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nonlinear nonlocal parabolic equations; the latter are supplemented with various kinds of boundary
conditions, in particular Neumann-like boundary conditions stemming from reflection conditions on
the underlying controled stochastic processes. The present work deals with numerical approximations
of the above megntioned systems. After describing the finite difference scheme, we propose an iterative
method for solving the systems of nonlinear equations that arise in the discrete setting; it combines a
continuation method, Newton iterations and inner loops of a bigradient like solver. The numerical
method is used for simulating two examples. We also make experiments on the behaviour of the
iterative algorithm when the parameters of the model vary.
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1. Introduction

The theory of mean field games, (MFGs for short), aims at studying deterministic or stochastic
differential games (Nash equilibria) as the number of agents tends to infinity. It supposes that the
rational agents are indistinguishable and individually have a negligible influence on the game, and that
each individual strategy is influenced by some averages of quantities depending on the states (or the
controls as in the present work) of the other agents. MFGs have been introduced in the pioneering
works of J. M. Lasry and P. L. Lions [17-19]. Independently and at approximately the same time, the
notion of mean field games arose in the engineering literature, see the works of M. Y. Huang, P. E.
Caines and R. Malhamé [14, 15].

The present work deals with numerical approximations of mean field games in which the agents
interact through both their states and controls; it follows a more theoretical work by the second
author, [16], which is devoted to the mathematical analysis of the related systems of nonlocal partial
differential equations. There is not much literature on MFGs in which the agents also interact through
their controls, see [7,8, 10,12, 13, 16]. To stress the fact that the latter situation is considered, we will
sometimes use the terminology mean field games of control and the acronym MFGC.

The MFGC that is considered in the present work is described by the following system of nonlocal
partial differential equations:

— 0 —vAu + H (x, Viu(t, x), u(t)) = f(x,m()) in[0,T) X Q,
dm = vAm — div (H, (x, V,u(t, x), p(®)m) =0 in (0, T x Q,

w() = (I, —H,, -, V.ult, ), p(0)) Jm(e) in [0, T], (D
u(T, x) = ¢(x) in Q,
m(0, x) = mo(x) in Q.

Here, the state space Q is a bounded domain of R? with a piecewise smooth boundary, while the
controls are vectors of R?. The time horizon is T > 0, and the parameter v > 0 is linked to the
level of noise in the trajectories (the dynamics of a given agent is described by dX, = a,dt + V2vdB,
where (B,) is a standard d-dimensional Brownian motion and @, € R is the control at time 7). A
special feature of the present model is that the third argument of the Hamiltonian H is a probability
measure u(t) € P (Q X Rd), which stands for the joint probability of the states and optimal controls
of the agents at time 7. In (1), u : [0,T] X Q — Rand m : [0,T] X Q — R, respectively stand
for the value function of a representative agent and the distribution of states. The first, respectively
second line in (1) is the Hamilton-Jacobi-Bellman equation (HJB for short) which leads to the optimal
control of a representative agent, respectively the Fokker-Planck-Kolmogorov equation (FP for short)
which describes the transport-diffusion of the distribution of states by the optimal control law. The
HIJB equation is a backward w.r.t. time parabolic equation and is supplemented with a condition at
t = T which involves the terminal cost function ¢ : QQ — R, whereas the FP equation is forward w.r.t.
time and is supplemented with an initial condition, which translates the fact that the initial distribution
of states is known. The HJB equation also involves the so-called coupling function f : Q X R, — R,
or, in other words, f(X;, m(t,X(¢))) is part of the running cost of a representative agent. We shall
discuss later the boundary conditions on (0, 7') X 9€2 associated with the first two equations in (1). The
third equation in (1) gives the connection between wu(¢) and m(t), and shows in particular that wu(z) is

Mathematics in Engineering Volume 3, Issue 3, 1-35.



3

supported by a d-dimensional geometrical object, namely the graph of the feedback law: Q — R,
X = - p(-x’ Vl/i(t, X),/J(t))

1.1. A brief discussion on the mathematical analysis of (1)

Recall that the Hamiltonian of the problem is (x, p, ) — H(x, p, i), (x, p, i) € QxR x P (Q X Rd).

From the viewpoint of mathematical analysis, a priori estimates for (1) are more difficult to obtain
than in the case when the agents interact only via the distribution of states m. Indeed, in the latter case,
if for example the costs f and ¢ are uniformly bounded, then a priori estimates on ||u||,, stem from
the maximum principle for second-order parabolic equations. By contrast, since the Hamiltonian in
(1) depends non-locally on V,u, the maximum principle applied to the HIB equation only permits to
bound ||u||,, by a quantity which depends (quadratically under standard assumptions on H) on ||V.u||..,
and this information may be useless without additional arguments.

If the agents interact only through the distribution of states and if the Hamiltonian depends
separately on p and m, a natural assumption is that the latter is monotone with respect to m,
see [17-19]; it implies existence and uniqueness of solutions, see in [19,20]. Such an assumption is
quite sensible in many situations, since it models the aversion of the agents to highly crowded regions
of the state space. It is possible to extend these arguments to MFGCs, see [10] for a probabilistic
point of view and [8] for a PDE point of view, and the monotonicity assumption then means that the
agents favor controls that are opposite to the main stream. In [16] and in the present work, we prefer
to avoid such an assumption, because it is generally not satisfied, at least in models of crowd motion:
indeed, in models of traffic or pedestrian flows, a generic agent would rather try to adjust her speed
(control) to the average speed in a neighborhood of her position.

The third equation in (1) can be seen as a fixed point problem for u given u and m, which turns to
be well-posed under the Lasry-Lions monotonicity assumption adapted to MFGC, provided that u and
m are smooth enough. We shall replace this assumption by a new structural condition which has been
introduced in [16], namely that H,, depends linearly on the variable u and is a contraction with respect
to u (using a suitable distance on probability measures). In the context of crowd motion, this structural
condition is satisfied if the representative agent targets controls that are proportional to an average of
the controls chosen by the other agents nearby, with a positive proportionality coefficient smaller than
one. Were this coeflicient equal to or larger than one, it would be easy to cook up examples in which
there is no solution to (1) or even to the N-agent game, see Remark 4.3 below.

In [16], the focus is put on the existence of solutions rather than on their uniqueness. Indeed, without
the monotonicity condition, uniqueness is unlikely in general if 7 is not small. Consider for example
a game in which the function ¢ has two perfectly symmetrical minima (the targets), f = 0 and where
the initial distribution of states has the same symmetry. If H depends on |Vu(z, x)| only (no interaction
through the controls), then a representative agent will simply travel to the minimum which is closest
to her initial position. On the contrary, if the representative agent favors a control close to the average
one, then there are at least two symmetrical solutions in which the whole distribution moves toward
one of the two minima.

Going back to existence results, it is now frequent in the MFG literature to obtain energy estimates
by testing the HIB equation by m, the FP equation by u, summing the resulting equations, integrating
in the time and state variables then making suitable integrations by parts. If the value function is
uniformly bounded from below (which is often the case even if there are interactions through the
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controls), this results in a relationship between the L* ([0, TI; L' (Q))-norm of the positive part of u

and the Li ([O, T] x Q; Rd)—norm of V,u; this observation can then be used to obtain additional a priori
estimates, which may be combined with the ones obtained from the maximum principle and discussed
above, and finally with Bernstein method. This strategy has been implemented in [16] and leads to the
existence of a solution to (1) under suitable assumptions. By and large, existence of classical solutions
was proved in [16] for periodic problems in any of the following cases:

e short time horizon
e monotonicity

e small enough parameters (in particular the contraction factor mentioned above, see the parameters
A and 6 in (7)—(10) below)

e weak dependency of the average drift on the state variable

Note that in [11], existence and uniqueness have been proved with probabilistic arguments in the case
where the Hamiltonian depends separately on p and pu.

1.2. A more detailed description of the considered class of MFGCs

For any x € 0€), let n(x) be the outward pointing unit normal vector to 0€2 at x. The dynamics of a
representative agent is given by

dX, = a,dt + V2vdB, - 2vn(X))dL,, X,€Q, 0<t<T, )

where (B)),o7] 1 a standard d-dimensional Brownian motion, (a,).o,7r) 18 the control, a stochastic
process adapted to (B,) with values in R?, L, is the local time of the process X, on Q. We assume that
Xj;=o 1s a random variable in Q, independent of (B,) for all r > 0, whose law is £ (X|,—0) = my.

In what follows, the part of the running cost which models the interactions via the controls will
involve an average drift V € R¢:

V(t, x) =

aK(x, y)du(t,y, @), (3)
Z(t’ )C) (y,@)€QXRA VIR

for (¢, x) € [0, T] x Q, where K is a nonnegative kernel, Z(¢, x) = fg K(x,y)dm(t,y) is a normalization
factor, u(t, -, -) is the law of the joint distribution of the states and the controls, and m(t, -) is the law of
the distribution of states.

Hereafter, we are going to focus in MFGCs in which the cost to be minimized by a representative
agent is

ro 1-6
J(@)=E [ f (5o = AV X)P + —= loul® + em(t. X)) + fo(X))dr + ¢(XT>] : “)
0
where A, 0 are real numbers such that —1 < A < 1 and 0 < 8 < 1. This leads us to define the Lagrangian

0 1-6
L(e, V) = 3 la — AV]* + —— la)?, (@, V) e RY x R, (5)

Mathematics in Engineering Volume 3, Issue 3, 1-35.



which is convex with respect to @, and its Legendre transform (with respect to a):
1 2 A0, d ., pd

With this definition of the running cost, the first three lines of (1) can be written as follows:

2
-4m—wm+%WM—MWP—%ﬁw%nm+ﬁux in[0,7) x Q, (7)
dm —vAm — div (Vou — A60V)m) = 0, in (0, 7] x Q, (8)
V(t,x) = — l‘fww@w—wwwmmemmw, in (0,7) x Q, 9)
Z(l, )C) Q
Z(t,x) = f K(x,y)dm(t,y), in [0,7T) X Q, (10)
Q
u(T, x) = ¢(x), in Q, (11)
m(0, x) = mo(x), in Q. (12)

We can now specify the boundary conditions on (0, 7)) x 9. First, assuming that u is smooth enough,
the optimal control of a representative player is given by the feedback law:

a’(t, x) = —(qu(t, x) — A9V(t, x)).

The reflection condition at the boundary translates into the Neumann boundary conditions:

@(t, x)=0, on [0,T) x 0Q2. (13)
on

Now, from the definition of m, f m(t, x)W(x)dx = E ( f mo(x)w(Xt,x)dx) for all smooth enough test-
Q Q

function ¢ such that %ﬁ(x) = 0 on 0Q. Taking the time derivative of the latter equality, and using (13),
we deduce that

VZLZ(Z‘, x) — A0m(t, x)V (1, x) - n(x) = 0, on (0, 7] x 0Q. (14)

Note that (8), (13) and (14) imply that the total mass fQ m(t, x)dx is conserved.
We have studied or will sometimes consider other kinds of boundary conditions on some parts of
the boundary, for example:

e periodic conditions, i.e., we set (7)—(12) in the flat torus Q = R?/Z¢

e At a part of the boundary standing for an exit, there is an exit cost. This yields a Dirichlet
condition on u. The Dirichlet condition on m: m = 0 at exits, means that the agents stop taking
part in the mean field game as soon as they reach the exit. Such boundary conditions will be
simulated numerically in paragraph 4.2 below.

e If a part of the boundary stands for an entrance, then it is natural to impose a Dirichlet condition
on u to prevent the agents from crossing the entrance outward, and a flux-like condition on m to
specify the entering flux of agents, see also paragraph 4.2 below.
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1.3. Organization of the paper

Section 2 is devoted to the description of the finite difference scheme; it is based on a monotone
upwind scheme for the HJB equation, and a scheme for the FP equation which is obtained by
differentiating the discrete HJB equation and taking the adjoint. It is an extension of the finite
difference schemes proposed and studied by the first author and 1. Capuzzo-Dolcetta in [2, 3] for
simpler MFGs. Designing an efficient strategy for solving the system of non linear equations arising
in the discrete version of MFGCs is a challenging task, in particular because

e the underlying system of PDEs is forward-backward and cannot be solved by simply marching in
time

e there is no underlying variational structure
e Equation (9) is non local.

In Section 3, we propose a strategy for solving the system of non linear equations: it is a continuation
method in which the viscosity parameter (for instance) is progressively decreased to the desired value,
and for each value of the latter parameter, the system of non linear equations is solved by a Newton
method with inner iterations of a bi-gradient like algorithm.

Finally, in Section 4, we discuss the results of numerical simulations in two cases. In the first
example, we show in particular that there exist multiple solutions and we discuss how the iteration
count of the solver is affected by the variation of the parameters in the model. The second case is
a model for a crowd of agents crossing a rectangular hall from an entrance to an exit: We consider
situations in which queues occur, and we show how the solution depends on the parameters.

2. Finite difference methods

In order to approximate (7)—(12) numerically, we propose a finite difference method reminiscent of
that introduced in [2, 3] for MFGs without coupling through the controls. The important features of
such methods are as follows

e they are based on monotone finite difference schemes for (7). Hence, a comparison principle still
holds at the discrete level.

e the special structure of (7) and (8) is preserved at the discrete level, namely that the FP equation
can be obtained by differentiating the HIB equation w.r.t. u and by taking the adjoint of the
resulting equation. This results in a monotone approximation of (8), which ensures that the
discrete version of m remains non negative at all time if m, is non negative. The discrete FP
equation will also preserve mass.

To simplify the discussion, let us focus on the case whend = 2 and Q = (0, 1)*. More complex domains
(even with holes) can be handled by the present method, but an additional effort would be needed if the
domain had boundaries not aligned with the axes of the underlying grid that will be introduced soon.
We also assume for simplicity that the boundary conditions are of the type (13) and (14) on the whole
0Q.

Mathematics in Engineering Volume 3, Issue 3, 1-35.



2.1. Notations and definitions

For two positive integers N7, N;,, we set At = T /Ny, the time step, and & = 1/N,, the step related
to the state variables. Consider the set of discrete times T, = {ty = kAt,k =0,..., N7} and the grid
Q= {xi; = (ih, jh)i,j=0,.... Ny}.

The goal will be to approximate u (tk, x,-,.,-) and m (tk, x,-,j) respectively by u;; and m , for all k €
{0,...,Nz}and (i, j) € {0,..., N}, by solving the discrete version of (7)—(14) arising from the finite
difference scheme.

Let us define the discrete time derivative of y : T, X Q;, — R by the collection of real numbers:

k1 _ Lk
Yij —Yij
ko _ b ij
Dyy;; = A (15)
fork=0,....Nr—1,i,j=0,...,N,.
Given a grid function y : Q, — R, we introduce the first order right sided difference operators
n _ Yix1j — Vij
(D), = ==
D _ Vij+1 ~ Vi (16)
( 2y)i,j -
and the five point discrete laplace operator:
1
(Any); ; = s (4yi,j = Yisl,j — Yi-1,j = Vij+l — yi,j—l) , (17)

for all (7, j) such that 0 < i, j < N,,. Note that the definition of these operators at boundary nodes of
Q,, needs to extend the grid function y on a layer of nodes outside Q. This is done by using discrete
versions of the Neumann conditions (13)—(14): assume that the boundary condition for y is of the type
9y

5. = Z, where z is a given continuous function. Let (@ ;) 1s a suitable grid function approximating z.

We then choose the discrete version of the latter equation (first order scheme):
koo ok k k _ ok k
Yoo =Yo,;thzy and  yy .=y, hay,
koo ok k k ok k
Yio1 =Viothziy and  yiy o =Yiy, +hziy,

fori,j=0,...,Nyandk =0,..., Ny.

(18)

Remark 2.1. We have chosen a first order scheme for the boundary condition in order to preserve the
monotonicity of the discrete Hamiltonian at boundary nodes, see later. Since the overall scheme is
monotone as it was already mentioned above, thus first order, it would be pointless to choose a higher
order scheme for the boundary conditions.

Remark 2.2. Note that the previously mentioned discrete operators are not needed at the nodes of 0€2,
at which Dirichlet boundary conditions are imposed.

For a grid function V : Q, — R, we define the value of V at half-integer indices by linear
interpolation:

Vierj+ Vi . .

Vier = # Voy;=Vopand V1=V, 0<i<N,=1,0<j<N, )
V,' ir1 Vi ;

Vije = % Vo=V, and Vi1 = Viy,, 0<i<NL0<j<N, - 1.
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In order to define the Godunov scheme for (7), we introduce the map ®: for two grid functions
y:Q, —» Rand V:Q, — R the grid function ®(y, V) : Q, — R* is defined by

(D), = A0V
_ (D;y)i_l - A0V, 11]
Dy, V)ij = e + fori,j=0,...,N). (20)
(D5),, = A0V, 0|
_ (D;y)i’j_l A0V, ;s ZL
Finally, let us introduce the function g : R* x R* — R:
1 A0
8(g,V) = 2 lql* - > V. (21)

2.2. The scheme

With the ingredients defined in paragraph 2.1, we are ready to propose the discrete version of (7)—
(10):

= Dutf; ~ v (Ad), + g( (u, V), ) m !+ fo(x; ), (22)
D,m - V(A mk“)lj - ‘J'( (u , Vk) ,mk“)l] (23)
k 1 u]rc+l’s — Uy k k+1
Vi = Z T = A0VE | K (x s xns) mEE, (24)
ij s
k k
Vl{fj,Z — _% (% - /lQVfS 2) K (-xi,j’ xr,s) m];fj;l’ (25)
ij rs
Zf i = Z K (x,-, i» xr’s) m’,‘;l, (26)

fori,j=0,...,N,, k=0,..., Ny — 1, where the discrete transport operator J is defined by

(—Cli,j,lmi,j + qi-1,j1Mi-1,j + Gij2Mij — Giv1,j2Mit1,j

S| =

L]
—qi,j3Mij + qi,j-13M; j-1 + G, jaMij — ql',j+1,4mi,j+1) , (27

for any i, j = 0,..., N,. Note that (20) is not enough in order to fully determine T(®(u, V), m) at the
boundary nodes. We also need the following quantities:

O, V)11 = [(DTw)_, ;= A0Vo | =46V,

O, VIn,+1,j2 = — [(DTM)N,“]‘ - /lQVNh,j,lL = - I:/IGVN;,,]',I:I_ ;
O, V)i-15 = [(DEr w) - /wvi,o,z]_ = [10Vio2],

O, V)ine14 = = [(D3u),y, = A0Vin,2|, = = [10Vin,2]_,

(28)
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k+1

fori, j=0,..., N, where the last identity in each line comes from (30) below. The discrete version of
(11) and (12) is
= ¢(xi)), and m{; =mo(xi;), 0<i,j< N (29)
The discrete version of (13)—(14) is
ulil,j = u’(‘)’j and ”fv+1,j = u']‘\,,j, 30
koo ok ko o_ ok (30)
wi_y =y and  wpy, = Uy,
v(mSh—mbs)  —h|aev | mbs + h|aevg | ms =0,
v(mﬁ;rjl —mi ]) +h [/lHVJIf,JlL m’;\?} - [/lHV}f,J]] mhrl ; =0, 31
v( k+1 _ k+1) —h [/kamL %1 +h [MVZ‘O 1] ic+1l =0,

V(mﬁ/l _mf(;’l-i—l) +h [/wVLkNl /lgvszl] miye =0,

Lm
fori,j=0,...,Nyandk=0,...,Ny — 1.

Note that (22) is an implicit scheme for (7), (recall that (7) is backward w.r.t. time), whereas (23) is
an implicit scheme for (8), (recall that (8) is forward w.r.t. time). This explains why no restriction is
made on the time step.

The discrete Hamiltonian introduced in (21) g : R* X R?> = R, (g, V) = g(g, V), has the following
properties:

H1 (monotonicity) if ¢ = (q1,92,¢3,94), then g is nonincreasing with respect to g; and g3 and
nondecreasing with respect to g, and g4

H2 (consistency) g (91,91,93,93,V) = H(q1,43,V)
H3 (regularity) g is C'.

Remark 2.3. We aim at using Newton iterations in order to solve the system of nonlinear equations
arising from the discrete scheme. For that purpose, we need to linearize the discrete version of the

Fokker-Planck equation. Therefore, for another small positive parameter &, we may replace the
definition (20) of ® by the following:

DOy, V)ij = fori,j=0,...,Np, (32)

l+e

where the C' approximation a = a. . of a = a, = al,s is defined by
L _w
e = > (e s — 1)8 + 1,00, (33)
and a_, = a,, —a. We may modify (28) and (31) accordingly.
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For fixed u and V, m can be found by solving at each time step a system of linear equations; the
matrix of the system has positive diagonal entries and non positive off diagonal entries. This is enough
to prove that the positivity of m is preserved, see [2,3]: if m° is a non negative grid function, then so is
m* for all k < Ny. Itis also possible to prove that the mass is conserved:

Lemma 2.1. Assume that (u,m, V) satisfies (22)—(26), (29), and (30), (31).

The total mass of m is preserved, i.e.,
2, = ) mi (34)

1<i, j<Nj, 1<i, j<Nj,
foranyk=0,---,Nr.
Proof. From (17), we deduce that
y Nh
k+1 _ k+1 okl k] k+1
Z V(Am )i,j T2 Z (mNh+1,j My, ; — M-y ; +mg; )
0<i,j<Nj j=0
Np

k+1 k+1 k+1 k+1
+ Z (mi,Nh+1 — My, —m;_ + M, ) . (35)
i=0

Then we sum (27) fori, j =0,..., Ny:

Np
Z T(q, m); = % Z 4N, j 1M, T q-1,;1M-1,j t G0,j2M0,j — GN,+1,j,211N, +1,j
0<i,j<N =1
1 &
+ 7 Z —qiN, 3MiN, T Gi—13Mi_1 + qi04Mi0 = GiN+1.4MiN,+1- (36)
i=1
From (20), (28), (30) and (31), the sums of the right hand sides of (36) and (35) vanishif g = © (u", V"),
forany k =0,...,Ny — 1.

From the observations above, summing (23) on i, j =0, ..., N, yields
k+1 _ k
Z Mij = Z Mij»
OSi,jSNh OSi,jSNh
then the desired result. O

Neither the proof of existence for the discrete problem (22)—(26), (29), and (30), (31) nor the
convergence properties of the scheme will be discussed in the present work which is mainly devoted
to numerical results. They will be addressed in a forthcoming work.

For the existence of solutions of the discrete problem, a fixed point argument should be used. It
requires a priori estimates for u. Obtaining these estimates is the most technical and difficult part in
the analysis in the continuous case, see [16]: the key step consists of obtaining an estimate on ||V yu||c
by Bernstein method. This difficulty also exists at the discrete level, and the situation may be worse,
because adapting Bernstein estimates for solutions of finite difference schemes is well known to be
quite tricky when it is possible.

However, if we know a priori that in the continuous problem, u is Lipschitz continuous with respect
to the state variable uniformly in time, then, for M large enough, we may obtain an equivalent problem
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e cither by modifying (3), i.e the definition of V, as follows:

1
V(t,x) = 700 f@ e Yy (llahaK(x, y)du(t, y, @),
e or by modifying (9) as follows:
V(t,x) = - Z f (Y (IVult, y)DVu(t, y) — A6V(2, ) K(x, y)dm(t, y), (37)
(l’ x) Q

where Wy, : R, — R, is a smooth, non increasing cut-off function such that

1, if r<M,
Fulr) :{ Mo Gf | > 2M.

r

Note that the second truncation (37) is more convenient for us, since it is made at the level of the system
of PDEs. The analysis of the discrete version of the new system then becomes much easier since the
nonlocal nonlinearity becomes bounded uniformly with respect to u and m. It is then possible to use
the arguments contained in e.g., [2, 3] and obtain the existence of solutions for the discrete problem.
In this setting, it seems also possible to obtain convergence of sequences of solutions of the discrete
problem to a weak solution of the continuous problem, for sequences of grid parameters tending to O.

2.3. Solving the discrete version of the Hamilton-Jacobi-Bellman equation

For brevity, we will use the notation (yff ;) for a grid function, omitting that the indices i, j take their
values in {0, ..., N,} and that k takes its values in {0, ..., Ny}. This paragraph is devoted to solving the
system of nonlinear equations satisfied by the grid function (uﬁj), given the grid functions (mﬁj) and

(Vl.’f j). Let f: (fZ‘ j) denote the grid function defined by
fl=emls + £y (x). (38)
We may then rewrite (22), (30) and the first identity in (29) in the compact form
u=5,(f.v). (39)

Finding u given m and V amounts to solving a discrete version of a nonlinear parabolic equation posed
backward in time with Neumann boundary conditions. This is much simpler than solving the complete
forward-backward system for (u,m, V), because a backward time-marching procedure can be used.
Since, as it was already observed above, the scheme is implicit, each time step consists of solving the
discrete version of a nonlinear elliptic partial differential equation which is local because V is given.
Starting from the terminal time step Ny for which (29) gives an explicit formula for ¥, the k-th step
of the backward loop consists of computing u* by solving (22) and (30) given u**!, m**! and V*. This
is done by means of Newton iterations.
For completeness, let us give a few details on Newton iterations. We introduce the operator R,,
R VLV Vg =y =i+ A=y (), + g (@ W V), 50 V) = £ (40)

o J
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foru',v',f : Q, >R, V' :Q,—>R*andi,j=0,...,N, Note that in (40), «’ is extended outside Q,
thanks to (30). We aim at approximating the solution of

R, ", 5, V6 = 0. 41)

Starting from an initial guess noted #*° : Q, — R, the Newton iterations consist of computing by
induction a sequence u** of approximations of the solution to (41): given u**, u***! is found by solving
the system of linear equations

d,R, (uk,f, W ’ ]?7< Vk) (uk,£+1 _ uk,f) = -R, (uk,é” uk+1, ]7%’ Vk) _

In the latter equation, the Jacobian matrix d,R, (uk’[, Wkt fE, Vk) is sparse since the PDE is local, and
invertible since the scheme is monotone. Note that d,R, (uk"’, uk V") depends neither on u**!

nor on ]7" so we can write it d,R, (uk’f, e V"). The system of linear equations is solved by using
special algorithms for sparse matrices. In the numerical simulations presented below, we use the C-
library UMFPACK, see [1], implementing unsymmetric multifrontal method and direct sparse LU
factorization.

Note that one may choose the initial guess u*® = u**!. The Newton iterations are stopped when
the residual |R, ("¢, u**!, f¥, V)| is small enough, say for £ = £,. Then we set u* = u*%. Tt is well
known that the Newton algorithm for (22) is equivalent to an optimal policy iteration algorithm, that it
is convergent for any initial guess, and that the convergence is quadratic.

2.4. Solving the discrete version of the Fokker-Planck-Kolmogorov equation

This paragraph is devoted to solving the system of linear equations satisfied by the grid function
(mf ), given the grid functions (u ) and (V};). We may then rewrite (23), (31) and the second identity
in (29) in the compact form

m=53,wV). (42)

Finding m given u and V amounts to solving a discrete version of an linear parabolic equation posed
forward in time with Neumann boundary conditions. Since the scheme is implicit, each time step
consists of solving the discrete version of a linear elliptic partial differential equation which is local.
Starting from the terminal time step O for which (29) gives an explicit formula for m°, the k-th step of
the forward loop consists of computing m**! by solving (23), (31) given m*, u**! and V*. It is easy to
see that the matrix of the latter system of linear equations is exactly the transposed of d,R, (u", Y Vk)
which has been introduced in the previous paragraph. Therefore, it is sparse and invertible. In the
numerical simulations presented below, we use the C-library UMFPACK again.

3. Newton algorithms for solving the whole system (22)-(31)

The solution of the system of nonlinear equations (22)—(31) is not easy because

1). the system is the discrete version of a system of forward-backward equations, which precludes a
simple time marching algorithm
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2). The easiest instances of MFGs can be interpreted as optimal control problems driven by a partial
differential equation, which opens the way to algorithms based on the variational structure. In the
MFGC considered here, there is no underlying variational principle and these algorithms cannot
be used.

Following previous works of the first author, see [2], we choose to use a continuation method (for
example with respect to the viscosity parameter v) in which every system of nonlinear equations (given
the parameter of the continuation method) is solved by means of Newton iterations. With Newton
algorithm, it is important to have a good initial guess of the solution; for that, we take advantage of
the continuation method by choosing the initial guess as the solution obtained with the previous value
of the parameter. Alternatively, we have sometimes taken the initial guess from the simulation of the
same problem on a coarser grid, using interpolation.

It is also important to implement the Newton algorithm on a “well conditioned” system. Therefore,
we shall not directly address (22)—(31), but we shall rather eliminate the unknowns u# and m by using
the time-marching loops described in paragraphs 2.3 and 2.4 and see (22)—(31) as a fixed point problem
for ( f , V).

Before describing the algorithm, we need to provide a numerical method for obtaining the average
drift given u and m, i.e., for solving (24)-(25) at least approximately.

3.1. The coupling cost and the average drift

Let us introduce Iy which maps the grid function m defined on Ty, X €, to the grid function fgiven
in (38). We also define the maps Z and V by

20m )iy = Y K (x> %) i, (43)

V' ,m' V)i = — Z (bé“%hu;‘” - /lQV;’M) K (x,-,j, xm) ,‘Z,Enm—;’s)’ (44)
rs L]

Yl Ve ==Y (”%h”l - aev;,sg) L 45)
LJ

r,s

foru',m :Q, >R,V :Q, »>R*andi,j=0,...,N,.
It can be proved exactly in the same manner as in the continuous case, see [16, Lemma 2.4], that
V' V(u',m’, V') is a contraction in the maximum-norm for instance, with a contraction factor |2]6.
For a positive integer L, we define the map Jy by :

Fvw,mV) =V, (46)
vk = VR fork=0,...,Ny—1, (47)
where VA0 = V* and the sequence V*/ is defined by the following induction:

Vot = V(uk,mkH,Vk’g_l) , 1<¢<L. (48)

Remark 3.1. 1). With a slight abuse of notation, if L = oo, then VE is the fixed point of the map
VeV (u", mk V’).
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2). The induction (48) corresponds to Jacobi iterations and can be easily parallelised. It is also
possible to implement Gauss-Seidel iterations, which are a little more complex to write. They
consist of using the components of V¥ as soon as they are obtained (instead of those of V') in
order to compute the components of VK which have not been obtained yvet . In our
implementation, we have in fact used the Gauss-Seidel iterations with a lexicographic ordering
of the components of the grid functions.

Remark 3.2. As we shall see in paragraph 4.1.4, the choice of L does not impact the convergence of
the overall iterative algorithm. Therefore, a good choice turns out to be L = 1.

3.2. The linearized operators
3.2.1. Notation

Let u,m, f : Ta, X Q, — R be generic grid functions standing respectively for discrete versions of
the value function, the law of the distribution of states, the right hand side of the discrete HIB equation
(22). Let V : Ty, x ©;, — R? be a generic grid function standing for the average drift. Let us introduce
the operators obtained by differentiation of the maps F,, F,, and Fy:

B,y = DsFu(f, V), B,y = DyF.(f,V),
Bm,V = Du'}‘m(u, V)’ Bm,V = Dngm(u’ V)a (49)
Cf,m = Dmgjf(m)’ CV,u = Dung(u, m,V),
Cym = DpFy(u,m,V), Cvy = DyFy(u,m, V).
In the three paragraphs below, we explain how these differential operators can be computed.
3.2.2. Linearized Hamilton-Jacobi-Bellman equation
The variation du of u = F,(f, V) induced by variations df and dV of f and V is given by
df
du = (Bu,f Bu,v) (dV) . (50)

More explicitly, du is obtained by linearizing (22), (30) and (29). It satisfies
= Didufy = v (Mdit), + @ (', VE) - (d® (', VE) (dil aVF)) - L6V -aVE = dff. (51

. B
i,Jj ) ’ ’ -

fori,j = 0,...,N,and k = 0,...,Nr. The first (respectively second) inner product appearing in
(51) takes place in R* (respectively R?). The set of equations (51) is supplemented with the terminal
condition

dul” =0, (52)

]
and the boundary conditions

_ k
1, = duy,

du* . . = duf du®
{ -1j 0,j Np (53)

afufi_1 = dufio, duf-"NhH = duﬁNh.
Given df and dV, the variation du is found by solving (51), (52) and (53). This is done by marching
backward in time and at each time step solving a system of linear equations with a sparse and invertible

matrix (of the same form as in the Newton iterations described in 2.3). Again, we use the library
UMFPACK for that.
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3.2.3. Linearized Kolmogorov-Fokker-Planck equation

The variation dm of m = F,(u, V) induced by variations du and dV of u and V is given by

dm =By, Buy) (j‘bﬁ) : (54)

The grid function dm is obtained by linearizing (23), (31) and (29). It satisfies
Ddm!; —v (Ahdm“l)l_J = T3 (d® (uf, V¥) (du, aV¥)), m**) = T (@ (b, VE) . dm 1) = 0, (55)

fori,j = 0,...,N,and k = 0,...,Ny. The set of equations (55) is supplemented with the initial
condition
dm® =0, i,j=0,...,Np, (56)

LJ
and the boundary conditions
v(dmY - dmf)  —h[20VE | [
v(dmli) —dml) ) +h[20VE | dmli) - n|aevy ;| dmll =0,
v(dm —dml§)  —n|a0Viy, | dmls' + h|aoVEy, | amlt =0,
v(dmy) —dmi3,)  +h|A0VEy, | dmii = h[aoVEy, | amiT, = 0.

_dmgl + h|0VE | amt =0,

+

(57)

Here again, (55), (56) and (57) is solved by marching in time and solving a system of linear equations
at each time step (using UMFPACK).

3.2.4. Linearized coupling costs and average drifts

The variation of f JF ¢(m) induced by a variation dm of m is obviously given by d fk = cdm! j,
hence Cy,,dm = cdm.

Let us turn to the variation of V = Fy(u, m, V) induced by the variations du, dm and dV of u, m and
V. Differentiating (46)—(48) leads to

dV* = av¥,
de,t’ — V(dl/l ,mk+1’dvk,€—l) + dm'v (uk’mk+l’vk,€—l)dmk+l’
dVk = dVFE,

see (48) for the definition of VAL,
This permits to compute

du
d"‘; = (CV,M CV,m Cuv) [dl’l’l] .
dv

To sumarize,

du
df . 0 Cm O
Cld th C= : .
(dV) [ d"?) e (Cv,u Cvm CV,V)
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3.3. The algorithm for solving (22)—(31)
We see (22)—(31) as a fixed point problem for the pair (f, V), which we write

9f(f7 V) :0’ and 9V(f’ V) :0’ (58)

where G, Gy are defined by
SHLV) = f=FroTu(TulfiV)V), (59)
SUFV) = V=T Tl V). F0 FLV).V). V). (60)

Remark 3.3. Givenuandm, V. — W = Fy (u,m, V) is obtained as follows: for each k, computing W*
consists of iterating W* x VEuF, m*', W*) L times starting from W* = V*. Recall that V(u*, m**!,-)
is in (44) and (45), and is a contraction with a unique fixed point. Therefore, Iy (u,m,-) has also a
unique fixed point which does not depend on L. Since I, and J,, do not depend on L, neither do the
the solutions of (58).

The Newton iterations involve the Jacobian A(f, V) of the map (f, V) — (9 (£5V)), Sv(f, V)). We
set

{Af,f(f, V)=DiSe(f, V), Apv(fiV) = DvGe(f, V), 1)

Ave(f,V) = DeSv(fi V), Avv(f, V) =DvSv(f, V),

and the blocks of the Jacobian A(f, V) are defined by:
A (V) = Iy=CruBuuBuy, (62)
Apy(f,V) = =Cpw(BuuBuv + Buy), (63)
Avi(f,V) = —CyuBus— CymBnuBuy, (64)
Avy(f,V) = by —CvuByv = Cyp (BuuBuy + Bny) = Cyy, (65)

where B, ¢, Biv, Buu, Buy, Cvu, Cym, Cyy are given by (49) with u = F,(f, V) and m = F,,(u, V). In
an equivalent manner, we can write

_ CrmBmuBu.y Crm (BnuBuyv + Bunv)

A(f, V) - I3N (CV,uBu,f + CV,mBm,uBu,f CV,uBu,V + CV,m (Bm,uBu,V + Bm,V) + CV,V ’ (66)
or
Iy Onon
On Cpm Onon ’ B, B.y
A =Ly — ; ’ B B g S N
(- V) =L (Cv,u Cvin Cyvy i IV Oy Ty ©7)
Oovy  Dn

Every Newton iteration for solving (58) consists of solving a system of linear equations of the form

t+1 _ gt Lyt
el L))

In our implementation, this system is solved iteratively by BiCGStab algorithm, see [21]. Note that
BiCGStab algorithm only requires a function that computes

ag o (h).

(68)

for any grid functions f c Ty X, —> Rand V : Ty, xQ;, — R2 Ths is done using (67) and combining
the methods described in paragraph 3.2. The assembly of the Jacobian matrix is not needed.
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4. Numerical simulations

We are going to discuss the results of numerical simulations in two cases, both related to crowd
motion.

4.1. First example
4.1.1. Description of the model

The state space is the square Q = (=0.5,0.5)* and the time horizonis T = 1.
We consider the MFGC described by (7)—(14), in which

1). The kernel k in (9) is radial, i.e., of the form K(x,y) = K,(|x — y|). Here r — K,(r) is a non-
increasing C' function defined on R, with

K,(r)=0, ifr>p, and K,(r)=1, ifr<0.9p, (69)

for a positive number p > 0, which is the radius of the disc in the state space that a reprensative
agent uses for computing the average of the controls.

2). The parameter c in (7) is chosen as ¢ = 1073. Recall that the cost cm(t, x) reflects the aversion of
a representative player to crowded regions of the state space.

3). Attime ¢t = 0, the agents are distributed in the top-right and the bottom-left corners of the domain
Q, see the left part of Figure 1. The density is piecewise constant, with values appearing on Figure
1.

4). The terminal cost is also piecewise constant. It takes a small value in the top-left and the bottom-
right corners of the domain €, see the right part of Figure 1 for the chosen values. This cost
attracts the agents to the latter two corners of Q.

5). The function f; in (7) is chosen to be proportional to the terminal cost, with a factor 0.1. This
term is linked to the running cost and has the same effect as the terminal cost.

6). Recall that the boundary conditions (13)—(31) rule out the entry or exit of agents. The total mass
of m is conserved.

Initial distribution Terminal cost

Figure 1. Example 1. Left: the initial distribution of states. Right: the terminal cost.

Remark 4.1. Note that the problem is symmetric with respect to the two diagonals of the square
domain. The grid of the domain is chosen to have the same symmetry.
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Remark 4.2. The two parts of the running cost: cm(t, X,) and g la — AV(t, X)) may have competing
effects: indeed, the former cost may incitate the agents to spread all over the state space, whereas
the latter may result in the agents selecting the same controls therefore staying grouped. Although the
constant ¢ = 1073 seems small, it is chosen in such a way that the above-mentioned two costs have the
same orders of magnitude for e.g., 6 = 1 and 1 = 0.9.

4.1.2. The results of the simulations: discussion

In the present simulation, we choose the parameters as follows:
v=107, 6=1, 1=0.09, p=02, c=107,

On Figure 2, we display snapshots of m, u and the optimal feedback law at several times.

Since both the problem and the grid are symmetric with respect to the two diagonals, m, u and
the feedback have the same symmetry for all times. Let us describe the evolution of the distribution
of states, that we can name “gathering-kissing-splitting” referring to the “drafing-kissing-tumbling”
phenomenon in fluid mechanics (for the interaction of particles in a fluid).

e The term cm(t, X;) in the running cost prevents the part of the distribution initially supported in
one of the opposite corners (say the bottom-left corner) to travel directly to one of the targets
(say the bottom-right corner). On the other hand, the interaction through controls prevents this
part of the distribution to split into two equal parts which would travel directly to the two targets,
because the agents favor controls close to the local average. Therefore, the part of the distribution
initially supported in one of the opposite corners first travels to the center of the domain. This is
the gathering phase of the evolution.

e The two parts of the distribution reach the center of the domain, where the local average of the
velocity becomes small; the dominating cost then becomes the one which attracts the agents to
the bottom-right and top-left corners. Because of the repulsive effect due to the part cm(z, X;) of
the running cost, the part of the distribution initially supported in one of the opposite corners (say
the bottom-left corner) and having traveled toward the center of the domains splits into two parts
which make each a ninety-degrees turn. This is the kissing phase of the evolution.

o After the kissing phase, the distribution of states splits into parts which travel to the targets.

Finally, we see that the paths followed by the agents is far from being a shortest path to the targets.

Let us compare these results with a simulation of the MFG obtained by cancelling either 6 or A in
(7)—(14) while keeping all the other parameters and the grid unchanged. Since the problems remains
symmetric with respect to the two diagonals, the obtained results have the same symmetry. On Figure 3,
we display snapshots of m, u and the optimal feedback law at several times. We see that the evolution is
quite different from that displayed on Figure 2, since the two parts of the distribution initially supported
in two opposite corners of the domain symmetrically split into two parts each, which travels directly to
the targets. The initial splitting phase is due to the coupling cost cm(t, X;) which favors the spread of
the distribution. The path followed by the agents is close to a shortest path to the targets.
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Gathering-kissing-splitting; snapshots at t =0,0.2,0.4,0.6,0.8, 1.

Left: contours of m. Center: contours of u. Right: optimal feedback «.

Figure 2. Example 1.
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0; snapshots att = 0,0.2,0.4,0.6,0.8, 1.

Left: contours of m. Center: contours of u. Right: optimal feedback «.

Figure 3. Example 1. Same parameters except 64
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4.1.3. Non-uniqueness of solutions

The solution of the MFGC displayed on Figure 2 is likely to be unstable because the paths followed
by the agents are significantly longer than the shortest paths to the targets. We expect that there are other
solutions. We are going to see that this is indeed the case. For that purpose, we are going to introduce
a vanishing perturbation of the initial distribution which breaks the symmetry of the problem. This
will lead to different solutions to (7)—(14). An example of perturbation is displayed on Figure 4. It
consists of adding very little mass at the top and the bottom of the domain; the perturbed distribution is
no longer symmetric with respect to the diagonals. We expect that the agents initially distributed near
the bottom target will go to the right, and that all the agents initially distributed at the bottom of the
domain will follow them, because of the interaction through controls. Similarly, we expect that all the
agents initially located at the top of the domain will go to the left.

In our simulations, we use a continuation method, i.e., we consider perturbations corresponding to
distribution displayed on the left of Figure 1. For each new value x,,; of the parameter, we initialize
the Newton iterations described in Section 3 by the solution corresponding to the preceding value ,,.
For positive values of m,, the simulated solution is not symmetric with respect to the diagonals, and
this property is preserved for the last value ny = 0.

Initial Condition 0<t<T
e— (10" . <—.—
104 L —

. e— (104" _._.

Figure 4. Example 1. A continuation method leading to a different solution. Left: a
vanishing perturbation of the initial distribution. Right: the expected evolution of the
distribution.

On Figure 5, we display three different solutions (the distribution of states at different times)
obtained with three different sequences of vanishing perturbations of the initial distribution displayed
on Figure 1: the solution displayed on the left corresponds to the sequence of perturbations displayed
on Figure 4; applying to the pertubation a symmetry with respect to a diagonal, we obtain the solution
displayed on the center; the solution displayed on the right is obtained by another kind of perturbation
symmetric with respect to one diagonal only, located at the top and at the left of the domain: for this
solution, we again notice gathering and kissing phases, and that the paths followed by the agents
deviate from the shortest ones.
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Figure 5. Example 1. Different solutions obtained by adding vanishing perturbations to
the initial distribution of states. The distribution at time t = 0,0.2,0.4,0.6,0.8, 1. The three

columns correspond to three different sequences of perturbations.
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4.1.4. Behaviour of the algorithm

In this paragraph, we investigate how the behaviour of the algorithm described in Section 3 is
affected by the variations of the parameters in the model. Recall that the algorithm is based on Newton
iterations with a BiCGStab inner loop at each step.

We start by the grid size and the viscosity parameter v: in the experiments reported below, the
stopping criterion for the outer Newton iteration is that the normalized Euclidean norm of the residual
is smaller than 107, The stopping criterion for the inner BiCGStab iterations is that the ratio of the
norms of the current and the initial residuals is smaller than 1077 (hence, it involves a relative error).
The parameters of the model are set to

0=1, 1=009, c=107, p=02, L=1.

Table 1 displays the iterations counts for the outer Newton and the inner BiCGStab loops for different
viscosities and grid sizes. We notice that the number of iterations is not very sensitive to the grid size,
as expected because the map G — I;, with G defined in (59) and (60), is the discrete version of a map
which has compactness properties. The iteration counts increase as v is decreased.

Table 1. Number of outer Newton iterations and average number of inner BiCGStab
iterations per Newton step (the stopping criteria are given in the text) with different viscosities
and grid sizes.

v 26 X 26 X 26 51 x51x51 76 X 76 X 76 101 x 101 x 101
Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab

05 3 13.67 3 12.67 3 15 3 14.33

0.1 9 14.67 10 21.9 12 15.08 12 18.25

005 4 16.5 4 17.25 4 16.25 4 19.25

001 4 42.5 4 29 5 30.4 5 28.8

Table 2 displays the iteration counts for different choices of A and 6, and fixed values the other
parameters:

v=107, c=1073,  p=02, L=1,

with a 101 X 101 nodes grid and 101 time steps.

In fact, the numbers in Table 2 are obtained by running a continuation method in 6 and A: for each
cell of the table, the solution corresponding either to the left or the upper neighboring cell is used as an
initial guess for the Newton iterations. If a cell has two such neighbors, the choice of the initial guess is
made as follows: in the top-right triangular part of the table, strictly above the diagonal, we choose the
initial guess corresponding to the left neighboring cell. In the bottom-left triangular part of the table,
including the diagonal, we choose the initial guess corresponding to the cell immediately above.

We see that changing A and 6 mostly impacts the number of iterations of the inner loop. A reason
for that is that V is obtained by solving a linear fixed point problem whose contraction factor is A6.
Hence, it is sensible that the number of iterations necessary to solve the systems of linear equations
arising in the Newton steps increases as A6 tends to 1.
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Table 2. Sensitivity to A and 6.

(a) Average number of BiCGStab iterations. (b) number of Newton iterations.
0 0
1 02 04 06 0.8 1 1 02 04 06 08 1
0.2 35 45 7 8 8 0.2 2 2 2 2 2
0.4 45 7 8 9 10.67 0.4 2 3 2 3 3
0.6 5 8 9 12 15.67 0.6 2 3 3 3 3
0.8 7 8.67 10.67 15.67 27.25 0.8 3 3 3 3 4
0.9 7.33 8.67 12 18 40 0.9 3 3 3 3 6

Recall that we use a continuation method, consisting of decreasing progressively v until it reaches
the desired value; in Figure 6 (respectively Figure 7), we plot the average number of BiCGStab
iterations versus v, (respectively the number of Newton iterations versus v) for different values of A, 6
and c. The stopping criteria have been described above. The grid contains 101 X 101 nodes and there
are 101 time steps. We recover the information contained in Tables 1 and 2, i.e., that v mostly impacts
the number of iterations in the inner loop. We also notice that when v is large, the number of iterations
seems to depend more on A and 6 than on ¢ and that it becomes highly sensitive to ¢ when v is small,
but we do not really know how to explain this. The number of iterations in the outer Newton loop
seems much less sensitive than the number of inner BiCGStab iterations. Looking at the overall
number of BiCGStab iterations, they are not very different for the choices (41,6,c) = (0.9,1,0) and
(4,0,c¢) = (0,0,0.1), since the latter case needs more Newton iterations but less BiCGStab iterations
per Newton steps.

90 R e T

o A=0.9,0=1,c=0.1 o
80 |-m A=0.9,0=1.c=0 ° B
A=0=0,c=0.1
70 |- A=60=0.5¢=0.001 ° i
¢ A=0250=1,c=0.001 .
601 A=0.250=1,c=0.001 o i

40 |-
o

i hereagst 1

000
20 - B

10 Ll R
i PR 2 S o * B
'

:

| R L I R N L I R N L L1
100 1071 1072 1073 1074

Figure 6. Average number of iterations of BiCGStab iterations per Newton step versus v for
different choices of A, @ and c.
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Figure 7. Number of iterations of Newton iterations versus v for different choices of 4, 8
and c.

Finally, we investigate the sensitivity of the algorithm to L, the number of fixed point iterations
yielding a proxy of V, see paragraph 3.1. Table 3 contains the iteration counts of the inner and outer
loops for different values of v and L, and two choices of (4, 6) (all the other parameters are fixed
¢ = 1073, p = 0.2). We notice that the choice of L seems to have little impact on the iteration count.
For these reasons, L = 1 appears to be a good choice.

Table 3. Number of outer Newton iterations and average number of inner BiCGStab
iterations per Newton step (the stopping criteria are given in the text) with different viscosities

and L.
A=0=0.8
L 1 2 3 5
v
Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab
0.1 3 7.33 3 6 3 6 3 5.33
0.01 3 13.67 3 13 3 15.33 3 13.67
0.001 2 14.5 2 14.5 2 17.5 2 16
0.0001 3 22 3 22.67 3 22.33 3 24.67
1=09,0=1
L 1 2 3 5
v
Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab
0.1 4 26.75 4 19.75 4 19.5 4 19.25
0.01 4 29 4 25.75 5 28 5 29
0.001 3 36.67 3 34 3 38.67 3 37.67
0.0001 3 55 3 58.33 3 64 3 63.33

4.2. Second example

As a second example, we consider a model for a crowd crossing a hall, with an entrance at the left

and an exit at the right. Roughly speaking, a generic agent will interact with those located in a cone
ahead of her.
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4.2.1. Description of the model

The state space is the rectangle Q = (-1, 1) X(—0.1,0.1) and the time horizon is 7 = 8. Let £ denote
the length of the bottom and upper sides of 0Q: £ = 2.

The boundary of Q is split into three parts I'yp, ['yy and I'pp which respectively stand for an
entrance, some walls and an exit:

I'pp = {1} x [-0.05,0.05], I'vp = {-1} x [-0.05,0.05], Ly =0Q\IT'pp NTyp),  (70)

and we consider the following boundary conditions:

%(I, -x) =0
Vg_l:ll(t, X) — /16’m(t, X)V(t, x; . n(.X) = 0 } on FNN7 (71)

u(t,x) = 6
v%—’:f(t, x) +m(t,x)H,(Vu(t, x), V(t, x))) - n(x) = -2 } on I'yp, (72)
,Zg 3 : _3 } on I'pp, (73)

where H is defined below.
The system of PDEs is still (7)—(10), with the following new features:

e compared to (5), the part ot the running cost accounting for the interaction through controls is
multiplied by a positive normalization factor a:

0 1-0
L(a,V) = aila —AVP + aTlalz, (74)

and the associated Hamiltonian by the Legendre’s transform is

2 %6
Hp,V)=2 ‘3 —a0v| — a2V (75)

2la 2
‘We choose the normalization factor a as follows:

a=7a(l-207", (76)

where @ is a positive constant (independent of A or 6). As we shall see later, the normalization
allows us to compare the solutions obtained with different values of A4 and 6. We shall also see
that this normalization is specific to the example under consideration and may not be relevant in
other situations.

e The kernel X is given by
K(X, )7) = 1y12)€1 Kp(lx - )’|)K(|w|), (77)

where w is the angle made by the vector y — x with the vector (1,0) and

1). k, is defined as in the first example

2). k is a nonincreasing C' function defined such that

1, if 0<w<0.9wy,
K= )
0, if w > Wy,
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for a given angle wy € (0, 7).
e The parameter c in (7) is chosen to be zero
e We shall consider various functions fy modeling the cost for staying at a given point in the domain.

The initial condition is mg(x) = 107 for all x € Q, and the terminal cost is 0.

4.2.2. The case when f is constant: comparisons with a one-dimensional problem

In this paragraph, we choose fy(x) = F for all x € Q.

Simplification: a one-shot one-dimensional game We approximate the MFGC by a one-shot one-
dimensional game. The state space is the interval [0, {]. The points x = 0 and x = ¢ respectively
stand for an entrance and an exit. When she enters the domain, a representative agent chooses her drift
a € R, once and for all, and her dynamics is given by x'(f) = « for t = {/a. The distribution of drifts
is a probability measure ¢ on R, and the average driftis V = fa =, adu(a). There is no entry or exit
Costs.

With the running cost L(a, V) + F, where L is given by (74), the mean field Nash equilibrium reads

4 0 1-6
support(u) C argmin,,— (a (E(a —AV)? + Taz) + F) _
o’

Given V, one checks that the unique solution of the minimization problem in « is

OF +abA2V?\!
o (V) = (#) . (78)
a
Hence y = 6,+(v), and the static mean field Nash equilibrium reads
1
2F + afA’V?*\?
()
a
which yields
2F
oV = —— . 79
¢ (a(l - 9&2)) 7)
This leads us to choose a = a/(1—-64%), which yields a* = V = %F Note that the value corresponding
to the mean field Nash equilibrium is
¢ 0 . 1-6 1-26
I = — |a|z(@" — ") + —— (@) |+ F|=¢ V2Fa. (80)
a* 2 2 1 - 2%

Remark 4.3. Note that if 6 = A = 1, then (78) implies that a*(V) > V, while an equilibrium
corresponds to V = a*(V). Thus, there is no mean field equilibrium if 6 = 1 = 1.
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Remark 4.4 (Comparison with the one-shot mean field type control problem). The Nash equilibrium
must be distinguished from the situation in which the drift of the agents is determined in order to
minimize the global cost; the latter problem belongs to the class of mean field type control problems
(MFTC for short)) studied by A. Bensoussan and his collaborators, [6] and R. Carmona and F.
Delarue, [9].

In this case, the problem reads

e (6 19
inf f —(a(— (a -2 f ﬁd,u(,B)) + —0/2] + F) du(a).
B Jaer, @ 2 BER., 2
Looking for the solution as the Dirac mass 0.+, we see that o minimizes
¢ 0 1-6
a —|al=(@-0)? + —a?|+ F|,
a 2 2

thus

1
2

N 2F
a = .
a(l — 264 + 6.22)

The value of the problem is

4 1-1602-4) ¢
J ={+2Fa(l =202 — 1)) < = V2Fa—————= + —\/2Fa(l — A20) = Jyrg,
MFTC V2Fa( ( ) 3 a Ny + > V2Fa( MFG

from Young’s inequality y < g—z + % withy = NVT-20Q2 - Q) and z = V1 - A%0. The value of the
MFTC is lower than the value of the MFG, which is natural since in the former case, the agents are
collaborating to minimize the global cost. Moreover, the values of the two problems coincide only if
A0 = 0, i.e., when there are no interactions through controls.

Comparison with the one-shot one-dimensional problem We have made numerical simulations
of the MFGC described in paragraph 4.2.1 with fo(x) = F = 1 forall x € Q, a = a(l — 2%0)"" and
a = 2. We wish to compare the results with the explicit formulas obtained above for the one-shot
one-dimensional MFG. If the latter problem is a good approximation of the former one, we should find

a; close to 4/ %F = 1, therefore mostly independent of A and 6.

Note that the approximation by the one-shot one-dimension mean field game is sensible only if the
time remaining to the horizon is large enough, i.e., significantly larger than £/a* = €. If T — t is small,
then the optimal strategy for a representative player located on the left part of the domain is not to
move.

On Figure 8, we display the norm of the optimal feedback for several values of 4 and 8. We see that
the optimal drift is close to 1 in agreement with the explicit formula found for the simplified one-shot
one-dimensional MFG. We also see that the agents located at the bottom and top of 2 head toward the
center of the domain (i.e., x, = 0) before reaching the exit. Thus, the second coordinate of a gets large
and there are singularities on both sides of the exit, whose amplitude increases as 16 tends to 1.
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(A) A=6=0.75 (€) A=0.9,6=0.9

Figure 8. Example 2, fy(x) = 1. The optimal feedback « for different choices of A and 6 at
t="T/2.

4.2.3. Queues

Here, we choose f as follows:

4, if x<-0.1,
Jo(x) = 1, if x>0.1,

2.5-15x, otherwise;

hence, an agent pays a cost for staying in €2 which is higher in the left part of the domain.
The parameters are

v = 0.001, a=2, A =0.95, 6 =0.95, p =025, Wy = g

The grid has 101 X 21 nodes and there are 101 time steps.

The evolution of the distribution of states and of the optimal feedback is displayed on Figure 9.
We compare these results with a simulation of the MFG obtained by cancelling either 6 or 4 while
keeping all the other parameters and the grid unchanged, see Figure 10. On Figure 9, we see that a
well distributed queue takes place from the entrance to the exit, by contrast with Figure 10 where we
see that the agent rush and accumulate in the right part of the domain. Similarly, the deceleration is
much stiffer in the latter case. It is not surprising that the interactions through controls have the effect
of smoothing the distribution of states and the optimal feedback law. On the bottom of Figure 10, we
see that when 7 is close to the horizon, the distribution is mainly concentrated near the middle of the
domain but slightly on the right: this corresponds to the agents that have reached the zone where f;
has the smaller value, i.e., 1, but for which reaching the exit before 7 becomes too costly. There is also
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a smaller bump near the entrance corresponding to agents that would pay too high a cost to reach the
right part of the domain before 7. These phenomena are clearly a side effects due to the finite horizon.
These side effects are also present on Figure 9, but they are attenuated by the interaction through the
controls.

Remark 4.5. In models accounting for congestion effects, the cost of motion depends on the density
of the distribution of states and gets higher in the crowded regions. We refer to [20] for a pioneering
discussion of MFG models including congestion, to [5] for the analysis of the system of PDEs that
arise with these models, and to [4] for numerical simulations. Such models also permit to describe
queueing phenomena, because the agents located in crowded regions pay a large cost for moving.
In [4], since the congestion effects are taken into account in a local manner, the queues take place
in small regions of the state domain. By contrast, the present nonlocal model accounts for the fact
that the agents anticipate low speed regions, making the traffic more fluid and the distribution of state
smoother. Although it is quite possible to do, we have not incorporated congestion effects in the present
model. We plan to do it in forthcoming works.

4.2.4. Stationary regime

We now look for a stationary equilibrium. For that, we use an iterative method in order to
progressively diminish the effects of the initial and terminal conditions: starting from (u°, m°, V?), the
numerical solution of the finite horizon problem described above, we construct a sequence of
approximate solutions (uf, m‘, V¥);s; by the following induction: (u‘*!, m‘*!, V*1) is the solution of
the finite horizon problem with the same system of PDEs in (0, T') X €, the same boundary conditions
on (0, T) x dQ, and the new initial and terminal conditions as follows:

T

WNT. ) = u[(z,x), xeQ 1)
T

m0,x) = mf(E,x), x € Q. (82)

As ¢ tends to +oo, we observe that (u‘, m’, V!) converge to time-independent functions. At the limit,
we obtain a steady solution of

—vAu + % équ - /19V|2 - a% VI = cm + Jo(x), in Q,
—vAm — div ((%qu - /lHV) m) =0, in Q,
1
Vix) = ——— =V, u(y) — 60V(y) | K(x, y)dm(y), in Q,
Z(x) Jo\a

Z(x) = [, K(x,y)dm(y), in Q,

with the boundary conditions on dQ given by (71)—(73). On Figure 11, we plot the simulated solutions
of the stationary problem with different parameters.

Mathematics in Engineering Volume 3, Issue 3, 1-35.



31

e

TS e N
\;\;\;\;\;\\\
—S—S——S>T> T TS
—_————— —> —> —>
— > > > > _ > _ > 7
—— 7 > > 7 7

Z/’/’//r/?//

m\\;\;\\\
TS e NN
S>> T > >
—_———— —> —> —>
S A I I s e =
W’/’/’/?/’/Y/

_,a/)/?//rﬂ/’/

TSSO T N
TS e N
————— > > —> —>
— > —> —> —>
— > > > > > >
”’/’/’/7/7/7/

RS S

TS YT Ny

T e N
S>> > > >
—_—————> —> —> —>
—_——— > > > > > —>
”’/’/7/7/7/7/

S

TSSO SN
TSR S N
TSSO > > >
—_—————> —> —> —>
—_——> > > > > 7 >
/7/>/>/>/7/7/7/

> > > > 7 T

T T N
T > \\\

— > > —> —— —>

—_—— > > — >
> > > > > /7/7/

NN 4
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(¢) A=6=0.95 and p =0.25

(g) A\=0=0.5and p=0.25 (h) A=0=0.75 and p = 0.25

G)A=6=0and p=0.5 (k) A\=60=0.75and p=0.5 HDA=6=0.95and p=10.5
Figure 11. Example 2. Solutions of the stationnary problem for different choices of 4,0
and p. Top six figures: the distribution of states m. Bottom six figures: norm of the optimal
controls.
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