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Av. Rovisco Pais, 1049-001 Lisboa, Portugal
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Abstract: We study a rather broad class of optimal partition problems with respect to monotone and
coercive functional costs that involve the Dirichlet eigenvalues of the partitions. We show a sharp
regularity result for the entire set of minimizers for a natural relaxed version of the original problem,
together with the regularity of eigenfunctions and a universal free boundary condition. Among others,
our result covers the cases of the following functional costs

(ω1, . . . , ωm) 7→
m∑

i=1

 ki∑
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λ j(ωi)pi


1/pi

,
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λ j(ωi)

 , m∏
i=1

 ki∑
j=1

λ j(ωi)


where (ω1, . . . , ωm) are the sets of the partition and λ j(ωi) is the j-th Laplace eigenvalue of the set ωi

with zero Dirichlet boundary conditions.

Keywords: elliptic competitive systems; optimal partition problems; Laplacian eigenvalues;
segregation phenomena; extremality conditions; regularity of free boundary problems; blowup
techniques

To Sandro Salsa, with admiration and gratitude.

http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2021002
www.aimspress.com/mine/article/5753/special-articles


2

1. Introduction

Let Ω ⊂ RN be a smooth bounded domain, m ≥ 2 an integer and k1, . . . , km ∈ N. Consider the
following optimal partition problem: among all m-tuples of open disjoint subsets ω1, . . . , ωm of Ω,
belonging to an admissible class, find those that minimize the functional

(ω1, . . . , ωm) 7→ F
(
ϕ1

(
λ1(ω1), . . . , λk1(ω1)

)
, . . . , ϕm

(
λ1(ωm), . . . , λkm(ωm)

))
where λi(ω) is the i-th eigenvalue of ω with Dirichlet boundary conditions. Here F and ϕi are given
functions which satisfy certain monotonicity and coercivity assumptions. The aim of this paper is to
show that not only problems of this form have a regular solution, but also that any solution is regular.
Examples of functionals that fall in the scope of our results are

(ω1, . . . , ωm) 7→
m∑

i=1

 ki∑
j=1

λ j(ωi)pi


1/pi

,

m∏
i=1

 ki∏
j=1

λ j(ωi)

 , m∏
i=1

 ki∑
j=1

λ j(ωi)

 (1.1)

and combinations of these functionals.
Optimal partition problems are a particular case of a shape optimization problem that appears quite

naturally in engineering, where a cost functional defined on a structure made of several materials is
being optimized (each material corresponds to a set of the partition).

The problem of existence and regularity of optimal shapes for spectral costs (meaning cost
functionals that depend on the spectrum of an operator set in a specific member of the partition) has
been addressed by many authors. They are connected with the study of nodal sets of eigenfunctions of
Schrödinger operators [3–5, 17], monotonicity formulas [2, 9, 14, 18, 23] and nonlinear systems of
partial differential equations with strong competition terms [9, 11–14, 17, 20, 22, 24]. Moreover, these
problems provide examples of monotone functionals which are lower-semicontinuous with respect to
the weak γ-convergence, where existence results of a relaxed formulation (partitions of quasi-open
sets) can be achieved by direct methods [7, 8]. Alternative methods typically involve penalization
arguments (see for instance [6, 17, 18, 20, 24]).

The main goal of this paper is to characterize and prove regularity of all possible minimal partitions
of problem (1.3) and their eigenfucntions.

1.1. Open partitions

We contextualize our results by introducing a first natural formulation of the problem. For a given
m ≥ 2, consider the set of open partitions of Ω in m disjoint subsets, denoted by

Pm(Ω) =
{
(ω1, . . . , ωm) : ωi ⊂ Ω open ∀i, ωi ∩ ω j = ∅ ∀i , j

}
.

Observe that, according to this definition, a partition is not necessarily exhaustive, meaning that
possibly ∪iωi $ Ω. To any element ω of a partition we associate the corresponding eigenvalues of the
Laplacian with zero Dirichlet boundary condition λ1(ω) ≤ λ2(ω) ≤ . . . , counting multiplicity. It is
well-known that these eigenvalues are the critical levels of the Rayleigh quotient

u ∈ H1
0(ω) 7→

∫
ω

|∇u|2
/ ∫

ω

u2
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where H1
0(ω) is the closure of the subset of H1(Ω) functions whose support is contained in ω. A

characterization of eigenvalues, which takes naturally into account their multiplicity and is also better
suited for our purpose, is given by the Courant-Fisher-Weyl formula, which states that for any j ≥ 1

λ j(ω) = inf
M⊂H1

0 (ω)
dim M= j

sup
u∈M\{0}

(∫
ω

|∇u|2
/ ∫

ω

u2
)

where M is any linear subset of H1
0(ω) of dimension j.

1.2. Cost functional

We introduce a general class of cost functional for the optimal partition problem. Let F ∈ C1(Rm;R)
and, for any i = 1, . . . ,m, ϕi ∈ C1((R+)ki ;R), functions that verify the following assumptions.

(H1) Monotonicity: for every i = 1, . . . ,m,

∂F
∂xi

(x1, . . . , xm) > 0 ∀(x1, . . . , xm) ∈ (R+)m,

∂ϕi

∂x j
(s1, . . . , ski) > 0 ∀(s1, . . . , ski) ∈ (R+)ki , j ∈ 1, . . . , ki;

(H2) Coercivity: for every i = 1, . . . ,m,

lim
t→+∞

F(x1, . . . , xi−1, t, xi+1, . . . , xm) = +∞ ∀(x1, . . . , xm) ∈ (R+)m

lim
t→+∞

ϕi(s1, . . . , s j−1, t, x j+1, . . . , ski) = +∞ ∀(s1, . . . , ski) ∈ (R+)ki , j ∈ 1, . . . , ki;

(H3) Symmetry, for every i = 1, . . . ,m

ϕi(σ(s1, . . . , ski)) = ϕi(s1, . . . , ski) for every permutation σ ∈ S ki .

We consider the following problem: among all partition (ω1, . . . , ωm) ∈ Pm(Ω), find

inf
(ω1,...,ωm)∈Pm(Ω)

F
(
ϕ1(λ1(ω1), . . . , λk1(ω1)), . . . , ϕm(λ1(ωm), . . . , λkm(ωm))

)
. (1.2)

The goal here is to show that a solution, an optimal partition, exists and also to establish some of its
qualitative properties, such as the regularity of the associated eigenfunctions, topological properties of
the partitions and the structure of their boundary.

Although this first formulation has a very natural appeal, it comes with an apparent incompatibility
between the structure of the set of solutions Pm(Ω) and the minimization problem. Indeed it does not
seem easy to endow the set of the open partitions Pm(Ω) with a topology that allows any compactness
results on sequences of minimizers of the cost functional. There are many ways to circumvent this
issue (see for instance [6, 8, 17]), usually by considering a relaxed version of the original problem.
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1.3. Measurable partitions

We adopt here the framework of [17], see also [15], in that we reformulate our problem in the
context of measurable sets. For this reason we extend our notion of partition and consider the set of
measurable partitions of Ω in m almost-disjoint subsets, denoted by

P̃m(Ω) =
{
(ω1, . . . , ωm) : ωi ⊂ Ω measurable ∀i, |ωi ∩ ω j| = 0 ∀i , j

}
,

where | · | is the Lebesgue measure. Correspondingly, for any ω ⊂ RN measurable (with non-empty
interior) we define the Sobolev-like set

H̃1
0(ω) :=

{
u ∈ H1(Ω) : u = 0 a.e. in Ω \ ω

}
and we introduce the generalized eigenvalues of ω as

λ̃ j(ω) := inf
M⊂H̃1

0 (ω)
dim M= j

sup
u∈M\{0}

(∫
ω

|∇u|2
/ ∫

ω

u2
)
.

They form a nondecreasing sequence which is associated to an L2–orthonormal sequence of
eigenfunctions {φ j} j∈N, which satisfy −∆φ j = λ̃ j(ω)φ j in the weak sense∫

Ω

∇φ · ∇η = λ̃ j(ω)
∫

Ω

φ̃ jη ∀η ∈ H̃1
0(ω)

and belong to L∞(Ω) (see [15, Section 2]).

Remark. The notions of classical eigenvalue λk and generalized eigenvalue λ̃k differ in general, even
for Lipschitz sets. Indeed, there are open sets Ω ⊂ RN , such that λk(Ω) , λ̃k(Ω) for some k (in general
we have λ̃k(Ω) ≤ λk(Ω)). Taking for instance Ω = B1(0) \ {x1 = 0}, then one easily verifies that
λ1(Ω) = λ2(Ω) = λ2(B1(0)), while λ̃k(Ω) = λk(B1(0)) for any k ∈ N. On the other hand, if Ω has
smooth boundary (for instance, Ω enjoys an exterior cone condition), then the two notions coincide.
See [15] for a more in depth discussion on this subject.

We can finally introduce a suitable relaxed formulation of the minimization problem: among all
partition (ω1, . . . , ωm) ∈ P̃m(Ω), find

inf
(ω1,...,ωm)∈P̃m(Ω)

F
(
ϕ1

(̃
λ1(ω1), . . . , λ̃k1(ω1)

)
, . . . , ϕm

(̃
λ1(ωm), . . . , λ̃km(ωm)

))
. (1.3)

We state a general existence theorem for the solutions of this problem

Theorem ( [20]). The optimal partition problem (1.3) coincides with (1.2) and admits an open regular
solution (ω1, . . . , ωm) ∈ Pm(Ω) This partition is that λ̃ j(ωi) = λ j(ωi) for every i = 1, . . . ,m, j =

1, . . . , ki.
Moreover, for all i = 1, . . . ,m there exist ki linearly independent eigenfunctions ui,1, . . . , ui,ki ∈

H̃1
0(ωi) associated to λ̃1(ωi), . . . , λ̃ki(ωi) which are Lispschitz continuous, and Oi coincides with the

interior of the support of
ki∑

j=1

|ui, j|.
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Finally, for each i = 1, . . . ,m and j = 1, . . . , ki there exists ai, j > 0 such that given x0 in the regular part
between the interface between two adjacent sets Op,Oq of the partition, the free boundary condition is

lim
x→x0
x∈Op

kp∑
j=1

ap, j|∇up, j(x)|2 = lim
x→x0
x∈Oq

kq∑
j=1

aq, j|∇uq, j(x)|2 , 0.

For the notion of regular partition, we refer to the next statement. This statement is a combination
of [20, Theorem 1.2] and the paragraphs after that, see in particular the relaxed formulation (2.4)
therein. It should be noted that the case of functionals depending only with first eigenvalues was
treated in [1, 9, 10, 14], while [24] deals with second eigenvalues.

1.4. Main results

In this paper we strengthen the previous result, by showing that every solution of (1.3) is equivalent
to a regular partition, together with universal results regarding the regularity of eigenfunctions and a
free boundary condition. In what follows, 4 denotes the symmetric difference between two sets.

Theorem 1.1. Let ω := (ω1, . . . , ωm) ∈ P̃m(Ω) be any minimizer of (1.3). Then there exists a unique
open partition O = (O1, . . . ,Om) ∈ Pm(Ω) such that the following holds.
Equivalence:

• subsets coincide up to negligible sets, |ωi4Oi| = 0 for all i = 1, . . . ,m;
• they share the same eigenvalues,

λ̃ j(ωi) = λ j(Oi) for all i = 1, . . . ,m and j = 1, . . . , ki;

• they share the same eigenfunctions, for all i = 1, . . . ,m there exist ki linearly independent
eigenfunctions φi,1, . . . , φi,ki ∈ H̃1

0(ωi) associated to λ̃1(ωi), . . . , λ̃ki(ωi) and ki linearly
independent eigenfunctions ui,1, . . . , ui,ki ∈ H1

0(Oi) associated to λ1(Oi), . . . , λki(Oi) such that, for
any j ∈ 1, . . . , ki, we have

φi, j = ui, j quasi-everywhere in Ω.

Regularity of the sets: the partition O is regular, in the sense that the free-boundary Γ = Ω \
⋃m

i=1 Oi is
a rectifiable set and there exist disjoint sets R,Σ ⊂ Γ such that

• Γ = R ∪ Σ has Hausdorff dimension at most N − 1: Hdim(Γ) ≤ N − 1;
• R is relatively open and Σ is relatively close in Γ;
• R is a collection of hypersurfaces of class C1,α (for some 0 < α < 1). Moreover, each hypersurface

separates locally exactly two different elements of the partition: for every x0 ∈ R, there exists
ρ > 0 and exactly two indices i , j such that x0 ∈ ∂Oi ∩ ∂O j, Bρ(x0) \ Γ = Bε(x0) ∩ (Oi ∪ O j).
• Σ is small in the sense that Hdim(Σ) ≤ N − 2;
• if N = 2, the set Σ is a locally finite set and R consists of a locally finite collection of curves

meeting at singular points.

Spectral gap:

Mathematics in Engineering Volume 3, Issue 1, 1–31.
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• for each i = 1, . . . ,m it holds

λ̃ki(ωi) < λ̃ki+1(ωi).

In particular, if Ẽi, j(ωi) ⊂ H̃1
0(ωi) denotes the eigenspace associated to λ̃ j(ωi), then the dimension

of the linear space Eki := span
(
∪

ki
j=1Ẽi, j

)
is equal to ki.

Regularity of the eigenfunctions:

• for i = 1, . . . ,m, we have

Eki ⊂ Lip(Ω),

in the sense that each eigenfunction has a continuous representative.

Now, for i = 1, . . . ,m, let φi,1, . . . , φi,ki be an L2-orthonormal base of Eki , associated respectively to the
eigenvalues λ̃1(ωi) ≤ . . . ≤ λ̃ki(ωi). Then

• for each i = 1, . . . ,m, Oi is the interior of the support of

ki∑
j=1

|φi, j|;

• there exists ai, j > 0 such that given x0 ∈ R and Op,Oq the two adjacent sets of the partition at x0,
then

lim
x→x0
x∈Op

kp∑
n=1

ap, j|∇φp, j(x)|2 = lim
x→x0
x∈Oq

kq∑
n=1

aq, j|∇φq, j(x)|2 , 0. (1.4)

The coefficients depend only on the eigenvalues of the optimal partition, through the formula

ai, j = ∂iF
(
ϕ1

(̃
λ1(ω1), . . . , λ̃k1(ω1)

)
, . . . , ϕm

(̃
λ1(ωm), . . . , λ̃km(ωm)

))
∂ jϕi(̃λ1(ω1), . . . , λ̃k(ω1))

and ai,m = ai,n if λ̃m(ωi) = λ̃n(ωi).

The proof of Theorem 1.1 is based on a penalization argument. We exploit a regularized version of
the relaxed formulation (1.3), involving eigenfunctions rather than eigenvalues, that is better suited to
prove the aforementioned properties of optimal sets. Following [20], we consider a singular
perturbation and approximate these eigenfunctions by minimal solutions of a nonlinear elliptic system
with competition terms. This allows to prove the regularity results concerning eigenfunctions and
interfaces. By adding an extra term in the energy functional we are able to select any specific
minimizer of which we wish to show regularity.

It should be noted that the previous result in the case of functionals depending on first eigenvalues
was proved in [17]. The case of higher eigenvalues presents many extra difficulties which are related
to the unknown multiplicity of the eigenvalues of an optimal partition and to the fact that some
eigenfunctions change sign.

Mathematics in Engineering Volume 3, Issue 1, 1–31.
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1.5. Examples

Before presenting the proof of our result, we illustrate a couple of concrete applications for specific
choices of cost functionals. As a model case, we consider the first function in (1.1), that is the case of

F(x1, . . . , xm) =

m∑
i=1

xi and ϕi(s1, . . . , ski) =

 ki∑
i=1

spi
j


1
pi

with pi > 0. Then our theory applies to all minimizer of

inf
(ω1,...,ωm)∈P̃m(Ω)

m∑
i=1

 ki∑
j=1

λ̃ j(ωi)pi


1/pi

,

which are the shown to be regular in the sense of Theorem 1.1. Moreover, the coefficient in (1.4) are
given in this case by

ai, j :=
λ̃n(ωi)pi−1(∑ki

j=1 λ̃ j(ω1)pi
) pi−1

pi

.

The same results also holds for the (suitably renormalized) limit case pi → 0, where we find

ϕ′i(s1, . . . , ski) =

ki∏
i=1

s j, and a′i, j :=
ki∏

j=1, j,i

λ̃ j(ω1).

1.6. A remark about quasi-open sets

In the theory of optimal partitions with respect to spectral costs we can find another class of
partitions, given by quasi-open sets, which is in a sense intermediate between the class of open
partitions and the class of measurable partitions. It is defined by

P̂m(Ω) =
{
(ω1, . . . , ωm) : ωi ⊂ Ω quasi-open ∀i, cap(ωi ∩ ω j) = 0 ∀i , j

}
,

with associated problem

inf
(ω1,...,ωm)∈P̂m(Ω)

F
(
ϕ1(λ1(ω1), . . . , λk1(ω1)), . . . , ϕm(λ1(ωm), . . . , λkm(ωm))

)
.

We recall briefly the notions of capacity and of quasi-open sets, taken from [7, Chapter 4]. The (2-
)capacity of a set is

cap(A) = inf
{∫

Ω

(|∇u|2 + u2) : u ∈ H1(RN), u ≡ 1 in a neighborhood of A
}
.

A set A is said to be quasi-open if for each ε > 0 there is an open set Aε satisfying cap(A4Aε) < ε,
where 4 denotes the symmetric difference between sets. There is a close relation between quasi-open
sets and Sobolev functions. In fact, each u ∈ H1(RN) admits a quasi-continuous representative, this
meaning that for each ε > 0 there is a continuous function uε with cap({u , uε}) < ε. Now A is a quasi-
open set if and only if A = {u > 0} for a quasi-continuous function u. It follows from the definition
that, in the setting of this paper, any open minimal partition is a quasi-open minimal partition, and any
quasi-open minimal partition is a measurable minimal partition. Then, thanks to Theorem 1.1, we find
that the three formulations are actually equivalent (up to negligible sets).

Mathematics in Engineering Volume 3, Issue 1, 1–31.
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1.7. Numerical simulations and open problems

We conclude this introduction providing some numerical simulations. They were obtained
implementing the construction in Section 3 (see also [20]), via a fixed point iteration and a finite
element discretization. Specifically, given an initial guess of the eigenfunctions associated to the
optimal partition, iteratively we orthogonalize the eigenfunctions (2.3), reorder them according to
their respective eigenvalues (2.4), compute the coefficients (2.5), linearize the Euler-Lagrange
equation (2.6) of the penalized functional Eβ and compute new approximations of the eigenfunctions.
We do this, increasing the penalization parameter β, until we reach a fixed point up to a tolerance in
the H1 norm. All the simulations were implemented in FreeFem++ [16], a free software available at
https://freefem.org/.

In Figure 1, a numerical approximation of the optimal partition of the unit ball associated to the cost
functionals

(ω1, ω2) 7→ λ1(ω1) + λ2(ω1) + λ1(ω2) + λ2(ω2) (1.5)

and

(ω1, ω2) 7→ λ1(ω1)λ2(ω1)λ1(ω2)λ2(ω2)

The two functionals share, numerically, the same optimal partition. The first functional (1.5) is linear,
making the algorithm quite efficient in this case.

Figure 1. Optimal partition and eigenfunctions for (1.5).

On the left of Figure 1 is a representation of the eigenfunctions associated to the first eigenvalues
of the partition: They highlight the two sets of the partition, which are symmetric semicircles. On the
right the second eigenfunctions of the two sets. Observe the additional nodal lines (in connected sets
the second eigenfunctions is sign-changing). In this case the strong symmetry of the two functionals
seems to translate in the symmetry of their solutions.

In Figure 2, a numerical approximation for

(ω1, ω2) 7→ λ1(ω1)λ2(ω1) + λ1(ω2)2 + λ2(ω2)2. (1.6)

In this case the functional is no more symmetric and the solution too looses symmetry. Nevertheless,
observe that the cost functional is scale-invariant.

Mathematics in Engineering Volume 3, Issue 1, 1–31.
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Figure 2. Optimal partition and eigenfunctions for (1.6).

On the left of Figure 2 is a representation of the eigenfunctions associated to the first eigenvalues
of the partition and the two sets ω1 (in the center) and ω2 (the two lobes). On the right the second
eigenfunctions of the two sets. Numerically, we observe that the second domain is not connected
and that λ1(ω2) = λ2(ω2). This implies that the first eigenvalue of the second subset of the partition
has multiplicity two and one can choose the corresponding eigenfunction to have disjoint supports
contained in only one of the two lobes at the time. This suggests that there are minimal partitions
made of disconnected sets and where the eigenvalues have multiplicity higher than one (unlike the
case of cost functions depending on first eigenvalues only). Any choice of eigenfunctions will still
verify (1.4) with the same coefficients. Finally we point out that in this example the equi-partition
of angles at singular points seems false (unlike in [17]), although at the moment we lack any explicit
counterexample of this fact.

Figure 3. Optimal partition and eigenfunctions for (1.7). We observe some numerical artifact
in the first picture: the presence of a region where the eigenfunctions are zero. This points
out a weakness of our numerical scheme when some of the coefficients in (1.4) are small
compared to the others.

In Figure 3, a numerical approximation of the optimal partition of the unit ball associated to

(ω1, ω2) 7→
(
λ1(ω1)20 + λ2(ω1)20 + λ1(ω2)20

)1/20
. (1.7)

Mathematics in Engineering Volume 3, Issue 1, 1–31.
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This functional gives a rather good approximation of the cost

(ω1, ω2) 7→ max (λ2(ω1), λ1(ω2))

which does not fall in the scope of our main result, as it is not strictly monotone with respect to λ1(ω1).
It can be shown that the optimal partition corresponding to this last function is the two third sector of
the circle (ω1) and a third sector of the circle (ω2). We obtain a rather similar result for (1.7).

On the left the eigenfunctions associated to the first eigenvalues of the partition and on the right the
second eigenfunction of the first subset. We point out a seemingly singular point at the center of the
ball. According to Theorem 1.1 all the eigenfunctions in the energy functional are regular, and indeed
the first eigenfunction of ω1 is regular, but it appears that as the exponent in the functional becomes
larger and larger (the lp norm approaches the l∞ norm), the first eigenfunctions loses its regularity. This
phenomenon will be the object of an upcoming paper.

2. The penalization argument: an approximate problem

In order to simplify the presentation, we only detail the proof in the case m = 2, k1 = k2 =: k ∈ N
and ϕ1 = ϕ2 =: ϕ. The general case follows by the same argument with some simple modifications. In
this particular situation, problem (1.3) becomes

c̃ = inf
(ω1,ω2)∈P̃2(Ω)

F
(
ϕ(̃λ1(ω1), . . . , λ̃k(ω1)), ϕ(̃λ1(ω2), . . . , λ̃k(ω2))

)
(2.1)

where, we recall,

P̃2(Ω) = {(ω1, ω2) ⊆ Ω ×Ω : ω1, ω2 measurable, |ω1 ∩ ω2| = 0} .

Following [20], this problem has at least one open and regular solution in the sense of Theorem 1.1.
Here we show that every solution of this problem is equivalent to an open and regular partition, together
with some regularity properties of the associated eigenfunctions and a free boundary condition (1.1).

Keeping this in mind, let (ω1, ω2) ∈ P̃2(Ω) be a solution of (2.1). We denote by {(̃λi(ω1), φi)}i∈N and
{(̃λi(ω2), ψi)}i∈N the sequences of nondecreasing generalized eigenvalues (enumerated with multiplicity)
and corresponding orthonormal eigenfunctions of the Laplacian in H̃1

0(ω1) and H̃1
0(ω2), respectively.

We point out that, even though the eigenfunctions associated to the generalized eigenvalues belong to
some Sobolev-like spaces, they are still H1

0(Ω) functions. Thus we have the identities∫
Ω

φiφ j = δi j, and
∫

Ω

∇φi · ∇φ j = λ̃i(ω1)δi j,

and similarly for {ψi}i∈N. Here δi j denotes the Kronecker symbol, that is δi j = 1 if i = j and 0 otherwise.

Remark 2.1. We point out that, a priori, the sets span{φ1, . . . , φk} and span{ψ1, . . . , ψk}may not contain
all the eigenfunctions associated to λ̃k(ω1) and λ̃k(ω2). However, we shall see later on that this is never
the case, thanks to the spectral gap property (cfr. Theorem 1.1).

We denote φ = (φ1, . . . , φk) and ψ = (ψ1, . . . , ψk) and we introduce two linear subspaces of L2(Ω)
generated by φ and ψ, together with their orthogonal projections:

L(φ) = span {φ1, . . . , φk} , P⊥ : L2(Ω)→ L(φ)⊥,
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L(ψ) = span {ψ1, . . . , ψk} , Q⊥ : L2(Ω)→ L(ψ)⊥.

Exploiting the orthogonality of φ and ψ we find that for every w ∈ L2(Ω) the projections are

P⊥w = w −
k∑

i=1

〈w, φi〉L2(Ω) and Q⊥w = w −
k∑

i=1

〈w, ψi〉L2(Ω).

where 〈·, ·〉L2(Ω) denotes the usual scalar product in L2(Ω).
Our aim is to define an energy functional and an associated minimization problem whose solutions

are close to those of (2.1). In order to achieve this, we need to introduce a regularized energy functional
with two additional terms. For the first one, inspired by [20], we relax the disjointedness constraint
of the supports of the eigenfunctions φ and ψ by introducing a competition term between groups of
eigenfunctions; this allows to prove the regularity of both the partition and of the eigenfunctions. For
the second one, using the projection operators P⊥ and Q⊥, we introduce a penalization that enables us
to select the specific minimizer to which the sequence of approximated minimizers converges. This
allows to prove that the singular limits are, up to orthogonal transformation, the original eigenfunctions.
We need a couple of technical tools before introducing the approximating functionals.

Given u, v ∈ H1
0(Ω;Rk), define the k × k symmetric and positive definite matrices

M(u) :=
(∫

Ω

∇ui · ∇u j + (P⊥ui)(P⊥u j)
)

i, j
=

(
〈∇ui,∇u j〉L2(Ω) + 〈P⊥ui, P⊥u j〉L2(Ω)

)
i, j
,

N(v) :=
(∫

Ω

∇vi · ∇v j + (Q⊥vi)(Q⊥v j)
)

i, j
=

(
〈∇vi,∇v j〉L2(Ω) + 〈Q⊥vi,Q⊥v j〉L2(Ω)

)
i, j
.

Observe that for any orthogonal matrix O ∈ Ok(R) we have

M(Ou) = OM(u)OT , N(Ov) = ON(v)OT .

In particular M(Ou) and M(u) have the same spectrum.
We extend the function ϕ : (R+)k → R to the set of symmetric and positive definite matrices in the

following way: given such a matrix M, we let

ϕ(M) = ϕ(γ1, . . . , γk),

where γ1, . . . , γk are the (positive) eigenvalues of M (with an abuse of notation, we identify the function
acting on the eigenvalues with the function acting on the matrices). Observe that such function is well
defined by the symmetry assumption (H3). By definition, we have

ϕ(OMOT ) = ϕ(M) for every M symmetric positive definite, O ∈ Ok(R)

Since the original function (acting on the eigenvalues) is smooth and symmetric, we find that ϕ is also
a C1 function in the set of symmetric and positive definite matrices. We denote

∂

∂Ei j
ϕ(M) = lim

h→0

ϕ(M + h(Ei j + E ji)/2) − ϕ(M)
h

the (tangent) derivative, in the set of symmetric matrices, of ϕ at M with respect to the component (i, j).
Here Ei j is the matrix whose component (i, j) is equal to 1, while all other components are 0.
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Example 2.2. In some notable cases the extended functions can be computed explicitly. For the map
(s1, . . . , sk) 7→

(∑k
i=1(si)p

)1/p
, we have ϕ(M) :=

(∑k
i=1(γi)p

)1/p
= (trace(Mp))1/p, which coincides with

the p-Schatten norm of a symmetric and positive definite matrix M. For (s1, . . . , sk) 7→
∏k

i=1 si, we
have ϕ(M) :=

∏k
i=1 γi = det(M). These examples are related to (1.1).

Lemma 2.3 ( [20, Lemma 3.6]). For every diagonal matrix D = diag(γ1, . . . , γk), we have

∂

∂Eii
ϕ(D) = ∂iϕ(γ1, . . . , γk) ∀i,

∂

∂Ei j
ϕ(D) = 0 ∀i , j.

We are now ready to introduce the family of approximating functionals. Fix any exponent 1/2 < q <
2∗/4 = N/[2(N − 2)+]. For β > 0 we define the C1 energy functional Eβ : H1

0(Ω,Rk) × H1
0(Ω,Rk)→ R

as

Eβ(u, v) = F (ϕ(M(u)), ϕ(N(v))) +
β

q

∫
Ω

( k∑
i=1

u2
i

)q( k∑
i=1

v2
i

)q

and the least energy level
cβ := inf

{
Eβ(u, v) : u, v ∈ Σ(L2)

}
, (2.2)

where

Σ(L2) :=
{

w = (w1, . . . ,wk) ∈ H1
0(Ω;Rk) :

∫
Ω

wiw j = δi j for every i, j
}
.

The functional and the set Σ(L2) are invariant under multiplication by orthogonal matrices

Eβ(u, v) = Eβ(O1u,O2v) ∀O1,O2 ∈ Ok(R),

and
(u, v) ∈ Σ(L2) ⇐⇒ (O1u,O2v) ∈ Σ(L2), ∀O1,O2 ∈ Ok(R).

One should keep in mind that Eβ and cβ also depend on the vectors of eigenfunctions φ, ψ. However,
in order to simplify the notation, we will not point out this dependence explicitly.

Lemma 2.4. For each β > 0 we have

F(ϕ(M(u), ϕ(N(v))) ≥ F(ϕ(λ1(Ω), . . . , λk(Ω)), . . . , ϕ(λ1(Ω), . . . , λk(Ω))) ∀u, v ∈ Σ(L2)

and cβ is finite.

Proof. For any (u, v) ∈ Σ(L2), take O1,O2 ∈ Ok(R) in such a way that O1M(u)OT
1 , O2N(v)OT

2 are
diagonal and the elements on the diagonal are ordered nondecreasingly. Let ũ = O1u, ṽ = O2v.
Exploiting the monotonicity of F and ϕ, and the invariance of Σ(L2) and ϕ under orthogonal
transformations, we find that

F(ϕ(M(u), ϕ(N(v))) = F(ϕ(M(̃u), ϕ(N (̃v)))

= F
(
ϕ

(∫
Ω

|∇ũ1|
2 + (P⊥ũ1)2, . . . ,

∫
Ω

|∇ũk|
2 + (P⊥ũk)2

)
,
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ϕ

(∫
Ω

|∇̃v1|
2 + (Q⊥ṽ1)2, . . . ,

∫
Ω

|∇̃vk|
2 + (Q⊥ṽk)2

))
≥ F(ϕ(λ1(Ω), . . . , λk(Ω)), . . . , ϕ(λ1(Ω), . . . , λk(Ω)))

Then, recalling that β > 0, we conclude

cβ ≥ F(ϕ(λ1(Ω), . . . , λk(Ω)), . . . , ϕ(λ1(Ω), . . . , λk(Ω))) > −∞. �

We have established that for any β > 0, the functional Eβ is bounded from below in Σ(L2). We now
show that the infimum is always attained, making the least energy level cβ in (2.2) a critical level for
Eβ. For notation convenience, let

Gβ = {(u, v) ∈ Σ(L2) : Eβ(u, v) = cβ}.

Proposition 2.5. For any β > 0, we have the following:

(a) the value cβ is a critical level for the functional Eβ and Gβ is not empty. Moreover, for every
(u, v) = ((u1, . . . , uk), (v1, . . . , vk)) ∈ Mβ, we have

E′β(u, v) = 0.

(b) For any O1,O2 ∈ Ok(R) orthogonal matrices,

(u, v) ∈ Gβ =⇒ (O1u,O2v) ∈ Gβ.

Therefore, if (u, v) ∈ Gβ we can further assume that it verifies∫
Ω

∇ui · ∇u j + (P⊥ui)(P⊥u j) =

∫
Ω

∇vi · ∇v j + (Q⊥vi)(Q⊥v j) = 0 ∀i , j

(2.3)∫
Ω

|∇ui|
2 + (P⊥ui)2 ≤

∫
Ω

|∇u j|
2 + (P⊥u j)2,

∫
Ω

|∇vi|
2 + (Q⊥vi)2 ≤

∫
Ω

|∇v j|
2 + (Q⊥v j)2 ∀i ≤ j.

(2.4)

In particular, M(u),N(v) are orthogonal matrices, and

Eβ(u, v) = F
(
ϕ

(∫
Ω

|∇u1|
2 + (P⊥u1)2, . . . ,

∫
Ω

|∇uk|
2 + (P⊥uk)2

)
,

ϕ

(∫
Ω

|∇v1|
2 + (P⊥v1)2, . . . ,

∫
Ω

|∇vk|
2 + (P⊥vk)2

))
+
β

q

∫
Ω

( k∑
j=1

u2
i

)q( k∑
i=1

v2
i

)q
.

(c) For i, j = 1, . . . , k there exist Lagrange multipliers µi j,β, νi j,β > 0, and coefficients

ai,β = ∂1F (ϕ(M(u)), ϕ(N(v))) · ∂iϕ

(∫
Ω

|∇u1|
2 + (P⊥u1)2, . . . ,

∫
Ω

|∇uk|
2 + (P⊥uk)2

)
> 0

bi,β = ∂2F (ϕ(M(u)), ϕ(N(v))) · ∂iϕ

(∫
Ω

|∇v1|
2 + (Q⊥v1)2, . . . ,

∫
Ω

|∇vk|
2 + (Q⊥vk)2

)
> 0

(2.5)
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such that the components of (u, v) solve the system
ai,β(−∆ui + P⊥ui) =

∑k
j=1 µi j,βu j − βui

(∑k
j=1 u2

j

)q−1 (∑k
j=1 v2

j

)q

bi,β(−∆vi + Q⊥vi) =
∑k

j=1 νi j,βv j − βvi

(∑k
j=1 v2

j

)q−1 (∑k
j=1 u2

j

)q
in Ω. (2.6)

In view of the previous result, whenever we refer to Gβ we assume that its functions verify the
additional conditions (2.3) and (2.4).

Proof. The result follows by the critical point theory of functionals in Hilbert spaces. First, some
preliminary remarks :

1). Σ(L2) is a C1 submanifold of H1
0(Ω,Rk) of codimension k(k + 1)/2 (see [20, Lemma 3.7]).

2). Eβ : H1
0(Ω) × H1

0(Ω)→ R+ is a C1 functional and, for any ξ, η ∈ H1
0(Ω,Rk), we have

E′β(u, v)(ξ, η)

2
=∂1F (ϕ(M(u)), ϕ(N(v)))

k∑
i≤ j

∂

∂Ei j
ϕ(M(u))

∫
Ω

(∇ui · ∇ξ j + (P⊥ui)ξ j)

+ ∂2F (ϕ(M(u)), ϕ(N(v)))
k∑

i≤ j

∂

∂Ei j
ϕ(N(v))

∫
Ω

(∇vi · ∇η j + (Q⊥v j)η j)

+ β

k∑
i=1

∫
Ω

uiξi

( k∑
j=1

u2
i

)q−1( k∑
i=1

v2
i

)q
+ β

k∑
i=1

∫
Ω

viηi

( k∑
j=1

v2
i

)q−1( k∑
i=1

u2
i

)q
.

Let β > 0. By Lemma 2.4 we have cβ > −∞. We take a minimizing sequence un = (u1,n, . . . , uk,n),
vn = (v1,n, . . . , vk,n) ∈ Σ(L2), Eβ(un, vn) → cβ as n → ∞. By Ekeland’s Variational Principle and
by property (1) listed above, we can suppose without loss of generality that Eβ|

′

Σ(L2)(un, vn) → 0 in
H−1(Ω,Rk). For each n ∈ N take O1,n,O2,n ∈ Ok(R) such that O1,nM(un)OT

1,n and O2,nM(vn)OT
2,n are

diagonal matrices and let
ũn := O1,nun and ṽn := O2,nv.

Then Eβ(̃un, ṽn) = Eβ(un, vn), ũn, ṽn ∈ Σ(L2) and

Eβ(̃un, ṽn)→ cβ, E′β|Σ(L2)(̃un, ṽn)→ 0 as n→ ∞.

Therefore

F
(
ϕ

(∫
Ω

|∇ũ1,n|
2 + (P⊥ũ1,n)2, . . . ,

∫
Ω

|∇ũk,n|
2 + (P⊥ũk,n)2

)
,

ϕ

(∫
Ω

|∇̃v1,n|
2 + (P⊥ṽ1,n)2, . . . ,

∫
Ω

|∇̃vk,n|
2 + (P⊥ṽk,n)2

))
≤ Eβ(̃un, ṽn) ≤ cβ + 1

for large n. Since ũn, ṽn ∈ Σ(L2) then

λ1(Ω) ≤
∫

Ω

|∇ũi,n|
2,

∫
Ω

|∇̃vi,n|
2.

Mathematics in Engineering Volume 3, Issue 1, 1–31.



15

Combining this information with (H1)–(H2) we deduce that ũn, ṽn are bounded sequences in H1
0(Ω,Rk),

so that (up to subsequence) ũn ⇀ ũ, ṽn ⇀ ṽ weakly in H1
0(Ω,Rk), strongly in Lr(Ω;Rk), for every

1 ≤ r < 2∗. We can now conclude exactly as in [20, Theorem 3.8], observing that ∂
∂Ei j

ϕ(M(̃un)) =
∂

∂Ei j
ϕ(N (̃vn)) = 0 for i , j (recall Lemma 2.3), that

∂1F
(
ϕ(M(̃un)), ϕ(N (̃vn))

)
∂iϕ

(∫
Ω

|∇ũ1,n|
2 + (P⊥ũ1,n)2, . . . ,

∫
Ω

|∇ũk,n|
2 + (P⊥ũk,n)2

)
≥ δ > 0,

∂2F
(
ϕ(M(̃vn)), ϕ(N (̃vn))

)
∂iϕ

(∫
Ω

|∇̃v1,n|
2 + (P⊥ṽ1,n)2, . . . ,

∫
Ω

|∇̃vk,n|
2 + (P⊥ṽk,n)2

)
≥ δ > 0

for some δ > 0 independent from n, and that ũn, ṽn satisfy (2.6) up to an on(1) perturbation in
H−1(Ω,Rk). We can then conclude that actually ũn, ṽn converge strongly to ũ, ṽ in H1

0(Ω,Rk), which
solve (2.6). �

3. Asymptotic limits: Proof of Theorem 1.1

We study the entirety of Gβ, the set of critical points of Eβ at level cβ, in order to establish its limit
when β → +∞. Our main aim is to show that the functions in Gβ are uniformly Hölder continuous in
β. This allows to prove strong convergence in H1 to (φ,ψ), together with the desired regularity results
in Theorem 1.1.

3.1. Uniform bounds

Recall the definition of c̃ from (2.1). We start with some easier bounds of the L∞ and H1 norms.

Proposition 3.1 (Uniform L∞ and H1 bounds). We have

cβ ≤ c̃ for every β > 0.

There exists C > 0 independent of β such that for any (uβ, vβ) ∈ Gβ we have

β

q

∫
Ω

( k∑
i=1

u2
i,β

)q( k∑
i=1

v2
i,β

)q
≤ C

and
1
C
≤ a1,β, . . . , ak,β ≤ C,

1
C
≤ b1,β, . . . , bk,β ≤ C. (3.1)

Furthermore,
‖uβ‖H1

0 (Ω,Rk), ‖vβ‖H1
0 (Ω,Rk) ≤ C, ‖uβ‖L∞(Ω,Rk), ‖vβ‖L∞(Ω,Rk) ≤ C.

Proof. Since φi = 0 a.e. in Ω \ω1, ψi = 0 a.e. in Ω \ω2 and |ω1 ∩ω2| = 0, then φi · φ j = 0 a.e. in Ω for
every i, j, hence ∫

Ω

( k∑
i=1

φ2
i

)q( k∑
i=1

ψ2
i

)q
= 0.

Moreover, P⊥φi = Q⊥ψi = 0, as φi ∈ L(φ) and ψi ∈ L(ψ). Therefore, since φ,ψ ∈ Σ(L2),

c̃ =F (ϕ(λ1(ω1), . . . , λk(ω1)), ϕ(λ1(ω2), . . . , λk(ω2)))
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=F
(
ϕ

(∫
Ω

|∇φ1|
2, . . . ,

∫
Ω

|∇φk|
2
)
, ϕ

(∫
Ω

|∇ψ1|
2, . . . ,

∫
Ω

|∇ψk|
2
))

=Eβ(φ,ψ) ≥ min
u,v∈Σ(L2)

Eβ(u, v) = cβ.

By the monotonicity assumptions on F and ϕ, and since β > 0, we see that

F
(
ϕ

(∫
Ω

|∇u1,β|
2, . . . ,

∫
Ω

|∇uk,β|
2
)
, ϕ

(∫
Ω

|∇v1,β|
2, . . . ,

∫
Ω

|∇vk,β|
2
))

≤ F
(
ϕ

(∫
Ω

|∇u1,β|
2 + (P⊥u1,β)2, . . . ,

∫
Ω

|∇uk,β|
2 + (P⊥uk,β)2

)
,

ϕ

(∫
Ω

|∇v1,β|
2 + (P⊥v1,β)2, . . . ,

∫
Ω

|∇vk,β|
2 + (P⊥vk,β)2

))
+
β

q

∫
Ω

( k∑
i=1

u2
i,β

)q( k∑
i=1

v2
i,β

)q
= Eβ(uβ, vβ) = cβ ≤ c̃.

Combining this with Lemma 2.4 and our assumptions of F and ϕ, (H1)–(H2), we conclude that there
exists a constant C > 0 such that∫

Ω

|∇ui,β|
2 + (P⊥ui,β)2,

∫
Ω

|∇vi,β|
2 + (Q⊥vi,β)2,

β

q

∫
Ω

( k∑
i=1

u2
i,β

)q( k∑
i=1

v2
i,β

)q
≤ C for all β > 0.

Since F and ϕ are of class C1, by (2.5) we conclude that 1/C ≤ ai,β, bi,β ≤ C for some C > 0.
The only thing left to prove is the L∞ uniform estimate. Let i, l ∈ {1, . . . , k}. Testing the equation of

ui,β in (2.6) by ul,β yields

µil,β = δilai,β

∫
Ω

(|∇ui,β|
2 + (P⊥ui,β)2) +

∫
Ω

βui,βul,β

( k∑
j=1

u2
j,β

)q−1( k∑
j=1

v2
j,β

)q

and hence |µil,p,β| ≤ C independently of β > 0. Recall that P⊥ui,β = ui,β−
∑k

j=1〈ui,β, φ j〉L2(Ω)φ j. By Kato’s
inequality, we have

− ∆|ui,β| ≤ −sign(ui,β)∆ui,β

=

k∑
j=1

µi j,β

ai,β
sign(ui,β)u j,β − |ui,β| +

k∑
j=1

〈ui,β, φ j〉L2(Ω)sign(ui,β)φ j

− β|ui,β|
( k∑

j=1

u2
j

)q−1( k∑
j=1

v2
j

)q

≤

k∑
j=1

C|u j,β| +

k∑
j=1

〈ui,β, φ j〉L2(Ω)sign(ui,β)φ j.

By summing up for i = 1, . . . , k and letting wβ :=
∑k

i=1 |ui,β| ≥ 0, we have

− ∆wβ ≤ C(wβ + ‖wβ‖L2(Ω)). (3.2)
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Since {wβ} is uniformly bounded in L2(Ω), a Brezis-Kato type argument allows us to conclude. Indeed,
assume that wβ ∈ L2+δ(Ω) for some δ ≥ 0. To simplify, we omit the dependent of w on β for the
remainder of the proof, and consider N ≥ 3 (otherwise the proof is simpler). Testing (3.2) by w1+δ,
using Sobolev and Hölder inequalities, and denoting the best Sobolev constant of H1

0(Ω) ↪→ L2∗(Ω) by
CS we find

C2
S

1 + δ

(1 + δ/2)2 ‖w‖
2+δ
L2∗(2+δ)/2(Ω) ≤

1 + δ

(1 + δ/2)2

∫
Ω

|∇w1+δ/2|2

≤ C(‖w‖2+δ
L2+δ(Ω) + ‖w‖L2(Ω)‖w‖L1+δ(Ω)) ≤ C‖w‖2+δ

L2+δ(Ω).

Hence there exists a constant κ > 0 such that

‖w‖L2∗(2+δ)/2(Ω) ≤
(
κ

(1 + δ/2)2

1 + δ

) 1
2+δ
‖w‖L2+δ(Ω).

We wish to iterate this inequality in order to obtain a bound for the L∞ norm of w. To this end, let {δn}n

be the sequence of positive real numbers such that δ0 = 0 and 2 + δn+1 = 2∗(2 + δn)/2. We immediately
note that δn ≥ (2∗/2)n−1, thus

D :=
∞∏

n=1

(
κ

(1 + δn/2)2

1 + δn

) 1
2+δn

= exp

 ∞∑
n=1

log
(
κ(1+δn/2)2

1+δn

)
2 + δn

 < ∞.
As a consequence

‖w‖L∞(Ω) ≤ D‖w‖L2(Ω)

and the proof is concluded, as w = wβ is uniformly bounded in L2(Ω). �

We proceed our analysis of the family of solutions Gβ, focusing this time on stronger compactness
results independent of the separation parameter β > 0. Our goal is to show that it is possible to take
the limit as β → +∞ in the family of minimizers of Proposition 2.5. In particular, we want to apply
the well-established framework of [19, 21, 25]. We start by some uniform estimates of the C0,α norms
of the solutions. Here we scheme through the proof of this result without entering too much into the
details since the result, even though expected to hold, is not present in this from in the literature due to
a different form of the competition term (cfr. in particular [21]).

Proposition 3.2 (Uniform Hölder bounds). For any given α ∈ (0, 1) there exists a constant Cα > 0,
which may depend on α but not on β, such that for any (uβ, vβ) ∈ Gβ

‖uβ‖C0,α(Ω,Rk), ‖vβ‖C0,α(Ω,Rk) ≤ Cα.

The proof is based on a contradiction argument, to which we dedicate the rest of this subsection. Let
us assume that, for some α < 1, there exists a sequence of solutions (un, vn) whose α-Hölder quotient is
not bounded. Since the function (uβ, vβ) are smooth for β bounded, it follows that necessarily βn → +∞

and that there exists a sequence of points (xn, yn) ∈ Ω̄ ×Ω such that

Ln := max
i, j=1,...,k

{
max
x,y∈Ω̄

|ui,n(x) − ui,n(y)|
|x − y|α

,max
x,y∈Ω̄

|vi,ny(x) − vi,n(y)|
|x − y|α

}
Mathematics in Engineering Volume 3, Issue 1, 1–31.
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= max
i, j=1,...,k

{
|ui,n(xn) − ui,n(yn)|
|xn − yn|

α
,
|vi,n(xn) − vi,n(yn)|
|xn − yn|

α

}
→ ∞.

Letting rn = |xn − yn| → 0, we introduce a new family of functions, which are rescaled versions of
(un, vn). Namely, for any i = 1, . . . , k, we let

ūi,n :=
1

Lnrαn
ui,n(xn + rnx), v̄i,n :=

1
Lnrαn

vi,n(xn + rnx)

for x ∈ Ωn = Ω−xn
rn

. From the definition, we observe that the functions (ūn, v̄n), although they may not
be uniformly bounded in 0 for instance, they have uniformly bounded Hölder quotient of exponent α
and moreover for each n there exists a component in (ūn, v̄n) whose oscillation in B1 is equal to 1, that
is

max
i, j=1,...,k

{
max
x,y∈Ω̄n

|ūi,n(x) − ūi,n(y)|
|x − y|α

, max
x,y∈Ω̄n

|v̄i,n(x) − v̄i,n(y)|
|x − y|α

}
= max

i, j=1,...,k

{∣∣∣∣∣∣ūi,n(0) − ūi,n

(
yn − xn

rn

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣v̄i,n(0) − v̄i,n

(
yn − xn

rn

)∣∣∣∣∣∣
}

= 1.

Without loss of generality, we assume that∣∣∣∣∣∣ū1,n(0) − ū1,n

(
yn − xn

rn

)∣∣∣∣∣∣ = 1. (3.3)

Finally, a direct computation shows that (ūn, v̄n) solves−ai,n∆ūi,n = εi,n − Mnūi,n

(∑k
j=1 ū2

j,n

)q−1 (∑k
j=1 v̄2

j,n

)q

−bi,n∆v̄i,n = δi,n − Mnv̄i,n

(∑k
j=1 v̄2

j,n

)q−1 (∑k
j=1 ū2

j,n

)q in Ωn, (3.4)

where the competition parameter is Mn = βnL4q−2
n r2α(2q−1)+2

n , and

εi,n(x) = r2−α
n L−1

n

−ui,βn +

k∑
j=1

〈ui,βn , φ j〉L2(Ω)φ j +

k∑
j=1

µi j,βnu j,βn

 (xn + rnx)→ 0

δi,n(x) = r2−α
n L−1

n

−vi,βn +

k∑
j=1

〈vi,βn , ψ j〉L2(Ω)ψ j +

k∑
j=1

νi j,βnv j,βn

 (xn + rnx)→ 0

(3.5)

uniformly in Ω̄n by Proposition 3.1 and since φ j, ψ j ∈ L∞(Ω) for every j.
We now split the rest of the contradiction argument into several lemmas.

Lemma 3.3. The functions in (ūn, v̄n) are uniformly locally bounded in C0,α(Ωn). In particular, both

dn :=
k∑

i=1

ū2
i,n(0) and en :=

k∑
i=1

v̄2
i,n(0)

are bounded uniformly.
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We adapt the proof of [25, Lemma 6.10] to our present context, which is based an a contradiction
argument. We need an integral estimate on the size of the competition term. First of all we observe that
if either {dn} or {en} is unbounded, then necessarily Ωn → R

n by the uniform estimate on the Hölder
quotients of the blow-up sequence and since un = vn = 0 on ∂Ωn. In particular, we may assume that
for any x ∈ Rn and R > 0, BR(x) ⊂ Ωn for any n sufficiently large.

Lemma 3.4. Assume that either dn → +∞ or en → +∞. For any R > 0 there exists C(R) ≥ 0 such that
for any x ∈ RN and n large enough

Mn

∫
BR(x)

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

≤ C(R) min

 k∑
j=1

‖ū j,n‖L∞(B2R),

k∑
j=1

‖v̄ j,n‖L∞(B2R)

 .
Proof. The proof follows verify closely the proof of [25, Lemma 6.10], thus we provide here and a
sketch of it in the case x = 0. We consider the system (3.4). Multiplying the equation in ū j,n by ū j,n,
integrating by parts in BR(0) and summing over j, we find

I(R) :=
1

RN−2

∫
BR

a j,n|∇ū j,n|
2 −

k∑
j=1

ε j,nū j,n + Mn

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

dx

=
1

RN−2

∫
∂BR

k∑
j=1

ū j,n∂νū j,n =
1

2RN−2

∫
∂BR

∂ν

 k∑
j=1

ū2
j,n

 =
R
2

d
dR

 1
RN−1

∫
∂BR

k∑
j=1

ū2
j,n

 .
Exploiting the uniform Hölder bounds of the blow-up sequence we have

∫ 2R

R

2
r

I(r) =
1

(2R)N−1

∫
∂B2R

 k∑
j=1

ū2
j,n

 − 1
RN−1

∫
∂BR

 k∑
j=1

ū2
j,n


=

∫
∂B1

k∑
j=1

(
ū2

j,n(2Rx) − ū2
j,n(Rx)

)
=

∫
∂B1

k∑
j=1

(
ū j,n(2Rx) − ū j,n(Rx)

) (
ū j,n(2Rx) + ū j,n(Rx)

)
≤ C(R)

 k∑
j=1

‖ū j,n‖L∞(B2R)

 .
On the other hand, taking also (3.1) into account, we can bound the same integral term from below as
follows.∫ 2R

R

2
r

I(r) ≥ min
s∈[R,2R]

I(s) ≥
1

RN−2

 Mn

C2N−1

∫
BR

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

−

∫
B2R

k∑
j=1

|ε j,n||ū j,n|


≥ C(R)

Mn

∫
BR

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

− max
j=1,...,k

‖ε j,n‖L∞

 k∑
j=1

‖ū j,n‖L∞(B2R)


 .

We can reach an analogous conclusion by taking into account the equations satisfied by v̄n. The
conclusion follows by joining the two estimates together with (3.5). �
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Proof of Lemma 3.3. To prove the result we argue by contradiction, excluding different possibilities
for the sequences {dn} and {en}. Specifically we show that the assumption that the one of these two
sequences is unbounded is incompatible with the uniform Hölder bounds of the blow-up sequence.

Case 1. We start by excluding the case in which both sequences dn and en are unbounded. Exploiting
the uniform bounds of the C0,α-seminorm of ūn and v̄n we find from Lemma 3.4 that for some R > 0
there exists n̄ such that if n ≥ n̄ then

1
4

Mn

k∑
j=1

|ū j,n|(0)

 k∑
j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

≤
1
2

Mn

(∑k
j=1 ū2

j,n(0)
)q (∑k

j=1 v̄2
j,n(0)

)q(
1 +

∑k
j=1 |ū j,n|(0)

)
≤ Mn

(∑k
j=1(ū j,n(0) − Rα)2

)q (∑k
j=1(v̄ j,n(0) − Rα)2

)q(
1 +

∑k
j=1 |ū j,n|(0)

)
×

1
2

 ∑k
j=1 ū2

j,n(0)∑k
j=1(ū j,n(0) − Rα)2

q  ∑k
j=1 v̄2

j,n(0)∑k
j=1(v̄ j,n(0) − Rα)2

q

≤ Mn

∫
BR(0)

(∑k
j=1 ū2

j,n

)q (∑k
j=1 v̄2

j,n

)q

|BR(0)|
(
1 +

∑k
j=1 |ū j,n|(0)

) ≤ C(R).

In particular, since dn, en → +∞, we obtain that in this case Mn → 0. Moreover there exists Λ ∈ R

such that

Mnū1,n(x)

 k∑
j=1

ū2
j,n(x)


q−1  k∑

j=1

v̄2
j,n(x)


q

→ Λ

uniformly in any compact set of Ωn. Indeed for any K ⊂ Rn

Mn sup
y∈K

∣∣∣∣∣∣∣∣ū1,n(0)

 k∑
j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

− ū1,n(y)

 k∑
j=1

ū2
j,n(y)


q−1  k∑

j=1

v̄2
j,n(y)


q
∣∣∣∣∣∣∣∣

≤Mn sup
y∈K

∣∣∣ū1,n(0) − ū1,n(y)
∣∣∣  k∑

j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

+ Mn sup
y∈K
|ū1,n(y)|

∣∣∣∣∣∣∣∣
 k∑

j=1

ū2
j,n(0)


q−1

−

 k∑
j=1

ū2
j,n(y)


q−1

∣∣∣∣∣∣∣∣
 k∑

j=1

v̄2
j,n(0)


q

+ Mn sup
y∈K
|ū1,n(y)|

 k∑
j=1

ū2
j,n(y)


q−1 ∣∣∣∣∣∣∣

 k∑
j=1

v̄2
j,n(0)


q

−

 k∑
j=1

v̄2
j,n(y)


q∣∣∣∣∣∣∣
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≤Mn sup
y∈K

∣∣∣∣∣∣1 − ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣ ∣∣∣ū1,n(0)
∣∣∣  k∑

j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

+ Mn sup
y∈K

∣∣∣∣∣∣∣∣1 −
(∑k

j=1 ū2
j,n(y)

)q−1(∑k
j=1 ū2

j,n(0)
)q−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣ |ū1,n(0)|

 k∑
j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

+ Mn sup
y∈K
|ū1,n(0)|

 k∑
j=1

ū2
j,n(0)


q−1  k∑

j=1

v̄2
j,n(0)


q

×

∣∣∣∣∣∣∣∣1 −
(∑k

j=1 v̄2
j,n(y)

)q(∑k
j=1 v̄2

j,n(0)
)q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(∑k

j=1 ū2
j,n(y)

)q−1(∑k
j=1 ū2

j,n(0)
)q−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣
≤C(R) sup

y∈K

∣∣∣∣∣∣1 − ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣ + C(R) sup
y∈K

∣∣∣∣∣∣∣∣1 −
(∑k

j=1 ū2
j,n(y)

)q−1(∑k
j=1 ū2

j,n(0)
)q−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣
+ C(R) sup

y∈K

∣∣∣∣∣∣∣∣1 −
(∑k

j=1 v̄2
j,n(y)

)q(∑k
j=1 v̄2

j,n(0)
)q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(∑k

j=1 ū2
j,n(y)

)q−1(∑k
j=1 ū2

j,n(0)
)q−1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ ū1,n(y)
ū1,n(0)

∣∣∣∣∣∣→ 0.

We introduce now an auxiliary sequence of functions by letting wn := ū1,n − ū1,n(0). The sequence
{wn} is uniformly bounded in C0,α

loc and, up to striking out a subsequence, there exists w ∈ C0,α
loc (Rn) such

that wn → w locally uniformly (and in C0,γ
loc (Rn) for any γ ∈ (0, α)), w is globally Hölder continuous of

exponent α < 1, w is not constant and it solves the equation (for ai := lim a1,n)

−a1∆w = −Λ in Rn,

a contradiction. Indeed w = h + Λ/(2n)|x|2 where h is harmonic which grows at most quadratically
(since |h(x)| ≤ Λ/(2n)|x|2 + |w(x)|), thus h is a harmonic polynomial of degree at most 2, but since w is
globally Hölder continuous this implies that h(x) ∼ −Λ/(2n)|x|2 for |x| → +∞, which is impossible.
Case 2. We exclude the case in which the sequence {dn} is bounded while {en} is unbounded. Observe
that, in this case, the sequence {ūn} is uniformly bounded in C0,α

loc and, up to striking out a subsequence,
there exists a vector w ∈ C0,α(Rn) such that ūn → w locally uniformly, w is globally Hölder continuous
of exponent α, at least its first component w1 is not constant by (3.3). Since at least w1 is not identically
0 in B1, we can again exploit Lemma 3.4 in order to conclude that there exist R > 0 small and constants
C,C′ > 0 such that

Mn

 k∑
j=1

v̄2
j,n(0)


q

= Mn

 k∑
j=1

v̄2
j,n(0)


q Mn

∫
BR(x)

(∑k
j=1 ū2

j,n

)q (∑k
j=1 v̄2

j,n

)q

Mn

∫
BR(x)

(∑k
j=1 ū2

j,n

)q (∑k
j=1 v̄2

j,n

)q

=
Mn

∫
BR(x)

(∑k
j=1 ū2

j,n

)q (∑k
j=1 v̄2

j,n

)q

∫
BR(x)

(∑k
j=1 ū2

j,n

)q
(∑k

j=1 v̄2
j,n

)q(∑k
j=1 v̄2

j,n(0)
)q

≤ 2
C∫

BR(x)

(
ū2

1,n

)q ≤ C′.
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Thus Mn → 0 bounded and there exists a constant Λ ≥ 0 such that

Mn

 k∑
j=1

v̄2
j,n(x)


q

→ Λ

uniformly on compact subsets of Rn. We conclude that w has at least one component (its first one) not
constant and it solves

−ai∆wi = −Λwi(x)

 k∑
j=1

w2
j(x)


q−1

a contradiction by applying [21, Lemma A.3] to |wi|.
Case 3. Similarly, we now exclude the possibility {dn} is unbounded, {en} is bounded and there exists
x ∈ Rn and C such that en(x) ≥ C > 0. Indeed, as in the previous case we find that there exists C > 0
such that

Mn

 k∑
j=1

ū2
j,n(x)


q

≤ C

thus Mn → 0 and there exists Λ

Mn

 k∑
j=1

ū2
j,n


q

→ Λ.

Then, by assumption the sequence {v̄n} is uniformly bounded in C0,α
loc and, up to striking out a

subsequence, there exists a vector z ∈ C0,α(Rn) such that v̄n → z locally uniformly, z is globally
Hölder continuous of exponent α, at least one component of z is not zero and it solves

−bi∆zi = −Λzi(x)

 k∑
j=1

z2
j(x)


q−1

which implies that Λ = 0 (and z constant). But then letting wn := ū1,n − ū1,n(0), then {wn} is uniformly
bounded in C0,α

loc and, up to striking out a subsequence, there exists w ∈ C0,α
loc (Rn) such that wn → w

locally uniformly, w is globally Hölder continuous of exponent α < 1, w is not constant and it solves

−∆w = 0

in contradiction with the classical theorem by Liouville on entire harmonic functions.
Case 4. Thus we need to exclude the case {dn} is unbounded but {en} is bounded and en(x)→ 0 locally
uniformly. Again by Lemma 3.4 we find that for any x ∈ Ωn and R > 0 we have

Mn

∫
BR

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

≤ C(R)
k∑

j=1

‖v̄ j,n‖L∞(B2R) → 0.

Let η ∈ C∞0 (Rn) be any test function. By multiplying the equation in ū1,n by η and integrating by parts
we find
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∫
∇ū1,n∇η =

∫
ε1,nη − Mnū j,nη

 k∑
j=1

ū2
j,n


q−1  k∑

j=1

v̄2
j,n


q

≤ ‖ε1,n‖L∞‖η‖L1(Rn)η + Mn‖η‖L∞(Rn)

∫
BR

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

→ 0

for any R > 0 such that supp η ⊂ BR. Letting once more wn := ū1,n − ū1,n(0), the sequence {wn} is
uniformly bounded in C0,α

loc and, up to striking out a subsequence, there exists w ∈ C0,α
loc (Rn) such that

wn → w locally uniformly (and in C0,γ
loc (Rn) for any γ ∈ (0, α)), w is globally Hölder continuous of

exponent α, w is not constant and it solves the equation

−∆w = 0 in Rn

a contradiction. �

As a consequence of the previous result, we have that, up to striking out a subsequence, the sequence
{(ūn, v̄n)}n∈N converges in C0,γ

loc for any γ < α to some limiting entire profile (ū, v̄) ∈ C0,α. Reasoning as
in [19, pp. 293–294] we have the following.

Lemma 3.5. The convergence of (a subsequence of) (ūn, v̄n) to its limit (ū, v̄) is also strong in H1
loc(R

N).

In order to conclude, we have to analyze the following three possible case: Mn → 0, Mn bounded
and Mn → ∞.

Lemma 3.6. There exists C > 0 such that Mn ≥ C for all n.

Proof. Indeed, assume by contradiction that there exists a subsequence in (ūn, v̄n) for which Mn → 0.
Then, from the local uniform convergence of (ūn, v̄n) we obtain that the limit (ū, v̄) is made of entire
harmonic functions with bounded C0,α semi-norm. Consequently they all must be constant, in contrast
with the limit of the oscillation in B1 of the first component. �

Lemma 3.7. It must be that limn Mn = +∞.

Proof. We may reason as before, assuming that Mn → 1. We then end up with limiting functions (ū, v̄)
which solve −ai∆ūi = −ūi

(∑k
j=1 ū2

j

)q−1 (∑k
j=1 v̄2

j

)q

−bi∆v̄i = −v̄i

(∑k
j=1 v̄2

j

)q−1 (∑k
j=1 ū2

j

)q in RN ,

and the conclusion follows as in [20, Claim 2. pag 18]. �

Finally, let us address the case Mn → ∞. In this case, in order to find a contradiction, we need to
ensure the validity of an Almgren-type monotonicity formula for the limit profiles (ū, v̄). To this end,
we let first show the following

Lemma 3.8. For any x ∈ RN and almost every r > 0, the following identity holds

(2 − N)
∫

Br(x0)

k∑
i=1

(
ai|∇ūi|

2 + bi|∇v̄i|
2
)

+ r
∫
∂Br(x0)

k∑
i=1

(
ai|∇ūi|

2 + bi|∇v̄i|
2
)

= 2r
∫
∂Br(x0)

k∑
i=1

(
ai(∂νūi)2 + bi(∂νv̄i)2

)
.
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Proof. The proof follows mainly by a direct computation. For easier notation, let us consider the case
x0 = 0. Testing the equation in (ūn, v̄n) by (x · ∇ūn, x · ∇v̄n) and summing over i = 1, . . . , k, we obtain
integrating by parts∫

Br

k∑
i=1

(
−ai,n∆ūi,nx · ∇ūi,n − bi,n∆v̄i,nx · ∇v̄i,n

)
=

(
1 −

N
2

) ∫
Br

k∑
i=1

(
ai,n|∇ūi,n|

2 + bi|∇v̄i,n|
2
)

+
r
2

∫
∂Br

k∑
i=1

(
ai,n|∇ūi,n|

2 + bi,n|∇v̄i,n|
2
)

− r
∫
∂Br

k∑
i=1

(
ai,n(∂νūi,n)2 + bi,n(∂νv̄i,n)2

)
.

We observe that, due to the strong H1 convergence, the right hand side of the previous expression
passes to the limit for almost every radius r > 0. On the other hand, replacing the equation in the left
hand side, we find

Mn

∫
Br

k∑
i=1

ūi,nx · ∇ūi,n

 k∑
j=1

ū2
j,n


q−1  k∑

j=1

v̄2
j,n


q

+ v̄i,nx · ∇v̄i,n

 k∑
j=1

v̄2
j,n


q−1  k∑

j=1

ū2
j,n


q

= Mn
1

2q

∫
Br

x · ∇

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

= Mn
N
4q

∫
Br

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

− Mn
r

4q

∫
∂Br

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

. (3.6)

We now go back to the equations in (ūn, v̄n). By Kato’s inequality we find that there exists a positive
constant C, independent of n, such that

−∆|ūi,n| + Mn|ūi,n|

 k∑
j=1

ū2
j,n


q−1  k∑

j=1

v̄2
j,n


q

≤ C

and similarly for v̄i,n. Let r > 0 be any fixed radius, we multiply the previous inequality by a smooth
cut-function η ∈ C∞0 (B3r) such thatη(x) = 1 if |x| ≤ r

η(x) ∈ (0, 1) if r < |x| < 3r
, ‖∇η‖L∞ ≤ 1/r.

Integrating by parts yields the estimate

Mn

∫
Br

|ūi,n|

 k∑
j=1

ū2
j,n


q−1  k∑

j=1

v̄2
j,n


q

,Mn

∫
Br

|v̄i,n|

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q−1

≤ C(r).

We obtain that

lim
n→∞

∫
Br

Mn

 k∑
j=1

ū2
j,n


q  k∑

j=1

v̄2
j,n


q

= 0 for any r > 0
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and thus, by Fubini’s theorem, for almost every radius r > 0 the right hand side in (3.6) vanishes as
n → +∞. Finally, we observe that thanks to the H1 converge of (ūn, v̄n) and the uniform vanishing of
(εn, δn) (see Eq 3.5), we have

lim
n→+∞

∫
Br

k∑
i=1

(
εi,nx · ∇ūi,n + δi,nx · ∇v̄i,n

)
= 0

for every radius r > 0. The proof follows recollecting the previous observations. �

We are in position to conclude the uniform regularity result.

Proof of Proposition 3.2. As of now, we have obtained that, if there is no uniform Hölder bound, then
necessarily Mn → ∞. From this point on, the conclusion follows exactly as in [20, Step B. page
19]. �

3.2. Conclusion of the proof of Theorem 1.1

From the previous results we can completely characterize the limit profiles as β→ ∞.

Proposition 3.9 (Limit as β→ ∞). Let (uβ, vβ) ∈ Gβ. Then

lim
β→+∞

β

q

∫
Ω

( k∑
j=1

u2
j,β

)q( k∑
i=1

v2
j,β

)q
= 0. (3.7)

Moreover, there exist u = (u1, . . . , uk), v = (v1, . . . , vk) ∈ C0,α(Ω;Rk) ∩ H1
0(Ω,Rk) such that, up to

subsequence:

1). uβ → u, vβ → v as β→ +∞, strongly in H1
0(Ω,Rk) and in C0,α(Ω,Rk) for every α ∈ (0, 1).

2). ui · v j = 0 in Ω for every i, j = 1, . . . , k, and

(O1,O2) := ({|u| > 0} , {|v| > 0}) ∈ P2(Ω);

3). u, v ∈ Σ(L2);
4). we have ∫

Ω

∇ui · ∇u j + (P⊥ui)(P⊥u j) =

∫
Ω

∇vi · ∇v j + (Q⊥vi)(Q⊥v j) = 0 ∀i , j∫
Ω

|∇ui|
2 + (P⊥ui)2 ≤

∫
Ω

|∇u j|
2 + (P⊥u j)2,

∫
Ω

|∇vi|
2 + (Q⊥vi)2 ≤

∫
Ω

|∇v j|
2 + (Q⊥v j)2 ∀i ≤ j.

As a consequence we have
lim
β→+∞

Eβ(uβ, vβ) = c̃.

Proof. We only sketch the proof of these results, referring to [19, p. 294] for a complete and detailed
proof. Recall the uniform bounds in Propositions 3.1 and 3.2. Since C0,α(Ω) ↪→ C0,γ(Ω) is a compact
embedding whenever 0 < γ < α < 1, we have (up to a subsequence)

uβ → u, vβ → v as β→ ∞, (3.8)
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weakly in H1
0(Ω,Rk) and strongly in C0,α(Ω,Rk) ∩ Lp(Ω) for every α ∈ (0, 1), p ∈ [1,+∞]. By

combining this information with Proposition 3.1 we have items (2) and (3). By Kato’s inequality and
the bounds mentioned before, we have the existence of C > 0 independent on β such that

−∆|ui,β| + β|ui,β|
( k∑

j=1

u2
j,β

)q−1( k∑
j=1

v2
j,β

)q
≤ C,

and the same holds for the equation of vi,β. Since Ω is smooth ∂ν|ui,β|, ∂ν|vi,β| ≤ 0 on ∂Ω and an
integration of the previous differential inequality yields

β

∫
Ω

|ui,β|
( k∑

j=1

u2
j,β

)q−1( k∑
j=1

v2
j,β

)q
, β

∫
Ω

|vi,β|
( k∑

j=1

u2
j,β

)q( k∑
j=1

v2
j,β

)q−1
≤ C.

We can deduce (3.7). Moreover, testing the equation of ui,β with ui,β−ui and the one of vi,β with vi,β− vi

implies that in (3.8) the H1
0–convergence is actually strong, so that (1) is proved. Finally, (4) is a direct

consequence of this strong convergence combined with (2.3)–(2.4) �

Proposition 3.10. From the family of functions (uβ, vβ) in Proposition 2.5 we consider any converging
subsequence, and let (u, v) := limβ→∞(uβ, vβ) be any limit profile, as in the previous lemma. Then:

1). regarding the parameters, we have:

lim
β
µii,β =: µii > 0, lim

β
νii,β =: νii > 0, lim

β
µi j,β = lim

β
νi j,β = 0 for i , j,

lim
β

ai,β =: ai > 0, lim
β

bi,β =: bi > 0,
(3.9)

2). the limit profiles satisfyai(−∆ui + P⊥ui) = µiiui in the open set O1 = {|u| > 0}
bi(−∆vi + Q⊥vi) = νiivi in the open set O2 = {|v| > 0};

3). for any x0 ∈ R
N and r ∈ (0, dist(x0, ∂Ω)), the following identity holds

(2 − N)
k∑

i=1

∫
Br(x0)

(
ai|∇ui|

2 + bi

(
|∇vi|

2
)

=

k∑
i=1

∫
∂Br(x0)

(
air(2(∂νui)2 − |∇ui|

2) + bir(2(∂νvi)2 − |∇vi|
2)
)

+

k∑
i=1

∫
∂Br(x0)

r(µiiu2
i + νiv2

i ) −
k∑

i=1

∫
Br(x0)

N(µiiu2
i + νiv2

i )

−

k∑
i=1

∫
Br(x0)

(
2ai(P⊥ui)∇ui(x0) · (x − x0) + 2bi(Q⊥vi)∇vi · (x − x0)

)
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Proof. The positivity of the coefficients in (3.9) follows directly from Proposition 3.1. Testing the
equation of ui,β in (2.6) by u j,β, we see that

µi j,β = δi jai,β

( ∫
Ω

|∇ui,β|
2 + (P⊥ui,β)2

)
+ β

∫
Ω

ui,βu j,β

( k∑
j=1

u2
j,β

)q−1( k∑
j=1

v j,β

)q

→ δi jai

( ∫
Ω

|∇ui|
2 + (P⊥ui)2

)
as β→ ∞ by (3.7), and the same for νi j,β. From this follows (1) and (2). As for (3), it follows exactly as
in the proof of [20, Corollary 3.16], taking again into account the strong H1

0–convergence of minimizers
(Proposition 3.9-(1)) and the vanishing property of the interaction term (3.7). �

In order to reach the conclusion of Theorem 1.1, it is convenient to introduce the following
definition. Given a measurable set ω ⊂ Rn, we define λ̃k(ω,φ) as the k-eigenvalue (counting
multiplicities) of the operator −∆ + P⊥ in H̃1

0(ω), which can be characterized as

λ̃k(ω,φ) = inf
M⊂H̃1

0 (ω)
dim M=k

sup
u∈M

(∫
ω

|∇u|2 + (P⊥u)2
)/ ∫

ω

u2.

We define λ̃k(ω,ψ) is an analogous way. Clearly, we have

λk(ω,φ), λk(ω,ψ) ≥ λk(ω). (3.10)

Conclusion of the proof of Theorem 1.1. Let

lim
β→∞

uβ =: u = (u1, . . . , uk), lim
β→∞

vβ =: v = (v1, . . . , vk)

and (O1,O2) := ({|u| > 0}, {|v| > 0}). We recall that u and v are continuous functions, thus O1 and O2

are open subsets of Ω. By Proposition 3.9-(4) and inequality (3.10),∫
Ω

(
|∇ui|

2 + (P⊥ui)2) ≥ λi(O1,φ) ≥ λi(O1),
∫

Ω

(
|∇vi|

2 + (Q⊥vi)2) ≥ λi(O2,ψ) ≥ λi(O2)

for every i = 1, . . . , k. Therefore, using the monotonicity of F and ϕ together with Propositions 3.1,
3.9 and 3.10,

c̃ =F(ϕ(̃λ1(ω1), . . . , λ̃k(ω1)), ϕ(̃λ1(ω2), . . . , λ̃k(ω2)))
= lim

β
cβ

= lim
β

Eβ(uβ, vβ)

=F
(
ϕ
( ∫

Ω

|∇u1|
2 + (P⊥u1)2, . . . ,

∫
Ω

|∇uk|
2 + (P⊥uk)2

)
,

ϕ
( ∫

Ω

|∇v1|
2 + (Q⊥v)2

1, . . . ,

∫
Ω

|∇vk|
2 + (Q⊥v)2

k

))
≥F(ϕ(λ1(O1,φ), . . . , λk(O1,φ)), ϕ(λ1(O2,ψ), . . . , λk(O2,ψ)))
≥F(ϕ(λ1(O1), . . . , λk(O1)), ϕ(λ1(O2), . . . , λk(O2)))

≥F(ϕ(̃λ1(O1), . . . , λ̃k(O1)), ϕ(̃λ1(O2), . . . , λ̃k(O2)))
≥c̃.

(3.11)
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Therefore all inequalities are in fact equalities, (O1,O2) is an (open) optimal partition for c = c̃, and
(by the strict monotonicity of F and ϕ) λi(O1) = λi(O1,φ), λi(O2) = λi(O2,ψ) for every i = 1, . . . , k.

We now claim that P⊥ui = Q⊥vi = 0. Indeed, for i = 1:

λ1(O1) = λ1(O1,φ) =

∫
Ω

|∇u1|
2 + (P⊥u1)2 ≥

∫
Ω

|∇u1|
2 ≥ λ1(O2),

so that P⊥u1 = 0. Moreover,∫
Ω

∇u1 · ∇u2 =

∫
Ω

∇u1 · ∇u2 + (P⊥u1)(P⊥u2) = 0,

and

λ2(O1) = λ2(O1,φ) =

∫
Ω

|∇u2|
2 + (P⊥u2)2 ≥

∫
Ω

|∇u2|
2 ≥ λ2(O2),

hence P⊥u2 = 0. By iterating this procedure, we obtain P⊥ui=0 for i = 1, . . . , k and, analogously,
Q⊥vi = 0, which proves our claim.

From this we deduce that

−∆ui = λi(O1)ui in O1, −∆vi = λi(O2)vi in O2

and λi(ω1) = λi(O1) for i = 1, . . . , k. Moreover u ∈ L(φ), v ∈ L(ψ), that is,

u = Mφ, v = Nψ

for M := (〈ui, φ j〉L2(Ω))i, j,Ni j := (〈vi, ψi〉L2(Ω))i, j ∈ R
k×k and, since (u, v), (φ,ψ) ∈ Σ(L2), then actually

M,N ∈ Ok(R), being block diagonal matrices:

M = diag(M1, . . . ,Ml1), N = diag(N1, . . . ,Nl2), (3.12)

where the dimension of each block is at most equal to the dimension of the eigenspace of the associated
eigenvalue, and each block is itself an orthogonal matrix.

This has many important consequences:

1). In the local Pohozaev identities of Proposition 3.10-(3) we have P⊥ui = Q⊥vi = 0, which
corresponds to the statement in [20, Corollary 3.16]. Therefore we are in the exact framework of
Sections 3 and 4 of [20], which implies by Theorem 2.2 therein that ui, vi are Lipschitz
continuous, (O1,O2) is a regular partition, and, given x0 in the regular part of the free boundary,

lim
x→x0
x∈O1

k∑
j=1

a j|∇u j(x)|2 = lim
x→x0
x∈O2

k∑
j=1

b j|∇v j(x)|2 , 0,

where

ai = ∂F1(ϕ(λ1(ω1), . . . , λk(ω1)), ϕ(λ1(ω2), . . . , λk(ω2)))∂iϕ(λ1(ω1), . . . , λk(ω1)),
bi = ∂F2(ϕ(λ1(ω1), . . . , λk(ω1)), ϕ(λ1(ω2), . . . , λk(ω2)))∂iϕ(λ1(ω2), . . . , λk(ω2))
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Since ϕ is symmetric, then ai = a j whenever λi(ω1) = λ j(ω1), and the same holds true for the
coefficients bi. Combining this remark with the orthogonality of the block matrices in (3.12), we
deduce that also

lim
x→x0
x∈O1

k∑
j=1

a j|∇φ j(x)|2 = lim
x→x0
x∈O2

k∑
j=1

b j|∇ψ j(x)|2 , 0. (3.13)

Moreover we find that (3.13) does not depend on the starting configuration ϕ,ψ.
2). Since M and N are invertible, φ = M−1u and ψ = N−1v a.e. in Ω, and since u, v are Lipschitz

continuous, then each φi and ψi has a Lipschitz continuous representative.
3). For a.e. x ∈ Ω we find

|u|2(x) = u(x) · u(x) = Mφ(x) · Mφ(x) = |φ|2(x), |v|2(x) = |ψ|2(x).

Therefore we have O j ⊆ ω j up to a set of Lebesgue measure zero, λi(O j) = λ̃i(O j) ≥ λ̃i(ω j) for
j = 1, 2, i = 1, . . . , k. Combining this with the strict monotonicity of F and ϕ and (3.11), we obtain the
equality between the eigenvalues. Moreover, the regularity results of (O1,O2) allow to conclude that
|Oi4ωi| = 0.

We are left to show the spectral gap property, that is, to prove that λ̃k(ω1) < λ̃k+1(ω1). For this
purpose, let E ⊂ H̃1

0(ω1) be the (generalized) eigenspace associated to the eigenvalue λ̃k(ω1) and let
` ∈ N be the number of eigenvalue of ω1 that are strictly less than λ̃k(ω1). Our goal is to show that

` + dim(E) = k.

Assume, in view of a contradiction, that λ̃k(ω1) = λ̃k+1(ω1) or, more generally, that

` + dim(E) ≥ k + 1. (3.14)

To start off, we apply the previous reasoning to any vector φ = (φ1, . . . , φ`, φ̄`+1, . . . , φ̄k) where
φ̄`+1, . . . , φ̄k are k − ` orthonormal functions in E. This shows that all the eigenfunctions in E have a
Lipschitz representative and that E is made of standard eigenfunctions. In particular, by (3.13),
replacing one eigenfunction at the time, for any φi ⊥ φ j in any orthonormal base of E we deduce

|∇φi|
2 = |∇φ j|

2 (3.15)

on the regular part of the free boundary. Let now S ⊂ Ω stand for the support of E

S = supp

dim(E)∑
i=1

|φi|

 = clo

dim(E)∑
i=1

|φi| > 0

 .
We claim that, under (3.14), S has a unique connected component. Assume the opposite and pick
two normalized functions φ′, φ′′ ∈ E with disjoint supports (this is possible since S is disconnected,
and φ′, φ′′ are orthonormal by construction), and consider other dim(E) − 2 functions to complete an
orthonormal base of E. We immediately find a contradiction with (3.15). Hence, up to a change of
sign, letting w := φi − φ j for any φi ⊥ φ j in any orthonormal base of E, we find−∆w = λ̃k(O1)w in O1

w = |∇w| = 0 on ∂O1.

But then, by Hopf’s lemma, we have w = 0 that is φi = φ j, a contradiction. The same reasoning holds
true for λ̃k(ω2). �
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