) +

1
d

x2(1 − x2)
)
− κε(d + 1)θ(x)2 < 0.

(3.17)

Second case: x0 belongs to ∂D but the four corners.
We may assume that x0 = (0, x2) the other cases being similar. We have that vt(t0, x0) ≤ 0,

vx2(t0, x0) = 0, vx1(t0, x0) ≥ 0 and vx2 x2(t0, x0) ≥ 0. Therefore Pv(t0, x0) ≤ 0.
We then have as in (3.16) that 0 ≤ Ld(ψ+εθ)(x0). Computing Ld(ψ+εθ)(x0) = −εκ(d +1)θ2(x0) < 0

gives the contradiction.
Third case: x0 = (0, 1) (the case (1, 0) is similar).

We have that vt(t0, x0) ≤ 0, vx2(t0, x0) ≤ 0 ≤ vx1(t0, x0). Therefore Pv(t0, x0) ≤ 0. We then have
as in (3.16) that 0 ≤ Ld(ψ + εθ)(x0). Computing Ld(ψ + εθ)(x0) = −εκ(d + 1)θ2(x0) < 0 gives the
contradiction.

We now conclude. since v is nonnegative we have

inf
[0,+∞)×D

u ≥ −ε||ψ + εθ||L∞ − ε
3. (3.18)

Letting ε goes to 0 completes the proof.
Let us prove the elliptic counterpart of the result for a smooth function u (we also proceed by

density). Set as above v(x) = u(x) + εψ(x) + ε2θ(x). Introduce x0 where v achieves its minimum, i.e.,
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v(x0) = minD v(x). First if x0 belongs to the interior ofD, then Ldv(x0) > 0 and we have a contradiction.
We disprove the case where x0 belongs to the boundary but {(0, 0), (1, 1)} exactly as in the evolution
equation case. Assume first that x0 belongs to ∂D but the four corners; for instance x0 = (0, x2). We
have that vx2(x0) = 0, vx1(x0) ≥ 0 and vx2 x2(x0) ≥ 0. Therefore Ldv(x0) ≥ 0. Then Ld(ψ + εθ)(x0) =< 0
gives the contradiction. Assume then that x0 = (0, 1). We have that vx2(x0) ≤ 0 ≤ vx1(x0). Therefore
−Ldv(x0) ≤ 0. We then have that 0 ≤ Ld(ψ + εθ)(x0). Computing Ld(ψ + εθ)(x0) =< 0 gives the
contradiction.

Corollary 3.2. Actually Ld satisfies the positive maximum principle (PMP). If u in D(Ld) achieves its
minimum in x0 in the interior of D then Ldu(x0) ≥ 0. This is standard for infinitesimal generator of
Feller semigroups (see [3]).

4. Extinction time

4.1. Hydrodynamic limit of the extinction time

We handle here the convergence of the discrete extinction time towards the solution of an elliptic
equation. To begin with, recall that the discrete process describing the evolution of the densities of
population (migration and reproduction at each time step) is a Markov chain with state space
{0, 1

N , . . . , 1} × {0,
1
N , . . . , 1} for which (0, 0) and (1, 1) are absorbing states. These two absorbing states

correspond to the extinction of a species. Let us introduce the hitting time ΘN that is the random time
when the Markov chain reaches the absorbing states, i.e., the extinction time. Since the restriction of
the chain to the non absorbing states is irreducible and since there is at least one positive transition
probability from the non absorbing states to the absorbing states then this hitting time is almost surely
finite. This result is standard for Markov chains with finite state space (see [4, 7] and the references
therein).

Let U be the complement of the trapping states (0, 0) and (1, 1). Consider the vector TN defined as
the conditional expectation (TN) j

N ∈U
= E j

N
(ΘN) of this hitting time and denote by P̃N or P̃ the restriction

of the transition matrix to U.
Then for x ∈ U, denoting Px the conditional probability, we have using Markov property and time

translation invariance

Ex(ΘN) =

∞∑
k=1

k
N
Px(ΘN =

k
N

) =
1
N
Px(ΘN =

1
N

) +

∞∑
k=2

k
N
Px(ΘN =

k
N

)

=
1
N
Px(ΘN =

1
N

) +

∞∑
k=2

k
N

∑
y∈U

Px(ΘN =
k
N
, x1 = y)

=
1
N
Px(ΘN =

1
N

) +

∞∑
k=2

k
N

∑
y∈U

P(ΘN =
k
N
|x1 = y)Px(x1 = y)

=
1
N
Px(ΘN =

1
N

) +
∑
y∈U

P̃x,y

∞∑
k=2

(
k − 1

N
+

1
N

)Py(ΘN =
k − 1

N
)

=

 1
N
Px(ΘN =

1
N

) +
1
N

∑
y∈U

P̃x,y

 +
∑
y∈U

P̃x,yEy(ΘN)
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=
1
N

+
∑
y∈U

P̃x,yEy(ΘN).

This is equivalent to

N(Id − P̃N)TN =


1
...

1

 . (4.1)

We are now interested in the limit of TN when N diverges towards∞.
Let us recall that for the one dimensional Wright-Fisher process the expectation of the hitting time

starting from x converges towards the entropy H(x) (see [16]) defined by

H(x) = −2 (x ln x + (1 − x) ln(1 − x)) . (4.2)

The entropy is a solution to the equation − x(1−x)
2 Hxx = 1 that vanishes at the boundary. The proof,

that can be found in Section 10 of [9], uses probability tools like the convergence in distribution of the
processes and the associated stochastic differential equation. We believe that the same kind of tools
would give the convergence of τN in dimension two but this is beyond the scope of this article. Besides,
for the sake of completeness we provide a proof for the convergence in distribution of our processes in
Section 5.2 below.

Set now τN for the polynomial of degree N in x1 and x2 that interpolates TN at the points of the grid.
We have

Theorem 4.1 (Extinction time). When N diverges to +∞ the sequence τN converges towards τ that is
solution to the elliptic equation −Ldτ = 1.

Assuming the convergence of τN , the proof of the theorem is straightforward by passing to the limit
in (4.1) using Lemma 3.4.

Remark 4.1. We expect the function τ to be smooth up to the boundary but at the two points (0, 0) and
(1, 1). We admit here this result. This allows us to use the previous comparison result.

The solution of this elliptic equation in E, i.e., that vanishes at {(0, 0), (1, 1)} is unique due to
comparison principle (see Theorem 3.2 above).

4.2. Exchanges slow down extinction

Consider now a single patch whose hosting capacity is N1 + N2 = (d + 1)N for N = 1
δt . The limit

equation for the classical Wright-Fisher related process is

∂tu =
z(1 − z)
2(1 + d)

∂2
z u. (4.3)

Then the corresponding extinction time for the Wright-Fisher process without exchange is τ =

(d + 1)H(z), where z = x1+dx2
1+d is the corresponding averaged starting density (see [16]) and where H is

the entropy defined above (4.2). We shall prove in the sequel

Theorem 4.2. The extinction time τ is a subsolution to the equation −Ldτ = 1. Besides, the operator
Ld satisfies the comparison principle and then τ ≤ τ.

Mathematics in Engineering Volume 4, Issue 5, 1–17.
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Proof. We point out that to check that −Ld satisfies the comparison result is not obvious (see Theorem
3.2). We first observe that the entropy (4.2) vanishes at the boundary points {(0, 0), (1, 1)}. Setting
τ(x1, x2) = g(z), we have

(Mx.∇g)(z) = (x1 − x2)g′(z)
(
d∂x1z − ∂x2z

)
= 0, (4.4)

We then have

− Ldτ =
x1(1 − x1) + dx2(1 − x2)

(1 + d)z(1 − z)
. (4.5)

Observing that by a mere computation

x1(1 − x1) + dx2(1 − x2)
(1 + d)z(1 − z)

= 1 −
d(x1 − x2)2

(1 + d)2z(1 − z)
, (4.6)

we have that τ is a subsolution to the equation. �

4.3. More comparison results

We address here the issue of the convergence of the limit extinction time τ = τd,κ defined in Section
4 when κ or d converges towards 0. This extinction time depends on the starting point x.

Proposition 4.1. Assume d be fixed. When κ converges to 0 then lim τd,κ(x) = +∞ everywhere but in
x = (0, 0) or x = (1, 1).

Proof. Consider here the function V =
x1(1−x2)+x2(1−x1)

12κ . This function vanishes at x = (0, 0) and x =

(1, 1) and satisfies

− LdV =
(x1 − x2)(d(1 − 2x2) − (1 − 2x1))

12
≤ 1. (4.7)

Then V is a subsolution to the equation −Ldτ = 1 and by the comparison principle V ≤ τd,κ everywhere.
Letting κ → 0 completes the proof of the Proposition. �

Proposition 4.2. Assume κ be fixed. Then

lim
d→0

τ = H(x1) = −2x1 ln x1 − 2(1 − x1) ln(1 − x1),

that is the extinction time for one patch.

Proof. We begin with

− Ld(τ − τ) =
d(x1 − x2)2

(1 + d)2z(1 − z)
. (4.8)

Let us observe that due to (4.6)
d(x1 − x2)2

(1 + d)2z(1 − z)
≤ 1. (4.9)

The strategy is to seek a supersolution X to the equation −LdX̃ = 1
d that is bounded when d converges

to 0. We first have, using the entropy function H2(x1, x2) = H(x2)
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− LdH2 =
1
d

+ 2κ(x1 − x2) ln
x2

1 − x2
≥

1
d

+ 2κ(x1 ln x2 + (1 − x1) ln(1 − x2)). (4.10)

Setting D(x1, x2) = x1xd
2 + (1 − x1)(1 − x2)d, we have

− LdD =
1 − d

2
(xd−1

2 x1(1 − x2) + (1 − x2)d−1x2(1 − x1)) − κd(x1 − x2)2(xd−1
2 + (1 − x2)d−1). (4.11)

Therefore, since we have

1 − d
2

xd−1
2 x1(1 − x2) − κd(x2

1 − 2x1x2 + x2
2)xd−1

2 ≥ xd−1
2 x1

(
1 − d

2
− κd

)
−

1 − d
2
− κd,

we obtain, for d small enough to have (1 + 2κ)d < 1,

−LdD ≥ −1 − 2dκ +
1 − (1 + 2κ)d

2

(
x1xd−1

2 + (1 − x1)(1 − x2)d−1
)
.

Gathering this inequality with (4.10) and chosing d small enough such that 1−(1+2κ)d
2 ≥ 1

4 holds true,
we then have

− Ld(H2 + D) ≥ (
1
d
− 1 − 2dκ) + x1(2κ ln x2 +

xd−1
2

4
) + (1 − x1)(2κ ln(1 − x2) +

(1 − x2)d−1

4
). (4.12)

Using the estimate

1
4x1−d

2

+ 2κ ln x2 ≥
2κ

1 − d
(1 + ln(

8κ
1 − d

).

we have that if d is small enough depending on κ then −Ld(H2 + D) ≥ 1
2d . Using the comparison

principle we then have that

0 ≤ τ − τ ≤ 2d(H2 + D), (4.13)

and we conclude by letting d converge to 0 since τ converges towards H(x1). �

5. Miscellaneous results and comments

5.1. Discussion and prospects for ecological issues

To begin with, we have introduced a split-step model that balances between the local reproduction
of species and the exchange process between patches. This split-step model at a mesoscopic scale
converges towards a diffusion model whose drifts terms come from the exchanges. This has been also
observed for instance in [19].

Here we deal with a neutral metacommunity model with no exchange with an external pool. Hence
the dynamics converge to a fixation on a single species for large times. The average time to extinction
of species is therefore an indicator of biodiversity. Here for our simple neutral model, Theorem 4.2
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provides a strong reckon that the exchange process is good for the biodiversity. In some sense, the
presence of two patches allows each species to establish itself during a larger time lapse.

In a forthcoming work we plan to numerically study a similar model but with more than two patches
and several species. We plan also to calibrate this model with data measured in the south part of Hauts-
de-France. The main interest is to assess the role of ecological corridors to maintain biodiversity in an
area. The question of the benefit of maintaining hedges arises when the agricultural world works for
their removal to enlarge the cultivable plots. This is one of the issue addresses by the Green and Blue
Frame in Hauts-de-France.

5.2. Convergence un distribution

We address here the convergence in law/in distribution of the infinite dimensional processes related
to the xt

N . This is related to the convergence of the process towards the solution of a stochastic
differential equations; we will not develop this here. Following [18] or [13], it is sufficient to check
the tightness of the process and the convergence of the finite m-dimensional law.

Dealing with xt
N instead of xt

N , the second point is easy. Indeed, Theorem 3.1 implies the
convergence of the m-dimensional law for m = 1. We can extend the result for arbitrary m by
induction using the Markov property. For the tightness, we use the so-called Kolmogorov criterion
that is valid for continuous in time processes (see [18] chapter 2 and [13] chapter 14); this criterion
reads in our case

E(|xs
N − xt

N |
4) ≤ C|t − s|2. (5.1)

This is a consequence of the following discrete estimate, since xt
N is piecewise linear with respect

to t,

Proposition 5.1. There exists a constant C such that for any m < n

E(|xn − xm|4) ≤ C
|n − m|2

N2 . (5.2)

Proof. First step: using that xn is close to a true martingale.
Let us set A = Id − κ

N M = Id − B. Introduce z0 = x0 and zn = xn + B
∑

k<n xk. Then since
E(xn+1|xn) = xn − Bxn, we have that zn is a martingale. Moreover we have the estimate, for 0 ≤ m < n

|(zn − xn) − (zm − xm)| ≤ (n − m)||B|| ≤ C
n − m

N
. (5.3)

Second step: computing the fourth moment.
To begin with we observe that, due to (5.3)

|xn − xm|4 ≤ 4
(
|zn − zm|4 + C(

n − m
N

)4
)
. (5.4)

Therefore we just have to prove that (5.2) is valid with zn replacing xn. We introduce the increment
y j = z j+1 − z j. We then expand as follows, setting |.| and (., .) respectively for the euclidian norm and
the scalar product in R2.

E(|zn − zm|4) =
∑
i, j,k,l

E
(
(yi, y j)(yk, yl)

)
. (5.5)
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Since yl is independent of the past, if for instance l > max(i, j, k) then E((yi, y j)(yk, yl)) = 0. Therefore,
(5.5) reads also

E(|zn − zm|4) = 2
∑
i, j<k

E
(
(yi, y j)|yk|2

)
+ 4

∑
i, j<k

E
(
(yi, yk)(y j, yk)

)
+

4
∑
i<k

E
(
(yi, yk)|yk|2

)
+

∑
k

E(|yk|4) = D1 + D2 + D3 + D4.
(5.6)

Third step: handling D4 and D3.
The key estimate reads as follows

E(|yk|4|xk) ≤ CN−2. (5.7)

Let us check that (5.7) is valid. Due to the very properties of Bernstein polynomials we know that
BN(1) = 1, BN(X) = x, BN(X2) = x2 +

x(1−x)
N and that BN(X3) = x3 +

3x2(1−x)
N + 0( 1

N2 ) and BN(X4) =

x4 +
6x3(1−x)

N + 0( 1
N2 ). Therefore BN((X − x)4) ≤ CN−2 and since for any function h we have that

E(h(xk+1)|xk) = h(Axk) then, due to the very definition of zk

E(|yk|4) ≤ 4
(
E(|xk+1 − xk|4) +

C
N4

)
= O(N−2). (5.8)

Therefore D4 = O((n − m)N−2) and then the result.
For D3 thanks to Hölder inequality, we have the estimate

D3 = 4
∑
j<k

E
(
(y j, yk)|yk|2

)
≤ C(n − m)D4 = O((n − m)2N−2). (5.9)

Fourth step: handling D1 and D2.
Using the conditional expectation we have

D1 = 2
∑
i, j<k

E
(
(yi, y j)|yk|2

)
= 2

∑
i, j<k

E
(
(yi, y j)E

(
|yk|2|xk

))
= 2

∑
m<k≤n

E
(
|zm − zk|2E(|yk|2|xk)

)
.

(5.10)

Due to (5.7) and Cauchy-Schwarz inequality E(|yk|2|xk)) = O(N−1) and it follows

D1 ≤ CN−1
∑

k

E(|zm − zk|2) = CN−1
∑

k

(
∑

j

E(|y j|2)) ≤ CN−1
∑

k

k − m
N
≤ CN−2(n − m)2. (5.11)

We now handle D2 exactly as we did for D1. This completes the proof. �
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