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Abstract: In this paper, dedicated to Italo Capuzzo Dolcetta, a maximum principle for some linear
boundary value problems with lower order terms of order one is proved: the aim of this paper is the
proof that the solutions can be zero at most in a zero measure set, if we assume that the data are greater
or equal than zero (but not identically zero).
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1. Introduction

During the period 1968-1970, in the “Dipartimento di Matematica dell’Universita di Roma”, |
recall two persons: Guido Stampacchia, my teacher for the last two university years, and Italo Capuzzo
Dolcetta, to whom this paper is dedicated.

A common point connecting them is the maximum principle: one of the scientific interests of Italo
(see [1-6],) and one of the subjects of the courses taught by Guido Stampacchia, in the classical
framework in the first course and in the Sobolev framework (see [15]) in the second one. For recent
results on maximum principle see also [13,16].

In this paper, I study the positivity, up to a zero measure set, of the solutions of Dirichlet problems
having a first order term (either of convection type or of drift type).
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2. Setting

Let Q be a bounded, open subset of RVN>2and M : Q — RNZ, be a bounded and measurable
matrix such that

e < M(x)é-€&, IM(x)|<B, ae.xeQ, V &eRY. 2.1)

We assume that E(x) is a vector field and f(x), g(x) are functions such that
E e (LY (), (2.2)

f, g€ L™(Q), m>1, (2.3)

and we consider the following boundary value problems with a lower order convection term or with a
lower order drift term:

—div(M(x)Vy) = —div(y E(x)) + g(x) in Q, 2.4)
=0 on 0Q. '

—div(M(x)Vu) = E(x) - Vu + f(x) inQ, 2.5)
u=>0 on 0Q. .

We will also consider the two above boundary value problems if a zero order term is present; that is

—div(M(x)V¥) + ¥ = —div(¥ E(x)) + g(x) in Q, 2.6)
¥=0 on 6Q. '

—div(M(x)Vz) +z = E(x) - Vz+ f(x) inQ, 27
z=0 on 0Q. '

For the existence and properties of solutions we refer to [7] and to the references therein (see also [11],
[14]) for ¢, ¥, to [9] (and to the references therein) for u and to [10] for z; see also the references
of [7-10] for bibliographic informations. We only point out that in [10] the existence of a weak,
bounded solution z of (2.7) is proved assuming on E no more than E € (L*(Q))", instead of (2.2).

2.1. Positivity of solutions

We recall that positivity (that is, greater or equal than zero, but not identically zero) of solutions of
the above boundary value problems holds in the case of data f or g positive (that is, greater or equal
than zero, but not identically zero): see [7,9].

2.2. Positivity of solutions up a zero measure set

The aim of this paper is the proof that the solutions of the above boundary value problems can be
zero at most in a zero measure set, if we assume that the data f or g are greater or equal than zero, but
not identically zero.
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3. Dirichlet problems with convection terms

This section deals with the boundary value problem (2.4). Of course the solution ¢ (or V) is

understood in weak (or distributional) sense.

3.1. |[Ele LV

If we assume (2.1), (2.2), (2.3) with m > 2N2 (orwith 1 <m < ) in [7], it is proved

N
i the existence of ¢ € WS’Z(Q) (ory € Wé’m (Q)) such

f Mx)VipVy = f Y(E(x) - Vv) + f g(x) v(x),
Q Q Q

for every v € WS’Z(Q) (or v smooth);

ii moreover it is proved that > 0, if g > 0 (of course not zero a.e.);

[ Y
wswny (L+ WD @ Juy @ Jisp

2 Kk 2 2
VTWI" < — | IEF+k— | lgl, k=0,
Q a” Jo a Jo

where T} is the Stampacchia truncation:

iii

iv

s, df [s| <k,
7“”‘{ ke, if |sl > k.

Isl”

The next theorem improves the statement (ii); the proof hinges on the approach of [12].

(3.1)

(3.2)

(3.3)

Theorem 3.1. Assume (2.1), (2.2), (2.3) with m > =5 and g > 0 (of course not zero a.e.). Then the

solution € W1 2(Q) is positive and it is zero at most on a set of zero Lebesgue measure.

Proof. In subsection 2.1 we recalled that ¥/(x) > 0; thus we can use

¢2 1,2 o0
=iy 05951 e WE@NLN@, he R,

as test function in (3.1). Then we have

2
< ILE()M f Y povy—2
2

lﬁ h+y o (h+y) (h+y)

¢ ¢
f MO + fg o
so that, using (2.1),

2 [ wanse2 [ ¢|E<x>||V¢|+ IRt
Q
>«

f i P+ | e o
o (hT Yy 08 h+w
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Now we use twice the Young inequality (with 0 < B < 7) and we deduce that (recalling that 0 < ¢ < 1)

oy f o+ f 2 f QP + 7 f EGP

|lﬁ| f ¢’
- 2B
=@ ) o+ lﬂ)z(ﬁ Qg( )h"'lﬂ

which implies, thanks to the positivity of g(x), that

1 » 2 2 2, 1 2
5 [ et f% o+ [ 1R+ 5 [ 1B
|

B |V 2
2 @220 ) !
The last inequality implies that
1 IVy?
—+1 f|V¢| + —B+1)f|E(x)| > (a - ZB)f T ¢, (3.4)
that is P .
lﬂ 2
(E+1)L|V¢|2+(E+1)L|E(x)|2z(a—zB)fQ'vmg(HZ)‘ ¢ (3.5)

By contradiction, we assume that y(x) = 0 on a subset of positive measure of €.
Let w cc Q be such that Z = w N {x : ¥(x) = 0} has positive measure. Let ¢ = 1 on w. Then (3.5)

becomes ) | )
(%+1)L|V¢|2+(E+1)L|E(x)|22(&—2B)£‘Vlog(1+%)‘

Since ¥(x) = 0 on a subset of positive measure of w, we can use Poincaré inequality in w so that, for

teR",
»(’[iz+2)f|V¢|2+(L+1)f|E(x)|2
B Q 4B Q
> Cp(oz—2B)f[10g(1+%)]2

> (a - 2B)C| log (1 + 2)]2 f 1

wN{y>t}

which implies

C+ |E()C)|2
0 = lim — o _ > f . (3.6)
h—0 Cz[log 1 + wN{y>t}

Thus we proved that
Yv=0in w. 3.7

Since w is an arbitrary subset of 2, we conclude that ¢y = 0 a.e. in Q and then g(x) should be equal to
zero a.e. in Q; which is a contradiction.

Remark 3.2. Note that in (3.6) we only need E € (L*(Q))", which is a weaker demand with respect to
assumption (2.2).
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Now we discuss the case of infinite energy solutions, which appears if we assume 1 < m < 75 N+2 in
(2.3).

Remark 3.3. Since the existence of a solution ¢ is proved in [7] as limit of a sequence {¢,,} (every
Y, > 0) of solutions of approximating problems, a possible approach is to repeat the proof of the
previous theorem on the sequence {¢,,} in order to prove that , satisfies inequality (3.4).

In [7], not only the estimates (3.2) and (3.3) are proved, but also the following estimates on the
sequence {y/,}:

Vi, [* 2 2
f T d - g—zf |E|2+—f g < Co, (3.8)
sy (LU @ Juey,) @ Jiksy,)
where
2 2
C0=¥f|5|2+afg,
Q Q
k? 2
fIVTk(%)Izé—zflEI2+k—fg, k> 0. (3.9)
Q a” Jo a Jo
The inequality (3.8), for k = 0, gives
= Vi, 2 2
S[ ] 1+n2"] sf—"s—fE2+—f, 3.10
fQ[Og( i)l N AT Q| | . Qg ( )

which implies that the sequence {log(1+,)} is bounded in Wé’z (Q). Then there exist a positive function
w € Wé’z(Q) and a subsequence, still denoted by {i,}, such that log(1 + ¥,,) converges a.e. to w. Thus
Ya(x) = e — 1 a.e. Define y(x) = "™ — 1.

Similarly, we prove that

V k > 0, the sequence {T;(y,,)} converges weakly to T(¢) in Wé’z(Q). 3.11)
Now we prove that
the sequence {; ‘fp } converges weakly to 1n L. (3.12)

Indeed, for every @ € (L*(Q))Y,

f[an(D_Vw(D]
oll+y, 1+y
:f[VTk(lﬁn)q)_VTk(lﬁ)q)]+f vy, © f Vy @

ol 1+, I+y k<) 1+¢’n <y 1+ 4

Observe that, in the first integral, VT, (i) converges weakly in L2

moreover . . .
v, v,> 12 2 p
‘f Y © [ L'z]z[f |cI)|2]2 < Co[f |<1>|2]2
{(k<grn) 1+ l,bn Q (1 + l;[’n) {k<yr,} {k<yrn}
1 1

R R e A R G
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The estimate (3.10) says that the last integral is uniformly (with respect to n) small for k large. Thus
(3.12) is proved, so that we pass to the limit, by weak L? lower semicontinuity in the inequality (3.4)
for the sequence {¢,}, that is

1 |an|2 2
—+1 f|V¢| + —B+1)f|E(x)| > (- 2B)fgm¢,

B A 2 IVy|?
(E+1X£W¢|+Q§+1XLMKW zm—zmjpm+wy¢ (3.13)

Thus it is possible to prove the following theorems, where ¢ is a solution obtained as said above.

and we have

Theorem 3.4. Assume (2.1), (2 2), (23)withl < m < N+2
there exists a solution Y € W0 (Q) which is positive and it is zero at most on a set of zero measure.

and g > 0 (of course not zero a.e.). Then

In [8], it is proved the existence of a very weak solution (entropy solution) if the data are very
singular (e.g., E € L?). Even for this solution it is possible to prove the maximum principle, thanks to
the above discussion of Remark 3.3, as stated in the following theorem.

Theorem 3.5. Assume (2.1), E € (L>(Q))", g € L'(Q), g > 0 (of course not zero a.e.). Then the entropy
solution  is positive and it is zero at most on a set of zero measure.

4. Dirichlet problems with drift terms

This section deals with the boundary value problem (2.5). Of course the solution u (or z) is
understood in weak (or distributional) sense.

4.1. |[E| € LN
If we assume (2.1), (2.2), (2.3) with m > 2 (orwith 1 <m < ) in [9], it is proved

1). the existence of u € W(;’Q(Q) (oru € W(;""* (Q)) such

fM(x)Vqu:fv(E(x)-Vu)+ff(x)v(x), 4.1
Q Q Q

for every v € WS’Z(Q) (or v smooth);
2). moreover u > 0, if f > 0 (of course not zero a.e.)

Theorem 4.1. Assume (2.1), (2.2), (2.3) with m > 2N and f > 0 (of course not zero a.e.). Then
u(x) > 0 and it is zero at most on a set of zero measure.

Proof. As in the proof of Theorem 3.1, we can use

, 0<¢<1, W) (QNLQ), heR",
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as test function in (4.1). Then we have

f M(x)vuwi + )
:LM(x)VuVu ffh+u
and, thanks to the positivity to the fact that f(x) > 0,
Vul*
2ﬂf|V¢|—¢ f¢| <>| S0z | G s

The use of the Young inequality twice gives (0 < B < %)

—4p° f Vol + = f SIE®P > (@ — 2B) f Vil (4.2)
B o) 4B o) o O (h + M)z ’ ’

which implies (3.5) (for the solution u instead of ¢), so that we conclude as in the proof of Theorem
3.1.

If we repeat the discussion in Remark 3.3, it is possible to state the following theorem (similar to
Theorem 3.4).

Theorem 4.2. Assume (2.1), (2.2), (2.3) with 1 <m < 35 andf > 0 (of course not zero a.e.). Then
there exists a solution u € WS m (Q), u(x) > 0, which is zero at most on a set of zero measure.

4.1.1. A duality approach

Here we give a different proof of Theorem 4.1. In this section we studied the Dirichlet problem
u € W,A(Q) : —div(M(x)Vu) = E(x) - Vu + f(x),
whereas, in the previous section, the Dirichlet problems studied include
€ WoA(Q) 1 —=div(IM(0)Vy) = —div(y E(X)) + X(uco=01-

If the measure {u(x) = 0} is zero, then yy,=0; = 0 and in [7] is proved that ¢ = 0.
Thus (by contradiction) assume that the measure of {u(x) = 0} is strictly positive. Then the duality
(i.e., use ¥ as test function in the first problem and « in the second problem) gives

fﬁﬁ(x) fx) = fu(x)/\/{u(x)=0} =0,
Q Q

= flﬁ(X) J ).
Q

But the result of Theorem 3.1 says that, if y,=0; > O (of course not zero a.e.), then ¥(x) > 0 and it is
zero at most on a set of zero measure: this property and the assumption on f(x) yield fg w(x) f(x) > 0:
a contradiction. Thus the measure of {u(x) = 0} is zero.

that is
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4.2. |[E| € L?

Remark 4.3. If we assume (2.1), E € (L*(Q)", f € L¥(Q), in [10], it is proved the existence of a
weak, bounded solution z of (2.7), that is

f M(x)VzVv + f zZ(x)v(x) = f v(E(x)-Vz)+ f f(x)v(x), “4.3)
Q Q Q Q

for every v € Wé’z(Q).

If we consider the boundary value problem (2.7), (in place of (2.5)) with the same test function
used in the proof of Theorem 4.1, the new proof changes slightly: instead of (4.2), we have (since
0<A2<1

- h+z

Lp f Vo + = f PIEWP + f &> (a-2B) f VA
4B Q 4B Q Q - Q(h+Z)2

and the conclusion on the solution z is again the positivity up, at most, a set of zero measure.
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