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1. Introduction

The study of minimal surfaces spanning elastic boundaries dates back to Courant [13] and Lewy
[33]. They studied the Plateau problem under the assumption that the boundary of the minimal surface
is not fixed, but is constrained to lie on a prescribed manifold. The generalization to minimal surfaces
spanning non-constrained elastic boundaries has been recently addressed by Giomi & Mahadevan [26].
These results have been complemented with an investigation of the stability of flat circular solutions by
Chen & Fried [11], Biria & Fried [9,10], Giusteri, Franceschini & Fried [27], and Hoang & Fried [32].
A similar problem has been treated by Bernatzky & Ye [6] employing the theory of currents, however
the elastic energy used therein fails to satisfy the physical requirement of invariance under superposed
rigid transformations.

The Kirchhoff-Plateau problem differs from the aforementioned works, because the spanning
boundary is assumed to lay on the surface of an elastic loop, referred to as the rod, which is modeled
as a deformable manifold. On the contrary, in all of the studies above the boundary of the spanning
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surface was assumed to coincide with the loop midline. In the Kirchhoff-Plateau problem the filament
forming the loop is assumed to be thin enough to be modeled faithfully by a Kirchhoff rod, that is an
unshearable inextensible rod which can sustain bending of its midline and twisting of its
cross-sections, see Antman’s work [5]. To model the flexible rods, some physical constraints are
imposed, such as local and global non-interpenetration of matter introduced by Schuricht [34]. The
isotropic Kirchhoff-Plateau problem, that is minimizing the area functional, has been investigated by
Giusteri, Lussardi & Fried [28] with only one filament, and by Bevilacqua, Lussardi & Marzocchi [7]
taking into account a system of linked rods. The authors utilize the boundary condition via linking
number introduced by Harrison [30] and further investigated by De Lellis, Ghiraldin & Maggi [15].
Moreover, a dimensional reduction of the aforementioned variational problem has been treated by
Bevilacqua, Lussardi & Marzocchi [8].

In view of the works of Almgren [3, 4], Taylor [36] and Allard [1, 2], a natural question is whether
the isotropic results [7, 8] generalize to anisotropic surface energies. Indeed, an increasing interest has
been recently devoted to the study of the anisotropic Plateau problem: see for instance the results by
De Philippis, De Rosa & Ghiraldin [16–18], De Rosa [20], De Rosa & Kolasinski [23] and Harrison &
Pugh [31]. We also refer the reader to [14, 19, 21, 22, 24].

The aim of this paper is to address this question, considering the anisotropic Kirchhoff-Plateau
problem for systems of linked rods. The energy functional we minimize is given by the sum of the
elastic and the potential energy for the link and the anisotropic surface energy of the film. As for the
isotropic Kirchhoff-Plateau problem we prescribe the linking type of the system of rods as well as the
non-interpenetration of matter for each rod. Furthermore, each midline has a prescribed knot-type.

To conclude, we perform a dimensional reduction in the spirit of the analysis carried out in the
isotropic setting.

2. Notation and preliminaries

In this section we recall notation for the geometry of curves. If x1, x2 : [0, L] → R3 are two
continuous and closed curves, their linking number is the integer value

Link(x1, x2) :=
1

4π

∫ L

0

∫ L

0

x1(s) − x2(t)
|x1(s) − x2(t)|3

· x′1(s) × x′2(t) dsdt.

We say that x1 and x2 are isotopic, and we use the notation x1 ' x2, if there exists an open neighborhood
N1 of x1([0, L]), an open neighborhood N2 of x2([0, L]) and a continuous map Φ : N1 × [0, 1] → R3

such that Φ(N1, τ) is homeomorphic to N1 for all τ in [0, 1] and

Φ(·, 0) = Identity , Φ(N1, 1) = N2 , Φ(x1([0, L]), 1) = x2([0, L]) .

Following Gonzalez et al. [29], we define the minimal global radius of curvature of a closed curve
x ∈ W1,p((0, L);R3), with p > 1, by

∆(x) := inf
s,σ,τ,s∈[0,L)

R(x(s), x(σ), x(τ))

where R(x, y, z) denotes the radius of the unique circle containing x , y , z , x, with the convention
R(x, y, z) = +∞ if x, y, z are collinear. The global radius of curvature determines the self-intersections
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of the tubular neighborhoods of a curve. More precisely, for every r > 0 we define the r-tubular
neighborhood of x by

Ur(x) =
⋃

s∈[0,L]

Br(x(s)).

Accordingly to Ciarlet et al. [12] we say that Ur(x) is not self-intersecting if for any p ∈ ∂Ur(x)
there exists a unique s ∈ [0, L] such that ‖p − x(s)‖ = r. It turns out (see Gonzalez et al. [29]) that
∆(x) ≥ r if and only if Ur(x) is not self-intersecting. In particular, if ∆(x) > 0 then x is simple, that is
x : [0, L)→ R3 is injective.

3. The anisotropic Plateau problem

First we recall that a set S ⊂ R3 is said to be 2-rectifiable if it can be covered, up to an H2-
negligible set, by countably many 2-dimensional submanifolds of class C1, see [35, Chapter 3]. Given
a 2-rectifiable set S , we denote by TxS the approximate tangent space of S ⊂ R3 at x, which exists for
H2-almost every point x ∈ S [35, Chapter 3]. We also denote by G the Grassmannian of unoriented
2-dimensional planes in R3. The anisotropic integrands considered in the rest of the note will be
continuous maps

F : R3 ×G 3 (x, π) 7→ F(x, π) ∈ (0,+∞),

verifying the lower and upper bounds

0 < λ ≤ F(x, π) ≤ Λ, ∀(x, π) ∈ R3 ×G. (3.1)

We also require that F is elliptic [25, 5.1.2–5.1.5], namely its even and positively 1-homogeneous
extension to R3× (Λ2(R3) \ {0}) is C2 and it is convex in the π variable. Given a 2-rectifiable set S ⊂ R3

we define:

F(S ) :=
∫

S
F(x,TxS ) dH2(x). (3.2)

Next, we need to define the spanning condition. For any closed set H ⊂ R3, let C(H) be the class of all
smooth embeddings γ : S1 → R3 \ H. We say that C ⊂ C(H) is closed by homotopy if for every γ ∈ C
then γ̃ ∈ C for any γ̃ ∈ [γ] ∈ π1(R3 \H). We denote by P(H,C) the family of all 2-rectifiable relatively
closed sets S ⊂ R3 \ H such that

S ∩ γ(S1) , ∅, ∀γ ∈ C.

We recall the following result, see [14, Theorem 2.7]:

Theorem 3.1. The problem

min{F(S ) : S ∈ P(H,C)}

has a solution S ∈ P(H,C) and the set S is an (F, 0,∞)-minimal set in R3 \ H in the sense of Almgren
[4].
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4. The anisotropic Kirchhoff-Plateau problem

4.1. The system of linked rods

Let N ∈ N \ {0} and p ∈ (1,+∞). For every i = 1, . . . ,N, let Li > 0 and xi
0, ti

0, d
i
0 ∈ R

3 be such
ti
0 ⊥ di

0 and |ti
0| = |d

i
0| = 1. Moreover let κi

1, κ
i
2, ω

i ∈ Lp(0, Li) such that

wi
1 := (κi

1, κ
i
2, ω

i) ∈ Lp((0, Li);R3),

wi := (wi
1, x

i
0, ti

0, d
i
0) ∈ Lp((0, Li);R3) × R3 × R3 × R3,

and

w := (w1
1,w

2, . . . ,wN) ∈ Lp((0, L1);R3) ×
N∏

i=2

((Lp((0, Li);R3) × R3 × R3 × R3) =: V.

We endow V with the natural Lp-norm, that we denote by ‖ · ‖V . For any i = 1, . . . ,N and for any
w ∈ V , we denote by xi[w] ∈ W2,p((0, Li);R3) and ti[w], di[w] ∈ W1,p((0, Li);R3) the unique solutions
(as proved in [29, Lemma 6]) of the Cauchy problem

xi[w]′(s) = ti[w](s)
ti[w]′(s) = κi

1(s)di[w](s) + κi
2(s)ti[w](s) × di[w](s)

di[w]′(s) = ωi(s)ti[w](s) × di[w](s) − κi
1(s)ti[w](s)

xi[w](0) = xi
0

ti[w](0) = ti
0

di[w](0) = di
0.

It is easy to see that ti[w](s) ⊥ di[w](s) and |ti[w](s)| = |di[w](s)| = 1 and consequently that

(ti[w](s), di[w](s), ti[w](s) × di[w](s))

is an orthonormal frame in R3, for any s ∈ [0, Li] and for any i = 1, . . . ,N. Let η, ν > 0 and consider
Ai(s) ⊂ R2 be compact and simply connected such that

Bη(0) ⊂ Ai(s) ⊂ Bν(0), ∀s ∈ [0, Li], i = 1, . . . ,N.

For any i = 1, . . . ,N we define

Ωi := {(s, ζ1, ζ2) ∈ R3 : s ∈ [0, Li], (ζ1, ζ2) ∈ Ai(s)},

Λi[w] := {xi[w](s) + ζ1di[w](s) + ζ2 ti[w](s) × di[w](s) : (s, ζ1, ζ2) ∈ Ωi}, (4.1)

and

Λ[w] :=
N⋃

i=1

Λi[w].

The system of closed rods is subjected to some constraints on w, enumerated below, which will identify
the admissible subset W ⊂ V: First of all we assume that the midlines are closed and sufficiently
smooth, that is
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(C1) xi[w](Li) = xi[w](0) = xi
0, for any i = 1, . . . ,N

and

(C2) ti[w](Li) = ti[w](0) = ti
0, for any i = 1, . . . ,N.

To prescribe how many times the ends of the rods are twisted before being glued together, we prescribe
the linking number between the midline and a closed curve close to the midline. More precisely, for
any i = 1, . . . ,N we close up the curve xi[w] + τdi[w], for τ > 0 fixed and small enough, defining as in
Schuricht [34]

x̃i
τ[w](s) :=


xi[w](s) + τdi[w](s) if s ∈ [0, Li]

xi[w](Li) + τ(cos(ϕi(s − Li))di[w](Li)
+ sin(ϕi(s − Li))ti[w](Li) × di[w](Li)) if s ∈ [Li, Li + 1]

(4.2)

where ϕi ∈ [0, 2π) is the unique angle between di
0 and di[w](Li) such that ϕi − π has the same sign as

di
0× di[w](Li) · ti

0. We trivially identify xi[w] with its extension xi[w](s) = xi(Li) for any s ∈ [Li, Li + 1]
and therefore we require that for any i = 1, . . . ,N there is some li ∈ Z such that

(C3) Link(xi[w], x̃i
τ[w]) = li.

To encode the knot type of the midlines, for any i = 1, . . . ,N we fix a continuous mapping `i : [0, Li]→
R3 such that `i(Li) = `i(0) and we require that

(C4) xi[w] ' `i.

Finally, in order to prevent the interpenetration of matter, following Ciarlet et al. [12] we require that

(C5) ∫
Ωi

(1 − ζ1ki
2(s) + ζ2ki

1(s)) dsdζ1dζ2 ≤ |Λ
i[w]| ∀i = 1, . . . ,N, and

N⋂
i=1

int(Λi[w]) = ∅.

We now require that our system of rods has a prescribed chain structure. We fix Li j ∈ ZN×N , with the
property that |Li(i+1)| = 1 for every i = 1, . . . ,N − 1 and we assume that:

(C6) Link(xi[w], x j[w]) = Li j.

We finally denote by W the set of all constraints, namely

W :=
{
w ∈ V : (C1)–(C6) hold true

}
.

It turns out that W is weakly closed in V (see Gonzalez et al. [29] and Schuricht [34]).

4.2. Energy contributions and existence of a minimizer

In what follows we will prescribe an elastic energy of the system of rods, which is a proper function

Eel : W → R ∪ {+∞}, satisfying Eel(w) ≥ c‖w‖V , (4.3)
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for some c > 0. The second energy contribution we want to take into account is the weight of the rods.
Let ρi ∈ L∞(Ωi) with ρ ≥ 0 be the mass density functions and g be the gravitational acceleration. Let
us define Eg : W → R ∪ {+∞} as

Eg(w) :=
N∑

i=0

∫
Ωi
ρi(s, ζ1, ζ2)g · (xi[w](s) + ζ1di[w](s) + ζ2 ti[w](s) × di[w](s)) dsdζ1dζ2.

The last contribution we want to take into account is the surface energy. Let Cw ⊂ C(Λ[w]) be the class
of all γ ∈ C(Λ[w]) such that there exists i = 1, . . . ,N with

|Link(γ, xi[w])| = 1, Link(γ, x j[w]) = 0, ∀ j , i.

Cw is closed by homotopy, see [30]. We define Esf : W → R ∪ {+∞} as

Esf(w) := inf
{
F(S ) : S ∈ P(Λ[w],Cw)

}
.

We define the energy functional of our variational problem as

E(w) := Eel(w) + Eg(w) + Esf(w), w ∈ W. (4.4)

The first main result of the paper is given by the following existence theorem.

Theorem 4.1. Let Eel be the lower semicontinuous envelope of Eel with respect to the weak topology
of V. Assume that infW E < +∞. Then the problem

min
w∈W

Eel(w) + Eg(w) + Esf(w)

has a solution w0 ∈ W and there exists S∞ ∈ P(Λ[w0],Cw0) which is an (F, 0,∞)-minimal set in
R3 \ Λ[w0] in the sense of Almgren such that

Eel(w0) + Eg(w0) + F(S∞) = min
w∈W

Eel(w) + Eg(w) + Esf(w) = inf
w∈W

E(w).

4.3. Proof of Theorem 4.1

First of all we prove that the weight and the soap film energy are weakly continuous.

Lemma 4.2. The functional Eg is weakly continuous on W.

Proof. Let (wh) be a sequence in W with wh ⇀ w in W for some w ∈ W. Then xi[wh] ⇀ xi[w]
in W2,p and ti[wh] ⇀ ti[w], di[wh] ⇀ di[w] in W1,p. Then by Sobolev embedding we deduce that
xi[wh] → xi[w] in C1,α and ti[wh] → ti[w], di[wh] → di[w] in C0,α for some α ∈ (0, 1). This is enough
to pass to the limit under the integral and get the claim. �

The continuity of the soap film energy follows from the next theorem.

Theorem 4.3. Let (wh) be a sequence in W with wh ⇀ w in W for some w ∈ W. Assume that

(a) S h ∈ P(Λ[wh],Cwh), for every h ∈ N;
(b) suph∈N F(S h) = suph∈N inf{F(S ) : S ∈ P(Λ[wh],Cwh)} < +∞.
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Let µh := FH2 S h. Then the following three statements hold true:

µh ⇀
∗ µ (up to subsequences), (4.5)

µ ≥ FH2 S∞, where S∞ = (spt µ) \ Λ[w] is 2-rectifiable; (4.6)

S∞ ∈ P(Λ[w],Cw). (4.7)

Proof. We first observe that the classes P(Λ[wh],Cwh) and P(Λ[w],Cw) are good classes in the sense of
De Lellis et al. [14, Def. 2.2], as proved in [14, Thm. 2.7(a)]. Then the proof of (4.5) and (4.6) follows
verbatim the proof of Theorem 2.5 of [14]. It is sufficient to observe that the convergence of {Λ[wh]}
ensures that, whenever x ∈ S∞, we have d(x,Λ[wh]) > 0 for h large enough. We are left to prove
(4.7), namely that S∞ ∩ γ(S1) , ∅ for any γ ∈ Cw. Assume by contradiction that there exists γ ∈ Cw

with S∞ ∩ γ(S1) = ∅. Since γ is compact and contained in R3 \ Λ[w] and S∞ is relatively closed in
R3 \Λ[w], there exists a positive ε such that the tubular neighborhood U2ε(γ) does not intersect S∞ and
is contained in R3 \ Λ[w]. Hence µ(U2ε(γ)) = 0, and consequently

lim
h→∞
H2(S h ∩ Uε(γ)) = 0. (4.8)

Denote by Bε the open disk of R2 with radius ε and centered at the origin of R2, and consider a
diffeomorphism Φ : S1 × Bε → Uε(γ) such that Φ|S1×{0} = γ. Let y belong to Bε and set γy := Φ|S1×{y} .
Then γy in [γ] represents an element of π1(R3 \ Λ[w]). Since wh ⇀ w in W then (xi[wh]) converges
to xi[w] strongly in W1,p((0, L);R3) for every i = 1, . . . ,N. In particular, (xi[wh]) converges to xi[w]
uniformly on [0, Li] for every i = 1, . . . ,N, which implies the existence of δ > 0 such that, for h
sufficiently large, Λ[wh] is contained in Uδ(Λ[w]) with Uδ(Λ[w]) ∩ Uε(γ) = ∅. Hence, for such h and
ε it follows that, for any y ∈ Bε, γy(S1) ⊂ R3 \ Uδ(Λ[w]). This implies that ‖xi[wh] − γy‖∞ ≥ δ for any
y ∈ Bε and for every i = 1, . . . ,N. This estimate, together with the W1,p convergence of xi[wh] to xi[w],
implies that

lim
h→+∞

Link(xi[wh], γy) = Link(xi[w], γy), ∀y ∈ Bε, ∀i = 1, . . . ,N.

As a consequence, for h large enough, γy ∈ Cwh which, combined with S h ∈ P(Λ[wh],Cwh), yields
S h∩γy(S1) , ∅. Take now π̃ : S1 × Bε → Bε as the projection on the second factor and let π̂ := π̃ ◦Φ−1.
Then, π̂ is Lipschitz-continuous and Bε is contained in π̂(S h ∩ Uε(γ)), which entails that

πε2 = H2(Bε) ≤ H2(π̂(S h ∩ Uε(γ)) ≤ (Lip π̂)2H2(S h ∩ Uε(γ)) .

We thus conclude that

H2(S h ∩ Uε(γ)) ≥
πε2

(Lip π̂)2

which contradicts (4.8). �

Proof of Theorem 4.1. Thanks to the weak continuity of Eg and Esf, proved in Lemma 4.2 and
Theorem 4.3, we deduce that Eel(w) + Eg(w) + Esf(w) is the lower semicontinuous envelope of E, from
which we get

inf
w∈W

Eel(w) + Eg(w) + Esf(w) = inf
w∈W

E(w).
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Let {wh} be a minimizing sequence for Eel +Eg +Esf. Since infW E < +∞ we can say that E(wh) ≤ c for
some c > 0. In particular, Eel(wh) ≤ c and, by coercivity of Eel, we have wh ⇀ w0 in W. We deduce,
using again Lemma 4.2 and Theorem 4.3, that

Eel(w0) + Eg(w0) + Esf(w0) ≤ lim inf
h

Eel(wh) + Eg(wh) + Esf(wh)

≤ lim inf
h

E(wh) = inf
W

E = inf
W

Eel + Eg + Esf.

Moreover, since Esf(w0) < +∞, applying Theorem 2.7 of [14] we deduce the claim. �

5. Dimensional reduction of the anisotropic Kirchhoff-Plateau problem

The second main result of the paper concerns the dimensional reduction. In this section we consider
cross sections with vanishing diameter. The set of constraints is almost the same, but in order to prevent
the non-selfintersection in the limit configurations (otherwise the knot-type is not well defined) we
replace the constraint (C5) by (C5)’. Precisely, we require that:

(C5)’ ∆(xi[w]) ≥ ∆0 for some prescribed ∆0 > 0.

We denote by W ′ the set of all constraints, namely

W ′ :=
{
w ∈ Lp([0, L];R3) : (C1)-(C2)-(C3)-(C4)-(C5)’-(C6) hold true

}
.

It turns out that W ′ is weakly closed in V (see again Gonzalez et al. [29] and Schuricht [34]). For every
i = 1, . . . ,N, every ε > 0 small enough and every w ∈ W ′ we let

Λi
ε[w] := {xi[w](s) + ζ1di[w](s) + ζ2 ti[w](s) × di[w](s) : (s, ζ1, ζ2) ∈ Ωi

ε} (5.1)

where
Ωi
ε := {(s, ζ1, ζ2) ∈ R3 : s ∈ [0, Li], (ζ1, ζ2) ∈ εAi(s)}.

We also let

Λε[w] :=
N⋃

i=1

Λi
ε[w].

The main goal of this section is to prove that as ε approaches 0, we recover by Γ-convergence the
anisotropic Plateau problem with elastic one dimensional boundary. The first two energy contributions
to take into account are the elastic energy Eel as in (4.3) and the scaled weight

Eg
ε(w) :=

1
ε2

N∑
i=1

∫
Ωi
ε

ρi(s, ζ1, ζ2)g · (xi[w](s) + ζ1di[w](s) + ζ2 ti[w](s) × di[w](s)) dsdζ1dζ2

where ρi ∈ L∞(Ωi
1) and ρi ≥ 0. Concerning the soap film energy, similarly to the previous section, we

define Cε,w ⊂ C(Λε[w]) as the class of all γ ∈ C(Λε[w]) such that there exists i = 1, . . . ,N with

|Link(γ, xi[w])| = 1, Link(γ, x j[w]) = 0 ∀ j , i.
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We define Esf
ε : W ′ → R ∪ {+∞} as

Esf
ε (w) := inf

{
F(S ) : S ∈ P(Λε[w],Cε,w)

}
.

Finally, Eε : W ′ → R ∪ {+∞} is given by

Eε(w) := Eel(w) + Eg
ε(w) + Esf

ε (w).

We now describe the Γ-limit functional. For any i = 1, . . . ,N, let ρi
0 : [0, Li]→ R be given by

ρi
0(s) := lim

(ξ1,ξ2)→(0,0)
ρi(s, ξ1, ξ2)

and let

E0(w) := Eel(w) +

N∑
i=1

∫ Li

0
|Ai(s)|ρi

0(s)g · xi[w](s) ds + inf{F(S ) : S ∈ P(Hw,Cw)},

where

Hw :=
N⋃

i=1

xi[w]([0, Li]),

and Cw is the class of all γ ∈ C(Hw) such that there exists i = 1, . . . ,N with

|Link(γ, xi[w])| = 1, Link(γ, x j[w]) = 0 ∀ j , i.

We are ready to state our second main result.

Theorem 5.1. Let (εh) be a positive and infinitesimal sequence and let (wh) be a sequence in W ′ with
suph∈N Eεh(wh) ≤ c for some c > 0. Then, up to a subsequence, wh ⇀ w in V and w ∈ W ′. Moreover,
the family {Eε}ε>0 Γ-converges to E0 as ε→ 0+ with respect to the weak topology of V, namely:

(a) for any sequence (εh) with εh → 0, for any w ∈ W ′ and for any sequence (wh) in W ′ with wh ⇀ w
in V we have

E0(w) ≤ lim inf
h→+∞

Eεh(wh); (5.2)

(b) for any w ∈ W ′ there is a sequence (εh) with εh → 0 and a sequence (w̄h) in W ′ with w̄h ⇀ w in
V such that

E0(w) ≥ lim sup
h→+∞

Eεh(w̄h). (5.3)

As a standard consequence of Theorem 5.1 we have the next result.

Corollary 5.2. Let (εh) be a positive and infinitesimal sequence. For any h ∈ N and for any σh → 0
let wh ∈ W ′ be such that

Eεh(wh) ≤ inf
W′

Eεh + σh. (5.4)

Then up to a subsequence wh ⇀ w0 in V and

E0(w0) = min
W′

E0.

Mathematics in Engineering Volume 4, Issue 2, 1–13.



10

5.1. Proof of Theorem 5.1

Here we give some preliminary propositions and then prove Theorem 5.1. Fix a positive and
infinitesimal sequence (εh).

Proposition 5.3. Let (wh) be a sequence in W ′ with suph∈N Eεh(wh) ≤ c for some c > 0. Then, up to a
subsequence, wh ⇀ w in V and w ∈ W ′.

Proof. The conclusion follows from the coercivity of Eel. �

The study of the weight term is easy, since the weak convergence wh ⇀ w implies the uniform
convergence of the midlines.

Proposition 5.4. For any w ∈ W ′ and for any sequence (wh) in W ′ with wh ⇀ w in V we have

lim
h→+∞

Eg
εh(wh) =

N∑
i=1

∫ Li

0
|Ai(s)|ρi

0(s)g · xi[w](s) ds. (5.5)

Proof. By the change of variables ζ j = εhη j, j = 1, 2, we obtain that for any i = 1, . . .N,

=
1
ε2

h

∫
Ωi
εh

ρi(s, ζ1, ζ2)g · (xi[wh](s) + ζ1di[wh](s) + ζ2 ti[wh](s) × di[wh](s)) dsdζ1dζ2

=

∫
Ωi

1

ρi(s, εhη1, εhη2)g · (xi[wh](s) + εhη1di[wh](s) + εhη2 ti[wh](s) × diwh](s)) dsdη1dη2.

Passing to the limit as h → +∞, using the fact that xi[wh] → xi[w] uniformly on [0, Li] for any
i = 1, . . . ,N and applying the Dominated Convergence Theorem we conclude. �

Now we pass to the limit in the soap film part of the energy. First of all we need the following
Theorem whose proof requires minor modifications of the proof of Theorem 4.3.

Theorem 5.5. Let (wh) be a sequence in W ′ with wh ⇀ w in W ′ for some w ∈ W ′. Assume that

(a) ∀h ∈ N, S h ∈ P(Λεh[wh],Cεh,wh);
(b) suph∈N F(S h) = suph∈N inf{F(S ) : S ∈ P(Λεh[wh],Cεh,wh)} < +∞.

Let µh := FH2 S h. Then the following three statements hold true:

µh ⇀
∗ µ (up to subsequences), (5.6)

µ ≥ FH2 S∞, where S∞ = (spt µ) \ Hw is 2-rectifiable, (5.7)

S∞ ∈ P(Hw,Cw). (5.8)

Now we prove the existence of a recovery sequence.

Proposition 5.6. Consider w ∈ W ′ and (wk) ⊂ W ′ such that wk ⇀ w in W ′. There exists (wkh)
subsequence of (wk) such that

inf{F(S ) : S ∈ P(Hw,Cw)} ≥ lim sup
h→+∞

Esf
εh

(wkh). (5.9)
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Proof. Since wk ⇀ w in W ′, xi[wh] → xi[w] uniformly on [0, Li] for any i = 1, . . . ,N. Then for every
h ∈ N there exists kh ∈ N such that

‖xi[wkh] − xi[w]‖∞ ≤
εh

2
, ∀i = 1, . . . ,N. (5.10)

Since we can assume without loss of generality that

inf{F(S ) : S ∈ P(Hw,Cw)} < +∞,

again applying Theorem 2.7 of [14], we find S∞ ∈ P(Hw,Cw) such that

F(S∞) = min {F(S ) : S ∈ P(Hw,Cw)}.

Now we set
S h := S∞ \ Λεh[wkh].

For any γ ∈ C(Λεh[wkh]) not homotopic to a point in R3 \ Λεh[wkh] we have

(S∞ \ Λεh[wkh]) ∩ γ(S1) , ∅.

As a consequence,

lim sup
h→+∞

Esf
εh

(w) ≤ lim sup
h→+∞

F(S h) ≤ F(S∞) = min {F(S ) : S ∈ P(Hw,Cw)},

which concludes the proof. �

Proof of Theorem 5.1. The compactness statement is Proposition 5.3. Inequality (5.2) follows
combining (5.5) and (5.7) with the subadditivity of the liminf operator. Next, for any w ∈ W ′, we
consider the constant sequence wh ≡ w. Applying Proposition 5.6, for every εh → 0, the (unique)
subsequence w̄h ≡ w of (wh) satisfies obviously w̄h ⇀ w in V and (5.9). Inequality (5.3) follows easily
combining (5.5) and (5.9) with the superadditivity of the limsup operator. �
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