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Abstract: Several non-local curvature flows for plane curves with a general rotation number are
discussed in this work. The types of flows include the area-preserving flow and the length-preserving
flow. We have a relatively good understanding of these flows for plane curves with the rotation number
one. In particular, when the initial curve is strictly convex, the flow exists globally in time, and
converges to a circle as time tends to infinity. Even if the initial curve is not strictly convex, a global
solution, if it exists, converges to a circle. Here, we deal with curves with a general rotation number,
and show, not only a similar result for global solutions, but also a blow-up criterion, upper estimates of
the blow-up time, and blow-up rate from below. For this purpose, we use a geometric quantity which
has never been considered before.
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1. Introduction

In this paper, we deal with curvature flows comprising non-local terms for plane curves with a
general rotation number. Let f be an R2-valued function on R/L(t)Z × [0,T ) such that for a fixed t ∈
[0,T ), it is an arc-length parametrization of a closed plane curve with total length L(t). In the following
text, we simply denote L(t) as L in many cases. To explain the curvature flow that is considering in
this work, we introduce a certain geometric quantity. For a fixed t ∈ [0,T ), s ∈ R/LZ is an arc-length
parameter. Then, τ = ∂s f and κ = ∂2

s f are the unit tangent vector and the curvature vector respectively.
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The vector ν is a unit normal vector given by rotating τ counter-clockwise by π
2 . The curvature κ and

its deviation κ̃ are given by

κ = κ · ν, κ̃ = κ −
1
L

∫ L

0
κ ds.

Here, κ̃ is a non-local quantity. The equation we consider is of the following form:

∂t f =

(
κ̃ −

g
L

)
ν.

Here, we assume that the function g is a scale-invariant non-local quantity determined by f . That is,
set f λ(s) = 1

λ
f (λs) (s ∈ R/λ−1LZ), then,

g( f λ) = g( f ).

Here we study three cases of g:

(AP) If we set g ≡ 0, then our equation represents the area-preserving flow. In fact, we set A as

A = −
1
2

∫ L

0
f · ν ds

which is the enclosed area when Im f is a simple curve. Consequently, it holds that

dA
dt

= 0.

(LP) Let g = L
(∫ L

0
κ ds

)−1 ∫ L

0
κ̃2ds. Here, the equation represents the length-preserving flow:

dL
dt

= 0.

(JP) Jiang-Pan considered an equation with g =
L2

2A
−

∫ L

0
κ ds in [5]. Here, the isoperimetric ratio

does not increase along with the flow:

d
dt

L2

A
= −

2L
A

∫ L

0
‖∂t f‖2ds.

Let

n =
1

2π

∫ L

0
κ ds

be the rotation number. For classical solutions, the rotation number n is independent of t. There are
a multitude of literature available considering the case when n = 1 in the above equations. First of
all, we should mention Gage’s result [3]. Assume that Im f (0) is a strictly convex, closed curve with
a rotation number equal to 1 in the class of C2. Then, the solution f with the initial data f (0) exists
globally in time, and Im f (t) converges to a circle with a surrounding area A(0) as t → ∞. Similar
results for (LP) and (JP) were proved by [6] and [5] respectively under the convexity condition. The
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authors considered flows without the convexity condition in [7, 8]. Instead of convexity, we assume
the global existence of the solution. Then the solution of (AP), (LP), or (JP) converges to a circle as
t → ∞ exponentially. As a result, the curvature uniformly converges to a positive constant, and thus,
the curve becomes convex in finite time. In our previous works, the isoperimetric deficit

I−1 = 1 −
4πA
L2

played an important role. First, we show the decay of I−1. Set

I` = L2`+1
∫ L

0

∣∣∣κ̃(`)
∣∣∣2 ds for ` ∈ {0} ∪ N.

In [7], we showed the inequality

I j 5 C
(
I
`− j
2
−1 I` + I

`− j
`+1
−1 I

j+1
`+1
`

)
(1.1)

for an integer j ∈ [0, `] with a positive constant C = C( j, `) independent of the total length of curve.
Since I−1 is small for a sufficiently large t, we can regard this inequality as an embedding with a
small embedding constant. We showed the exponential decay of I` using the standard energy method,
combining the above inequality. Finally, using the decay of I`, we showed the convergence of Im f to
a circle.

In this paper we study the case of n > 1, when the isomerimetric deficit is

I−1 = 1 −
4nπA

L2 .

The isoperimetric inequality shows I−1 = 0 when n = 1. However, I−1 is not necessarily non-negative
for n > 1. This implies the technique used in [7, 8] is not applicable for n > 1. In spite of this, I−1

gives us some useful information. For example, we can show that if I−1 is negative for t = 0, then the
solution blows up in finite time. See our first main result, Theorem 3.1. This implies I−1 = 0 for global
solutions, and that sounds a good information. However, the inequality (1.1) does not hold for n > 1.
There are at least two approaches for dealing with this difficulty. One is to give a proof without using
(1.1), and another is to show an alternative inequality to (1.1). In this paper, we show that both are
in success. For the second approach, we use a geometric quantity which has never been considered
before, given as follows:

Ĩ−1 =
1
L

∥∥∥∥∥∥2πn
L

(
f −

1
L

∫ L

0
f ds

)
+ ν

∥∥∥∥∥∥2

L2

.

Then we can show
I j 5 C

(
Ĩ
`− j
2
−1 I` + Ĩ

`− j
`+1
−1 I

j+1
`+1
`

)
. (1.2)

We prepare several inequalities and estimates for closed curves with a rotation number n, in § 2.1.
And we describe some basic properties of the flows (AP), (LP) and (JP), in § 2.2. Using these, in § 3,
we discuss blow-up solutions with blow-up time estimates, blow-up quantities, and blow-up rates. In
§ 4, the convergence to an n-fold circle of global solutions is proved without using (1.2). Finally, we
show (1.2) in the final section.
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2. Preliminaries

In this section, we provide several estimates and inequalities for plane curves. Those in § 2.1 hold
for curves which are not necessarily solutions of the flows. We derive the basic properties of flows in
§ 2.2.

2.1. Estimates for plane curves

Let f = ( f1, f2) be an arc-length parametrization of a plane curve with the rotation number n = 1.
Set

f = f1 + i f2, ν = ν1 + iν2 = − f ′2 + i f ′1 = i f ′.

The functions ϕk =
1
√

L
exp

(
2πiks

L

)
for k ∈ Z generate the standard complete orthogonal system of

L2(R/LZ). Let f̂ (k) be the Fourier coefficient of f . Subsequently, we can derive the following relations
in a manner similar to [7, Corollary 2.1], where we dealt with the case of n = 1. The difference is
just “n” in (2.3) which comes exactly from the definition of the rotation number. We can find similar
argument in [1, 10]

Lemma 2.1. ∑
k∈Z

k| f̂ (k)|2 =
LA
π
, (2.1)

∑
k∈Z

k2| f̂ (k)|2 =

( L
2π

)2 ∫ L

0
κ0ds =

L3

4π2 , (2.2)

∑
k∈Z

k3| f̂ (k)|2 =

( L
2π

)3 ∫ L

0
κ ds =

nL3

4π2 , (2.3)

∑
k∈Z

k4| f̂ (k)|2 =

( L
2π

)4 ∫ L

0
κ2ds, (2.4)

∑
k∈Z

k5| f̂ (k)|2 =

( L
2π

)5 ∫ L

0
κ3ds, (2.5)

∑
k∈Z

k6| f̂ (k)|2 =

( L
2π

)6 ∫ L

0

{
κ4 + (κ′)2

}
ds. (2.6)

Note that we have ∑
k∈Z

k2(k − n)| f̂ (k)|2 = 0 (2.7)

from (2.2) and (2.3). The above is very useful for our analysis.

Lemma 2.2. We have

I0 =
16π4

L3

∑
k∈Z

k3(k − n)| f̂ (k)|2 (2.8)

=
16π4

L3

∑
k∈Z

k2(k − n)2| f̂ (k)|2. (2.9)
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Proof. We obtain (2.8) as

I0 = L
∫ L

0
κ̃2ds = L

∫ L

0
κ̃κ ds = L

(∫ L

0
κ2ds −

2πn
L

∫ L

0
κ ds

)
=

16π4

L3

∑
k∈Z

k3(k − n)| f̂ (k)|2

from (2.4) and (2.3). Combining this with (2.7), we obtain (2.9). �

Though I0 must be non-negative by the definition, it is not obvious to see that from the first
expression (2.8). However, it can be seen from the second one (2.9). Furthermore, we see from (2.9)
that I0 = 0 if and only if Im f is an n-fold circle.

The isoperimetric inequality holds even if n is not 1.

Lemma 2.3. We have L2 − 4πA = 0.

Proof. It follows from (2.2) and (2.1) that

L2 − 4πA =
4π2

L

(
L3

4π2 −
LA
π

)
=

4π2

L

∑
k∈Z

k(k − 1)| f̂ (k)|2 = 0.

�

Similarly, I−1 has two expressions.

Lemma 2.4. We have

I−1 =
4π2

L3

∑
k∈Z

k(k − n)| f̂ (k)|2 = −
4π2

nL3

∑
k∈Z\{0}

k(k − n)2| f̂ (k)|2.

Proof. It follows from (2.2) and (2.1) that

I−1 = 1 −
4πnA

L2 =
4π2

L3

(
L3

4π2 −
nLA
π

)
=

4π2

L3

∑
k∈Z

k(k − n)| f̂ (k)|2.

The second expression of I−1 is obtained from the above and (2.7). �

Since k(k−n) is not necessarily non-negative when n > 1, we know the same holds for I−1. However,
the modulus of I−1 can be estimated by I0 for n = 1 as follows. This is Wirtinger’s inequality when
n = 1.

Lemma 2.5. It holds that 4π2n|I−1| 5 I0.

Proof. From Lemmas 2.2–2.4 we obtain

I0 ± 4π2nI−1 =
16π4

L3

∑
k∈Z

{
k2(k − n)2 ∓ k(k − n)2

}
| f̂ (k)|2

=
16π4

L3

∑
k∈Z

k(k ∓ 1)(k − n)2| f̂ (k)|2 = 0.

Here, we use k(k ∓ 1) = 0 for k ∈ Z. �
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2.2. Estimates for flows

In this subsection, we derive the basic properties of the flows, which we use in following sections.
Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T ), and let T be the maximum existence

time. Since
dL
dt

= −

∫ L

0
∂t f · κ ds, we have

dL2

dt
= −2L

∫ L

0

(
κ̃ −

g
L

)
κ ds = −2L

∫ L

0
κ̃2ds + 4πng,

that is,
dL2

dt
+ 2I0 = 4πng. (2.10)

Similarly, we have
dA
dt

= −

∫ L

0
∂t f · ν ds = −

∫ L

0

(
κ̃ −

g
L

)
ds = g. (2.11)

It follows from the above that

d
dt

(
L2I−1

)
+ 2I0 =

d
dt

(
L2 − 4πnA

)
+ 2I0 = 0. (2.12)

From these, we summarize the basic properties of each solution as follows.

Proposition 2.1. Assume that the initial curve is smooth, and that A(0) is positive. Let f be a classical
solution of one of (AP), (LP), or (JP) on [0,T ) and let T be the maximum existence time. Then, the
following holds for t ∈ (0,T ).

1). For solutions of (AP),

dA
dt

= 0, A ≡ A(0) > 0,
dL2

dt
5 0,

dI−1

dt
5 0.

2). For solutions of (LP),

dA
dt
= 0, A = A(0) > 0,

dL2

dt
= 0,

dI−1

dt
5 0.

3). For solutions of (JP),

A > 0,
dI−1

dt
5 0.

4). For solutions of (AP), (LP), (JP),
1 − n 5 I−1 5 I−1(0).

In other words,

4π 5
L2

A
5

L(0)2

A(0)
.
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Proof. In the cases of (AP) and (LP), the signs of
dA
dt

and
dL2

dt
immediately follow from (2.11) and

(2.10). Therefore, A > 0 and

dI−1

dt
= −

d
dt

4πnA
L2 = −

4πn
L2

dA
dt

+
4πnA

L4

dL2

dt
5 0.

In the case of (JP), we prove the positivity of A by applying the contradiction argument. In this case,

g =
L2I−1

2A
. (2.13)

It follows from (2.11) that
dA2

dt
= 2Ag = L2I−1. (2.14)

Assume that A(t0)2 = 0 for some first time t0 ∈ (0,T ). Since A2 = 0, we have

dA2

dt
(t0) = 0. (2.15)

Since A(0)2 > 0, there exists t1 ∈ (0, t0) such that

dA2

dt
(t1) < 0. (2.16)

It follows from (2.14) and (2.12) that

d2A2

dt2 =
d
dt

(
L2I−1

)
= −2I0 5 0.

Therefore, by (2.16)
dA2

dt
(t0) =

dA2

dt
(t1) +

∫ t0

t1

d2A2

dt2 dt 5
dA2

dt
(t1) < 0.

This contradicts (2.15). Hence, A > 0 on (0,T ). Using (2.12), (2.10), I−1 − 1 = −4πnA
L2 , and (2.13), we

have

L2 dI−1

dt
= − I−1

dL2

dt
− 2I0

= − I−1 (4πng − 2I0) − 2I0 = −4πngI−1 + 2(I−1 − 1)I0

= −
4πn
L2

(
L2gI−1 + 2AI0

)
= −

4πn
L2

(
L4I2

−1

2A
+ 2AI0

)
5 0.

Since I−1 is non-increasing, we have I−1 5 I−1(0). Lemma 2.3 gives us

I−1 = 1 −
4πnA

L2 = 1 − n + n
(
1 −

4πA
L2

)
= 1 − n.

�
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3. Blow-up solutions

The non-positivity of I−1(0) implies that the blow-up phenomena occurs in finite time.

Theorem 3.1. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T ) and let T be the
maximum existence time. Assume that the initial curve is smooth, and satisfies A(0) > 0, I−1(0) < 0.
Then, the solution blows up in finite time. The blow-up time T is estimated from above as follows:

(AP) T 5
L(0)2 − 4πA(0)
−8π2nI−1(0)

,

(LP) T 5
L(0)2 − 4πA(0)
−8π2I−1(0)

,

(JP) T 5
L(0)2

−8π2nI−1(0)
.

Proof. In the case of (AP), g ≡ 0. It follows from Proposition 2.1 that I−1(t) 5 I−1(0) < 0. By (2.10)
and Lemma 2.5, we have

dL2

dt
= −2I0(t) 5 8π2nI−1(t) 5 8π2nI−1(0).

Integrating this from 0 to t ∈ (0,T ), and using Lemma 2.3, we obtain

4πA(0) − L2(0) = 4πA(t) − L2(0) 5 L2(t) − L2(0) 5 8π4nI−1(0)t.

Since the first side is non-positive by the isoperimetric inequality (Lemma 2.3), t must satisfy

t 5
L(0)2 − 4πA(0)
−8π2nI−1(0)

.

In the case of (LP), g =
I0

2πn
= 0. Proposition 2.1 shows I−1(t) 5 I−1(0) < 0. From (2.11) and

Lemma 2.5, we have

−
dA
dt

= −
1

2πn
I0(t) 5 2πI−1(t) 5 2πI−1(0).

We integrate this from 0 to t ∈ (0,T ). Using Lemma 2.3, we obtain

4πA(0) − L(0)2 = 4πA(0) − L(t)2 5 4π(A(0) − A(t)) 5 8πI−1(0)t.

Consequently, t must satisfy

t 5
L(0)2 − 4πA(0)
−8π2I−1(0)

.

In the case of (JP), g =
L2I−1

2A
. It follows from (2.10), Proposition 2.1, and Lemma 2.5 that

dL2

dt
= −2I0(t) +

2πnL(t)2

A(t)
I−1(t) 5 −2I0(t) 5 8π2nI−1(t) 5 8π2nI−1(0).
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We integrate this from 0 to t ∈ (0,T ). Using Lemma 2.3, we obtain

−L(0)2 5 L(t)2 − L(0)2 5 8π2nI−1(0)t.

Consequently t must satisfy

t 5
L(0)2

−8π2nI−1(0)
.

�

Corollary 3.1. Let f be a classical solution of one of (AP), (LP), or (JP) on [0,T ) and let T be the
maximum existence time. Assume that the initial curve is smooth, and that satisfies A(0) > 0, and
I−1(0) = 0, but it is not an n-fold circle. Then, T < ∞.

Proof. Assume T = ∞. Then, Theorem 3.1 implies that I−1(t) = 0 for all t ∈ [0,∞). On the other hand,
(2.12) with I−1(0) = 0 shows that I−1(t) 5 0. Hence, I−1(t) ≡ 0. When t > 0,∫ L

0
κ̃2ds =

I0

L
= −

1
2L

d
dt

(
L2I−1

)
= 0.

Combining this with the rotation number n, we find that Im f (t) is an n-fold circle. However, this does
not satisfy the initial condition. �

Corollary 3.2. f is a classical stationary solution of one of (AP), (LP), or (JP), if and only of it is an
n-fold circle.

Proof. Assume that Im f is an n-fold circle. Then, κ̃ ≡ 0. Since f = f̂ (0)ϕ0+ f̂ (n)ϕn, we see I0 = I−1 = 0
by Lemmas 2.2 and 2.4. Hence, κ̃ −

g
L
≡ 0 for each case. Consequently, it is a stationary solution.

Conversely, assume that f is a stationary solution. It follows from (2.12) that I0(t) ≡ 0. Hence, we
can conclude that Im f (t) is an n-fold circle in a manner similar to the proof of the previous corollary.

�

Suppose now f blows up as t ↗ T < ∞. Then, we have

lim sup
t↗T

I0(t) = ∞.

Indeed, if lim sup
t↗T

I0(t) < ∞, then sup
t∈(0,T )

I0(t) is bounded. We can show the boundedness of sup
t∈(0,T )

I`(t) by

the standard energy method. Using this and the equation of the flow, we can see that f (t) converges
to a smooth function as t ↗ T . Consequently, the solution can be expanded beyond T . This is a
contradiction.

Set

W =

∫ L

0
κ2ds.

We will show the blow-up of W and its blow-up rate. Firstly, we consider the limit supremum of W.

Lemma 3.1. It holds that lim sup
t↗T

W(t) = ∞.
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Proof. Set

R =

∫ L

0
κ ds,

and we have

LW = L
∫ L

0

{
κ̃2 +

(R
L

)2}
ds = I0 + R2.

Hence,
lim sup

t↗T
L(t)W(t) = ∞.

Therefore, the assertion immediately follows in the case of (LP).
In the case of (AP), L is non-increasing by Proposition 2.1. Lemma 2.3 implies that L =

√
4πA =

√
4πA0. Consequently, L(t) converges to a positive constant as t ↗ T , and the assertion follows.

We show that L(t) converges to a positive constant in the case of (JP) as well. We assume that
lim inf

t↗T
A(t) = 0. I−1 is monotone by Proposition 2.1. Therefore, it follows from

dA
dt

=
L2

2A
I−1

that A does not oscillate near t = T . Hence, we may assume lim
t↗T

A(t) = 0. From the above relation and

Proposition 2.1, we find that
dA
dt

is bounded. Consequently, the estimate

0 < A(t) 5 C(T − t)

holds. Thus, we have

0 5
A(t)2

T − t
5

C(T − t)2

T − t
→ 0 as t ↗ T,

and therefore,

lim
t↗T

A(T − 0)2 − A(t)2

T − t
= 0.

This implies that the left derivative of A2 at T vanishes:

dA2

dt
(T − 0) = 0. (3.1)

However, A(0)2 > 0 and A(T − 0)2 = 0 show the existence of t∗ ∈ (0,T ) such that

dA2

dt
(t∗) < 0.

Since
d2A2

dt2 = −2I0 5 0,

we have
dA2

dt
(t) <

dA2

dt
(t∗) < 0
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for t ∈ (t∗,T ). This contradicts (3.1). Now, we prove lim inf
t↗T

A(t) > 0. Since

dA
dt

=
L2

2A
I−1

has a constant sign near T , we conclude that lim
t↗T

A(t) > 0. The convergence of lim
t↗T

L(t) follows from

the convergence of A, and the monotonicity and boundedness of I−1. Since
L2

A
is strictly positive by

Proposition 2.1, the limit of L is positive. �

Next, we derive the time derivative of W. Set

Jp = Lp−1
∫ L

0
κ̃pds (p ∈ N \ {1}),

which are scale-invariant quantities. Note that I0 = J2.

Lemma 3.2. It holds that

dW
dt

=
1
L3

{
−2I1 + J4 + (3R − g)J3 + 3R(R − g)J2 − R3g

}
.

Proof. The proof is a direct calculation:

dW
dt

=

∫ L

0
∂t f ·

(
2∂2

sκ + κ3
)

ds =

∫ L

0

(
κ̃ −

g
L

) (
2∂2

sκ + κ3
)

ds

= − 2
∫ L

0
(∂sκ̃)2 ds +

∫ L

0

(
κ̃ −

g
L

) (
κ̃ +

R
L

)3

ds

= −
2I1

L3 +

∫ L

0

(
κ̃3 +

3Rκ̃2

L
+

3R2κ̃

L2 +
R3

L3

) (
κ̃ −

g
L

)
ds

= −
2I1

L3 +

∫ L

0

{
κ̃4 +

(
3R
L
−

g
L

)
κ̃3 +

(
3R2

L2 −
3Rg
L2

)
κ̃2 −

R3g
L4

}
ds

=
1
L3

{
−2I1 + J4 + (3R − g)J3 + 3R(R − g)J2 − R3g

}
.

�

Thirdly, we estimate dW
dt from above.

Lemma 3.3. We have
dW
dt
5

W3

2M2 .

Here,

M =


C for (AP) and (LP),

C

1 +

(
L2

0

A0

) 4
3


− 1

2

for (JP)

with the constant C being independent of the initial curve and the rotation number.
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Proof. Here, we use Lemma 3.2. In the case of (AP), since g = 0, we have

dW
dt

+
2I1

L3 =
1
L3

(
J4 + 3RJ3 + 3R2J2

)
.

Set θ = 1
2 −

1
p . Then, Gagliardo-Nirenberg’s inequality yields

|Jp| 5 C
(
I1−θ
0 Iθ1

) p
2

= CI
p
4 + 1

2
0 I

p
4−

1
2

1 .

Hence,

dW
dt

+
2I1

L3 5
C
L3

(
I

3
2
0 I

1
2
1 + RI

5
4
0 I

1
4
1 + R2I0

)
5

I1

L3 +
C
L3

(
I3
0 + R

4
3 I

5
3
0 + R2I0

)
.

Since 0 5 I0 5 LW and R2 5 LW, we obtain

I3
0 5 L3W3, I

5
3
0 5 L

5
3 W

5
3 = (LW)−

4
3 L3W3 5 R−

8
3 L3W3,

I0 5 LW = (LW)−4L3W3 5 R−8L3W3.

Furthermore,
R = 2πn = 2π.

Consequently, we conclude that

dW
dt
5 C

(
1 + R−

4
3 + R−6

)
W3 5 CW3.

In the case of (LP), since g =
I0

R
, we have

dW
dt

+
1
L3

(
2I1 + 3I2

0 + R2I0

)
=

1
L3

{
J4 +

(
3R −

I0

R

)
J3 + 3R2I0

}
5

C
L3

(
I

3
2
0 I

1
2
1 + RI

5
4
0 I

1
4
1 + R−1I

9
4
0 I

1
4
1 + R2I0

)
5

I1

L3 +
C
L3

(
I3
0 + R

4
3 I

5
3
0 + R−

4
3 I3

0 + R2I0

)
5

I1

L3 + C
(
1 + R−

4
3 + R−6

)
W3

5
I1

L3 + CW3.

In the case of (JP), since g =
L2

2A
− R, we have

dW
dt

+
1
L3

(
2I1 +

3RL2

2A
I0 +

R3L2

2A

)
Mathematics in Engineering Volume 3, Issue 6, 1–26.
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=
1
L3

{
J4 +

(
3R −

L2

2A
+ R

)
J3 + 6R2J2 + R4

}
5

C
L3

{
I

3
2
0 I

1
2
1 + RI

5
4
0 I

1
4
1 +

L2

A
I

5
4
0 I

1
4
1 + R2I0 + R−2(LW)3

}
5

I1

L3 +
C
L3

I3
0 +

{
R +

(
L2

A

)} 4
3

I
5
3
0 + R2I0 + R−2L3W3


5

I1

L3 + C

1 +

{
1
R

+

(
L2

R2A

)} 4
3

+ R−6 + R−2

 W3

5
I1

L3 + C

1 +

(
L2

A

) 4
3
 W3.

By Proposition 2.1, we have (
L2

A

) 4
3

5

(
L2

0

A0

) 4
3

.

Consequently, we can conclude that

dW
dt
5 C

1 +

(
L2

0

A0

) 4
3

 W3.

�

Now, we prove the following theorem.

Theorem 3.2. Let T ∈ (0,T ) be the blow-up time for a solution of one of (AP), (LP), or (JP). Then,
W(t) blows up as

W(t) =
M
√

T − t
,

where

M =


C for (AP) and (LP),

C

1 +

(
L2

0

A0

) 4
3


− 1

2

for (JP)

with a constant C that is independent of the initial curve and the rotation number.

Proof. It follows from Lemma 3.3 that

d
dt

W−2 = −M−2.

Due to Lemma 3.1, there exists a sequence {tn} such that tnt ↗ T and W(tn)−2 → 0 as n → ∞.
Integrating the differential inequality from t to tn, we have

W(t)−2 −W(tn)−2 5 M−2(tn − t).

Therefore, we obtain the theorem as n→ ∞. �
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The curve Im f may have several loops. When the orientation of a loop is counter-clockwise as s
increases, it is called a positive loop. Otherwise, it is called a negative loop. It has already been shown
that L(t) converges to a positive constant as t → ∞. Therefore, from the above theorem we know that

lim
t↗T

max
s∈R/L(t)Z

κ(s, t) = ∞

or
lim
t↗T

min
s∈R/L(t)Z

κ(s, t) = −∞.

If a positive/negative loop of Im f shrinks as t ↗ T , the maximum/minimum value of the curvature may
not remain bounded. On the other hand, there is a possibility of the maximum or minimum remaining
bounded as t ↗ T . For example, if a negative loop shrinks as t ↗ T before the positive loops shrink,
the minimum value of the curvature goes to −∞, but the maximum remains bounded. In the last part
of this section, we discuss the blow-up of the maximum and minimum.

Theorem 3.3. Let T ∈ (0,∞) be the blow-up time for a solution of one of (AP), (LP), or (JP). Assume
that

lim sup
t↗T

max
s∈R/L(t)Z

κ(s, t) = ∞,

then it satisfies

max
s∈R/L(t)Z

κ(s, t) =
1

√
2(T − t)

.

Proof. Set

K(t) = max
s∈R/L(t)Z

κ(s, t),

d+K
dt

(t) = lim sup
h→+0

K(t + h) − K(t)
h

.

Define the set S t by S t = {s ∈ R/L(t)Z | κ(s, t) = K(t)}. After re-parametrizing f (·, t) by a new
parameter that is independent of t, we apply [2, Lemma B.40]. Consequently, we can conclude that K
is a continuous function of t, and that

d+K
dt

(t) = max
s∈S t

∂tκ(s, t).

κ satisfies the equation

∂tκ = ∂2
sκ + κ2

(
κ̃ −

g
L

)
= ∂2

sκ + κ2
(
κ −

R + g
L

)
.

For the cases of (AP) and (LP), R + g > 0 as R > 0 and g = 0. In the case of (JP),

R + g =
L2

A
= 0.

∂2
sκ 5 0 holds for s ∈ S t. Hence, we have

∂2
sκ + κ2

(
κ −

R + g
L

)
5 κ3 = K3
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for s ∈ S t, and
d+K
dt

(t) 5 max
s∈S t

∂tκ 5 K3(t).

We calculate Dini’s derivative of K−2 as

d+

dt
K−2(t) = lim sup

h→+0

K−2(t + h) − K−2(t)
h

= lim sup
h→+0

(K(t) + K(t + h))(K(t) − K(t + h))
K2(t + h)K2(t)h

= − 2K−3(t) lim inf
h→+0

K(t + h) − K(t)
h

= − 2K−3(t) lim sup
h→+0

K(t + h) − K(t)
h

= − 2K−3(t)
d+K
dt

(t) = −2.

According to the assumption of the theorem, there exists a sequence {tk}k∈N such that tk ↗ T and
K(tk)−2 → 0 as k → ∞. Using [4, Theorem 3], we have

K−2(tk) − K−2(t) =
∫ tk

t

d+

dt
K−2(t) dt = −2(tk − t)

for tk ∈ (t,T ). Therefore, we can conclude that

K−2(t) 5 2(T − t)

by k → ∞ �

Theorem 3.4. Let T ∈ (0,∞) be the blow-up time for a solution of one of (AP), (LP), or (JP). Assume
that

sup
t∈[0,T )

max
s∈R/L(t)Z

κ(s, t) < ∞.

For the solution of (AP),

min
s∈R/L(t)Z

κ(s, t) 5 −
1

√
4(T − t)

holds.
For the solution of (LP),

min
s∈R/L(t)Z

κ(s, t) 5 −
{

2πn
9L(0)(T − t)

} 1
3

holds.
For the solution of (JP), there exists a time T∗ ∈ [0,T ) such that

− min
s∈R/L(t)Z

κ(s, t) = max
s∈R/L(t)Z

κ(s, t)
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holds for t ∈ [T∗,T ). Additionally, it holds that

min
s∈R/L(t)Z

κ(s, t) 5 −
1

√
2C∗(T − t)

,

where

C∗ = 1 +
L(T∗)2

4πnA(T∗)
.

Remark 3.1. The time T∗ above exists for all cases. And for the proof, it does not need to be the first
or last such time.

Proof. Here, we set

K(t) = − min
s∈R/L(t)Z

κ(s, t),

d+K
dt

(t) = lim sup
h→+0

K(t + h) − K(t)
h

.

Define the set S t by S t = {s ∈ R/L(t)Z | − κ(s, t) = K(t)}. As shown before, it holds that

d+K
dt

(t) = max
s∈S t

∂t(−κ).

−κ satisfies
∂t(−κ) = ∂2

s(−κ) + (−κ)2
{
(−κ) +

R + g
L

}
.

Since ∂2
s(−κ) 5 0 and −κ = K for s ∈ S t,

∂t(−κ) 5 K3 +
(R + g)K2

L
.

If κ 5 C < ∞ holds on [0,T ), then,

L max{C2 + K2} =

∫ L

0
κ2ds = W → ∞ as t ↗ T

by Theorem 3.2. Since L is bounded, we conclude that K → ∞ as t ↗ T . Therefore, |κ| 5 max{C,K} 5
K near T . Hence, there exists T∗ ∈ [0,T ) as mentioned in the statement. Considering t = T∗, we may
assume that |κ| 5 K.

In the case of (AP), since g = 0,
(R + g)K2

L
=

RK2

L
.

Using this and

R =

∫ L

0
κ ds 5

∫ L

0
|κ| ds 5 LK,

we have ∂t(−κ) 5 2K3 on S t, i.e.,
d+K
dt

(t) 5 2K3.
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Consequently, we obtain the assertion as before.
In the case of (LP),

K2g
L

=
K2I0

RL
=

K2

R

∫ L

0
κ̃2ds 5

K2

R

∫ L

0
κ2ds 5

LK4

R
.

The estimate
R
L
5 K holds for all cases. Hence,

K3 =
L
R
·

R
L
· K3 5

LK4

R
,

K2R
L

=

(R
L

)2 LK2

R
5

LK4

R
.

Consequently, we have
d+K
dt

(t) 5
3LK4

R
=

3L(0)K4

2πn
.

Here, we use L ≡ L(0). The statement follows from the above, as shown before.

In the case of (JP), using R + g =
L2

2A
and Lemma 2.1, we have

K2(R + g)
L

=
K2L
2A

=
L2

2A
·

R
L
·

K2

R
5

L(T∗)2

2A(T∗)
·

K3

R
=

L(T∗)2K3

4πnA(T∗)
.

Hence, it holds that
d+K
dt

(t) 5
(
1 +

L(T∗)2

4πnA(T∗)

)
K3,

which leads to the required conclusion and ends the proof. �

Remark 3.2. At a glance, the power 1
3 of blow-up rate in (LP) seems to be curious. The difference with

other cases is that there is the length L(0) in the braces. If an estimate

min
s∈R/L(t)Z

κ(s, t) 5 −
{

2πn
9L(0)(T − t)

}p

holds, then the power p must be 1
3 . To see this, assume that f is a solution of (LP) which blows up at

T < ∞. For a positive constant λ, set

f λ(s, t) = λ−1 f (λs, λ2t).

We denote quantities of f λ the notation with the suffix λ; for example κλ is its curvature. Then, f λ
satisfies (LP) with the length Lλ = λ−1L(0), and blows up at Tλ = λ−2T. The minimum of curvature is

min
s∈R/Lλ(t)Z

κλ(s, t) = λ min
λs∈R/L(λ2t)Z

κ(λs, λ2t) 5 −λ
{

2πn
9L(0)(T − λ2t)

}p

.

Using L(0) = λLλ(0) and T = λ2Tλ, we have

−λ

{
2πn

9L(0)(T − λ2t)

}p

= −λ1−3p

{
2πn

9Lλ(0)(Tλ − t)

}p

.

Hence, p must be 1
3 . The L(0) in braces comes from the estimate K2g

L 5
LK4

R in the proof. If we can
improve this as K2g

L 5 CK3, then the blow-up rate coincides with other cases.
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4. Convergence of global solutions

In this section, we assume that f is a classical global solution of one of (AP), (LP), or (JP), and that
the initial curve satisfies A(0) > 0. We prove that Im f converges to an n-fold circle exponentially as
t → ∞.

Remark 4.1. However, this conclusion is meaningless if n-fold circles are only global solutions. At
least, in the case of (AP), under suitable assumptions on the initial curve, regarding symmetry and
convexity, solutions exist globally in time even if n > 1. See [9].

Firstly we prove the decay of I−1.

Lemma 4.1. For the global solution above, I−1(t) fulfills

0 5 I−1(t) 5
L(0)2I−1(0)

L(t)2 exp
(
−

∫ t

0

8π2n
L(τ)2 dτ

)
.

In particular, the estimate

0 5 I−1(t) 5
L(0)2I−1(0)

4πnA(0)
exp

(
−

8π2n
L(0)2 t

)
is satisfied with respect to the global solution for (AP); the estimate

0 5 I−1(t) 5 I−1(0) exp
(
−

8π2n
L(0)2 t

)
for the global solution of (LP). In the case of (JP), setting L̄ = sup

t∈[0,∞)
L(t), we have L̄ < ∞, and

0 5 I−1(t) 5
L(0)2I−1(0)

4πnA(0)
exp

(
−

8π2n
L̄2

t
)
.

Proof. For global solutions, we know, from Theorem 3.1, that I−1(t) = 0 . Hence, we have

4π2nI−1(t) 5 I0(t) (4.1)

by Lemma 2.5. Consequently, (2.12) becomes

d
dt

(
L2I−1

)
+

8π2n
L2

(
L2I−1

)
5 0.

Solving this differential inequality, we obtain the first assertion.
We use

√
4nπA(0) 5 L(t) 5 L(0) for (AP), and L(t) ≡ L(0) for (LP). Then, the second assertion

follows for these two cases.
Now, we consider the case of (JP). Integrating (2.12), we have

L2I−1 + 2
∫ t

0
I0dτ = L2

0I−1(0).
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L2

A
is uniformly positive and bounded by Proposition 2.1. From this, (2.10) with g =

L2I−1

2A
and (4.1),

we have
dL2

dt
+ 2I0 =

2πnL2

A
I−1 5

L2

2πA
I0 5 CI0.

Integrating this, we have

L2 + 2
∫ t

0
I0(τ) dτ 5 L2

0 + C
∫ t

0
I0(τ) dτ 5 L2

0 (1 + CI−1(0)) .

Hence, L̄ < ∞. It follows from (2.11) and g =
L2I−1

2A
= 0 that

dA2

dt
= L2I−1 = 0.

Therefore, the lower bound L follows from L(t)4 = (4πnA(t))2 = (4πnA(0))2. Consequently, we obtain
the second assertion for (JP). �

We denote the relevant statement of Lemma 4.1 as

I−1(t) 5 Ce−λ−1t.

Corollary 4.1. For the global solution above, there exists L∞ > 0 and A∞ > 0 such that

|L − L∞| + |A − A∞| 5 Ce−λ−1t.

Proof. In the case of (AP), by Proposition 2.1, we have
dL
dt
5 0. Hence, we conclude the convergence

of lim
t→∞

L(t). Set the limit value as L∞. Since A(t) ≡ A(0), and since lim
t→∞

I−1(t) = 0, it holds that

L2
∞ = lim

t→∞
4πnA(t) = 4πnA(t) = 4πnA(0) > 0

and L∞ 5 L 5 L(0). Therefore,

0 5 L − L∞ =
L2 − L2

∞

L + L∞
=

L2 − 4πnA
L + L∞

=
L2I−1

L + L∞

5
L(0)2I−1

2L∞
=

L(0)2I−1

4
√
πnA(0)

5 Ce−λ−1t.

In the case of (LP), since
dA
dt
= 0 and since 4πA 5 L2 = L(0)2, we conclude the convergence of

lim
t→∞

A(t). Set the limit value as A∞. Since L(t) ≡ L(0), and lim
t→∞

I−1(t) = 0, it holds that 4πnA∞ = L(0)2.

Consequently, (2.11) with g =
I0

2πn
yields

0 5 A∞ − A =

∫ ∞

t

I0

2πn
dt =

L2
0

4πn
I−1(t) 5 Ce−λ−1t.
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Here, we use (2.12) and Lemma 4.1.

In the case of (JP),
dA
dt

=
L2I−1

2A
= 0. By Proposition 2.1,

A
L2 is uniformly positive and bounded.

Combining the above two statements with Lemma 4.1, we conclude

0 5 A∞ − A =

∫ ∞

t

L2I−1

2A
dt 5 C

∫ ∞

t
I−1dt 5 Ce−λ−1t.

Furthermore, we estimate that

|L − L∞| =
|L2 − L2

∞|

L + L∞
=
|L2I−1 + 4πnA − 4πnA∞|

L + L∞

5
L2I−1 + 4πn|A − A∞|

L∞
5 Ce−λ−1t.

�

Corollary 4.2. For the global solution above, it holds that∫ ∞

t
I0dt 5 Ce−λ−1t.

Proof. We know that L is uniformly bounded for all cases. Therefore, (2.12) implies that∫ ∞

t
I0 dt =

L2I−1

2
5 Ce−λ−1t.

�

Lemma 4.2. For the global solution above, there exists λ0 > 0 such that

I0 5 Ce−λ0t.

Proof. As in Section 3, we set

W =

∫ L

0
κ2ds, R =

∫ L

0
κ ds, Jp = Lp−1

∫ L

0
κ̃pds.

As we know that L→ L∞ > 0 as t → ∞, it is enough to show that

L2I0 5 Ce−λ0t.

Since I0 = J2 = LW − R2, we have from (2.10) and Lemma 3.2

d
dt

(
L2I0

)
=

d
dt

(
L3W − R2L2

)
= L3 dW

dt
+

(
3
2

LW − R2
)

dL2

dt
= − 2I1 + J4 + (3R − g)J3 + 3R(R − g)J2 − R3g
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+

(
3
2

I0 +
1
2

R2
)

(−2I0 + 2Rg)

= − 2I1 − 3I2
0 + J4 + (3R − g)J3 + 2R2J2.

We obtain
d
dt

(
L2I0

)
+ I1 + 3I2

0 5 C
(
I3
0 + I0 + I

5
3
0 + |g|

4
3 I

5
3
0

)
in a manner similar to the proof of Lemma 3.3.

Since g = 0 in (AP), and g =
L2I−1

2A
in (JP), |g| is uniformly bounded for these cases. In (LP),

g = R−1I0. Hence, it holds for every case that

d
dt

(
L2I0

)
+ I1 + 3I2

0 5 C
(
I0 + I3

0

)
.

This can be presented as
d
dt

(
L2I0

)
+ I1 + I2

0 (3 −CI0) 5 CI0.

By Corollary 4.2, there exists t0 > 0 such that

I0(t0) 5
1
C
,

∫ ∞

t0
I0dt 5

L2

C
.

Set

t1 = sup
{

t ∈ [t0,∞)
∣∣∣∣∣ I0(t) <

3
C

(t ∈ [t0,∞))
}
.

If t1 < ∞, then,

lim sup
t→t1−0

I0(t) =
3
C
< ∞.

For t ∈ (t0, t1), we have
d
dt

(
L2I0

)
5 CI0,

and therefore,

I0(t) 5 I0(t0) +
1
L2

∫ t

t0
I0dt 5

2
C

=
2
3

lim sup
t→t1

I0(t).

Letting t ↗ t1, we obtain a contradiction. Consequently, t1 = ∞, that is, I0(t) <
3
C

for t ∈ [t0,∞). Since
we know that I0 is uniformly bounded, we obtain

d
dt

(
L2I0

)
+ I1 + 3I2

0 5 CI0.

It follows from Wirtinger’s inequality and the uniform estimate of L2 that

d
dt

(
L2I0

)
+ 2λL2I0 5 CI0
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for some constant λ > 0. Multiplying both sides by e2λt, and integrating from
t
2

to t, we have

e2λtL(t)2I0(t) 5 CeλtL
( t
2

)2
I0

( t
2

)
+ C

∫ t

t
2

e2λτI0(τ) dτ

5 Ceλt + Ce2λt
∫ ∞

t
2

I0(τ) dτ.

That is, we have

L(t)2I0(t) 5 Ce−λt + C
∫ ∞

t
2

I0(τ) dτ.

Using the uniform estimate of L and the exponential decay of
∫ ∞

t
2

I0dt, we finally obtain the

exponential decay of I0. �

Once we obtain the exponential decay of Ĩ−1 and I0, we can obtain the convergence of Im f to an
n-fold circle as t → ∞.

Theorem 4.1. Let f be a classical global solution of one of (AP), (LP), or (JP), with the smooth initial

curve satisfying A(0) > 0. Then, Im f converges to an n-fold circle with centre c∞, and radius r∞ =
L∞
2πn

in the following sense. Set

f (s, t) = c(t) + r(t)
(
cos

2πn(s + σ(t))
L(t)

, sin
2πn(s + σ(t))

L(t)

)
+ ρ(s, t),

c(t) =
1

L(t)

∫ L(t)

0
f (s, t) ds, r(t) =

L(t)
2πn

,

with the R/L(t)Z-valued function σ defined by

f̂ (n)(t) =
√

L(t)r(t) exp
(
2πinσ(t)

L(t)

)
.

Then, there exist c∞ ∈ R2, r∞ =
L∞
2πn

> 0, σ∞ ∈ R/L∞Z, λ > 0, and C > 0 such that

‖c(t) − c∞‖ + |r(t) − r∞| +
∣∣∣∣∣σ(t)
L(t)
−
σ∞
L∞

∣∣∣∣∣ 5 Ce−λt.

Furthermore, for k ∈ {0} ∪ N, there exist γk > 0 and Ck > 0 such that

‖ρ(·, t)‖Ck(R/L(t)Z) 5 Cke−γkt.

When n = 1, we used (1.1) for the proof of this theorem in [7, § 4], and [8, § 2.2]. The most crucial
part is to show the decay of I0. As above, we have already obtained a decay estimate of I0 without
using (1.1) for n = 1. Once we obtain it, to show the theorem, we can perform the standard energy
method with help of usual Gagliardo-Nirenberg’s inequality rather than (1.1) as the previous papers. In
this sense, (1.1) is not absolutely necessary, however, we need several modification of argument. Using
(1.2) which is an alternative inequality to (1.1), we can develop the argument almost word to word as
the previous papers. Thus, we deal with (1.2) in the next section.
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5. Interpolation inequalities

We discuss (1.2) in this section. Set

Ĩ−1 =
4π2

L3

∑
k∈Z\{0}

(k − n)2| f̂ (k)|2.

Proposition 5.1. We have

Ĩ−1 =
1
L

∥∥∥∥∥∥2πn
L

(
f −

1
L

∫ L

0
f ds

)
+ ν

∥∥∥∥∥∥2

L2

.

Ĩ−1 vanishes if and only if Im f is an n-fold circle.

Proof. Setting

f̃ = f −
1
L

∫ L

0
f ds,

we have
‖ f̃ ‖2L2 =

∑
k∈Z\{0}

| f̂ (k)|2.

The squared L2-norm of ν is

‖ν‖2L2 = ‖ f ′‖2L2 =
∑
k∈Z

(
2πk
L

)2

| f̂ (k)|2 =
4π2

L2

∑
k∈Z\{0}

k2| f̂ (k)|2.

On the other hand, we have

〈 f̃ , ν〉L2 = 〈 f̃ , i f ′〉 = −
∑

k∈Z\{0}

2πk
L
| f̂ (k)|2 = −

4π2

L2

∑
k∈Z\{0}

kL
2π
| f̂ (k)|2.

Since the last right-hand side expression is a real number, it holds that

4π2

L2

∑
k∈Z\{0}

k| f̂ (k)|2 = −
2π
L
<〈 f̃ , ν〉L2 .

Consequently, we obtain

4π2

L2

∑
k∈Z\{0}

(k − n)2| f̂ (k)|2 = ‖ν‖2L2 +
4nπ
L
<〈 f̃ , f ′〉L2 +

(
2πn
L

)2

‖ f̃ ‖2L2

=

∥∥∥∥∥2πn
L

f̃ + ν

∥∥∥∥∥2

L2

=

∥∥∥∥∥∥2πn
L

(
f −

1
L

∫ L

0
f ds

)
+ ν

∥∥∥∥∥∥2

L2

.

Ĩ−1 vanishes if and only if
f = f̂ (0)ϕ0 + f̂ (n)ϕn.

Hence, Im f is an n-fold circle. �
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An estimate similar to Lemma 2.5 holds for Ĩ−1 as well.

Lemma 5.1. It holds that 4π2 Ĩ−1 5 I0.

Proof. Since k2 − 1 = 0 for k ∈ Z \ {0}, we have

I0 − 4π2 Ĩ−1 =
16π4

L3

∑
k∈Z\{0}

(k2 − 1)(k − n)2| f̂ (k)|2 = 0.

�

The next proposition corresponds to [7, Theorem 2.2].

Proposition 5.2. It holds that

I0 5 Ĩ
1
2
−1

[∫ L

0
L3

{
κ4 +

(
κ′
)2
}

ds.
]

Proof. It follows from Lemma 2.2, Schwarz’ inequality, and (2.6) that

I0 =
16π4

L3

∑
k∈Z\{0}

k3(k − n)| f̂ (k)|2

5
8π3

L
3
2

4π2

L3

∑
k∈Z\{0}

(k − n)2| f̂ (k)|2


1
2
 ∑

k∈Z\{0}

k6| f̂ (k)|2


1
2

=
8π3

L
3
2

Ĩ
1
2
−1

 ∑
k∈Z\{0}

k6| f̂ (k)|2


1
2

= Ĩ
1
2
−1

[∫ L

0
L3

{
κ4 +

(
κ′
)2
}

ds
]
.

�

Using this proposition, we can prove the following estimates.

Theorem 5.1. Let j ∈ [0, `] be an integer. Then, there exists a positive constant C = C( j, `) independent
of L such that

I j 5 C
(
Ĩ
`− j
2
−1 I` + Ĩ

`− j
`+1
−1 I

j+1
`+1
`

)
.

Proof. Since the assertion can be proven in a manner similar to the proof of [7, Theorem 3.1], we give
only the sketch. Firstly, we derive

I0 5 CĨ
1
2
−1

(
I1 + Ĩ

1
2
1

)
(5.1)

from Proposition 5.2 and Gagliardo-Nirenberg’s inequality(
L( j+1)p−1

∫ L

0
|κ̃( j)|pds

) 1
p

5 C( j,m, p)I
1

2m

(
j− 1

p + 1
2

)
m I

1
2

{
1− 1

m

(
j− 1

p + 1
2

)}
0 (5.2)
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for p = 2 and j 5 m. Here C( j,m, p) is independent of L. It follows from (5.2) that

I j 5 C( j, n)I
j

m
n I1− j

m
0 . (5.3)

Combining this together with (5.1), we obtain the assertion for j = 0. It gives also the assertion for
j = 1 with help of (5.3). �

For the proof of convergence of global flow to a circle, we use in [7] the following properties of I−1:

(i) I−1 = 0,
(ii) I−1 = 0 holds if and if the image of f is a circle,

(iii) C−1I−1 5 I0 (an inequality of Wirtinger’s type).

These are satisfied when n = 1, but not when n > 1. The quantity Ĩ−1 satisfies

(i) Ĩ−1 = 0,
(ii) Ĩ−1 = 0 holds if and if the image of f is an n-fold circle,

(iii) C−1 Ĩ−1 5 I0 (an inequality of Wirtinger’s type).

Hence, it is an alternative quantity to I−1.
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