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Abstract: Microbiome data require statistical models that can simultaneously decode microbes’
reaction to the environment and interactions among microbes. While a multiresponse linear regression
model seems like a straight-forward solution, we argue that treating it as a graphical model is
problematic given that the regression coefficient matrix does not encode the conditional dependence
structure between response and predictor nodes. This observation is especially important in biological
settings when we have prior knowledge on the edges from specific experimental interventions that can
only be properly encoded under a conditional dependence model. Here, we propose a chain graph
model with two sets of nodes (predictors and responses) whose solution yields a graph with edges
that indeed represent conditional dependence, thus agreeing with the experimenter’s intuition on the
average behavior of nodes under treatment. The solution to our model is sparse via the Bayesian linear
regression (LASSO). In addition, we propose an adaptive extension so that different shrinkages can be
applied to different edges to incorporate edge-specific prior knowledge. Our model is computationally
inexpensive through an efficient Gibbs sampling algorithm and can account for binary, counting, and
compositional responses via an appropriate hierarchical structure. We test the performance of our
model in a variety of simulated datasets, thereby showing superior performance to state-of-the-art
approaches. We further apply our model to human gut and soil microbial compositional datasets, and
we highlight that CG-LASSO can estimate biologically meaningful network structures in the data. Our
software is available as an R package at https://github.com/YunyiShen/CAR-LASSO.
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1. Introduction

Microbial communities are among the main driving forces of all biogeochemical processes on Earth.
On one side, many critical soil processes, such as mineral weathering and soil cycling of mineral-sorbed
organic matter, are governed by mineral-associated microbes [1-5]. On another side, the plant and soil
microbiome drive phenotype variations related to plant health and crop production [6,7]. In addition,
as evidenced by The Human Microbiome Project [8], the microbes that live in the human body are key
determinants of human health and disease [9].

Understanding the composition of microbial communities and what environmental or experimental
factors play a role in shaping this composition is crucial to comprehend biological processes in humans,
soil, and plants alike, and to predict microbial responses to environmental changes. However, the inter-
connectivity of the microbes-environment is still not fully understood. One of the reasons for this gap
in knowledge is the lack of statistical tools to simultaneously infer connections among microbes and
their direct reactions to different environmental factors in a unified framework.

On the surface, a statistical solution to this problem seems straight-forward. On one side, a
multiresponse linear regression model (sometimes denoted covariate-adjusted Gaussian graphical
models [10]) with microbial abundances as responses and environmental features as predictors can
allow us to estimate links between the environment and the microbial compositions. On the other
side, graphical LASSO [11, 12] allows us to infer sparse partial correlations among the microbial
abundances that represents the microbial community as a network. Thus, intuitively, the combination
of a multiresponse linear regression model to infer links between environment and microbes, and a
graphical LASSO model to infer interactions among microbes would provide a framework to
investigate microbe-microbe and microbe-enviroment interactions. However, in this formulation the
regression coefficients between responses (microbes) and predictors (environment) represent marginal
effects rather than direct effects.

The distinction between marginal effect and direct effect is crucial when we would like to
biologically interpret the result or to include prior biological knowledge to the model [13]. For
instance, penicillin has no biological effect on Gram-negative bacteria, yet it might still promote the
abundance of such bacteria by inhibiting their Gram-positive competitors. In this example, penicillin
has no direct effect on Gram-negative bacteria, but it may have a marginal effect on them (via
interaction among microbes). Figure 1(B) illustrates this case. In this figure, X represents penicillin,
Y, represents the relative abundance of Gram-positive bacteria, and Y, represents the relative
abundance of Gram-negative bacteria. There is not a direct link between X (penicillin) and
Gram-negative (Y,), and there is a negative (blue) link between penicillin and Gram-positive bacteria
(Y1). Both microbes in this example are competitors, and thus, negatively correlated (with a blue
link). In this figure, links correspond to conditional dependency and thus, the network can be denoted
a conditional network. In contrast, a marginal network would display a spurious positive (red) link
between penicillin (X) and Gram-negative bacteria (Y;), since the relative abundance of such bacteria
would likely increase by the inhibition of Gram-positive competitors. While the marginal network
could be interesting in some settings, we argue that it is not as biologically meaningful as the
conditional network here; the standard multiresponse linear regression with graphical LASSO (which
produces marginal associations) is not adequate to investigate microbe-environment interactions,
especially when the marginal effects of environmental variables are assumed to be sparse.
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Here, we introduce a model framework to infer a sparse conditional network structure that
represents both interactions among microbes and environmental effects. Specifically, our model
simultaneously estimates the direct effect of a set of predictors (e.g., diet, weather, experimental
treatments) that influence the responses (e.g., abundances of microbes) and connections among the
responses. Our model is represented by a chain graph [14, 15] with two sets of nodes: predictors and
responses (Figure 1). Directed edges between a predictor and a response represent conditional links,
and undirected edges among responses represent correlations. We argue that conditional links, as
those in the chain graph in Figure 1, are more biologically meaningful. For example, networks A and
C can produce a similar marginal correlation structure between any two nodes. In network D, X and
Y, are conditionally correlated, yet they might not have a marginal correlation. For example, if Yy, Y,
have a marginal variance of 1, a covariance of p = -0.5, the conditional regression coefficient
between Y, and X conditioned on Y, is §; = 2, and the conditional regression coefficient between Y,
and X conditioned on Y; is 8, = 1, then we can show that the marginal regression coefficient between
Y, and X when integrating out Y is zero (o8, + 5, = 0). While chain graph models are not new, we
argue that they are under-utilized in microbiome studies, and our work will serve to illustrate their
potential to elucidate ties between microbial interactions and experimental or
environmental predictors.

Finally, we accompany our model with an open-source easy-to-use software: the novel R package
CARlasso which is publicly available on GitHub (https://github.com/YunyiShen/CAR-LASSO). This
package has a similar structure to existing regression tools in R for the ease of use among the
microbiology community.

Figure 1. Microbe-microbe and microbe-environment interactions represented as chain
graphs. In a chain graph, we use triangles to represent environmental predictors (here, X) and
circles to represent the responses Y, and Y, (e.g., relative abundances for two microbes). Red
edges correspond to positive conditional links between nodes while blue edges correspond to
a negative conditional links.

2. Methods

2.1. Model specification

We define a chain graph model that takes a matrix of relative abundances and a matrix with
environmental (or experimental) predictors as input. Relative abundances are the fraction of
sequencing reads in a sample that are assigned to a specific microbial group relative to the total
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number of reads, thus representing that microbe’s share of the microbial community. The model
infers interactions among microbes (as the precision matrix ) and direct effects among
environmental predictors and microbial abundances (as the regression coefficient matrix B), and
represents both matrices as a chain graph with two types of nodes (Figure 1). Note that the base
model is defined on Gaussian responses and does not directly apply to microbial abundances that are
compositional. We extend the base normal model to compositional data via a hierarchical structure
(see the Appendix A.4).

Let Y; € R¥ be a multivariate response with k entries (microbial units) fori = 1, ..., n samples. Let
X; € R™” be the row vector of environmental predictors for i = 1,...,n (i.e., the i’ row of the input
matrix X € R™7”). We assume that the input matrix is standardized so that each column has a mean of
0 and the same standard deviation (set to be 1 in the simulations).

Let Y; follow a Normal distribution with mean vector Q' (B”X” +) and precision matrix Q € R¥¥,
where B € RP** corresponds to the regression coefficients that connects the responses (Y; € R¥) and
the predictors (X; € R'*?) and u € R corresponds to the intercept.

While the inclusion of € in the mean function is unusual in statistical settings, we argue that it is
necessary to draw the right biological interpretations — abundance of microbial taxa is determined by
both the environmental effect and inter-taxa interactions. Indeed, in this parametrization, B encodes
the direct effect of X on 'Y as Bj, is the coeflicient of product between X; and Y,. If B;, = 0, then X;
and Y, are conditionally independent. This is analogous to the case of £ whose off-diagonal entries
encode the conditional dependence between responses Y, and Y,,. To see the analogy, we provide an
interpretation of the parameters in the same manner as in a univariate linear regression. Let Y_, be the
vector of responses without the gth component, let Y_¢, , be the vector of responses without the gth
and ¢’th components, and let X_; be the vector of predictors without the jth component.

E[Y,X; = xj+ 1,Y_,, X_;,B,Q] — E[Y,|X; = x;, Y_,, X_;, B, Q] = B}, /().

@.1)
E[Y, )Yy =Yy + 1, Y (g0 X, B, QI = E[Y, 1Y, = s, Y (001 Xo B, Q] = Wy /(—0g).

In particular, by fixing the values of all but one predictor and all of the other responses, an increase
of one unit in X; is associated with Bj,/(w,,) unit increase in the expectation of Y,, hence conditioned
on the values of all other responses Y.

In contrast, in the alternative approach of multiresponse linear regression, the regression
coefficients denoted as B = BQ, are marginal effects, that  is,
E[Y, X; = x; + 1,X_j, B,Q] - E[Y,X; = x;, X_;, B,Q] = qu. Note that the crucial difference here is
that we do not condition on Y_, (all other microbes). Specifically within the microbiome the presence
of Q7! in the mean represents the ecological knowledge that the responses of a species (e.g., relative
abundances of microbes) depend on both its reaction to the environment (B) and interactions with
other species (£2). In our model, the regression coeflicients matrix B encode conditional dependence
among the responses (scaled by variance) and the predictors which, arguably has a more mechanistic
interpretation [14, 16, 17]. The key difference between conditional and marginal effects lies in whether
we condition on the abundances of other microbes (Y_,). Using an antibiotic treatment as an example,
the conditional effect represents a hypothetical scenario in which we hold all other microbial
abundances and treatments fixed, and increase the antibiotic level by one unit. It captures the direct
effect of the antibiotic on microbe ¢, independent of changes in the rest of the community. In contrast,
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the marginal effect does not condition on other microbes. It reflects the overall effect of antibiotics on
microbe g, thus encompassing both direct and indirect effects mediated through interactions among
microbes. Because microbial communities are typically highly interconnected, it is generally
unrealistic to assume that a treatment would have a zero marginal effect on any single microbe: doing
so would imply that all indirect effects through the network of interactions perfectly cancel out.

For more theoretical details on the model specification, prior specification, computational
implementation, and extensions, see Appendix A.4.

2.2. Method performance on simulated data

We simulate data under the six graphical structures in [12]: 1) an AR(1) model so that  is
tridiagonal; 2) an AR(2) model such that w; = 0 whenever |k — k’| > 2; 3) a block model so that
there are two dense blocks along the diagonal; 4) a star model with every node connected to the first
node; 5) a circle model so that the graph forms a circle, and 6) a full dense model. See Figure 2 for a
visual description of the six precision matrices (€2).

We vary the sparsity of the regression coeflicients (environmental effects on microbes) B (denoted
beta sparsity in the figures) with either 80% or 50% entries equal to zero with non-zero entries
sampled from a standard Normal distribution. The multivariate response is sampled with dimension
k = 10,30 (microbes), p = 5, 10 predictors, and n = 50 samples. The design matrices are sampled
from standard Normal distributions (more details in the Supplementary Material). Each simulation
setting was repeated 50 times.
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Figure 2. Precision matrices Q and corresponding graphical structure used in the
simulations. These six models correspond to the six graphical structures in [12]. Positive
entries are represented in gray and negative entries are represented in black.

On the simulated data, we compare the performance of 12 methods that generally fall into two
categories: 1) methods that estimate both B and € (or that can get the parameters by transformation),
and 2) methods that only estimate €.

The methods that estimate both B and € are as follows:

1) CG-LASSO: our proposed model, denoted as CG-LASSO or CG in the figures;
2) Adaptive CG-LASSO: our proposed model with different shrinkage parameters for different
entries in B and  (CG-ALASSO and CG-A in the figures);
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3) SRG-LASSO: Bayesian LASSO with standard mean-covariance parametrization, that is, sparsity
ison B = BQ ™! and Q (see Section A.1) (SRG-LASSO and SRG in the figures);

4) Bayesian multiresponse regression with conjugate priors, (multireg in the figures), and

5) Bayesian multiresponse regression with conjugate priors that assume the marginal mean is 0
similar to Graphical LASSO (multireg mu® in the figures).

Note that methods 3-5 are based on the idea of fitting the marginal model (similar to covariate-
adjusted GGMs, e.g., [18, 19]) and getting the chain graph parameter by transforming B = BQ. While
methods 4-5 put do not provide sparsity assumptions, method 3 indeed imposes sparsity on B rather
than on B. All of our comparisons in the simulations are based on the conditional parameter B; however
see the results on real data (Section 2.3) for comparisons among the marginal, the conditional, and the
conditional obtained from the marginal parameters.

The methods that only estimate € are as follows:

6) Graphical LASSO in [12], (GLASSO in the figures);

7) Adaptive Graphical LASSO: adaptive version in [12] (GALASSO in the figures);

8) Augmented Graphical LASSO: Graphical LASSO including responses and predictors assumed
Normally distributed (denoted as GLASSO-aug in the figures);

9) Adaptive version of Augmented Graphical LASSO (GALASSO-aug in the figures);

10) Bayesian multiresponse regression with conjugate priors (Wishart prior on the precision matrix
and a Normal prior on the mean) that assume the marginal mean is O (similar to Graphical
LASSO), but using all the responses and predictors as “responses” in the model and no
predictors (multireg mu®-aug in the figures);

11) Calculate the inverse of the empirical covariance matrix (ad-hoc in the figures), and

12) Calculate the inverse of the empirical covariance matrix with both responses and predictors
(ad-hoc-aug in the figures).

As in [12] and [20], we set the hyperparameters of the Gamma hyperprior for the shrinkage
parameters of both B and Q as r = 0.01,5 = 107° for the adaptive versions, and » = 1,6 = 0.01 for the
non-adaptive versions. In the multiresponse regression models (methods 8-10), we consider any edge
with weight < 1 x 1072 to be 0.

To evaluate the performance of the methods, we compute the Frobenius loss of the estimate of B
and the Stein’s loss of the estimate of €. We use Stein’s loss for £ since it is the KL-divergence when
the mean vector is 0. In addition, we evaluate the reconstruction of the graphical structures based on
the Matthews correlation coefficient (MCC) [21], which ranges from —1 to 1, with 1 representing a
perfect prediction.

Finally, we calculate the proportion of true positive edges and false positive edges in the
reconstructed graphs (both B and €). The true positive rate is calculated as the proportion of times a
true edge is reconstructed, and the false positive rate is calculated as the proportion of times an edge
appears in the estimated graph that is not present in the true graph. The false positive rate is presented
as a negative quantity in the figures aligned with standard network reconstruction practices [22].
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2.3. Application to real microbiome data
2.3.1. Human gut microbiome compositional data

The microbiome of older people displays greater inter-individual variations than that of younger
adults. The study in [23] collected the faecal microbiome composition of 178 elderly subjects,
together with the subjects’ residence type (in the community, day-hospital, rehabilitation, or in
long-term residential care) and diet (data at [24]). Researchers studied the correlation between
microbes and other measurements. They found that the individual microbiomes of people in long-stay
care were significantly less diverse, and this loss of diversity might associate with increased frailty.
They clustered microbes based on co-abundances and performed dimension reduction techniques to
infer relationships between composition and health. However, co-abundances might not appropriately
infer interactions because of the existence of other microbes and the environment [25]. Partial
correlations between microbes and the environment or other microbes are more ecologically
meaningful. Here, we infer the partial correlation between environments and among microbes in
those elderly subjects by reconstructing a sparse network via the adaptive CG-LASSO model.

We use the MG-RAST server [26] for profiling, with an e-value of 5, and identity of 60%, an
alignment length of 15 bp, and a minimal abundance of 10 reads. Unclassified hits are not included in
the analysis. A genus with more than 0.5% (human) or 1% (soil) relative abundance in more than 50
samples is selected as the focal genus, while all other genus serve as the reference group.

We reconstruct the weighted graph using the conditional regression coefficient between any two
nodes. The a—centrality [27] is used to identify the importance of the nodes. A weighted adjacency
matrix is constructed with the posterior mean of the conditional regression coeflicients of those that
showed significance with the horseshoe method described in Section A.3.3.

2.3.2. Soil microbiome compositional data

The objective of this study [28, 29] is to examine the soil microbial community composition and
structure of both bacteria and fungi at a microbially-relevant scale. The researchers isolated soil
aggregates from three land management systems in central Iowa to test if the aggregate-level
microbial responses are related to plant community and management practices. The clean dataset
has 120 samples with 17 genera under consideration. We focus on the bacteria to further evaluate the
partial association among them and the environmental factors.

We use the MG-RAST server [26] with the same settings as used for the human gut microbiome data
described in Section 2.3.1. In addition, a weighted adjacency matrix is constructed with the posterior
mean of the conditional regression coefficients of those that showed significance with the horseshoe
method described in Section A.3.3.

3. Results

3.1. Method performance on simulated data
3.1.1. Performance on the inference of B
We select the four best performing methods based on the MCC plus a Bayesian multiresponse

linear regression as a reference (multireg) to plot the true and false positive rates in the estimation
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of the regression coefficient edges (B). Figure 3 shows the accuracy of reconstruction for B for the
simulation study with k£ = 10 nodes, p = 10 predictors and a sparsity level of 0.8 (see Figures A1-A3
for other number of nodes, predictors and sparsity). Adaptive CG-LASSO (CG-A) produces the lowest
false positive rate (represented as light blue entries) compared to the other methods, with the Bayesian
multiresponse linear regression having the highest false positive rates. As shown in Figure 3, the circle
model is particularly difficult for SRG-LASSO, with higher false positive rates than other precision
matrices.

Our proposed models (CG-LASSO and adaptive CG-LASSO) outperform the other models to
reconstruct B, as evaluated by the MCC in Figure A4 for k = 10. For k = 30, both CG-LASSO and
SRG-LASSO have comparable performances (Figure AS5), but adaptive CG-LASSO continues to
outperform all other methods in almost every combination of sparsity settings on B and structure of £
(Figure 2). Regarding the Frobenius loss of the estimate of B (Figure A6 for k = 10 and Figure A7 for
k = 30), both adaptive and non-adaptive CG-LASSO outperform all other methods. This is
particularly true for the circle model for which the Frobenius loss of SRG-LASSO is much higher
than any other method.

Note that SRG-LASSO and the Bayesian multiresponse linear regression use the formulation of
covariate-adjusted GGMs to fit the marginal model and obtain the conditional regression coefficients
by transformation. The simulation results show that SRG-LASSO and the Bayesian multiresponse
linear regression models have lower MCCs (Figure A4) and high false positive rates (Figure 3); thus,
these models are not very effective to infer B when B is indeed sparse, which justifies the use of the
chain graph model (CG-LASSO). After all, the chain graph model puts a different sparsity assumption
and has a different interpretation than the marginal model and the covariate-adjusted GGM.

3.1.2. Performance on the inference of Q

In terms of false positive rates in the reconstruction of €2, we select the four best methods in terms of
the MCC: adaptive CG-LASSO, CG-LASSO, SRG-LASSO, and augmented GLASSO, alongside the
Bayesian multiresponse linear regression as a reference (multireg). Figure 4 (for £ = 10 nodes, p = 10
predictors and a sparsity level of 0.8) shows that adaptive CG-LASSO outperforms all other methods in
terms of controlled false positive edges, with the Bayesian multiresponse linear regression performing
the worst. See Figures A8, A9, and A10 for other numbers of nodes, predictors, and sparsity levels.

Additionally, our simulations show that adaptive CG-LASSO outperforms all other alternatives
to accurately reconstruct the structure of € in most settings (evaluated by MCC in Figures Al1 for
k = 10, and in Figure A12 for k = 30). Non-adaptive CG-LASSO and SRG-LASSO show comparable
performance, as well as augmented GLASSO. The star model proves to be equally difficult for all
methods. In the star model, the off diagonal signal is weak compared to other models (off diagonal
entries are close to 0.1 while diagonal entries are close to 1). Moreover, it is the sparsest setting, with
80% of the off diagonal entries to be zero when k = 10 and 93% when k = 30. This setup might cause
penalized methods to over penalize the off diagonal entries. Additionally, the AR2 model for k = 30
nodes (Figure A12) proves to be difficult for all methods, except for the adaptive CG-LASSO.

It is worth noting that (augmented) graphical LASSO shows good performance in most cases
(Figure A11). However, this method assumes that the joint distribution of responses and predictors is
Normal. This is the case in our simulation setup, and hence, the good performance of the method.
However, our CG-LASSO model is more flexible because it does not make any assumptions on the
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Figure 3. Reconstruction accuracy of the graph between responses and predictors (B) for
k = 10 nodes, p = 10 predictors and sparsity of 0.8. Red entries correspond to true positive
edges and blue entries correspond to false positive edges. Our proposed method Adaptive
CG-LASSO (CG-A) outperforms the other methods by displaying the lowest false positive
rate (lighter blue) across all precision matrices (columns).

design matrix.

In terms of the Stein’s loss of the estimate of €, (adaptive) CG-LASSO, SRG-LASSO, and
augmented GLASSO all have comparable performances with losses close to zero under most settings
(Figure A13 for k = 10 and Figure A14 for k = 30).

3.1.3. Computational speed and scaling

We test the scalability of our estimation procedure by simulating 500 and 1000 samples with 5, 10,
25, 50, and 100 nodes. We sample 1000 generations with 100 burn-in on a machine with a Core-i17 4790
CPU and the Windows 7 operating system. We recorded the CPU seconds in R. While our models are
slower than Graphical LASSO or multiresponse regression, running time is not severely impacted by
sample size (Figure A15). Instead, speed is mostly influenced by the number of nodes and the number
of predictors. However, even the case of 100 nodes and 10 predictors is successfully completed in less
than 10 minutes.
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Figure 4. Reconstruction accuracy of the graph among responses (€2) for k = 10 nodes,
p = 10 predictors and a sparsity of 0.8. Red entries correspond to true positive edges and
blue entries correspond to false positive edges. Our proposed method Adaptive CG-LASSO
(CG-A) outperforms the other methods by displaying the lowest false positive rate (lighter
blue). We omit the dense model because it has no false positive or true negatives.
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3.2. Application to real microbiome data
3.2.1. Human gut microbiome compositional data

Figure 5 shows the estimated human gut microbiome network under the adaptive CG-LASSO
model where the edges with the most weight correspond to connections between genus nodes, not so
much with predictors. The most important predictor is whether the patient’s residence was a
long-term residential care, which positively affected genus Caloramator. This result agrees with the
original analysis that also separated elderly subjects based upon where they live in the community.
Another important predictor is diet group 4, which corresponds to the high fat/low fiber group. This
diet positively affected genus Caloramator as well.

Clostridium

Eubacterium

. : Caloramator
Faecalibacterium

Butyrivibrio

Hespellia
Blautia
Parabacteroides
Barnesiella
Ruminococcus
Bacteroides

Selenomonas

Alistipes
Veillonella
BMI
Age
4 DietPEG
GenderMale A \
a Diet4
StratumDayHospital A a a Diet3

StratumLong—-term
StratumRehab

Dietl

alpha_centrality ® 25 @ 50 @ 75 @ 100 @ 125  abs_weight 01 wm 02 Wl o3 [l o4 ] o5

Figure 5. Reconstructed genus conditional network for human gut microbiome using the
adaptive CG-LASSO model. Triangle nodes correspond to predictors and circle nodes
correspond to relative abundances of the genera. The node size on the circle nodes correspond
to the a—centrality values [27]. The width of the edges correspond to the absolute weight,
and the color to the type of interaction (red positive, blue negative).

Comparison with a marginal network. As a comparison, in Figure 6, we estimate the marginal
network to observe the differences with the conditional network in Figure 5. To obtain the marginal
network, we start with the conditional network and use the equivalence B = BQ! in Section A.1.
Edges between predictors and responses are marginal regression coefficients, while edges between
responses are covariances. Edges between responses and predictors generally agree within two cases,
given that the partial correlation between responses are mostly positive (Figure 6). However,
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marginally, the connection between responses and predictors is very dense. This is because all
responses (genus) are connected by their partial correlations so that as long as the predictor can
conditionally influence one of the responses, it should be able to marginally affect all the responses.
We observe that some edges flip color when comparing the conditional and marginal networks. For
example, the link between diet group 2, which corresponds to both complex (wholegrain breakfast
cereals and breads, boiled potatoes) and simple carbohydrates (white bread), and Veillonella is blue
(negative) in the conditional network (Figure 5) and red (positive) in the marginal network (Figure 6).
Veillonella is well known for its lactate fermenting abilities; thus, a negative link with a carbohydrate
diet is reasonable. Edges that flip color can be explained by interactions with other genera. Another
example is that, marginally, all links are blue (negative) from the diet group percutaneous endoscopic
gastrostomy (PEG)-fed subjects to the genus, whereas, conditionally there is a positive (red) link with
Parabacteroides. These observations further reiterate that we should distinguish marginal and
conditional effects of predictors in these research scenarios, especially when sparsity is assumed,
since it is usually impossible to have both sparse marginal and conditional effects.

Last, we also compare our conditional network (Figure 5) with the conditional network obtained
by fitting a multiresponse regression, and then transform the parameters into the conditional chain
graph representation using the equivalence B = BQ in Section A.1 (Figure A16). This last network
(transformed conditional network) is extremely dense, even though biologically, we expect the network
to be sparse (hence the sparsity imposed by the chain graph model). This result shows the importance
of having a proper sparsity prior, which is what our adaptive CG-LASSO has.

Soil microbiome compositional data. Figure 7 shows the soil microbiome estimated network
using the adaptive CG-LASSO model. In this network, the most important link is between
Candidatus Solibacter and Candidatus Koribacter. In this case, there are not important connections
with predictors, which seems to suggest that the soil microbial community is robust to environmental
perturbations. These results agree with the original research [28,29] that indicated that core microbial
communities within soil aggregates are likely driven by stable and long-term factors such as clay
content rather than relative short time scaled land management, such as the ones considered as
predictors in this study. We note that the original research concentrated on the diversity of the
community, while our analysis focuses on the structure and correlations within the community.

Comparison with a marginal network. Again, we estimate the marginal network (Figure 8),
starting with the conditional network, thereby using the equivalence B = BQ ! in Section A.1. Edges
between predictors and responses are marginal regression coefficients while edges between responses
are covariances. In the estimated network (Figure 8), we see a much stronger marginal effect of
environmental predictors than the one we saw with conditional effects (Figure 7). The LASSO
penalty might contribute to this behavior, but it might also be because the observed strong dependence
between microbes and the environment is due to the strong partial correlation among microbes. In
addition, marginally, crop agriculture and total nitrogen (total N) have strong correlations to multiple
genera. However, this pattern is not obvious in the conditional network (nor on the original research).
It might suggest that the influence of crop agriculture and the total N might be enhanced by a strong
partial correlation among microbes. The largest partial regression coefficient for the total N is to
genus Nitrososphaera, which is indeed a N-fixing genus that has the highest a—centrality (Figure 9).

Last, we also compare our conditional network (Figure 7) with the conditional network obtained
by fitting a multiresponse regression, and then transform the parameters into the conditional chain
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Figure 6. Reconstructed genus marginal network for human gut microbiome using
multiresponse regression.  Triangle nodes correspond to predictors and circle nodes
correspond to relative abundances of genus. The node size on the circle nodes correspond
to the a—centrality values [27]. The width of the edges correspond to the absolute weight,
and the color to the type of interaction (red positive, blue negative). Edges are marginal
rather than conditional. Note that the larger size of the triangles compared to the triangles
in the conditional network (Figure 5) are an effect of the shrinkage of the circle nodes in
this network.
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Figure 7. Reconstructed genus conditional network for soil microbiome using adaptive CG-
LASSO. Triangle nodes correspond to predictors and circle nodes correspond to relative
abundances of genus. The node size on the circle nodes corresponds to the a—centrality
values [27]. The width of the edges corresponds to the absolute weight and the color
corresponds to the type of interaction (red positive, blue negative). Weak links with the
environment (triangle nodes) agree with the original research [28, 29] that showed stable
microbial community to environmental perturbations.
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graph representation using the equivalence B = BQ in Section A.1 (Figure A17). This last network
(transformed conditional network) is extremely dense, even though biologically, we expect the network
to be sparse (hence the sparsity imposed by the chain graph model). We expect microbiome networks
to be sparse because each microbial unit typically directly interacts with only a small subset of the
community, and many taxa are rare or undetected in any given sample. Similar to the human gut data,
this result shows the importance of having a proper sparsity prior.

To conclude, both the marginal network (Figure 8) and the conditional network transformed from
marginal coefficients (Figure A17) disagree with the original research that core microbial
communities within soil aggregates are likely driven by stable and long-term factors instead of the
predictors measured in the data. Unlike marginal effects, conditional effects of the environment
(Figure 7) can be more informative to biologists who would like to conduct research in understanding
the environment’s effect on certain microbes, for instance, the effect of environmental antibiotics.

It is worth highlighting that our model can produce biologically relevant results from relatively
small sample sizes: 120 samples for the soil microbiome study and 178 samples for the human gut
microbiome study.

3.3. Comparison of a—centrality and abundances in human and soil communities

We evaluate the a—centrality based on the estimated network for both datasets (human gut and
soil) to identify keystone genus. Within Figure 9, the y-axis represents the ranking of genera based
on the point estimation of the grand mean (u) (i.e., the log relative abundances), that is, the genus
on the top corresponds to the most abundant microbes (Clostridium for human gut and Terrimonas
for soil); the x-axis shows the estimated @—centrality for each genus. For the human gut data, the
genus with the highest @—centrality is Bacteroides, which is an abundant genus and known to have the
ability to moderate the host’s immune response [30] and transfer antibiotic genes to other members
of the community [31]. For the soil data, the genus with highest a—centrality is Nitrososphaera.
Members of this genus have the ability to perform ammonia oxidizing, which might play a major role
in nitrification [32], which is crucial in the soil microbial community. We observe a general trend
that abundant genus have a higher a—centrality, but this trend is not definite. For instance, neither
Bacteroides nor Nitrososphaera have the highest abundance. The Spearman correlation coefficients
between the estimated relative abundance and a—centrality in the human gut dataset is 0.68 while
it is 0.58 in the soil dataset. Moreover, the variation of the a—centrality measure is larger in the soil
(standard deviation is 0.67 times the mean in the soil data, while the standard deviation is 0.38 times the
mean in the human gut data). The difference might due to the more variate environmental conditions
in soil, which makes it difficult to have just one genus taking the central role.

4. Discussion

4.1. Flexibility of the Bayesian model

Compared with the frequentist method, the Bayesian method allows for an easier extension of the
core Normal model to different types of responses via hierarchical structures. As long as one can
sample from the full conditional distribution of the (latent) normal variable, the posterior sampling is
a straight-forward extension of the proposed Gibbs sampler. Though not shown here, other commonly
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Figure 8. Reconstructed genus marginal network for soil microbiome using multiresponse
regression. Triangle nodes correspond to predictors and circle nodes correspond to relative
abundances of genus. The node size on the circle nodes correspond to the a—centrality
values [27]. The width of the edges corresponds to the absolute weight and the color
corresponds to the type of interaction (red positive, blue negative). Edges are marginal
rather than conditional. Strong links with environment (triangle nodes) disagree with the
original research [28,29] which showed that the microbial community should be stable to
environmental perturbations.
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Figure 9. a—centrality of genera ranked by abundances. We rank the genera based on
estimated relative abundance (upper = higher abundance), where the bars correspond to
the estimated a—centrality. We see a general trend of abundant genera having a higher
a—centrality, but it is not definite.

encountered models in biology are also simple extensions of our model (e.g., zero-inflated Poisson and
multinomial [33]). By using the Normal distribution as the core model, we can automatically take the
over-dispersion into account because the model explicitly considers the variance parameters. Note that
one common complaint on the LASSO prior is that it does not put any mass on 0 for any edge. Though
a spike-and-slab prior is possible, an efficient posterior sampling algorithm such as the block Gibbs
sampler presented in this work (also in [12]) would be hard to derive due to the intractable normalizing
constant.

4.2. Challenges in learning the graphical structure

Graphical selection can be difficult because of the confounding nature of its own structure. For
example, recall Figure 1(A),(B). These two graphs can produce a similar correlation between Y; and
Y. One extreme example is when all links in Figure 1(A),(B) have no noise (e.g., Y1 = X, Y, = =Y
versus Y, = X, ¥, = —X). In this extreme example, it is impossible to distinguish graph A from B.
Additionally, cases such as Figure 1E are particularly difficult, where all partial correlations are positive
(or negative). Additionally, when € has bad condition numbers, then B might have a large error in the
estimation, since the marginal mean response and €2 inform the estimation of B, and a small change
in the marginal mean response can have a large influence in B. Future work could focus on how to
use experiments to decouple the confounding of € and B to address some of these challenges [34].
Other challenges to learn the graphical structure involve different non-Gaussian settings such as zero-
inflated or compositional models. In the Appendix A.4, we cover the extension of our Gaussian model
to binary, count, and multinomial (compositional) data. However, future work is needed to identify the
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data-specific inference limitations such as identifiability under compositional constraints, disentangling
structural from technical zeros, and the need for tailored regularization and benchmarking.

4.3. Agreement with experimenter’s intuition on mean behavior

Intuitively, an experimenter should be able to make inferences about the interactions among
responses from the behavior of the mean structures under treatment. For example, in Figure 1(D), an
experimenter might knock out a gene as the treatment (X = 1 for knock out and X = 0 for not) and
compare the gene expression levels of another gene (Y,) via a t test. The result of this t test will
provide information regarding the interaction between Y, and Y, because there are no other factors
that affects Y, and Y, is conditionally independent with X. Thus, this experiment is specific to ¥; and
provides information on partial correlation between Y; and Y, by only affecting Y}, that is, any change
in Y, is due to the partial correlation with Y; rather than a reaction to X. It is precisely the fact that the
mean of Y, in this experiment depends on the correlation between Y; and Y, that allows experimenters
to test differences in means of Y, under the effect of the treatment (X) through standard t tests.
However, this intuition is violated under the standard linear regression setting. The vector (Y1, Y;) is
Normally distributed with mean ¢ = (Xf;,0) and covariance X under the network in Figure 1(D);
thus, the mean of Y, is always 0 regardless of the value of X. In contrast, in the CG parametrization,
the mean vector is Xu whose second entry is given by p; X (i.e., the mean value of Y, depends on £,
(the reaction of Y; to the treatment) and p (the correlation between Y; and Y,)). Given that the
experimenter’s intuition on specificity is based on the notion of conditional (in)dependence between
X and Y, Y,, we conclude that it is desirable that the mean vector contains information on the
correlation structure among responses; this is a characteristic of the CG model that we propose, unlike
other models that tend to treat the correlation structure (£2) as a nuisance parameter.

4.4. Optimal model-based design of experiments

An experimenter should be able to design experiments that decode the links among response nodes
when specific experimental interventions towards one node are possible. In practice, when possible,
experimenters will always prefer experiments with a better specificity. However, this preference is not
evident in the linear regression setting since the Fisher information matrix of the mean vector and the
precision matrix is block-diagonal [35]; thus, any information that we have on B will not affect the
estimation of X. In addition, the information of X is not a function of design (X), no matter whether
we have prior knowledge about the effect of such an experiment (prior on B). The CG parametrization
avoids this disagreement because the Fisher information matrix is no longer block-diagonal and prior
information about the treatment can flow into the estimation of X via an optimal model-based
experimental design [36]. We highlight that due to the confounding between the treatment effect and
the interaction among responses, the prior knowledge on the specificity of the treatment is necessary
for such an optimal model-based experimental design. Future work could investigate the method of
experimental design to best decode such networks and the theoretical properties of such designs [34].

5. Conclusions

e We introduced a novel Bayesian chain graph model to infer a sparse network structure with
nodes for responses (microbes) and predictors, where the edges all represent conditional
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dependence, which is more biologically interpretable than marginal edges commonly used in
microbiome network research.

e We showed the applicability of Bayesian chain graphs in microbiome research via extensive
simulations and two real datasets: human and soil microbiomes.

e We implemented our novel theory in an R package CARlasso, which is publicly available on
GitHub: https://github.com/YunyiShen/CAR-LASSO

Open-source software

We developed our algorithm in R 3.6.3 [37], and all the code and data used is available as an R

package CARlasso hosted on https://github.com/YunyiShen/CAR-LASSO. All simulations and data
analyses code are in the dev branch.
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Appendix
A. Full model specification and interpretation

A.1. Model specification

Let Y; € R* be a multivariate response with k entries for i = 1,...,n observations. Let X; € RIxP
be the row vector of predictors for i = 1,...,n (i.e., the i row of the design matrix X € R™7).
We assume that the design matrix is standardized so that each column has a mean of 0 and the same
standard deviation (set to be 1 in the simulations); therefore, the same shrinkage parameter will not
have different effects on different predictors.

Let Y; follow a Normal distribution with mean vector Q' (B”X” + 1) and precision matrix Q € R¥*
(positive definite) where B € R”** corresponds to the regression coeflicients that connects the responses
(Y; € R¥) and the predictors (X; € R"*?) and u € R* corresponds to the intercept. We use the transpose
B"XT e R¥™! because samples are encoded as row vectors in the design matrix while multivariate
Normal samples are column vectors by convention. While the inclusion of € in the mean function is
unusual in statistical settings, we argue that it is necessary to draw the right biological interpretations
(see the Discussion).

The likelihood function of the model is as follows:

1
p(Yi1X;, 1, B, Q) oc exp[(B"X] + )Y, - EYI.TQY,»]. (A.1)
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Note that in this parametrization, B encodes conditional dependence between Y and X because B,
is the coefficient of product between X; and Y, in the kernel of the density. Thus, if B;, = 0, then X
and Y, are conditionally independent. This is analogous to the case of € whose off-diagonal entries
encode the conditional dependence between responses Y, and Y,. To see the analogy, we provide an
interpretation of the parameters in the same manner as in univariate linear regression. Let Y_, be the
vector of responses without the gth component, let Y_¢, . be the vector of responses without the gth
and ¢'th components, and let X_; be the vector of predictors without the jth component.

E[quxj = Xj + 1,Y_q,X_j,B,Q] - E[quxj = .X'j,Y_q,X_j,B, Q] = qu/(a)qq),

(A.2)
ElYlYy =yg + 1. Y- (4,9, X, B, Q] - E[Y [IYy = Yy, Yog.0), X, B, Q] = wyy /(—wyq).

By fixing the values of all but one predictor and all of the other responses, an increase of one unit in
X 1s associated with Bj,/(w,,) unit increase in the expectation of Y, hence conditioned on the values
of all other responses Y, .

More details about these equations are explained next. We can observe the kernel of a chain
graph model as follows:

P(YIX,B, Q) « exp {—%tr (Y - XxBQhHQ((Y - XBQ‘l))T]}

}.

o exp {—%tr |-2YBX" + YQY]}

1
= exp {—5 {—2 DB Y X+ Y whg Y Yy
J4q 9.9

Thus, the conditional distribution of Y, is given by the following:

0
P(Y,]Y_,.X,B,Q) « exp {—— =2 B Y, Xj+ Y wu Y Yy
J4q 9.9’

2 -
- Z BjgXj + Z Weq Yy
J

q'#q

|

+ Y w4.Y,

o
oc exp {—5 2Y,

}.

This is a normal distribution with mean M%M(Z i BjgXj— Xy 2q Waq Yy) and variance 1/w,,. Observe that
the mean is essentially a linear regression towards X; and Y, with regression coeflicients Bj,/w,, and
—Wyq [Wyq, thus, we can interpret these parameters as usual linear regression coeflicients, i.e., Bj,/wgyq
is the expected response change of Y, when X; changed by 1 unit while holding X_; and Y_, constant,
and —w,, /wgy, 1s the expected response change of Y, when Y, changed by 1 unit while holding X and
other Y’s constant.

On the other hand, the regression coefficients in multiresponse linear regression, denoted as B =
B€, are marginal effects. That is,

E[Y,X; = x; + 1,X_;,B,Q] - E[Y,|X; = x;,X_;,B,Q] = Bj,. (A.3)

Mathematical Biosciences and Engineering Volume 23, Issue 2, 499-546.



522

Note that the crucial difference here is that we do not condition on Y_,. Specifically in
microbiome, the presence of Q7! in the mean represents the ecological knowledge that the responses
of a species (e.g., relative abundances of microbes) depend on both its reaction to the environment (B)
and interactions with other species (£2). In our model, the regression coefficients matrix B encode
conditional dependence among the responses (scaled by variance) and the predictors that arguably has
a more mechanistic interpretation [14, 16, 17].

In general, it is not possible to simultaneously find sparse marginal predictions of single nodes and
sparse graph. That is, the marginal effect B = BQ™! typically has different support to the direct effect
B. It is possible for both parameters B and B to be sparse when Q! is diagonal. In this case, the
responses are independent, and thus, B;, = 0 implies B jq = 0 for any B.

While our model focuses on finding the sparse graph, we also implement a model for the sparse
marginal regression coeflicient and the sparse precision matrix by combining the Gibbs sampling for
the precision matrix in [12] with the Gibbs sampler in [38]. We denote this model Simultaneous
Regression and Graphical LASSO (SRG-LASSO) and we use it to compare to the CG-LASSO in the
simulation study (Section 2.2).

A.2. Prior specification

We assume a Laplace prior on the entries of B and graphical LASSO prior on  [12,38]. That is,

YiX;, 1, B, Q ~ NQ'B'X" +u), Q7),
Bjjltj, ~ Laplace(/lz), (Ad)
Qo ~ Laplace(/lé) for g<¢, ‘

Q,, ~ Exp(dq)

with the caveat that € is positive semi-definite. This specification is not easy to sample because of the
Laplace prior and the truncation on positive semi-definite cone. We approach the first problem using
the Normal scale mixture representation of Laplace distribution [12,38,39]. Let n,,; be the latent scale
parameters for Q for 1 < g < g’ < k since Q is symmetric, and let 7, (1 < j < p,1 < g < k) be the
latent scale parameters for B. For the second problem, we follow the method proposed by [12].

Then, the full model specification is as follows:

YiX;, 1, B, Q ~ NQ "B’ X" +u), Q",

/12
2 B -2t
Bijgltjg, ~ N(O, 75), Tjq ~ Ee p,

P\:&il), Aq) = eXp|— - Xp|— QeM+> ’
! g<q¢ LV 27”711(1, 2)7qq/ q= 2 2

A2 A2 100
pGildg) o< C, [ | Fexp (—Q—)

q9<q’ 2

where /e~ means that £ must be positive definite.
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A.3. Implementation
A.3.1. Sampling scheme

We derive an efficient Gibbs sampler for all parameters in this model due to the scale mixture
representation of the graphical LASSO prior [12]. Details on derivation of the sampling scheme are
summarized in Algorithm 1 with all the extensions (Section A.4).

A.3.2. Choice of hyperparameters

The shrinkage parameters A and Ag (Equation (A.5)) are hyperparameters to be determined. As
in [12,38], we assume that these shrinkage parameters have a hyperprior Gamma distribution with
shape parameter r and rate parameter 6 which can be set to produce a relatively flat density for a
non-informative prior scenario. Note that since the prior on € is not a Laplace but a graphical LASSO
prior [12], the Gamma prior is on A, not on A2 as it would be under a Laplace prior: /1123 ~ Gamma(rg, 6p)
and 1o ~ Gamma(rq, 0q).

The shrinkage parameters g and Az are included in the Gibbs sampler with full conditional
distribution still Gamma with shape parameters rg + kp,0p + > 7;/2 and rate parameters
ro+k(k+1)/2,0q + ||€|];/2 respectively.

A.3.3. Learning the graphical structure

Given the continuous priors, our model has a zero posterior probability for a parameter to be zero.
Yet, we still need to determine the cases when the edges of the graph will be considered non-existent.
Here, we infer the graph structure using the horseshoe method in [12,40] which compares the LASSO
estimate for the regression coefficient with the posterior mean of a standard conjugate (non-shrinkage)
prior [41].

Letrmr = ﬁ where 6 represents the estimate of the parameter under the LASSO prior and E 2(0Y)
is the posterior mean of that parameter under non-shrinkage prior (e.g., Normal for B and Wishart for
Q). The statistics 1 —xr characterizes the amount of shrinkage due to the LASSO prior. We use 7 > 0.5

as the threshold to decide that 8 # 0 as in [12].

A.4. Extensions
A.4.1. Adaptive LASSO

One simple extension to LASSO is Adaptive LASSO, in which the shrinkage parameter A can be
different for all elements in B and € [12,20]. This extension is particularly useful when we have prior
knowledge of independence among certain nodes. For example, larger shrinkage parameters (1) on
specific entries can be used to indicate prior knowledge of independence.

As suggested in [12, 20], we set the hyperpriors on /lﬁqﬂ as Gamma distributions with shape
parameters r;, 5 and rate parameter 0;,5. Additionally, we set the prior suggested in [12] for 4,4 o
(with g # ¢). While shrinkage on diagonal A,, ¢ is a hyperparameter in [12], here we set it to 0, that
i1s, we are not shrinking the diagonal entries of . However, such shrinkage can be included by
multiplying the prior of € by ]_[’;:1 A—;"exp(—/qu,gwqq).

The prior for Q is
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Algorithm 1: Implementation of Gibbs sampling
Result: MCMC samples of the posterior distribution of parameters of interest
Initialization;
while not enough samples do

if responses not Normal then
Update the latent Normal variables using adaptive rejection sampling (ARS) for

counting and compositional data and truncated Normal for binary data (Section
AA4.2);

end

for ¢ diagonal entries in Q do

/% blockwise update for Q */

Sample the determinant of Q: y|€,, 77, Aq ~ generalize inverse Gaussian (GIG)
distribution (Equation (B.3)) where €, corresponds to some partition of €2 based on
the diagonal entry w,,;

Update the off diagonal entries in the g” row (column): w_g,ly, Q4 77, g ~ Normal
distribution (Equation (B.4));

Compute the updated g™ diagonal entry (w,,) with Equation (B.2) that depends on the
determinant (), the off diagonal entries (w_,,) and the partition of  (£2,));

end

Update Bjr?, Q, u, X, Y ~ Normal distribution (Equation (B.6));

Update p ~ Normal((YQ — XB)?, Q/n);

Update latent variables in the scale mixture representation of the two LASSO priors:
n = {nj,), T = {7, following an ilnverse Gaussian distribution (Equation (B.5));

if adaptive shrinkage then

Update the shrinkage parameters on €2 (1;,0) and on B (/l?qﬁ) for individual entries
(main text);

else

Update the shrinkage parameters on € (1g) and on B (/l[%) uniformly for all entries

following a Gamma distribution (main text);

end
end
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_ Ay 0
p(gl{/qu’,ﬁ}q«]’) = C{ y l_l q; eXp(_/qu’,Q|('qu’|)IQ€MJr

Agg 0lg<q’
q<q’
1 T, /Q—l
p({/qu/,g }q<q/) o C{/qu’,Q}q<q' 1_[ F(}" ) )/quqq,’g eXp(—(Sqq/,Q/qu/’Q).
g<q 949

Then, the full conditional distribution of the shrinkage parameters is Gamma (shape and rate
parametrization) are A,y 0l ~ Gamma(r, o + 1,0400 + lwgl) for g # ¢', and
A, g7 ~ Gamma(ryy g + 1,849 5 + T4y /2). We set the hyperparameters as r = 107> and § = 107° for
both Q and B [12, 20] with a small value of ¢ selected to take advantage of the adaptiveness of
the shrinkage.

A.4.2. Extension to other types of responses

The model has been defined for continuous responses, yet there are different extensions for the case
of binary data, counts and compositional data that we describe below.

e Probit model for binary data. For binary responses, we can use a Probit model with CG in the core
of the dependence structure. We denote the CG latent variable as Z; € R, and let ®(Z;;) model the
probability of observing a 1 where © is the cumulative distribution function of a standard normal.
Equation (A.6) shows the alternative representation of the model:

Zi~ N@ ' B'X] + ), Q7),
Y~ N(Zyj 1), (A.6)
Y= 1y;}.>0-

Then, the full conditional probability of Y7, is a truncated Normal with mean Z;; and variance 1.
By denoting [i; = (BTXl.T + w), we have the full conditional distribution of Z;:

ZIY], 0, Q@ ~ N(Q+ 17 (@ + Y)), [+ 17,

e Log-normal Poisson model for counts. To model a response of multivariate counts, we use a

Lognormal-Poisson model [42]. Let Z; € R* be the latent vector of log expected counts of the i

sample and let Y; € N¥ be the observed counts. We use Z;_; € R*! to denote the vector of log
expected counts of the i sample but without response j and Z;; as the log expected counts of the
i sample and j™ response.

The covariance matrix accounts for both over-dispersion and correlation of the counts:

Z;~ NQ'B'X] +p),Q",
/lij = exp(Z,-j), (A7)
Y;; ~ Poisson(4;;).

Then, the density of Y;; is as follows:
p(YiilZ:j) o exp{Y;;Zi; — 7).
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Let Z;j|Z;_; ~ N(i;j, G'l.zj) be the conditional prior so that the log full conditional is:

log[p(Zij|Z; - j, 1. Q, Y)] = Yi;Z;; — exp(Z;;) — #(Zij - )’ +C
tj
which is concave. This means that we can sample the full conditional distribution of the latent
variables using adaptive rejection sampling (ARS) [43], and this can be done in parallel to further
speed up the sampling.

e Normal-logistic for multinomial data. As in [44], we develop a normal-logistic model for
multinomial compositional data. This type of data is very common in microbiome and
ecology studies.

Assume that we have k + 1 responses in our sample and the last response serves as reference
group. Let Z; € R¥! denote the latent vector of logit transformed relative abundances for i
sample, and let Y; € N* be the observed species counts. Denote the known total count as M
(e.g., sequence depth in microbiome studies). Similarly we use Z, _; to denote the vector logit
transformed relative abundance of the i sample but without response j and Z;; as the log expected
counts of the i sample and ;" response.

The Normal-Logistic model has the following structure:

Zi~ NQ'B'X] +p),Q™"),

exp(Z;j)
py= = (A8)
i1 exp(Zi) + 1

Y, ~ Multinomial(p;y, ..., pi, M).
Note that the Normal latent variables take care of the over-dispersion.
Then, the likelihood of Y; is:
1 exp(¥iZi))
Y;;! Z'J‘.zl exp(Z;;) + 1
M! eXP(Z];:1 YiiZij)
LY (S exp(Zy) + 1M

k
p(Yiizy) = m!| |
j=1

Let Z;j|Z; _; ~ N(i;j, é'l.zj) be the conditional prior so that the log full conditional is as follows:

k
. 1 y
log[p(Zijlzl-,_j,,u, Q, Y)] = YlJZlJ - MlOg [Z eXp(Zij) + 1] - F(le - Mij)z +C
=1 i

This function is concave because the first term is an affine, the second term is the negative log
sum of exponential of an affine function, and the last term is a concave quadratic form. Thus,
ARS [43] can be used again during the Gibbs sampling, and this process can be parallelized for
extra speed.
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B. Derivation of the Gibbs sampling

Let 1, be the column vector of ones with dimension n, let S = Y'Y € R®* (here we have samples
as row vectors in Y), let 7 = XB + 1,47, and let U = g € R**, Equation (B.1) shows the full
conditional distribution of € and 5.

. " 1 1 1
p(Q,nlY, Ag, ft) < |Q|Z exp (—5 tr(SQ) — 3 tr(UQ )) 1—[

a<d 27,y 214y
A Aqw
_Q eXp (— 2 qq):| IQGM*‘

(B.1)

2

We can update one row (column) at one iteration. Let H be the symmetric matrix with H,,, = H;,, =
N (m < ) on the off-diagonal entries and on the diagonal H,,,, = 0. We take one column out and
partition Q, S, U, and H. Without lose of generality, we show the sampling scheme for the last row
(column). Let Q;; € R&Dx*=D ¢, € R*! and w,, € R. We partition S, U and H in the same manner.

Q S U H
v R A v A R |
12 Wn 12 S22 Up, uxn m,
By setting
Y = wy - wLQlw €R, (B.2)

Q! can be written in a block form as follows:

Q_l

- 11
Q)+ Q“wlzwlzﬂ anlz]
1 .
w Q7 =
12 y

Given

1
tr(UQ™") = (U}, Q) + ;/(wlTZQ[fU“Q]llwlz —2ul, Q7 w1y + uy),

we have the full conditional distribution of w, and vy as follows:

P(@12,YIQ11,77, Ag) o<y exp (——(s22 + )y — zi;)

| I
X exp{—[s12 — ;Q“luu]Twlz

Lo I P
- Ewsz[Dnl + (s + A0)Qy] + ;QulUllQlll]wlz}'

From the above equation, we get a closed form expression for the conditional distribution of vy as
follows:

PYlwiz, 11,1, Ag) o<

2u12911w12 +w12QI11U119I11w12 I (B3)

n 1
Y2 exp —E(Szz + o)y — 2y 20
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which is a generalized inverse Gaussian (GIG) distribution [45,46] with parameters:

n

A==+1
2 b

Y = s+ Ag,

_ T O-1 T O-1 -1

GIG has a positive support. Thus, the determinant and the k™ principal minor of the updated
are positive, while the first kK — 1 principal minors remain unchanged and positive. In this manner, the
updated € always remains positive definite.

By denoting D, = diag(n,) € R&D& D the full conditional distribution of w;, is a
Normal distribution:

1
pwialy, Q11,1, Ao) «expi—[si2 — — Q7 un] @i
. 4 | (B.4)
- Ea)sz[D;l + (522 + )Q + ;QﬁlUuQﬁl]wlz}
with parameters:

w12

- - I _
X ! :Dnl+(S22+/IQ)Q“1+;Q“1U119“1
|
/’la)lz = _Za)lz[slz - ;QllluIZ]'
Asin [12], the z,, = 1/n,, are independent Inverse Gaussians with the following parameters:

— 2 2
Hepy = V/lﬂ/wqﬂf’

A=A,

249’

and density:

(B.5)

1/2 2

/?’Z / _/IZ / (qu' - l‘tZ /)
(249192, A0) = | 5—5 ex > = . >0-
P\Zyq Q 2ﬂ23q, P 2(ts, )V r 2qq >0

The full conditional distribution of vec(B) can be represented using tensor product [20]. Let
D,. = diag(r?) € R***? for 7 the scaling parameters in the prior density of B. Then, the conditional
distribution of vec(B) has the following form:

p(VeC(B)|DTz, Qa M X, Y) & exp{XT(Y - ln/’tTﬂ_l)
1 Tl T -1 (B.6)
-3 vec(B) (Q7 @ X' X + D) vec(B)}.

Note that the information from data is encoded by Q7! ® X?X which differs from the canonical
parameterization of the multiresponse linear regression model in which the information from data is
encoded by Q ® X”X. This is because in the kernel of the likelihood, the term that involves B is
XBQ'QQ'B'X" = X;BQ 'B"X”, instead of X,;BQB”X" as in the canonical parametrization.

Finally, we update 1/7;, using an Inverse Gaussian distribution with parameters ,/z/B; and Az,

and we update y using a Normal distribution with mean (YQ — XB)” and variance Q/n.
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C. Simulation settings

Below we provide the details on the € structure for the six graphical models:

e Model 1 (AR1): An AR(1) model with o, = 0.747¢'.

e Model 2 (AR2): An AR(2) model with wy, = 1, w14 = wyg-1 = 0.5, Wy—24 = Wy 4 = 0.25 for
i=1,...,k

e Model 3 (Block): A block model withop, = 1forg=1,...,k,04y =05forl < g+ q' <k/2,
ogqy =05fork/2+1< g+ q <10and o,y = 0 otherwise.

e Model 4 (Star): A star model with every node connected to the first node, with wy, = 1, w4 =
wy1 =0.1forg=1,...,k and w,, = 0 otherwise.

e Model 5 (Circle): A circle model with wyy = 2, wy-14 = wye-1 = 1 forg = 1,...,k, and
Wiy =wy1 =09forg =1,... k.

e Model 6 (Dense): A full model with w,, =2 and w,y = 1forg # ¢’ € {1,...,k}.

Note that model 1 and model 3 specify the entries of the covariance matrix X (o0,,) while the other
models specify the entries of the precision matrix € (wyy ).

D. Log concavity of posterior with fixed 1’s

Here, we show the log-concavity of the posterior which makes the Gibbs sampler efficient for any
fixed A.
The log-posterior is equivalent to a penalized likelihood. Let 2 = XB+1,u”, and let U = g7 i € R¥*,

n 1 1 _
log p(B, QIX. Y) = C + > log(IQ) - 5 r (Y'YQ)- S (UQ™) - AaliQls - A4IBIl;

The last two terms are concave, so it remains to show that the first three terms are concave too. That
is, we want to show that the log-likelihood is concave as well.

This can be shown by calculating the Hessian. We observe that the random component Y is only
involved in a linear term of . Thus, the Hessian has no Y involved, i.e., the Hessian of the log-
likelihood is itself the negative Fisher information of the chain graph model (expectation of constant is
constant). Thus, the Hessian must be negative definite, thus we have the posterior being log-concave.
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E. More simulation results
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Figure A1l. Reconstruction accuracy of the graph between responses and predictors (B)
for k = 10 nodes, p = 5 predictors and sparsity of 0.8. Red entries correspond to true
positive edges and blue entries correspond to false positive edges. Darker color means higher
frequency of being estimated in 50 reconstructions. Our proposed method adaptive CG-
LASSO (CG-A) outperforms the other methods by displaying the lowest false positive rate

(less blue).
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Figure A2. Reconstruction accuracy of the graph between responses and predictors (B)
for k = 10 nodes, p = 5 predictors and sparsity of 0.5. Red entries correspond to true
positive edges and blue entries correspond to false positive edges. Darker color means higher
frequency of being estimated in 50 reconstructions. Our proposed method adaptive CG-
LASSO (CG-A) outperforms the other methods by displaying the lowest false positive rate
(less blue).
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Figure A3. Reconstruction accuracy of the graph between responses and predictors (B)
for k = 10 nodes, p = 10 predictors and sparsity of 0.5. Red entries correspond to true
positive edges and blue entries correspond to false positive edges. Darker color means higher
frequency of being estimated in 50 reconstructions. Our proposed method adaptive CG-

LASSO (CG-A) outperforms the other methods by displaying the lowest false positive rate
(less blue).
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Figure A4. Matthews Correlation Coefficients for B for simulated datasets with 10 nodes
and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different number
of predictors (10 in bottom row and 5 in top row) and six precision matrix models (columns,
fully connected model was omitted from € result since MCC was not defined). X-axis
corresponds to the models compared. MCC = 1 means a perfect reconstruction. Our model
adaptive CG-LASSO gets the highest MCC in most cases. We omit the mul tireg mu® model
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because it performs poorly across all cases (MCC close to 0).
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Figure AS. Matthews Correlation Coefficients for B for simulated datasets with 30 nodes
and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different number
of predictors (10 in bottom row and 5 in top row) and six precision matrix models (columns,
fully connected model was omitted from € result since MCC was not defined). X-axis
corresponds to the models compared. MCC = 1 means a perfect reconstruction. Our model
adaptive CG-LASSO gets the highest MCC in most cases. We omit the mul tireg mu® model
because it performs poorly across all cases (MCC close to 0).
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get the lowest loss in most cases.
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Figure A7. Frobenius Loss of B (Y-axis in logarithmic scale) for simulated datasets with 30
nodes and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different
number of predictors (10 in bottom row and 5 in top row) and six precision matrix models
(columns). X-axis corresponds to the models compared. Our models (adaptive) CG-LASSO
get the lowest loss in most cases.
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Figure A9. Reconstruction accuracy of the graph among responses (2) for k£ = 10 nodes,
p = 5 predictors and sparsity of 0.5. Red entries correspond to true positive edges and
blue entries correspond to false positive edges. Darker color means higher frequency of
being estimated in 50 reconstructions. Our proposed method adaptive CG-LASSO (CG-A)
outperforms the other methods by displaying the lowest false positive rate (less blue). We
omit the dense model because it has no false positive or true negatives.
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Figure A11. Matthews Correlation Coeflicients for € for simulated datasets with 10 nodes
and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different number
of predictors (10 in bottom row and 5 in top row) and six precision matrix models (columns,
fully connected model was omitted from € result since MCC was not defined). X-axis
corresponds to the models compared. MCC = 1 means a perfect reconstruction. Our model
adaptive CG-LASSO gets the highest MCC in most cases. We omit the dense model because
MCC is not defined.
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Figure A12. Matthews Correlation Coeflicients for € for simulated datasets with 30 nodes
and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different number
of predictors (10 in bottom row and 5 in top row) and six precision matrix models (columns,
fully connected model was omitted from € result since MCC was not defined). X-axis
corresponds to the models compared. MCC = 1 means a perfect reconstruction. Our model
adaptive CG-LASSO gets the highest MCC in most cases. We omit the dense model because

MCC is not defined.
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Figure A13. Stein’s Loss of €, (Y-axis in logarithmic scale) for simulated datasets with 10
nodes and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different

number of predictors (10 in bottom row and 5 in top row) and six precision matrix models
(columns). X-axis corresponds to the models compared. Our models (adaptive) CG-LASSO

get the lowest loss in most cases.
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Figure A14. Stein’s Loss of €, (Y-axis in logarithmic scale) for simulated datasets with 30
nodes and 50 samples under two levels of beta sparsity (red 0.8 and blue 0.5), two different

number of predictors (10 in bottom row and 5 in top row) and six precision matrix models
(columns). X-axis corresponds to the models compared. Our models (adaptive) CG-LASSO

get the lowest loss in most cases.
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F. Computational speed and scaling
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Figure A15. Computational time for each algorithm in CPU seconds as a function of the

number of nodes, the number of predictors, and sample size. Speed depends on the number

of nodes and number of predictors, but not on the sample size. Our proposed method is

efficient, yet slower than graphical LASSO.

G. More on real data analyses

G.1. Transformation of marginal effects into conditional effect in real data

We fit a hierarchical model with multiresponse linear regression as the core and the same logit-
multinomial sampling distribution (Equation (A.8) with Z; as multiresponse regression model). The
density of the networks show that the sparsity assumption on the chain graph model has a strong impact
on the estimated network (Figures A16 and A17).
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Figure A16. Conditional network of human gut network via multiresponse regression and
transformation into chain graph parameterization. Triangle nodes correspond to predictors
and circle nodes correspond to relative abundances of genera. The node size on the circle
nodes correspond to the a—centrality values [27]. The width of the edges corresponds to
the absolute weight and the color corresponds to the type of interaction (red positive, blue
negative).

Mathematical Biosciences and Engineering Volume 23, Issue 2, 499-546.



546

C.Solibacter
Chthoniobacter
Hymenobacter C.Nitrososphaera

Micromonospora 7 2 . C.Koribacter

Mycobacterium \ Bradyrhizobium

Nitrospira Bacillus
Opitutus Arthrobacter
Paenibacillus October measure
Pirellula total N

Rubrobacter

Ruminococcus crop agriculture
Terrimonas  fertilizer

alpha_centrality ®© 05 @ 10 @ 15 . 2.0 abs_weight 01 WM 02

Figure A17. Conditional network of soil network via multiresponse regression and
transformation into chain graph parameterization. Triangle nodes correspond to predictors
and circle nodes correspond to relative abundances of genera. The node size on the circle
nodes correspond to the a—centrality values bonacich2001eigenvector. The width of the
edges corresponds to the absolute weight and the color corresponds to the type of interaction
(red positive, blue negative).
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