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1. Introduction and main results

1.1. Goal

This paper is part of a project intending to give a precise description (decay/growth rates and
profiles) of the large-time behavior of solutions to the Cauchy problem

∂αt u + (−∆)βu = f in Q := RN × (0,∞), u(·, 0) = u0 in RN , (1.1)
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where u0 and f (·, t) belong to L1(RN). Here, ∂αt , α ∈ (0, 1), denotes the so-called Caputo α-derivative,
introduced independently by many authors using different points of view, see for instance [2,11,13,15,
17, 20], defined for smooth functions by

∂αt u(x, t) =
1

Γ(1 − α)
∂t

∫ t

0

u(x, s) − u(x, 0)
(t − s)α

ds,

and (−∆)β, β ∈ (0, 1], is the usual β power of the Laplacian, defined for smooth functions by (−∆)β =

F −1(| · |2βF ), where F stands for Fourier transform; see for instance [21].
Fully nonlocal heat equations like (1.1), nonlocal both in space and time, are useful to model

situations with long-range interactions and memory effects, and have been proposed for example to
describe plasma transport [8, 9]; see also [3, 4, 18, 22] for further models that use such equations.

When the forcing term f is trivial, a complete description of the large-time behavior of (1.1) was
recently given in [5, 6]; see also [16]. Hence, since the problem is linear, it only remains to study the
case with trivial initial datum, namely

∂αt u + (−∆)βu = f in Q, u(·, 0) = 0 in RN . (1.2)

This task is by far more involved, and this paper represents a first step towards its completion. It
is devoted to the obtention of (sharp) decay/growth rates of solutions to (1.2) when the forcing term
satisfies

‖ f (·, t)‖L1(RN ) ≤
C

(1 + t)γ
for some γ ∈ R (1.3)

and the spatial dimension is large, N > 4β. This already involves critical phenomena depending on the
values of p and γ. If 1 ≤ N ≤ 4β, additional critical phenomena associated to the dimension appear,
that make the analysis somewhat different. This case is considered in [7]. Notice that we are allowing
γ to take negative values, so that ‖ f (·, t)‖L1(RN ) may grow with time.

If f (·, t) ∈ L1(RN) for all t ≥ 0 and |F f (ξ, t)| ≤ C|g(ξ)| for some function g such that

(1 + | · |2β)g(·) ∈ L1(RN),

then problem (1.2) has a unique bounded classical solution given by Duhamel’s type formula

u(x, t) =

∫ t

0

∫
RN

Y(x − y, t − s) f (y, s) dyds, (1.4)

with Y = ∂1−α
t Z, where Z is the solution to (1.2) with f ≡ 0 having a Dirac mass as initial datum;

see [12, 16]. If we only assume f ∈ L∞loc([0,∞) : L1(RN)), the function u in (1.4) is still well defined,
but it is not in general a classical solution to (1.2). Nevertheless, it is a solution in a generalized
sense [14, 16]. In this paper we will always deal with solutions of this kind, given by (1.4), which are
denoted in the literature as mild solutions [16, 19].

Notation. As is common in asymptotic analysis, g � h will mean that there are constants ν, µ > 0 such
that νh ≤ g ≤ µh.
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1.2. The kernel Y. critical exponents

Since the mild solution is given by the convolution in space and time of the forcing term f with the
kernel Y , having good estimates for the latter will be essential for the analysis. Such estimates were
obtained in [16], and are recalled next.

The kernel Y has a self-similar form,

Y(x, t) = t−σ∗G(ξ), ξ = xt−θ, σ∗ := 1 − α + Nθ, θ :=
α

2β
. (1.5)

Its profile G is positive, radially symmetric and smooth outside the origin, and if N > 4β satisfies the
sharp estimates

G(ξ) � |ξ|4β−N , |ξ| ≤ 1, β ∈ (0, 1], (1.6)

G(ξ) � |ξ|
(N−2)(α−1)

(2−α) exp(−σ|ξ|
2

2−α ), |ξ| ≥ 1, β = 1, (1.7)
G(ξ) � |ξ|−(N+2β), |ξ| ≥ 1, β ∈ (0, 1). (1.8)

In particular, we have the global bound

0 ≤ Y(x, t) ≤ Ct−(1+α)|x|4β−N in Q, β ∈ (0, 1], (1.9)

and, since |ξ|
(N−2)(α−1)

(2−α) exp(−σ|ξ|
2

2−α ) ≤ Cν|ξ|
−(N+2β) if |ξ| ≥ ν, also the exterior bound

0 ≤ Y(x, t) ≤ Cνt2α−1|x|−(N+2β) if |x| ≥ νtθ, t > 0, β ∈ (0, 1]. (1.10)

Notice that Y(·, t) ∈ Lp(RN) if and only if p ∈ [1, p∗), where p∗ := N/(N − 4β). Moreover,

‖Y(·, t)‖Lp(RN ) = Ct−σ(p), σ(p) := 1 − α + Nθ
(
1 −

1
p

)
, for all t > 0, if p ∈ [1, p∗). (1.11)

Therefore, Y ∈ L1
loc([0,∞) : Lp(RN)) if and only if p ∈ [1, pc), where pc := N/(N − 2β). Since the

mild solution is given by a convolution of f with Y both in space and time, the threshold value that will
mark the border between subcritical and supercritical behaviors will be pc, and not p∗. In particular,
condition (1.3) guarantees that u(·, t) ∈ Lp(RN) for p ∈ [1, pc), but not for p ≥ pc. Hence, in order
to deal with supercritical exponents p ≥ pc we need some extra assumption on the spatial behavior of
the forcing term. In the present paper we will use two different such extra hypotheses, the pointwise
condition

| f (x, t)| ≤ C|x|−N(1 + t)−γ for |x| large, (1.12)

and the integral condition

‖ f (·, t)‖Lq(RN ) ≤ C(1 + t)−γ for some q > qc(p) :=
N

2β + N
p

. (1.13)

We do not claim that these conditions are optimal; but they are not too restrictive, and are easy enough
to keep the proofs simple.
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1.3. Precedents and statement of results

The only precedent is given in [16], where the authors study the problem in the integrable in time
case γ > 1 and prove, for all p ∈ [1,∞] if 1 ≤ N < 4β, and for p ∈ [1, pc) if N ≥ 4β, that

lim
t→∞

tσ(p)‖u(·, t) − M∞Y(·, t)‖Lp(RN ) = 0, where M∞ :=
∫ ∞

0

∫
RN

f (x, t) dxdt < ∞. (1.14)

In particular, using (1.11) we get the sharp estimate

‖u(·, t)‖Lp(RN ) ≤ Ct−σ(p).

This result is also valid for the local case, α = 1, β = 1; see for instance [1, 10] for the case p = 1. In
this special situation Y = Z is the well-known fundamental solution of the heat equation, whose profile
does not have a spatial singularity and belongs to all Lp spaces.

An analogous convergence result is definitely not possible for α ∈ (0, 1) if p ≥ p∗, since Y(·, t) <
Lp(RN) in that case, or if γ ≤ 1. Moreover, even in the subcritical range (1.14) only gives a sharp
rate and a nontrivial limit profile in the diffusive scale |x| � tθ; see below. Hence we need a different
approach.

As we will see, it turns out that, in contrast with the local case, and due to the effect of memory, the
decay/growth rates are not the same in different space-time scales. Moreover, the scale that determines
the dominant rate depends on the value of the exponent p. Our strategy will consist in tackling this
difficulty directly by studying separately the rates in exterior regions, |x| ≥ νtθ with ν > 0, compact sets
or intermediate regions |x| � g(t) with g(t) → ∞ and g(t) = o(tθ). We already found this phenomenon
for the Cauchy problem, (1.1) with f ≡ 0, where the decay rate was O(t−α) in compact sets and

O
(
t−Nθ

(
1− 1

p

))
in exterior regions; see [5, 6].

Our first result concerns exterior regions.

Theorem 1.1 (Exterior regions). Let f satisfy (1.3) and also (1.12) if p ≥ pc. Let u be the mild solution
to (1.2). For all ν > 0 there is a constant C such that

‖u(·, t)‖Lp({|x|≥νtθ}) ≤ C


t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1,
t−σ(p), γ > 1.

(1.15)

These estimates are sharp.

For p ∈ [1, pc) and γ > 1 the result follows from (1.14), showing that the behavior in this regions
dominates the global behavior in the subcritical case.

We now turn to the behavior in compact sets which, due to the effect of memory, will dominate the
global behavior for large values of p.

Theorem 1.2 (Compact sets). Let f satisfy (1.3). If p ≥ pc, assume also (1.13) with γ as in (1.3). Let
u be the mild solution to (1.2). For every compact set K there exists a constant C such that

‖u(·, t)‖Lp(K) ≤ C

t−γ, γ ≤ 1 + α,

t−(1+α), γ ≥ 1 + α.
(1.16)

These estimates are sharp.
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Remark. Note that qc(pc) = 1.
As expected, the rates in intermediate regions, between compact sets and exterior regions, are

intermediate between the ones in such scales.

Theorem 1.3 (Intermediate regions). Let f satisfy (1.3) and also (1.12) if p ≥ pc. Let g(t) → ∞ be
such that g(t) = o(tθ). Let u be the mild solution to (1.2). For all 0 < ν < µ < ∞ there exists a constant
C such that

‖u(·, t)‖Lp({ν≤|x|/g(t)≤µ}) ≤ Cg(t)2β−N(1− 1
p )


t−γ, γ < 1,
max{t−1, t−(1+α)g(t)2β log t}, γ = 1,
max{t−γ, t−(1+α)g(t)2β}, γ > 1.

(1.17)

These estimates are sharp.

We also obtain results that connect the behaviors in compact sets and exterior regions, thus getting
the (global) decay rate in Lp(RN).

Theorem 1.4 ( Global results). Assume (1.3), and also (1.12) and (1.13) with γ as in (1.3) if p ≥ pc.
Let u be the mild solution to (1.2). There is a constant C such that

‖u(·, t)‖Lp(RN ) ≤ C



t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1, p ∈ [1, pc),
t−σ(p), γ > 1,

t−γ log t, γ ≤ 1,
p = pc,

t−1, γ > 1,

t−γ, γ ≤ σ(p),
p ∈ (pc, p∗),

t−σ(p), γ ≥ σ(p),

t−γ, γ < 1 + α,
p = p∗,

t−(1+α) log t, γ ≥ 1 + α,

t−γ, γ ≤ 1 + α,
p > p∗,

t−(1+α), γ ≥ 1 + α;

see Figure 1. These estimates are sharp.

Notice that the borderline separating decay and growth is γ = 0 only for p ≥ pc. For p ∈ [1, pc) the
frontier is given by

γ = 1 − σ(p);

see the dotted line in Figure 1. For p = 1 this corresponds to γ = α. An informal explanation for this
fact can be found in formula (1.4). We are integrating in time, but Y(x, t) = ∂1−α

t Z(x, t). Hence, it is
like if we were integrating α times in time. As for the behavior for the borderline γ, in general there is
neither growth nor decay. The exception is the case p = pc, γ = 0, in which there is a slow logarithmic
growth.
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Another remarkable fact is that the rates depend on γ not only in the non-integrable case γ ≤ 1,
which might have been expected, but also in part of the region γ ∈ [1, 1 + α) if p is supercritical.

0 α 1 1 +α

γ

1

pc

p ∗

p

t−σ(p) + 1− γ t−σ(p)log t

t−γ

t−γlog t

t−(1 +α)

t−(1 +α)log t

t−σ(p))

Figure 1. Global decay/growth rates. Dash-dotted lines indicate critical behaviors. The
dotted line, γ = (1 − σ(p))+, indicates the borderline separating decay from growth.

2. Exterior region

In this section we prove Theorem 1.1, which gives the behavior of all Lp norms of the mild solution
u to (1.2) in exterior regions, {(x, t) ∈ Q : |x| ≥ νtθ}, ν > 0.

Proof of Theorem 1.1. The starting point is Duhamel’s type formula (1.4). If p ∈ [1, pc), then Y(·, t)
belongs to Lp(RN). Therefore, using (1.3) and (1.11),

‖u(·, t)‖Lp(RN ) ≤

∫ t

0
‖Y(·, t − s)‖Lp(RN )‖ f (·, s)‖L1(RN ) ds ≤ C

∫ t

0
(t − s)−σ(p)(1 + s)−γ ds

≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−γ

∫ t

t
2

(t − s)−σ(p) ds

≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−σ(p)+1−γ.

Integration of
∫ t

2

0
(1 + s)−γ ds gives the result.

We turn now our attention to the case p ≥ pc, for which we assume also the decay condition (1.12).

Mathematics in Engineering Volume 4, Issue 3, 1–17.
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We have |u| ≤ I + II, where

I(x, t) =

∫ t

0

∫
{|y|< |x|2 }

Y(x − y, t − s)| f (y, s)| dyds,

II(x, t) =

∫ t

0

∫
{|y|> |x|2 }

Y(x − y, t − s)| f (y, s)| dyds.

We start by estimating I. Notice that if |y| < |x|/2, then |x − y| > |x|/2. Thus, if moreover |x| ≥ νtθ,
there holds that |x − y|(t − s)−θ > ν/2. Hence, the bound (1.10) yields

Y(x − y, t − s) ≤ C(t − s)2α−1|x − y|−(N+2β) ≤ C(t − s)2α−1|x|−(N+2β).

Using also (1.3) we arrive at I(x, t) ≤ C|x|−(N+2β)
∫ t

0
(t − s)2α−1(1 + s)−γ ds, and therefore

‖I(·, t)‖Lp({|x|≥νtθ}) ≤ Ct−σ(p)+1−2α

∫ t
2

0
(1 + s)−γ(t − s)2α−1 ds +

∫ t

t
2

(1 + s)−γ(t − s)2α−1 ds


≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−σ(p)+1−γ−2α

∫ t

t
2

(t − s)2α−1 ds

≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−σ(p)+1−γ,

and the desired bound for I follows.
Now we turn to II. We choose ε ∈ (0, 1/2). Given x ∈ RN , t > 0, s ∈ (0, t), we denote B(x, t, s) =

{y ∈ RN : |x−y| < |x|ε(t− s)θ(1−ε)}. Note that for |x| > νtθ and y ∈ (B(x, t, s))c we have |x−y|(t− s)−θ > νε.
Therefore, using the estimates (1.9)–(1.10), we have II ≤ II1 + II2, with

II1(x, t) = C
∫ t

0

∫
{|y|> |x|2 }∩B(x,t,s)

(t − s)−(1+α)|x − y|4β−N | f (y, s)| dyds,

II2(x, t) = C
∫ t

0

∫
{|y|> |x|2 }∩(B(x,t,s))c

(t − s)2α−1|x − y|−(N+2β)| f (y, s)| dyds.

We have, using the decay condition (1.12),

II1(x, t) ≤ C
∫ t

0

∫
{|y|> |x|2 }∩B(x,t,s)

|y|−N(1 + s)−γ(t − s)−(1+α)|x − y|4β−N dyds

≤ C|x|−N
∫ t

0
(1 + s)−γ(t − s)−(1+α)

∫
B(x,t,s)

|x − y|4β−N dyds

= C|x|4βε−N
∫ t

0
(1 + s)−γ(t − s)α(1−2ε)−1 ds.

Since p ≥ pc and ε ∈ (0, 1/2), we have (N − 4βε)p > N, and hence

‖II1(·, t)‖Lp({|x|>νtθ}) = Ct−σ(p)+1−α(1−2ε)
∫ t

0
(1 + s)−γ(t − s)α(1−2ε)−1 ds

≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−σ(p)+1−γ,
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and integration gives the bound in (1.15) for this term.
Finally, since |x − y| ≥ |x|ε(t − s)θ(1−ε) in (B(x, t, s))c, using the condition (1.3) on f ,

II2(x, t) ≤ C|x|−(N+2β)ε
∫ t

0
(1 + s)−γ(t − s)−σ∗+θ(N+2β)ε ds,

so that

‖II2(·, t)‖Lp({|x|>νtθ}) ≤ Ct
Nθ
p −θ(N+2β)ε

∫ t

0
(1 + s)−γ(t − s)−σ∗+θ(N+2β)ε ds

≤ Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds + Ct−σ(p)+1−γ.

Now, integration gives the bound.
In order to check that the bound in (1.15) is sharp we choose f (x, t) = (1 + t)−γχB1(x). If t is large,

|y| < 1 and |x| > νtθ, then |y| < |x|/2. Hence, |x|/2 < |x− y| < 3|x|/2, so that, assuming also that |x| < µtθ

and 0 < s < t/2,
ν

2
≤
|x|
2tθ
≤
|x − y|
(t − s)θ

≤
3µ
2

( t
t − s

)θ
≤ C.

Thus, since the profile G of Y is positive, under these conditions Y(x − y, t − s) ≥ C(t − s)−σ∗ for some
constant C > 0, see (1.5), and therefore,

u(x, t) ≥ C
∫ t

2

0
(1 + s)−γ(t − s)−σ∗ ds ≥ Ct−σ∗

∫ t
2

0
(1 + s)−γ ds.

Thus,

‖u(·, t)‖Lp({|x|>νtθ}) ≥ ‖u(·, t)‖Lp({µ>|x|/tθ>ν}) ≥ Ct−σ∗ |{νtθ < |x| < µtθ}
∣∣∣1/p

∫ t
2

0
(1 + s)−γ ds

= Ct−σ(p)
∫ t

2

0
(1 + s)−γ ds,

which implies the desired lower bound. �

3. Compact regions

In this section we prove Theorem 1.2, which gives the large-time behavior of the Lp norms of the
mild solution to (1.3) in compact sets K.

Proof of Theorem 1.2. Let t ≥ 1. We have |u| ≤ I + II, where

I(x, t) =

∫ t−1

0

∫
RN

Y(x − y, t − s)| f (y, s)| dyds,

II(x, t) =

∫ t

t−1

∫
RN

Y(x − y, t − s)| f (y, s)| dyds.

Mathematics in Engineering Volume 4, Issue 3, 1–17.
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Using the global bound (1.9) for Y we get

I(x, t) ≤C
∫ t−1

0
(t − s)−(1+α)

∫
RN
|x − y|4β−N | f (y, s)| dyds

≤C
∫ t−1

0
(t − s)−(1+α)

∫
{|x−y|<1}

|x − y|4β−N | f (y, s)| dyds

+ C
∫ t−1

0
(t − s)−(1+α)

∫
{|x−y|>1}

| f (y, s)| dyds.

Let q = 1 if p ∈ [1, pc), q > qc(p) as in (1.13) if p ≥ pc. Let r satisfy 1 + 1
p = 1

q + 1
r . Then r ∈ [1, pc),

and in particular r ∈ [1, p∗). Thus, for all t ≥ 2 we have

‖I(·, t)‖Lp(K) ≤C
∫ t−1

0
(t − s)−(1+α)‖ f (·, s)‖Lq(K+B1)

( ∫
B1

|z|(4β−N)r dz
)1/r

ds

+ C|K|1/p
∫ t−1

0
(t − s)−(1+α)‖ f (·, s)‖L1(RN ) ds

≤C
∫ t−1

0
(1 + s)−γ(t − s)−(1+α) ds ≤ Ct−(1+α)

∫ t
2

0
(1 + s)−γ ds + Ct−γ

∫ t−1

t
2

(t − s)−(1+α) ds

≤Ct−γ + C


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1,

which implies that ‖I(·, t)‖Lp(K) ≤ Ct−min{γ,1+α}.
In order to bound II we take r ∈ [1, pc) as before. Then, using (1.11) we get

‖II(·, t)‖Lp(K) ≤ C
∫ t

t−1
‖ f (·, s)‖Lq(RN )(t − s)α−1−Nθ(1− 1

r ) ds ≤ C
∫ t

t−1
(1 + s)−γ(t − s)α−1−Nθ(1− 1

r ) ds

≤ Ct−γ
∫ 1

0
τα−1−Nθ(1− 1

r ) dτ = Ct−γ,

which combined with the estimate for I yields the result.
In order to prove that estimate (1.16) is sharp we consider f (x, t) = (1 + t)−γχK+B1(x), where K is

any compact set with measure different from 0. We have

u(x, t) ≥
∫ t−1

0
(1 + s)−γ

∫
K+B1

Y(x − y, t − s) dyds.

If x ∈ K and |x−y| < 1, then y ∈ K+B1. Notice that |x−y| < 1 and s < t−1 imply that |x−y|(t− s)−θ ≤ 1.
Therefore, using the self-similar form (1.5) of Y and the bound from below (1.6) for the profile G, for
all x ∈ K we have

u(x, t) ≥ C
∫ t−1

0
(1 + s)−γ(t − s)−(1+α)

∫
{|x−y|<1}

|x − y|4β−N dyds = C
∫ t−1

0
(1 + s)−γ(t − s)−(1+α) ds
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for some constant C > 0. Thus, no matter the value of γ, for all x ∈ K and t large enough,

u(x, t) ≥ Ct−γ
∫ t−1

t
2

(t − s)−(1+α) ds = Ct−γ
∫ t

2

1
τ−(1+α) dτ ≥ Ct−γ,

while if γ > 1, then

u(x, t) ≥ C
∫ t

2

0
(1 + s)−γ(t − s)−(1+α) ds ≥ Ct−(1+α)

∫ t
2

0
(1 + s)−γ ds ≥ Ct−(1+α),

so that ‖u(·, t)‖Lp(K) ≥ Ct−min{γ,1+α}. �

4. Intermediate scales

In this section we study the large-time behavior of the Lp norms of the mild solution to (1.3) in
regions where |x| � g(t) with g(t)→ ∞ such that g(t) = o(tθ), which is the content of Theorem 1.3.

Proof of Theorem 1.3. We have |u| ≤ I + II, where

I(x, t) =

∫ t

0

∫
{|y|> |x|2 }

| f (x − y, t − s)|Y(y, s) dyds,

II(x, t) =

∫ t

0

∫
{|y|< |x|2 }

| f (x − y, t − s)|Y(y, s) dyds.
(4.1)

To estimate I we decompose it as I = I1 + I2 + I3, where

I1(x, t) =

∫ (
|x|
2

)1/θ

0

∫
{|y|> |x|2 }

| f (x − y, t − s)|Y(y, s) dyds,

I2(x, t) =

∫ t
2(
|x|
2

)1/θ

∫
{|y|> |x|2 }

| f (x − y, t − s)|Y(y, s) dyds,

I3(x, t) =

∫ t

t
2

∫
{|y|> |x|2 }

| f (x − y, t − s)|Y(y, s) dyds.

(4.2)

If 0 < sθ < |x|/2 < |y|, then |y|s−θ ≥ 1. Therefore, using (1.10) and condition (1.3), if |x| < µg(t) with
g(t) = o(tθ) we have

I1(x, t) ≤ C|x|−(N+2β)
∫ (

|x|
2

)1/θ

0
s2α−1(1 + t − s)−γ ds ≤ C|x|2β−Nt−γ. (4.3)

Thus, ‖I1(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤ Ct−γg(t)2β−N(1− 1
p ).

As for I2 and I3, using the global bound (1.9) for Y and condition (1.3),

I2(x, t) ≤ C|x|4β−N
∫ t

2(
|x|
2

)1/θ
(1 + t − s)−γs−(1+α) ds ≤ C|x|4β−Nt−γ

∫ t
2(
|x|
2

)1/θ
s−(1+α) ds ≤ C|x|2β−Nt−γ,

I3(x, t) ≤ C|x|4β−Nt−(1+α)
∫ t

2

0
(1 + τ)−γ dτ.

(4.4)
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Therefore,
‖I2(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤ Ct−γg(t)2β−N(1− 1

p ),

‖I3(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤ Cg(t)4β−N(1− 1
p )


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1.

Now we turn to II. We decompose it as II ≤ II1 + II2, where

II1(x, t) = C
∫ t

2

0

∫
{|y|< |x|2 }

| f (x − y, t − s)|Y(y, s) dyds,

II2(x, t) = C
∫ t

t
2

∫
{|y|< |x|2 }

| f (x − y, t − s)|Y(y, s) dyds.
(4.5)

We start with the subcritical case p ∈ [1, pc). Notice that if sθ < |y|, then |y|s−θ ≥ 1. Moreover,
if |x| = o(tθ), then (|x|/2)1/θ = o(t), and hence (|x|/2)1/θ < t/2 if t is large. Therefore, using the
bounds (1.9) and (1.10), we have II1 ≤ II11 + II12, where

II11(x, t) = C
∫ (

|x|
2

)1/θ

0

∫
{sθ<|y|< |x|2 }

| f (x − y, t − s)|s2α−1|y|−(N+2β) dyds,

II12(x, t) = C
∫ t

2

0

∫
{|y|<min{ |x|2 ,s

θ}}

| f (x − y, t − s)|s−(1+α)|y|4β−N dyds.

Using condition (1.3), and remembering that g(t) = o(tθ),

‖II11(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤C
∫ (

µ
2 g(t)

)1/θ

0
‖ f (·, t − s)‖L1(RN )s2α−1

( ∫
{|y|>sθ}

|y|−(N+2β)p dy
)1/p

ds

≤C
∫ (

µ
2 g(t)

)1/θ

0
(1 + t − s)−γs−σ(p) ds ≤ Ct−γg(t)2β−N(1− 1

p ),

‖II12(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤C
∫ (

µ
2 g(t)

)1/θ

0
‖ f (·, t − s)‖L1(RN )s−(1+α)

( ∫
{|y|<sθ}

|y|(4β−N)p dy
)1/p

ds

+ C
∫ t

2(
µ
2 g(t)

)1/θ
‖ f (·, t − s)‖L1(RN )s−(1+α)

( ∫
{|y|< µ

2 g(t)}
|y|(4β−N)p dy

)1/p
ds

≤Ct−γ
∫ (

µ
2 g(t)

)1/θ

0
s−σ(p) ds + Cg(t)4β−N(1− 1

p )t−γ
∫ t

2(
µ
2 g(t)

)1/θ
s−(1+α) ds

≤Ct−γg(t)2β−N(1− 1
p ).

On the other hand, from the global bound (1.9),

II2(x, t) = C
∫ t

t
2

∫
{|y|< |x|2 }

| f (x − y, t − s)|s−(1+α)|y|4β−N dyds,
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and therefore, thanks to condition (1.3),

‖II2(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤

∫ t

t
2

‖ f (·, t − s)‖L1(RN )s−(1+α)
( ∫
{|y|< µ

2 g(t)}
|y|(4β−N)p dy

)1/p
ds

≤ Cg(t)4β−N(1− 1
p )t−(1+α)

∫ t
2

0
(1 + τ)−γ dτ ≤ Cg(t)4β−N(1− 1

p )


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1.

Let now p ≥ pc. Since |x − y| ≥ |x|/2 ≥ νg(t)/2 → ∞ as t → ∞, then, thanks to assumption (1.12),
we have that | f (x − y, t − s)| ≤ C|x|−N(1 + t − s)−γ for all t large. Hence,

II11(x, t) ≤C|x|−N
∫ (

|x|
2

)1/θ

0
(1 + t − s)−γs2α−1

∫
{|y|>sθ}

|y|−(N+2β) dyds

= C|x|−N
∫ (

|x|
2

)1/θ

0
(1 + t − s)−γsα−1 ds ≤ C|x|−Nt−γ

∫ (
|x|
2

)1/θ

0
sα−1 ds = C|x|2β−Nt−γ,

II12(x, t) ≤C|x|−N
( ∫ (

|x|
2

)1/θ

0
(1 + t − s)−γs−(1+α)

∫
{|y|<sθ}

|y|4β−N dyds

+

∫ t
2(
|x|
2

)1/θ
(1 + t − s)−γs−(1+α)

∫
{|y|< |x|2 }

|y|4β−N dyds
)

≤C|x|−Nt−γ
∫ (

|x|
2

)1/θ

0
sα−1 ds + C|x|4β−Nt−γ

∫ t
2(
|x|
2

)1/θ
s−(1+α) ds ≤ C|x|2β−Nt−γ.

Therefore, ‖II1(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤ Ct−γg(t)2β−N(1− 1
p ) also when p ≥ pc.

As for II2, also when p ≥ pc, since |y| < |x|/2 implies |x − y| > |x|/2, using the global estimate (1.9)
and the decay condition (1.12),

II2(x, t) ≤ C|x|−N
∫ t

t
2

(1 + t − s)−γs−(1+α)
∫
{|y|< |x|2 }

|y|4β−N dyds

≤ C|x|4β−Nt−(1+α)
∫ t

2

0
(1 + τ)−γ dτ ≤ C|x|4β−N


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1,

and hence

‖II2(·, t)‖Lp({ν<|x|/g(t)<µ}) ≤ Cg(t)4β−N(1− 1
p )


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1.

Estimate (1.17) follows from the above bounds and the fact that g(t) = o(tθ).
To end the proof we have to check that (1.17) is sharp. To this aim we take f (x, t) = (1 + t)−γχB1(x).

Let t be large enough so that g(t) > 2/ν. If νg(t) < |x| < µg(t) and |x − y| < 1,

ν

2
g(t) <

|x|
2
< |x| −

ν

2
g(t) < |x| − 1 < |y| < |x| + 1 < |x| +

ν

2
g(t) < 2|x| < 2µg(t). (4.6)
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Under these assumptions, if s ∈ (0, (νg(t)/2)1/θ), then |y|s−θ ≥ |y|/(νg(t)/2) ≥ 1. Therefore, if g(t) =

o(tθ), using (1.5) and the estimates from below in (1.7)–(1.8), and performing the change of variables
s = τg(t)1/θ, we arrive at

u(x, t) ≥
∫ (

ν
2 g(t)

)1/θ

0

∫
{|x−y|<1}

(1 + t − s)−γY(y, s) dyds ≥ Ct−γ
∫ (

ν
2 g(t)

)1/θ

0
s−σ∗e−c(g(t)s−θ)

2
2−α ds

= Ct−γg(t)2β−N
∫ (

ν
2

)1/θ

0
τ−σ∗e−cτ

− α
β(2−α) dτ = Ct−γg(t)2β−N .

Therefore,

‖u(x, t)‖Lp({ν<|x|/g(t)<µ}) ≥ Ct−γg(t)2β−N(1− 1
p ). (4.7)

On the other hand, under the assumptions leading to (4.6), if moreover s ∈ (t/2, t) and t is large enough,
we have |y| < 2µg(t) < (t/2)θ < sθ. Thus, using the estimate from below in (1.6),

u(x, t) ≥ C
∫ t

t
2

∫
{|x−y|<1}

(1 + t − s)−γs−(1+α)|y|4β−N dyds ≥ Ct−(1+α)g(t)4β−N
∫ t

t
2

(1 + t − s)−γ ds

= Ct−(1+α)g(t)4β−N
∫ t

2

0
(1 + τ)−γ dτ ≥ Cg(t)4β−N


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1.

Hence,

‖u(·, t)‖Lp({ν<|x|/g(t)<µ}) ≥ Cg(t)4β−N(1− 1
p )


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1.

(4.8)

Estimates (4.7)–(4.8) show that (1.17) is sharp. �

5. Estimates in RN

In this section we establish the behavior of the global Lp(RN) norms of the mild solution to (1.2),
Theorem 1.4.

Proof of Theorem 1.4. Due to the results of theorems 1.1 and 1.2, it is enough to show that the estimates
are true in some region of the form {R ≤ |x| ≤ δtθ} with R, δ > 0.

We have |u| ≤ I + II, with I and II as in (4.1). The term I is further decomposed as I = I1 + I2 + I3,
with I j, j ∈ {1, 2, 3} as in (4.2). Since |x| < δtθ in the region we are interested in, taking δ ∈ (0, 21−θ),
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then (|x|/2)1/θ < t/2. Therefore, reasoning as in Section 4, we obtain (4.3)–(4.4), from where

‖I j(·, t)‖Lp({R<|x|<δtθ}) ≤ C


t−σ(p)+1−γ, p ∈ [1, pc),
t−γ log t, p = pc, j ∈ {1, 2},
t−γ, p > pc,

‖I3(·, t)‖Lp({R<|x|<δtθ}) ≤ C



t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1, p ∈ [1, p∗),
t−σ(p), γ > 1,

t−(γ+α) log t, γ < 1,
t−(1+α)(log t)2, γ = 1, p = p∗,

t−(1+α) log t, γ > 1,

t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1, p > p∗,

t−(1+α), γ > 1.

We conclude that

‖I(·, t)‖Lp({R<|x|<δtα/2β}) ≤ C



t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1, p ∈ [1, pc),
t−σ(p), γ > 1,

t−γ log t, γ ≤ 1,
p = pc,

t−1, γ > 1,

t−γ γ ≤ σ(p),
p ∈ (pc, p∗),

t−σ(p) γ ≥ σ(p),

t−γ, γ < 1 + α,
p = p∗,

t−(1+α) log t, γ ≥ 1 + α,

t−γ, γ < 1 + α,
p > p∗,

t−(1+α), γ ≥ 1 + α.

To analyze II we decompose it as II = II1 + II2, where II1 and II2 are as in (4.5). We start with the
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subcritical case p ∈ [1, pc). Using (1.3) and (1.11),

‖II1(·, t)‖Lp({R<|x|<δtθ}) ≤ C
∫ t

2

0
(1 + t − s)−γ‖Y(·, s)‖Lp(RN ) ds ≤ Ct−γ

∫ t
2

0
s−σ(p) ds = Ct−σ(p)+1−γ,

‖II2(·, t)‖Lp({R<|x|<δtθ}) ≤ C
∫ t

t
2

(1 + t − s)−γ‖Y(·, s)‖Lp(RN ) ds ≤ Ct−σ(p)
∫ t

2

0
(1 + τ)−γ dτ

≤ C


t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1,
t−σ(p), γ > 1.

Let now p ≥ pc. If |y| < |x|/2 and |x| > R, then |x − y| ≥ |x|/2 ≥ R/2. Hence, taking R large enough
so that (1.12) holds outside BR/2, we have that | f (x − y, t − s)| ≤ C|x|−N(1 + t − s)−γ. Hence, reasoning
as in Section 4,

II1(x, t) ≤ C|x|2β−Nt−γ, II2(x, t) ≤ C|x|4β−N


t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1,
t−(1+α), γ > 1,

and we get,

‖II1(·, t)‖Lp({R<|x|<δtθ}) ≤ C

t−γ log t, p = pc,

t−γ, p > pc,

‖II2(·, t)‖Lp({R<|x|<δtθ}) ≤ C



t−σ(p)+1−γ, γ < 1,
t−σ(p) log t, γ = 1, p ∈ [pc, p∗),
t−σ(p), γ > 1,

t−(γ+α) log t, γ < 1,
t−(1+α)(log t)2, γ = 1, p = p∗,

t−(1+α) log t, γ > 1,

t−(γ+α), γ < 1,
t−(1+α) log t, γ = 1, p > p∗,

t−(1+α), γ > 1.

The above estimates together with theorems 1.1 and 1.2 yield the result. �
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5. C. Cortázar, F. Quirós, N. Wolanski, Large-time behavior for a fully nonlocal heat equation,
Vietnam J. Math., 49 (2021), 831–844.

6. C. Cortazar, F. Quirós, N. Wolanski, A heat equation with memory: large-time behavior, J. Funct.
Anal., 281 (2021), 109174.

7. C. Cortazar, F. Quirós, N. Wolanski, Decay/growth rates for inhomogeneous heat equations with
memory. The case of small dimensions, Preprint.

8. D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence,
Phys. Plasmas, 11 (2004), 3854–3864.

9. D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Nondiffusive transport in plasma turbulence:
A fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003.

10. J. Dolbeault, G. Karch, Large time behaviour of solutions to nonhomogeneous diffusion equations,
In: Self-similar solutions of nonlinear PDE, Banach Center Publ., 2006, 133–147.

11. M. M. Dzherbashyan, A. B. Nersesian, Fractional derivatives and the Cauchy problem for
differential equations of fractional order, Izv. Akad. Nauk Arm. SSR, Mat., 3 (1968), 3–29.

12. S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ.
Equations, 199 (2004), 211–255.

13. A. N. Gerasimov, A generalization of linear laws of deformation and its application to problems of
internal friction, Akad. Nauk SSSR. Prikl. Mat. Meh., 12 (1948), 251–260.

14. G. Gripenberg, Volterra integro-differential equations with accretive nonlinearity, J. Differ.
Equations, 60 (1985), 57–79.

15. B. Gross, On creep and relaxation, J. Appl. Phys., 18 (1947), 212–221.

Mathematics in Engineering Volume 4, Issue 3, 1–17.



17

16. J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for
fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201.

17. J. Liouville, Memoire sur quelques questions de géometrie et de méecanique, et sur un nouveau
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