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1. Introduction

In the last years the regularity theory for two phase problems governed by uniformly elliptic
equations with distributed sources has reached a considerable level of completeness (see for instance
the survey paper [10]) extending the results in the seminal papers [2, 4] (for the Laplace operator) and
in [17, 18] (for concave fully non linear operators) to the inhomogeneous case, through a different
approach first introduced in [7].

In particular the papers [15] and [8] provides optimal Lipschitz regularity for viscosity solutions
and their free boundary for a large class of fully nonlinear equations.

Existence of a continuous viscosity solution through a Perron method has been established for linear
operators in divergence form in [3] (homogeneous case) and in [9] (inhomogeneous case), and for a
class of concave operators in [19]. The main aim of this paper is to adapt the Perron method to extend
the results of [19] to the inhomogeneous case. Although we are largely inspired by the papers [3] and
[9], the presence of a right hand side and the nonlinearity of the governing equation presents several
delicate points, significantly in Section 6, which require new arguments.

We now introduce our class of free boundary problems and their weak (or viscosity) solutions.
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Let Symn denote the space of n × n symmetric matrices and let F : Symn → R denote a positively
homogeneous map of degree one, smooth except at the origin, concave and uniformly elliptic, i.e. such
that there exist constants 0 < λ ≤ Λ with

λ‖N‖ ≤ F(M + N) − F(M) ≤ Λ‖N‖ for every M,N ∈ Symn with N ≥ 0,

where ‖M‖ = max|x|=1 |Mx| denotes the (L2, L2)-norm of the matrix M.
Let Ω ⊂ Rn be a bounded Lipschitz domain and f1, f2 ∈ C(Ω) ∩ L∞(Ω). We consider the following

two-phase inhomogeneous free boundary problem (f.b.p. in the sequel).
F(D2u+) = f1 in Ω+(u) := {u > 0}
F(D2u−) = f2χ{u<0} in Ω−(u) = {u ≤ 0}o

u+
ν (x) = G(u−ν , x, ν) along F (u) := ∂{u > 0} ∩Ω.

(1.1)

Here ν = ν(x) denotes the unit normal to the free boundary F = F (u) at the point x, pointing toward
Ω+, while the function G(β, x, ν) is Lipschitz continuous, strictly increasing in β, and

inf
x∈Ω,|ν|=1

G(0, x, ν) > 0. (1.2)

Moreover, u+
ν and u−ν denote the normal derivatives in the inward direction to Ω+(u) and Ω−(u)

respectively.
As we said, the main aim of this paper is to adapt Perron’s method in order to prove the existence

of a weak (viscosity) solution of the above f.b.p., with assigned Dirichlet boundary conditions
For any u continuous in Ω we say that a point x0 ∈ F (u) is regular from the right (resp. left) if there

exists a ball B ⊂ Ω+(u) (resp. B ⊂ Ω−(u)) such that B ∩ F (u) = x0. In both cases, we denote with
ν = ν(x0) the unit normal to ∂B at x0, pointing toward Ω+(u).

Definition 1.1. A weak (or viscosity) solution of the free boundary problem (1.1) is a continuous
function u which satisfies the first two equality of (1.1) in viscosity sense (see Appendix A), and such
that the free boundary condition is satisfied in the following viscosity sense:

(i) (supersolution condition) if x0 ∈ F is regular from the right with touching ball B, then, near x0,

u+(x) ≥ α 〈x − x0, ν〉
+ + o(|x − x0|) in B, with α ≥ 0

and
u−(x) ≤ β 〈x − x0, ν〉

− + o(|x − x0|) in Bc, with β ≥ 0,

with equality along every non-tangential direction, and

α ≤ G(β, x0, ν(x0));

(ii) (subsolution condition) if x0 ∈ F is regular from the left with touching ball B, then, near x0,

u+(x) ≤ α 〈x − x0, ν〉
+ + o(|x − x0|) in Bc, with α ≥ 0

and
u−(x) ≥ β 〈x − x0, ν〉

− + o(|x − x0|) in B, with β ≥ 0,

with equality along every non-tangential direction, and

α ≥ G(β, x0, ν(x0));
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We will construct our solution via Perron’s method, by taking the infimum over the following class
of admissible supersolutions S.

Definition 1.2. A locally Lipschitz continuous function w ∈ C(Ω) is in the class S if

(a) w is a solution in viscosity sense toF(D2w+) ≤ f1 in Ω+(w)
F(D2w−) ≥ f2χ{u<0} in Ω−(w);

(b) if x0 ∈ F (w) is regular from the left, with touching ball B, then

w+(x) ≤ α 〈x − x0, ν〉
+ + o(|x − x0|) in Bc, with α ≥ 0

and
w−(x) ≥ β 〈x − x0, ν〉

− + o(|x − x0|) in B, with β ≥ 0,

with
α ≤ G(β, x0, ν(x0));

(c) if x0 ∈ F (w) is not regular from the left then

w(x) = o(|x − x0|).

The last ingredient we need is that of minorant subsolution.

Definition 1.3. A locally Lipschitz continuous function u ∈ C(Ω) is a strict minorant if

(a) u is a solution in viscosity sense toF(D2u+) ≥ f1 in Ω+(u)
F(D2u−) ≤ f2χ{u<0} in Ω−(u);

(b) every x0 ∈ F (u) is regular from the right, with touching ball B, and near x0

u+(x) ≥ α 〈x − x0, ν〉
+ + ω(|x − x0|)|x − x0| in B, with α > 0,

where ω(r)→ 0 as r → 0+, and

u−(x) ≤ β 〈x − x0, ν〉
− + o(|x − x0|) in Bc, with β ≥ 0,

with
α > G(β, x0, ν(x0)).

Our main result is the following.

Theorem 1.4. Let g be a continuous function on ∂Ω. If

(a) there exists a strict minorant u with u = g on ∂Ω and
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(b) the set {w ∈ S : w ≥ u, w = g on ∂Ω} is not empty, then

u = inf{w : w ∈ S,w ≥ u}

is a weak solution of (1.1) such that u = g on ∂Ω.

Once existence of a solution is established, we turn to the analysis of the regularity of the free
boundary.

Theorem 1.5. The free boundary F (u) has finite (n − 1)-dimensional Hausdorff measure. More
precisely, there exists a universal constant r0 > 0 such that for every r < r0, for every x0 ∈ F (u),

Hn−1(F (u) ∩ Br(x0)) ≤ rn−1.

Moreover, the reduced boundary F ∗(u) of Ω+(u) has positive density in Hn−1 measure at any point of
F(u), i.e. for r < r0, r0 universal

Hn−1(F ∗(u) ∩ Br(x)) ≥ crn−1,

for every x ∈ F (u). In particular
Hn−1(F (u) \ F ∗(u)) = 0.

Using the results in [8] we deduce the following regularity result.

Corollary 1.6. F (u) is a C1,γ surface in a neighborhood ofHn−1 a.e. point x0 ∈ F (u).

Notation. Constants c, C and so on will be termed “universal” if they only depend on λ, Λ, n, Ω,
‖ fi‖∞ and g.

2. Asymptotic developments

In this section we show that positive solutions of F(D2u) = f (with f continuous up to the boundary)
have asymptotically linear behavior at any boundary point which admits a touching ball, either from
inside or from outside the domain. We need the following preliminary result.

Lemma 2.1. Let r > 0, δ > 0, σ > 0, B+
1 := B1 ∩ {x1 > 0} and let E ⊂ ∂B+

1 ∩ {x1 > 0} be any subset
such that there exists x̄ ∈ E with

E ⊃ ∂B+
1 ∩ {x1 > 0} ∩ Bσ(x̄).

Let u be the solution to F(D2u) = r in B+
1

u = δgE on ∂B+
1 ,

(2.1)

where gE is a cut-off function, gE = 1 on E. If r is sufficiently small then there exists a positive constant
C = C(δ, σ) such that

u(x) ≥ Cx1 in B+
1/2.
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Proof. We write

F(D2u) =

n∑
i, j=1

ai j(x)uxi x j ≡ Luu,

with (F = F(M))

ai j =

∫ 1

0

∂F
∂Mi j

(tD2u)dt.

We have
λ|ξ|2 ≤ ai j(x)ξiξ j ≤ Λ|ξ|2.

Denote u = v + w with Luv = 0, v = δχE on ∂B+
1 and Luw = r, w = 0 on ∂B+

1 . By [11] we have that
v(e1/2) ≥ Cδ, for some constant C = C(n, λ,Λ, σ), and by the Boundary Harnack principle applied to
v and u1(x) = x1 we get that, in B+

1/2, for some positive constants c0 and c1,

c0δx1 ≤ v ≤ c1δx1.

Put z(x) = 1
2 min a11

(x1 − x2
1)r. The function z is positive in B+

1 and

Luz = −
a11

min a11
r ≤ −r.

Therefore Lu(w + z) ≤ 0 in B+
1 and w + z ≥ 0 on ∂B+

1 . By the maximum principle w ≥ −c2rx1 in B+
1 ,

where c2 = a11
min a11

> 0.
Summing up we get, in B+

1/2,

u = v + w ≥ (c0δ − c2r)x1 ≥ c3x1

for r small enough, having c3 > 0. �

Lemma 2.2. Let Ω1 be a bounded domain with 0 ∈ ∂Ω1 and

B+
1 := B1 ∩ {x1 > 0} ⊂ Ω1.

Let u be non-negative and Lipschitz in Ω1 ∩ B2, such that F(D2u) = f in Ω1 ∩ B2 and that u = 0 in
∂Ω1 ∩ B2 . Then there exists α ≥ 0 such that

u(x) = αx+
1 + o(|x|) as x→ 0, x1 > 0.

Proof. Let αk = sup{β : u(x) ≥ βx1 in B+
1/k} for k ≥ 1. Then the sequence {αk}k is increasing and αk ≤ L

for any k, where L is the Lipschitz constant of u. Let α = limk αk. By definition, u(x) ≥ αx1 + o(|x|) in
B+

1 , where x = (x1, x2, ..., xn).
Suppose by contradiction that u(x) , αx1 + o(|x|) in B+

1 . Then there exist a constant δ0 > 0 and a
sequence {xk}k = {(x1,k, x2,k, ..., xn,k)}k ⊂ B+

1 , with |xk| = rk → 0, such that

u(xk) ≥ αx1,k + δ0rk.

Since u is Lipschitz, a simple computation implies that

u(x) ≥ αx1 +
δ0

2
rk ≥ αkx1 +

δ0

2
rk in

{
x : |x| = rk, |x − xk| ≤

δ0rk

4L

}
.
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Let
uk(x) =

u(rkx)
rk
− αkx1.

The functions uk are defined in B+
1 and, by assumption of homogeneity on F, we have

F(D2uk(x)) = F(rkD2u(rkx)) = rkF(D2u(rkx)) = rk f (rkx) ≤ rk‖ f ‖∞.

Moreover uk(x) ≥ 0 on ∂B+
1 and uk ≥ δ0/2 in Ek = {x : x ∈ ∂B+

1 , x1 > 0, |x − xk| ≤
δ0
4L }. We deduce that

uk is a supersolution of (2.1). By comparison and Lemma 2.1, there exists C > 0, not depending on k,
such that

uk(x) =
1
rk

u(rkx) − αkx1 ≥ Cx1 in B+
1/2.

Writing z = rkx we obtain u(z) ≥ (αk + C)z1 in B+
rk/2

. Choosing k, k′ in such a way that αk + C > α and
k′ > 2/rk we obtain

αk′ > α,

a contradiction. �

Lemma 2.3. Let Ω1 be a bounded domain such that, writing B−1 := B1 ∩ {x1 < 0},

B−1 ∩Ω1 = {0}.

Let u be non-negative and Lipschitz in Ω1 ∩ B2(0), such that F(D2u) = f in Ω1 ∩ B2(0) and that u = 0
in ∂Ω1 ∩ B2(0) . Then there exists α ≥ 0 such that

u(x) = αx+
1 + o(|x|) as x→ 0, x ∈ Ω1.

Proof. By assumption, we have that
Ω1 ∩ B1 ⊂ B+

1 .

Then we can extend u as the zero function on B+
1 \Ω1 so that it is a Lipschitz, non-negative solution to

F(D2u) ≥ −‖ f ‖∞ in B+
1 .

Reasoning in a similar way as in Lemma 2.2, we define αk = inf{β : u(x) ≤ βx1 in B1/k}, k ≥ 1. Then
0 ≤ αk < +∞ (u is Lipschitz), and αk ↘ α ≥ 0, with u(x) ≤ αx1 + o(|x|) in B+

1 . Again, let us suppose
by contradiction that

u(xk) ≤ αx1,k − δ0rk.

where δ0 > 0 and {xk}k = {(x1,k, x2,k, ..., xn,k)}k ⊂ B+
1 , is such that |xk| = rk → 0. As before, such

inequality propagates by Lipschitz continuity:

u(x) ≤ αx1 −
δ0

2
rk ≤ αkx1 −

δ0

2
rk in

{
x : |x| = rk, |x − xk| ≤

δ0rk

4L

}
.

Defining the elliptic, homogeneous operator F∗(M) = −F(−M), we have that the functions

uk(x) = αkx1 −
u(rkx)

rk

solve
F∗(D2uk(x)) ≤ rk‖ f ‖∞ in B+

1 ,

with uk(x) ≥ 0 on ∂B+
1 and uk ≥ δ0/2 in Ek = {x : x ∈ ∂B+

1 , x1 > 0, |x − xk| ≤
δ0
4L }. As a consequence, a

contradiction can be obtained by reasoning as in Lemma 2.2. �
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Lemma 2.4. Let Ω1 be bounded domain with 0 ∈ ∂Ω1 and

either B1(e1) ⊂ Ω1 or B1(−e1) ∩Ω1 = {0}.

Let u be non-negative and Lipschitz in Ω1 ∩ B2(0), such that F(D2u) = f in Ω1 ∩ B2(0) and that u = 0
in ∂Ω1 ∩ B2(0). Then there exists α ≥ 0 such that

u(x) = αx1 + o(|x|)

as x→ 0 and either x ∈ B1(e1) or x ∈ Ω.

Proof. In both cases, we use the smooth change of variabley1 = x1 − ψ(x′)
y′ = x′,

where ψ(x′) is smooth, with ψ(x′) = 1 −
√

1 − |x′|2 for |x′| small. Then, by direct calculations, the
function ũ(y) = u(y1 + ψ(y′), y′) satisfies

F̃(D2ũ,∇ũ, y′) = F(D2u),

where F̃ is still a uniformly elliptic operator. As a consequence the lemma follows by arguing as in the
proofs of Lemmas 2.2, 2.3, with minor changes. �

We conclude this section by providing a uniform estimate from below of the development coefficient
α, in case the touching ball is inside the domain.

Lemma 2.5. Let u ∈ C(Br(re1)), r ≤ 1, be such that
F(D2u) = f in Br(re1),
u ≥ 0,
u(0) = 0.

Moreover, assume that u(re1) ≥ Cr, for some C > 0. Then

u(x) ≥ αx1 + o(|x|), where α ≥ c1
u(re1)

r
− c2r‖ f ‖∞,

as x→ 0, for r ≤ r̄, where c1, c2 and r̄ only depend on λ,Λ, n.

Proof. Let

ur(x) =
u(r(e1 + x))

r
, x ∈ B1(0).

Then 
F(D2ur) = r f in B1,

ur ≥ 0,
ur(−e1) = 0.
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By Harnack’s inequality [5, Theorem 4.3] we have that

inf
∂B1/2

ur ≥ c(ur(0) − r‖ f ‖∞) =: a,

where c only depends on λ,Λ, n. We are in a position to apply Lemma A.2, which provides

ur(x) ≥ α(x1 + 1) + o(|x + e1|), with α ≥ c1a − c2r‖ f ‖∞ = c′1ur(0) − c′2r‖ f ‖∞,

as x→ −e1, and the lemma follows. �

Remark 2.6. Notice that the above results can be applied both to F(D2u+) = f1 in Ω+(u) and to
F(D2u−) = f2χ{u<0} in Ω−(w).

3. The function u+ is Lipschitz continuous

In this section we adapt the strategy developed in [3], in order to show that u+ is locally Lipschitz.
To this aim we need to use the following almost-monotonicity formula, provided in [6, 14].

Proposition 3.1. Let ui, i = 1, 2 be continuous, non-negative functions in B1, satisfying ∆ui ≥ −1,
u1 · u2 = 0 in B1. Then there exist universal constants C0 and r0, such that the functional

Φ(r) :=
1
r4

∫
Br

|∇u1|
2

rn−2

∫
Br

|∇u2|
2

rn−2

satisfies, for 0 < r ≤ r0,
Φ(r) ≤ C0

(
1 + ‖u1‖

2
L2(B1) + ‖u2‖

2
L2(B1)

)2
.

Lemma 3.2. Let w ∈ S. There exists w̃ ∈ S such that

1. F(D2w̃) = f1 in Ω+(w̃),
2. w̃ ≤ w, w̃− = w−, and
3. w̃ ≥ u in Ω.

Proof. Let w ∈ S and Ω+ = Ω+(w). We define

V := {v ∈ C(Ω+) : F(D2v) ≥ f1χ{v>0} in Ω+, v ≥ 0 in Ω+, v = w on ∂Ω+}

and

w̃(x) :=

sup{v(x) : v ∈ V} x ∈ Ω+

w(x) elsewhere.

Since u+ ∈ V we obtain that V is not empty and that u ≤ w̃ ≤ w. Moreover w̃ is a solution of the
obstacle problem (see [13]) 

F(D2w̃) = f1 in {w̃ > 0}
w̃ ≥ 0 in Ω+

w̃ = w on ∂Ω+.

In particular, regularity results for the obstacle problem for fully nonlinear equations imply that w̃ is
C1,1 in Ω+ (see [13]). To conclude that w̃ ∈ S, we need to show that the free boundary conditions in
Definition 1.2 hold true. Let x0 ∈ F (w̃): if x0 ∈ F (w) too, then the free boundary condition follows
from the fact that w̃ ≤ w; otherwise, x0 ∈ Ω+ is an interior zero of w̃, and the free boundary condition
follows by the C1,1 regularity of w̃. �
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Lemma 3.3. Let w ∈ S with F(D2w) = f1 in Ω+(w), and let x0 ∈ F (w) be regular from the right. Then
u admits developments

w+(x) = α 〈x − x0, ν〉
+ + o(|x − x0|),

w−(x) ≥ β 〈x − x0, ν〉
− + o(|x − x0|),

with 0 ≤ α ≤ G(β, x0, ν(x0)), and

αβ ≤ C0

(
1 + ‖u1‖

2
2 + ‖u2‖

2
2

)
.

Proof. If x0 is not regular from the left, then by definition of S the asymptotic developments hold with
α = β = 0 and there is nothing to prove. On the other hand, if x0 is also regular from the left, then the
asymptotic developments and the free boundary condition hold true by definition of S and by Lemma
2.4. Also in this case, if α = 0 then there is nothing else to prove, thus we are left to deal with the case
α > 0.

Reasoning as in [3, Lemma 3], see also [19, Lemma 4.3], one can show that

Φ(r) ≥ C(n)(α + o(1))2(β + o(1))2 (3.1)

(recall that Φ(r) is defined in Proposition 3.1). On the other hand, since F is concave,

∆w± ≥ −c‖ f ‖∞.

The conclusion follows by combining Proposition 3.1 with (3.1). �

Proposition 3.4. For every D ⊂⊂ Ω there exists a constant LD, depending only on D, G, u and S, such
that

|w+(x) − w+(y)|
|x − y|

≤ LD

for every x, y ∈ D, x , y, and for every w ∈ S with F(D2w) = f1 in Ω+(w).

Proof. Let x0 ∈ Ω+(w) ∩ D such that

r := dist(x0,F (w)) <
1
2

dist(D, ∂Ω).

We will show that there exists M > 0, not depending on w, such that
w(x0)

r
≤ M,

and the lemma will follow by Schauder estimates and Harnack inequality. By contradiction, let M
large to be fixed and let as assume that

w(x0)
r

> M.

Then Lemma 2.5 applies and we obtain

w(x) ≥ αM 〈x − x0, ν〉
+ + o(|x − x0|),

where αM = c1M − c2r‖ f ‖∞ > 0 for M sufficiently large. Then x0 is regular from the right and Lemma
3.3 applies, with αM ≤ α ≤ G(β, x0, ν(x0)), providing

αMG−1(αM) ≤ C0

(
1 + ‖u1‖

2
2 + ‖u2‖

2
2

)
,

where G−1(α) := infx,ν G−1(α, x, ν). This provides a contradiction for M sufficiently large. �

Corollary 3.5. u+ is locally Lipschitz and satisfies F(D2u) = f1 in Ω+(u).
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4. The function u is Lipschitz continuous

Now we turn to the Lipschitz continuity of u.

Lemma 4.1. If w1,w2 ∈ S then min{w1,w2} ∈ S.

Proof. This follows by standard arguments, see e.g. [9, Lemma 4.1]. �

To prove that u is Lipschitz continuous we use the double replacement technique introduced in [9].
Let w ∈ S with w(x0) < 0 and

B := BR(x0), Ω1 := Ω+(w) \ B.

Working on Ω1, we define

V1 := {v : F(D2v) ≥ f1χ{v>0} in Ω1, v ≥ 0 in Ω1, v = w on ∂Ω1 \ ∂B, v = 0 on ∂B}

(which is non empty, for R sufficiently small, as u+ ∈ V1). Then

w1 := supV1

solves the obstacle problem (see [13])

F(D2w1) ≥ f1 in {w1 > 0}, w1 ≥ 0 in Ω1. (4.1)

On the other hand, working on B, let

V2 := {v : F(D2v) ≥ f2χ{v>0} in B, v ≥ 0 in B, v = w− on ∂B}

(which is non empty, as w− ∈ V2). Again,

w2 := supV2

solves the obstacle problem

F(D2w2) ≥ f1 in {w2 > 0}, w2 ≥ 0 in B. (4.2)

Under the above notation, the double replacement w̃ of w, relative to B, is defined as

w̃ :=


w1 in Ω1

−w2 in B

w otherwise.

Lemma 4.2. Let w ∈ S with w(x0) = −h < 0. There exists >ε0 (depending on dist(x0, ∂Ω) and u) such
that:

1. the double replacement w̃ of w, relative to Bhε(x0), satisfies u ≤ w̃ ≤ w in Ω;
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2. w̃ < 0 and F(D2w̃) = f2 in Bhε(x0), with

|∇w̃| ≤
C
ε

+ Cε‖ f2‖∞ in Bhε/2(x0);

3. w̃ ∈ S.

Proof. The inequality w1 ≤ w in Ω1 follows by the maximum principle, while w2 ≥ −w in B because
w− ∈ V2. On the other hand, provided ε is sufficiently small (depending on the Lipschitz constant of
u), we have that u < 0 in B := Bhε(x0) and u∗ ∈ V1, so that w1 ≥ u; finally, by the maximum principle
in {w2 > 0}, also −w2 ≥ u, and part 1. follows.

Turning to part 2., assume by contradiction that ∂{w2 > 0} ∩ Bhε(x0) , ∅. Then, by the regularity
properties of the obstacle problem (4.2) (see [13]), we obtain that

w2(x0) ≤ C(hε)2.

Since −w2(x0) ≤ w(x0) = −h, we obtain a contradiction for ε sufficiently small. Then w2 > 0 in Bhε(x0),
w2 solves the equation by (4.2), and the remaining part of 2. follows by standard Schauder estimates
and Harnack inequality.

Coming to part 3., the fact that w̃ satisfies (a) in Definition 1.2 follows by equations (4.1), (4.2)
and by part 2. above, and we are left to check the free boundary conditions. For x̄ ∈ F (w̃), three
possibilities may occur. If x̄ ∈ F (w) then, since w̃ ≤ w, then w̃ has the correct asymptotic behavior
both when x̄ is regular and when it is not (recall that G(0, ·, ·) > 0. If x̄ ∈ ∂{w1 > 0} ∩ Ω1, then we can
use again the regularity of the obstacle problem (4.1) to obtain the correct asymptotic behavior. We
are left to the final case, when x̄ ∈ ∂B ∩ Ω+(w). By Proposition 3.4, let us denote with L the Lipschitz
constant of w in Bdist(x0,∂Ω)/2(x0). Then

w̃ ≤ w+ ≤ Lhε in B2hε(x0).

Defining

w̃ε(x) :=
w̃(x0 + εhx)

εh
,

we have that 
F(D2w̃+

ε ) = εh f1 in (B2 \ B1) ∩Ω+(wε)
w̃+
ε ≤ L on ∂B2

w̃+
ε ≤ 0 on ∂B1 ∩ ∂Ω+(wε).

Then Lemma A.1 applies, yielding

w̃+
ε ≤ α〈x − x̄ε, ν(x̄ε)〉+ + o(|x − x̄ε|),

where
α ≤ c1L + c2εh‖ f1‖∞, x̄ε :=

x̄ − x0

εh
,

for universal c1, c2. Going back to w̃ we obtain

w̃+ ≤ α〈x − x̄, ν〉+ + o(|x − x̄|), α ≤ L̄ (4.3)
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where ν = (x̄ − x0)/|x̄ − x0|.
On the other hand, we can apply Lemma 2.5 to (−w2)ε, obtaining

w̃−ε = −(w2)ε ≥ β〈x − x̄ε, ν(x̄ε)〉+ + o(|x − x̄ε|),

where

β ≥
c′1
ε
− c′2εh‖ f1‖∞,

for universal c′1, c′2, and thus

w̃− ≥ β〈x − x̄, ν〉− + o(|x − x̄|), β ≥
c̄
ε
. (4.4)

Comparing (4.3) and (4.4) we have that, choosing ε small so that

L̄ < inf
x,ν

G(c̄/ε, x, ν),

the free boundary condition holds true. �

Corollary 4.3. Let u(x0) = −h < 0. There exist an non-increasing sequence {w̃k} ⊂ S, w̃k ≥ u, and
ε > 0, depending on dist(x0, ∂Ω) and u, such that the following hold:

1. w̃k(x0)↘ u(x0);
2. w̃k < 0 and F(D2w̃−k ) = f2 in Bεh(x0);
3. the sequence {w̃k} is uniformly Lipschitz in Bεh/2(x0), with Lipschitz constant L0 depending on

dist(x0, ∂Ω).
4. w̃k ↘ u uniformly on Bhε/4

Proof. Let u(x0) = −h < 0, {wk} ⊂ S be such that wk ↘ u in some neighborhood of x0 and {w̃k} ⊂

S be the corresponding double replacements, as in Lemma 4.2. Then first three points are direct
consequence of the lemma above, and we are left to prove that w̃k ↘ u uniformly on Bhε/4. By
equicontinuity, w̃k → w̃ in Bεh/2(x0), and suppose by contradiction that w̃(x1) > u(x1) for some x1 ∈

Bεh/4(x0). Then consider a new sequence {vk}k converging to u at x1 and define {ũk}k as the double
replacement of {min{ṽk, w̃k}}k in Bεh/2(x0). Then ũk → ũ, ũ ≤ w̃ in Bεh/2(x0), ũ(x0) = w̃(x0) and
ũ(x1) < w̃(x1). Since F(D2w̃) = F(D2ũ) = f2 in Bεh/2(x0), this contradicts the strong maximum
principle. �

Corollary 4.4. For any D ⊂ Ω there exists {wk}k ⊂ S such that wk ↘ u uniformly in D. Furthermore,
if D ⊂ Ω−(u), then each wk may be taken non-positive in D.

Proof. The first part follows from the previous corollary. By compactness, it is enough to prove the
second part for balls Bε(x0) ⊂ Ω−(u), with ε small. Let wk ↘ u uniformly in B2ε(x0) ⊂ Ω−(u), and let

wε
k(x) =

wk(x0 + εx)
ε

↘ uε in B2.

Let φ be such that 
∆φ = −c‖ε f ‖∞ in B2 \ B1

φ = a on ∂B2

φ = 0 on ∂B1,
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with a and ε positive and sufficiently small so that

∇φ(e1) · e1 < inf
x,ν

G(0, x, ν)

(this is possible by explicit calculations, see for instance Lemma A.1); notice that this condition insure
that φ, extended to zero in B1, is a supersolution in B2 (when c universal is suitably chosen). Since
uε ≤ 0 in B2, for k sufficiently large wk ≤ a/2 in B2. Let us define

w̄ε
k =

min{wε
k, φ} in B2,

wε otherwise.

Then, by Lemma 4.1, the function

w̄k(x) = εw̄ε
k

( x − x0

ε

)
satisfies w̄k ∈ S, w̄k ≤ 0 in Bε(x0) and w̄k ↘ u in Bε(x0), as required. �

Corollary 4.5. u is locally Lipschitz in Ω, continuous in Ω, u = g on ∂Ω. Moreover u solves

Lu = f2χ{u<0}, in Ω−(u).

5. The function u+ is non-degenerate

In this section we will show that u+ is non-degenerate, in the sense of the following result.

Lemma 5.1. Let x0 ∈ F (u) and let A be a connected component of Ω+(u)∩ (Br(x0)\Br/2(x0)) satisfying

A ∩ ∂Br/2(x0) , ∅, A ∩ ∂Br(x0) , ∅,

for r ≤ r0 universal. Then
sup

A
u ≥ Cr.

Moreover
|A ∩ Br(x0)|
|Br(x0)|

≥ C > 0,

where all the constants C depend on d(x, ∂Ω) and on u.

Corollary 5.2. F (wk)→ F (u) locally in Hausdorff distance and χ{wk>0} → χ{u>0} in L1
loc.

The proof of the above result will follow by the two following lemmas.

Lemma 5.3. Let u be a Lipschitz function in Ω ∩ B1(0), with 0 ∈ ∂Ω, satisfyingF(D2u) = f in Ω ∩ B1

u = 0 on ∂Ω ∩ B1.

If there exists c > 0 such that

u(x) ≥ c dist(x, ∂Ω) for every x ∈ Ω ∩ B1/2 (5.1)
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then there exists a constant C > 0 such that

sup
Br(0)

u ≥ Cr,

for all r ≤ r0 universal.

Proof. Let x0 ∈ Ω ∩ B1, ε = dist(x0, ∂Ω), and let L denote the Lipschitz constant of u. Then

cε ≤ u(x0) ≤ Lε.

We will show that, for δ > 0 to be fixed, there exists x1 ∈ Bε(x0) such that

u(x1) ≥ (1 + δ)u(x0). (5.2)

Then, iterating the procedure, one can conclude as in [9, Lemma 5.1].
Assume by contradiction that (5.2) does not hold. Then, defining the elliptic, homogeneous operator

F∗(M) = −F(−M) , we infer that

v(x) := (1 + δ)u(x0) − u(x) > 0 in Bε(x0) satisfies F∗(D2v) = − f .

Let r(L) = 1 − c/(4L); using the Harnack inequality we have that there exists C(L) such that

v ≤ C(L)(δu(x0) + ε2‖ f ‖∞) ≤
1
2

u(x0) in Br(L)ε(x0),

provided both δ and ε are sufficiently small (depending on c, L and ‖ f ‖∞). In terms of u, the previous
inequality writes as

u ≥
cε
2

in Br(L)ε(x0).

On the other hand, there exists y0 ∈ ∂Br(L)ε(x0) such that dist(y0, ∂Ω) = (1 − r(L))ε and hence

min
Br(L)ε(x0)

u ≤ u(y0) ≤ L dist(y0, ∂Ω) =
cε
4
.

This is a contradiction, therefore (5.2) holds true. �

Lemma 5.4. There exist universal constants r̄, C̄ such that

u(x0) ≥ C̄ dist(x0,F (u)) for every x0 ∈ {x ∈ Ω+(u) : dist(x,F (u)) ≤ r̄}.

Proof. Let x0 ∈ {x ∈ Ω+(u) : dist(x,F (u)) ≤ r̄}, with r̄ universal to be specified later, and let r :=
dist(x0,F (u)). We distinguish two cases.

First let us assume that
dist(x0,Ω

+(u)) ≤
r
2
.

In this case, for any x ∈ F (u) we define

ρ(x) := max{r > 0 : for some z, x ∈ ∂Br(z) and Br(z) ⊂ Ω+(u)}.
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Notice that ρ(x) > 0 for every x, since any point in F (u) is regular from the right by assumption. Thus,
recalling that u+ has linear growth bounded below by infx,ν G(0, x, ν), and noticing that B3r/4(x0)∩Ω+(u)
contains a ball of radius comparable with r (at least for a suitable choice of r̄):

sup
B3r/4(x0)

u+ ≥ sup
B3r/4(x0)

u+ ≥ C̄r,

where C̄ only depends on u.
On the other hand, in case

dist(x0,Ω
+(u)) ≥

r
2
,

we have u ≤ 0 in Br/2(x0). By Corollary 4.4 we can find {wk}k ⊂ S converging uniformly to u on some
D ⊃ Br(x0). By scaling

ur(x) =
u(x0 + rx)

r
, wr

k(x) =
wk(x0 + rx)

r
,

we need to find C̄ universal such that ur(0) ≥ C̄. Let us assume by contradiction that

ur(0) < C̄.

Then by Harnack inequality
ur ≤ C(C̄ + r‖ f1‖∞) in B1/2

and, for k sufficiently large,
wr

k ≤ C′(C̄ + r‖ f1‖∞) in B1/2.

Now, reasoning as in the proof of Corollary 4.4, let φ be such that
∆φ = −cr‖ f ‖∞ in B1/2 \ B1/4

φ = a on ∂B1/2

φ = 0 on ∂B1/4,

with a and r positive and sufficiently small so that ∇φ(e1/4) · e1 < infx,ν G(0, x, ν), in such a way that
φ, extended to zero in B1/4, is a supersolution in B1/2. Then, choosing C̄ < (a − r‖ f1‖∞)/C′ we obtain
that wr

k < φ on ∂B1/2 and then the functions

w̄r
k =


0 in B1/4,

min{wr
k, φ} in B1/2 \ B1/4,

wr
k otherwise

are continuous, while

w̄k(x) = rw̄r
k

( x − x0

r

)
satisfy w̄k ∈ S, w̄k ≡ 0 in Br/4(x0). This is in contradiction with the fact that u(x0) > 0, and the lemma
follows. �
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6. The function u is a supersolution

This section is devoted to the proof that u satisfies the supersolution condition (i) in Definition 1.1.
Thanks to Lemma 2.4 we only need to prove that, whenever u admits asymptotic developments at
x0 ∈ F (u), with coefficients α and β, then α ≤ G(β, x0, νx0). To do that, we need to distinguish the two
cases β > 0 and β = 0.

Lemma 6.1. Let x0 ∈ F (u), and

u+(x) = α 〈x − x0, ν〉
+ + o(|x − x0|),

u−(x) = β 〈x − x0, ν〉
− + o(|x − x0|),

with
β > 0.

Then α ≤ G(β, x0, νx0).

Proof. Since β > 0, then F (u) is tangent at x0 to the hyperplane

π : 〈x − x0, ν〉 = 0

in the following sense: for any point x ∈ F (u), dist(x,F (u)) = o (|x − x0|) . Otherwise we get a
contradiction to the asymptotic development of u.

Let {wk}k ⊂ S be uniformly decreasing to u, as in Corollary 4.4. By the non-degeneracy of u+

we have that, for k large, wk can not remain strictly positive near x0. Let dk = dH (F (wk) ,F (u)) be
the Hausdorff distance between the two free boundaries. In the ball B2

√
dk

(x0), F (u) is contained in
a strip parallel to π of width o

(√
dk

)
and, since dk → 0, F (wk) is contained in a strip S k of width

dk + o
(√

dk

)
= o

(√
dk

)
.

Consider now the points xk = x0−
√

dkν and let Bk = Brk (xk) be the largest ball contained in Ω− (wk)
with touching point zk ∈ F (wk). Then zk ∈ S k and, since wk ≥ u, from the asymptotic developments of
wk and u we have

β
√

dk + o
( √

dk

)
= u− (xk) ≥ w− (xk) = βkrk + o(rk),

since √
dk + o

( √
dk

)
≤ rk ≤

√
dk.

Passing to the limit we infer
lim sup βk ≤ β.

Reasoning in the same way on the other side th the points yk = x0 +
√

dk (and the same zk, which are
regular from the left), we get

α ≤ lim inf αk.

From αk ≤ G (βk, zk, νk), where νk = (xk − zk) / |xk − zk|, we get α ≤ G
(
β, x0, νx0

)
. �

To treat the case β = 0 we need the following preliminary lemma.
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Lemma 6.2. Let v ≥ 0 continous in B1(x0) be such that ∆v ≥ −M. Let

Ψr (x0, v) =
1
r2

∫
Br(x0)

|∇v|2

|x − x0|
n−2 dx.

Then, for r small,

Ψr (x0, v) ≤ c (n)
{

sup
B2r(x0)

(v
r

)2
+ M sup

B2r(x0)
v
}
. (6.1)

Proof. We may assume x0 = 0 and write Ψr (0, v) = Ψr (v). Rescale setting vr (x) = v (rx) /r; we have
∆vr ≥ −rM and

Ψr (v) = Ψ1 (vr) .

Let η ∈ C∞0 (B2), η = 1 in B1. Since 2 |∇vr|
2
≤ 2rMvr + ∆v2

r , we have:

Ψ1 (vr) ≤ C
∫

B2

η
|∇vr|

2

|x|n−2 ≤ C
∫

B2

η
2Mvr + ∆v2

r

|x|n−2

= C
∫

B2

[
2Mvr

|x|n−2 + v2
r ∆

(
η

|x|n−2

)]
,

so that

Ψr (v) = Ψ1 (vr) ≤ c (n)
(
|vr|

2
L∞(B2) + rM |vr|L∞(B2)

)
= c (n)

{
sup
B2r

(v
r

)2
+ M sup

B2r

v
}
,

which is (6.1). �

Lemma 6.3. Let x0 ∈ F (u), and

u+(x) = α 〈x − x0, ν〉
+ + o(|x − x0|),

u−(x) = o(|x − x0|).

Then α ≤ G(β, x0, νx0).

Proof. As before, let {wk}k ⊂ S be uniformly decreasing to u, with wk that is not strictly positive near
x0, for k large. The first part of the proof is exactly as in Lemma 6.3 of [9], until equation (6.2) below.
For the reader’s convenience, we recall such argument here.

For each k we denote with

Bm,k = Bλm,k

(
x0 +

1
m
ν

)
the largest ball centered at x0 + ν/m contained in Ω+(wk), touching F (wk) at xm,k where νm,k is the unit
inward normal of F (wk) at xm,k. Then up to proper subsequences we deduce that

λm,k → λm, xm,k → xm, νm,k → νm

and Bλm(x0 + ν/m) touches F (u) at xm, with unit inward normal νm. From the behavior of u+, we get
that

|xm − x0| = o
(

1
m

)
,
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1
m

+ o
(

1
m

)
≤ λm ≤

1
m

and
|νm − ν| = o(1).

Now since wk ∈ F , near xm,k in Bm,k :

w+
k ≤ αm,k〈x − xm,k, νm,k〉

+ + o(|x − xm,k|)

and in Ω \ Bm,k

w−k ≥ βm,k〈x − xm,k, νm,k〉
− + o(|x − xm,k|)

with
0 ≤ αm,k ≤ G(βm,k, xm,k, νm,k),

(by Lemma 2.5 the touching occurs at a regular point, for m, k large.) We know that

w+
k ≥ u+ ≥ α〈x − x0, ν〉

+ + o(|x − x0|),

hence
αm = lim inf

k→∞
αm,k ≥ α − εm

and εm → 0, as m→ ∞. We have to show that

β = lim inf
m,k→+∞

βm,k = 0.

We assume by contradiction that β̄ > 0. Acting as in [9, Lemma 6.3] we obtain, for r small,

(1 + ω(r))Φr(xm,k,wk) + Cω(r) ≥ cn α
2
m,kβ

2
m,k, (6.2)

where
Φr

(
xm,k,wk

)
= Ψr

(
xm,k,w+

k
)
Ψr

(
xm,k,w−k

)
.

By concavity we have that ∆w±k ≥ −M where M = c min (‖ f1‖∞, ‖ f2‖∞). Lemma 6.2 implies

cnα
2
m,kβ

2
m,k ≤ (1 + ω (r)) Ψr

(
xm,k,w+

k
)
Ψr

(
xm,k,w−k

)
+ Cω (r)

≤ c2 (n) (1 + ω (r))

 sup
B2r(xm,k)

(
w+

k

r

)2

+ M sup
B2r(xm,k)

w+
k

×
×

 sup
B2r(xm,k)

(
w−k
r

)2

+ M sup
B2r(xm,k)

w−k

 + Cω (r)

≤ C1 (n,M, L))

 sup
B2r(xm,k)

(
w−k
r

)2

+ M sup
B2r(xm,k)

w−k

 + Cω (r) ,

where L is the uniform Lipschitz constant of {w+
k }k (recall Lemma 3.4). Taking the lim inf as m, k → ∞

and using the uniform convergence of wk to u we infer

0 < cnα
2β̄2 ≤ C1 (n,M, L)

 sup
B2r(x0)

(
u−

r

)2

+ M sup
B2r(x0)

u−
 + Cω (r) .
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Recalling that, by assumption, u−(x) = o(|x − x0|) as x→ x0, we have

sup
B2r(0)

(
u−

r

)2

= o (1) as r → 0,

and we get a contradiction. �

7. The function u is a subsolution

In this section we want to show that u is a subsolution according to Definition 1.1. Note that, if
x0 ∈ F (u) is a regular point from the left with touching ball B ⊂ Ω−(u), then near to x0

u−(x) = β〈x − x0, ν〉
− + o(|x − x0|), β ≥ 0,

in B, and
u+(x) = α〈x − x0, ν〉

+ + o(|x − x0|), α ≥ 0

in Ω\B. Indeed, even if β = 0, then Ω+(u) and Ω−(u) are tangent to {〈x − x0, ν〉 = 0} at x0 since u+ is
non-degenerate. Thus u has a full asymptotic development as in the next lemma. We want to show that
α ≥ G(β, x0, ν). We follow closely [3] and [9].

Lemma 7.1. Assume that near x0 ∈ F (u),

u(x) = α〈x − x0, ν〉
+ − β〈x − x0, ν〉

− + o(|x − x0|),

with α > 0, β ≥ 0. Then
α ≥ G(β, x0, ν).

Proof. Assume by contradiction that α < G(β, x0, ν). We construct a supersolution w ∈ S which
is strictly smaller than u at some point, contradicting the minimality of u. Let u0 be the two-plane
solution, i.e.

u0(x) := lim
r→0

u(x0 + rx)
r

= α〈x, ν〉+ − β〈x, ν〉−.

Suppose that α ≤ G(β, x0, ν) − δ0 with δ0 > 0. Fix ζ = ζ(δ0), to be chosen later. By Corollary 4.4,
we can find wk ∈ F ↘ u locally uniformly and, for r small, k large, the rescaling wk,r satisfies the
following conditions:

if β > 0, then
wk,r(x) ≤ u0 + ζ min{α, β} on ∂B1;

if β = 0, then
wk,r(x) ≤ u0 + αζ on ∂B1

and

wk,r(x) ≤ 0, in {〈x, ν〉 < −ζ} ∩ B1.

In particular,
wk,r(x) ≤ u0(x + ζν) on ∂B1.
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If β > 0, let v satisfy 
F(D2v) = r f r

1 , in {〈x, ν〉 > −ζ + εφ(x)}
F(D2v−) = r f r

2 , in {〈x, ν〉 < −ζ + εφ(x)}
v(x) = 0, on {〈x, ν〉 = −ζ + εφ(x)}
v(x) = u0(x + ζν), on ∂B1,

(7.1)

where φ ≥ 0 is a cut-off function, φ ≡ 0 outside B1/2, φ ≡ 1 inside B1/4.

For β = 0, replace the second equation with v = 0.
Along the new free boundary, F (v) = {〈x, ν〉 = −ζ + εφ(x)} we have the following estimates:

|v+
ν − α| ≤ c(ε + ζ) + Cr, |v−ν − β| ≤ c(ε + ζ) + Cr,

with c,C universal.
Indeed,

v+ − α〈x, ν〉+

is a solution of
F(D2(v − α〈x, ν〉+)) = r f r

1 .

Thus, by standard C1,γ regularity estimates (see [16, Theorem 1.1])

|v+
ν − α| ≤ C

(
‖v − α〈x, ν〉+‖∞ + [−ζ + εφ]1,γ + r‖ f1‖∞

)
,

which gives the desired bound. Similarly, one gets the bound for v−ν .
Hence, since α ≤ G(β, x0, ν(x0)) − δ0, say for ε = 2ζ and ζ, r small depending on δ0

v+
ν < G(v−ν , x0, ν),

and the function,

w̄k =

{
min{wk, λv( x−x0

λ
)} in Bλ(x0),

wk in Ω \ Bλ(x0),

is still in S. However, the set
{〈x, ν〉 ≤ −ζ + εφ}

contains a neighborhood of the origin, hence rescaling back x0 ∈ Ω−(w̄k). We get a contradiction since
x0 ∈ F(u) and Ω+(u) ⊆ Ω+(w̄k). �

8. Properties of the free boundary

In this section we prove the weak regularity properties of the free boundary. Both statements and
proofs are by now rather standard and follows the papers [3] and [9] for problems governed by
homogeneous and inhomogeneous divergence equations, respectively. Thus we limit ourselves to the
few points in which differences from the previous cases emerge. Denote by Nε (A) an ε-neighborhood
of the set A. The following lemma provides a control of the Hn−1 measure of F (u) and implies that
Ω+ (u) is a set of finite perimeter.
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Lemma 8.1. Let u be our Perron solution. Let x0 ∈ F (u)∩ B1. There exists a positive universal δ0 < 1
such that, for every 0 < ε < δ ≤ δ0, the following quantities are comparable:

1. 1
ε
|{0 < u < ε} ∩ Bδ (x0)|,

2. 1
ε
|Nε (F (u)) ∩ Bδ (x0)|,

3. Nεn−1, where N is the number of any family of balls of radius ε, with finite overlapping, covering
F (u) ∩ Bδ (x0),

4. Hn−1 (F (u) ∩ Bδ (x0)) .

Proof. From [3], it is sufficient to prove the following two equivalences:

c1ε
n ≤

∫
Bε(x0)

|∇u|2 ≤ C1ε
n (8.1)

and

c3εδ
n−1 ≤

∫
{0<u<ε}∩Bδ(x0)

|∇u|2 ≤ C2εδ
n−1 (8.2)

with universal constants c1, c2,C1,C2.

Since F
(
D2u

)
= infα Lαu where Lα is a uniformly elliptic operator with constant coefficients and

ellipticity constant λ,Λ, we have Lαu+ ≥ f1 in Ω+ (u). Fix α = α0 and set

Lα0 = L =

n∑
i, j=1

ai j∂i j , A =
(
ai j

)
.

The upper bound in (8.1) follows by the Lipschitz continuity of u. The lower bound follows from
supBε(x0) u+ ≥ cε, c universal, infBε(x0) u+ = 0, the Lipschitz continuity of u, and the Poincaré inequality
(see [1, Lemma 1.15]).

To prove (8.2), rescale by setting

uδ (x) =
u (x0 + δx)

δ
, f δ1 (x) = f1 (x0 + δx) x ∈ B1 = B1 (0) .

Then Luδ ≥ δ f δ1 in Ω+
(
uδ

)
∩ B1. For 0 < ε < δ, let

uδ,s,ε = us,ε := max {s/δ,min {uδ, ε/δ}} .

We have:

− δ

∫
B1

f δ1 uε,s = −

∫
B1

uε,sLu+
δ

=

∫
B1

〈A∇u+
δ ,∇u+

ε,s〉dx −
∫
∂B1

〈A∇u+
δ , ν〉uε,sdH

n−1

=

∫
B1∩{0<s/δ<uδ<ε/δ}

〈A∇uδ,∇uδ〉dx −
∫
∂B1

〈A∇u+
δ , ν〉uε,sdH

n−1

since ∇uε,s = ∇uδ · χ{s/δ<uδ<ε/δ}.
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By uniform ellipticity, since u+ is Lipschitz and f1 is bounded, we get (δ < 1)∫
B1∩{0<s/δ<uδ<ε/δ}

|∇uδ|2dx ≤ C
ε

δ
,

with C universal. Letting s→ 0 and rescaling back, we obtain the upper bound in (8.2).
For the lower bound, let V be the solution to{

LV = −
χBσ
|Bσ |
, in B1

V = 0, on ∂B1
(8.3)

with σ to be chosen later. By standard estimates, see for example [12], V ≤ Cσ2−n and −〈A∇V, ν〉 ∼ C∗

on ∂B1, with C∗ independent of σ. By Green’s formula∫
B1

(LV)
u+
δ uε,0
ε
−

(
L

u+
δ uε,0
ε

)
V =

∫
∂B1

u+
δ uε,0
ε
〈A∇V, ν〉dHn−1 (8.4)

since V = 0 on ∂B1. We estimate

δ

∣∣∣∣∣∣
∫

B1

(LV)
u+
δ uε
ε

dx

∣∣∣∣∣∣ =
δ

|Bσ|

∣∣∣∣∣∣
∫

Bσ

u+
δ uε
ε

dx

∣∣∣∣∣∣ ≤ C̄σ, (8.5)

since u is Lipschitz and 0 ≤ uε,0 ≤ ε/δ. From (8.4) and (8.5) and the fact that 〈Aδ∇V, ν〉 ∼ −C∗ on ∂B1

we deduce that

δ

∫
B1

(
L

u+
δ uε,0
ε

)
Vdx ≥ −C̄σ − δ

∫
∂B1

u+
δ uε,0
ε
〈A∇V, ν〉dHn−1

≥ −C̄σ + C∗δ
∫
∂B1

u+
δ uε,0
ε

dHn−1.

Thus using that u+ is non-degenerate and choosing σ small enough (universal) we get that (δ > ε)

δ

∫
B1

(
L

u+
δ uε,0
ε

)
Vdx ≥ C̃. (8.6)

On the other hand in {0 < u+
δ < ε/δ} ∩ B1,

Lu+
δ uε,0 = 2δuε f δ1 + 〈A∇uδ,∇uδ〉. (8.7)

Combining (8.6), (8.7) and using the ellipticity of A we get that

2δ2

ε

∫
B1

uε f δ1 V +
δΛ

ε

∫
B1

|∇uδ|2V ≥ C̄.

From the estimate on V we obtain that for δ small enough

δ

ε

∫
B1

|∇uδ|2 ≥ C

for some C universal. Rescaling, we obtain the desired lower bound. �
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Lemma 8.1 implies that Ω+(u) ∩ Br(x), x ∈ F (u), is a set of finite perimeter. Next we show that in
fact this perimeter is of order rn−1.

Theorem 8.2. Let u be our Perron solution. Then, the reduced boundary of Ω+(u) has positive density
inHn−1-measure at any point of F (u), i.e. for r < r0, r0 universal,

Hn−1(F ∗(u) ∩ Br(x)) ≥ crn−1

for every x ∈ F (u).

Proof. The proof follows the lines of Corollary 4 in [3] and Theorem 8.2 in [9]. Let wk ∈ S, wk ↘ u in
B1 and L as in Lemma 8.1. Then Ω+ (u) ⊂⊂ Ω+ (wk) and Lwk ≥ F

(
D2wk

)
= f1 in Ω+(u). Let x0 ∈ F (u).

We rescale by setting

ur(x) =
u(x0 + rx)

r
, wk,r =

wk(x0 + rx)
r

x ∈ B1.

Let V be the solution to (8.3). Since ∇wk,r is a continuous vector field in Ω+
r (ur) ∩ B1, we can use it to

test for perimeter. We get

∫
B1∩Ω+

r (ur)

(
Vr f r

1 − wk,rLV
)
≤

∫
B1∩Ω+

r (ur)

(
VLwkr − wk,rLV

)
=

∫
F ∗(ur)∩B1

(
V〈A∇wk,r, ν〉 − wkr〈A∇V, ν〉

)
dHn−1 −

∫
∂B1∩Ω+

r (ur)
wkr〈A∇V, ν〉dHn−1.

(8.8)

Using the estimates for V and the fact that the wk are uniformly Lipschitz, we get that∣∣∣∣∣∣
∫
F ∗(ur)∩B1

V〈A∇wk,r, ν〉dHn−1

∣∣∣∣∣∣ ≤ C(σ)Hn−1(F ∗(ur) ∩ B1). (8.9)

As in [3] we have, as k → ∞, ∫
F ∗(ur)∩B1

wk,r〈A∇V, ν〉dHn−1 → 0,

∫
∂B1∩Ω+

r (ur)
wkr〈A∇V, ν〉dHn−1 →

∫
∂B1

u+
r 〈A∇V, ν〉dHn−1

and

−

∫
B1∩Ω+

r (ur)
wk,rLV →

?
Bσ

u+
r .

Passing to the limit in (8.8) and using all of the above we get∣∣∣∣∣∣r
∫

B1∩Ω+(ur)
V f r

1 +

?
Bσ

u+
r +

∫
∂B1

u+
r 〈A∇V, ν〉dHn−1

∣∣∣∣∣∣
≤ C(σ)Hn−1(F ∗(ur) ∩ B1).

(8.10)
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Since u is Lipschitz and non-degenerate, for σ small

1
|Bσ|

∫
Bσ

u+
r ≤ C̄σ,

and using the estimate for 〈A∇V, ν〉

−

∫
∂B1

u+
r 〈A∇V, ν〉dHn−1 ≥ c̄ > 0.

Also, since f r
1 is bounded, ∫

B1∩Ω+
r (ur)

V f r
1 ≤ C̄(σ).

Hence choosing first σ and then r sufficiently small we get that

Hn−1(F ∗(ur) ∩ B1) ≥ C̃,

C̃ universal. �

A. Some explicit barrier functions

For the reader’s convenience we collect here some explicit barrier functions which arise frequently
in our arguments. Their proof is based on comparison arguments, together with the well known chain
of inequalities

P−λ/n,Λu ≤ F(D2u) ≤ c∆u, (A.1)

where P−λ/n,Λ denotes the lower Pucci operator, and c = c(λ,Λ, n) > 0 since F is concave (see [5] for
further details).

Lemma A.1 (Barrier for subsolutions). Let u satisfy
F(D2u) ≥ f in B2(0) \ B1(0)
u ≤ a on ∂B2(0)
u ≤ 0 on ∂B1(0).

Then
u(x) ≤ α(x1 − 1) + o(|x − e1|) where α ≤ c1a + c2‖ f ‖∞,

as x→ e1, where the positive constants c1, c2 only depend on λ,Λ, n.

Proof. By comparison and (A.1) we infer that u ≥ φ in B2 \ B1, where φ solves
∆φ = −c‖ f ‖∞ in B2 \ B1

φ = a on ∂B2

φ = 0 on ∂B1,

for a universal c. Then direct calculations show that, for n ≥ 3,

φ(x) = A(|x|2 − 1) + B(|x|−n+2 − 1),
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where

A = −
c

2n
‖ f ‖∞, B =

3
1 − 2−n+2 A −

1
1 − 2−n+2 a.

Then the Lemma follows by choosing

α := ∇φ(e1) · e1 = 2A − (n − 2)B.

The proof in dimension n = 2 is analogous. �

Lemma A.2 (Barrier for supersolutions). Let u satisfy
F(D2u) ≤ r f in B2(0) \ B1(0)
u ≥ 0 on ∂B2(0)
u ≥ a > 0 on ∂B1(0).

Then
u(x) ≥ α(x1 + 2) + o(|x + 2e1|) where α ≥ c1a − c2r‖ f ‖∞,

as x→ −2e1, whenever r ≤ r̄, where the positive constants c1, c2 and r̄ only depend on λ,Λ, n.

Proof. By comparison and (A.1) we infer that u ≥ φ in B2 \ B1, where φ solves
P−λ/n,Λφ = r‖ f ‖∞ in B2 \ B1

φ = 0 on ∂B2

φ = a on ∂B1.

Then direct calculations show that

φ(x) = A(|x|2 − 4) + B(|x|−γ − 2−γ), where γ =
Λn(n − 1)

λ
− 1 ≥ 1

and

A =
n

2(γ + 2)λ
r‖ f ‖∞ > 0, B =

1
1 − 2−γ

a +
3

1 − 2−γ
A > 0.

To check this, one needs to choose r ≤ r̄ = r̄(γ), in such a way that D2φ(x) has exactly one positive
eigenvalue, for 1 ≤ |x| ≤ 2. Then the Lemma follows by choosing

α := ∇φ(−2e1) · e1 = −4A + γ2−γ−1B. �
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