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Abstract: In this work, we propose a data augmentation strategy aimed at improving the training
phase of neural networks and, consequently, the accuracy of their predictions. Our approach relies on
generating synthetic data through a suitable compartmental model combined with the incorporation
of uncertainty. Available data are used to calibrate the model, which is further integrated with deep
learning techniques to produce additional synthetic data for training. The results show that neural net-
works trained on these augmented datasets exhibit significantly improved predictive performances. In
particular, we focus on two different neural network architectures: Physics-Informed Neural Networks
(PINNSs) and Nonlinear Autoregressive (NAR) models. The NAR approach proves especially effective
for short-term forecasting, thereby providing accurate quantitative estimates by directly learning the
dynamics from data and avoiding the additional computational cost of embedding physical constraints
into the training. In contrast, PINNs yield less accurate quantitative predictions but capture the quali-
tative long-term behavior of the system, thus making them more suitable to explore broader dynamical
trends. Numerical simulations of the second phase of the COVID-19 pandemic in the Lombardy region
(Italy) validate the effectiveness of the proposed approach.

Keywords: mathematical epidemiology; physics-informed neural networks; non-linear autoregressive
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1. Introduction

Throughout history, pandemics have had a profound impact on global health, economies, and ev-
eryday life [1-4]. From the Spanish flu in 1918 to more recent outbreaks such as the HINT1 influenza
in 2009 and the COVID-19 pandemic, the repeated emergence of infectious diseases has emphasized
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the urgent need for timely and accurate response strategies [5-9] . In this context, mathematical mod-
eling plays a crucial role in predicting disease transmission, assessing the effectiveness of intervention
measures, and informing public health decisions. Among the most commonly used approaches are tra-
ditional compartmental models, such as the Susceptible-Infected-Recovered (SIR) framework, which
are valued for their simplicity and interpretability [10—12]. These models classify the population into
key compartments: Susceptible individuals, who are at risk of infection; Infected individuals, who can
spread the disease; and Recovered individuals, who have either recovered or died and are no longer
infectious. The basic SIR model can be extended to incorporate additional compartments [13, 14].
For example, the STAR model introduces an asymptomatic class, especially relevant for diseases like
COVID-19, where asymptomatic individuals significantly contribute to transmission [15, 16]. Despite
their simplicity, such models often fall short in capturing the full complexity and variability of real-
world epidemic dynamics, especially when dealing with incomplete or uncertain data. In the early
stages of an outbreak, underreporting of infections is common, thus making it essential to incorpo-
rate uncertainty in model parameters or initial conditions to achieve more realistic scenarios [17-19].
Additionally, the simplifying assumptions underlying traditional models can limit their ability to re-
flect population heterogeneity and the evolving nature of outbreaks. To address these limitations,
more sophisticated models have been proposed that allow for time and state dependent transmission
rates [20-22]. These enhancements enable a better representation of intervention measures—such as
lockdowns, which, in the case of COVID-19, played a significant role in reducing transmission. More-
over, accounting for individual heterogeneity is essential to capture the varying behaviors observed
among individuals from different groups, such as distinct age classes [23-25].

In recent years, the use of neural networks for epidemic predictions has emerged as a promising
complement to traditional modeling approaches [26—-30]. In particular, neural networks for time se-
ries forecasting have shown strong potential. While purely data-driven models such as feed-forward
networks can be useful for interpolation, they often lack physical consistency [31-33]. In con-
trast, Physics-Informed Neural Networks (PINNs) incorporate the governing equations into the train-
ing [26, 34, 35], thus leading to more realistic solutions. However, the process involves automatic
differentiation and other intrinsic computations, which may led to very computationally expensive
simulations. Alternative architectures, such as Recurrent Neural Networks (RNNs), offer a different
approach by directly learning temporal dependencies without explicitly embedding the physical model
into the training process [36—-38]. A notable example is the Nonlinear Autoregressive (NAR) network,
which effectively captures time dynamics by using past observations to predict future values [39].
These networks offer a data-driven and computationally efficient alternative to PINNs for short-term
forecasting, thereby delivering a quantitative description of disease progression that can be particularly
valuable for monitoring and managing the pandemic within hospitals. In contrast, PINNs provide a
more qualitative representation of the disease dynamics, which can be especially useful to investigate
strategies aimed at mitigating epidemic peaks during a pandemic.

In this work, we consider a specific compartmental model that has been shown to effectively cap-
ture the time evolution of epidemic spread in the presence of uncertain parameters [22]. This model
extends a SIAR-type framework by incorporating age-structured dynamics to better reflect the pan-
demic’s impact across different demographic groups, as well as the influence of lockdown measures.
Starting from this depicted model, we use real-world data to calibrate the model parameters under
uncertainty [19,33].
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Then, we introduce two different neural network architectures, namely PINNs and NAR networks,
and investigate how data augmentation strategies can enhance their predictive performance. In our
previous work [40], we explored such strategies in a simplified context of deterministic epidemic mod-
els by augmenting training datasets with synthetic data generated from model simulations. Here, we
extend this analysis to models that contain uncertainty.

Through a series of numerical experiments, we demonstrate that NAR networks can accurately cap-
ture epidemic dynamics in both interpolation and extrapolation tasks. In short-term forecasting, they
outperform PINNs, particularly when trained on augmented datasets. Additionally, we highlight the
computational advantages of NAR networks: unlike PINNs, which require evaluating the underlying
differential equations during training, NAR networks solely rely on data, thus leading to faster training
and lower computational costs. In contrast, for long-term forecasting, PINNs provide more reliable
predictions, particularly in capturing the epidemic peaks.

The rest of the paper is organized as follows: in Section 2, we introduce the mathematical models,
thereby starting from the classical SIR, and we introduce a recent compartmental model which takes
social behavior, age-structure, and uncertainty into account [22]; in Section 3, we detail the parameter
estimation procedure under uncertainty using real world data which permits to match the model evolu-
tion with the COVID-19 epidemic spread; Section 4 presents the neural network architectures used for
epidemic prediction-PINNs and NAR networks trained with data and models outcome; in Section 5, we
report different numerical experiments to evaluate the networks performance, thereby making a com-
parison between PINNs and NARs in short and long term forecasting; and finally, Section 6 outlines
possible future research directions.

2. Model setting: compartments, social behavior, age structure and uncertainty
In our analysis, we will consider a suitable extension of the classical SIR model [10, 12]:

das@® SOOI

dt N ~
dl(t) B SHI() B

7 =p N yI(0), (D
dR(t)
T yI(2),

which typically describes the spread of an infectious disease in a population of size N by partitioning it
into three compartments: Susceptible (S), Infected (I), and Recovered (R). While this model has been
widely adopted in the past due to its simplicity, it has been proven to fall short in capturing complex
epidemic dynamics [17,41], as it assumes, among other simplifying assumptions, the transmission and
recovery rates, namely the parameters > 0 and y > 0, to be constant. Some significant modifications
were recently proposed in [20], where the authors, thereby starting from a microscopic interaction dy-
namics, derived a compartmental model that accounts for the role of social contacts among individuals
in the spread of an epidemic. By adding an additional variable which characterizes the number of
social contacts x > 0 among individuals and by denoting with fs(x, ), f;(x,t) and fr(x, ), the distri-
butions at time ¢ > 0 of the number of social contacts of the population of susceptible, infected, and
recovered individuals, upon renormalization, one can fix the total distribution of social contacts to be
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a probability density for all times ¢ > 0:

f f(x,t)ydx = 1.
Ry

Then, the model combines the epidemic process with the contact dynamics, which gives the following
system:

o (x,
fs(gf . = —K(fs, f)(x, 1) + Qs (fs)(x, 1),
o,
fl((;: 9 K(fs, f)(x, 1) — yfi(x, 1) + Qi(f)(x, 1), @)
e
TR 3 i) + Qa0 0,

where the transmission of the infection is governed by the function K(fs, f7), namely the local incidence
rate, which is expressed by the following:

Ky (e ) = f5(x, 1) fR Ko fi ) dy, 3)

where «(x, y) is called the contact function, which is a nonnegative function that grows with respect to
the number of contacts x and y of the populations of susceptible and infected, respectively. A leading
example reads as follows:
k(x,y) = Bx%y",

where a, 8 are positive constants, that is, by taking the incidence rate dependent on the product of the
number of contacts of susceptible and infected people. The operators Q,, J € {S, I, R} are integral oper-
ators that modify the distribution of contacts f;(x, ), J € {S, I, R} through repeated interactions among
individuals [20]. Now, by integrating over the number of social contact and under suitable hypothesis
on the operators Q;, J € {S, 1, R} that characterize the distribution of social contacts at equilibrium,
one can observe that the evolution of the mass fractions obeys to a SIR-type model as follows:

s

— = -BS(HIOH(1)),

% =BSIOHI(@) - yI(1), @
dR(1)

ek vI(t).

Here, for simplicity, the population size N is absorbed into the coefficient 5, while the function H(I(¢))
represents the average behavior induced by microscopic interactions (2). It denotes a macroscopic
incidence rate that captures time-dependent modifications to the transmission dynamics, thus reflecting
behavioral responses and public health interventions such as lockdowns. The inclusion of a state-
dependent transmission rate enables the model to account for a broader range of epidemic scenarios as
shown in [20].

Moving forward into the modeling, we consider an additional extension to the framework (4), ca-
pable of addressing more complex scenarios, as shown in [22], that is, we include an additional com-
partment, A, to account for asymptomatic individuals, and more important, we incorporate uncertainty
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into the model parameters. These extensions are particularly relevant for diseases such as COVID-19,
where asymptomatic transmission has shown to play a crucial role [17]. Moreover, incorporating un-
certainty provides a more realistic representation of data limitations, especially during the early stages
of the pandemic, when the true number of infections was often significantly underreported. This per-
mits us to enhance the forecasting capabilities of the Neural Networks, as shown later in the article.
The resulting model is given by the following:

0S(t,2)

ot

ol(t,
gt % _ fOA 1) - 1, 2),

%)
6A(f, Z) _ (1 _ nf(Z))A(ta Z) — ’)/A(Z)A(t, Z)a

= —A(t,2),

ot
OR(t,
gt 3 DI(1,2) + Ya(DA ),
being
A(t,2) = B@)S (1, 2)Hs (1, 2)(HI(t, D)I(2, 2) + Ha((t, )AL, 2)), ©)

where £(z), y1(z), ya(z) > 0 are the transmission and recovery rates, and the macroscopic incidence
rates H,(-) for J € {S, I, A} are given by the following:

u(2)
V1 + v(z)r’

with u(z), v(z) > 0. These incidence rates model how, both the susceptible and asymptomatic popu-
lations tend to reduce their average number of daily social contacts in a similar manner in response
to the spread of the disease, while the contact rate of the infected population is further reduced by an
additional factor k € [0, 1]. The parameter £(z) represents the percentage of asymptomatic individuals
in the population and takes values in the interval [0, 1]. The parameter z represents the uncertainty and
is distributed according to a given distribution p(z) which will be specified later on.

A further extension of the model in (5) consists of incorporating an age structure. In this case, the
population is divided into subclasses corresponding to different age groups. As before, we consider
four compartments: Susceptible (S), Infected (I), Asymptomatic (A), and Recovered (R). Each variable
now depends not only on time and the uncertainty parameter z, but also on the age variable x € A =
(0, 100) representing the age class. Incorporating an age structure introduces additional heterogeneity
into the system, which is essential to accurately capture the dynamics of an epidemic. Individuals
belonging to different age groups typically display distinct contact patterns and social behaviors, which
results in varying transmission dynamics across the population. Under these assumptions, the model
can be written as follows:

Hs(r) = Hu(r) = Hs (1), H(r) = kHy(r), (7N

aS(x,t,2) _
at - A(x’ ta Z)9
ol(x,t,
% = &(x, A (x, 1, 2) — yi(x, 2)I(x, 1, 2),

3
% = (1 = £(x, YA 1,2) — Ya(x, DA 1,2),

OR(x,t,2)

Y = vi(x,)I(x,t,2) + ya(x, 2)A(x, 1, 2),
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being

A(t,z, x) = B(x,2)S (x, 1, 2)Hs (I(x,11, 7)) fﬂ (H(I(y, t, D)I(y,1,2) + Ha(I(y,1,2)A(y, 1, 2))dy, (9)
where B(x, 2), v1(x,2), ya(x,z) > 0 are the transmission and recovery rates, which are now also depen-
dent on the age class x, and the macroscopic incidence rates H,(-) for J € {S, I, A} are given by the
following:

p(x, 2)
VT +v(x,2)r

where the age-dependent parameters u(x, z), v(x, z) are supposed to be positive for k € [0, 1].

Hs(r) = Hy(r) = Hs(r), H(r) = kHs(r), (10)

3. Parameters estimation

The goal of this section is to illustrate the calibration of the model parameters from available data.
The procedure is described for the age-structured social SIAR model (8), but similar results can be
obtained for the social STAR model (5) without age structure by integrating over the age classes. We
focus on the second wave of COVID-19 in Italy, particularly in the Lombardy region. Following the
methodology outlined in [22], we first estimate the recovery rates y; and y,. These rates are derived
from the Time of Viral Clearance (TVC), which measures the duration between the first positive test
and recovery/death. As reported in [22], the recovery times follow a beta distribution, which allows
the parameters to be defined as follows:

Ya(x,z1,22) = 2y1(x, 21, 22), (11)

YI(X, 21, ZZ) B

1 hii + hiazi, if x < 50,
h2,1 + hz,zzz, if x > 50,

being hl,l = hz,l = 5, hl,z = 32, hz,z = 40, and with 1~ B(al,,Bl), i~ B(a’z,ﬁz) beta distributions
with parameters a; = 2.1, 8; = 5.1, and @, = 1.8, 8, = 3.9. Next, the transmission rate S5(x, z) and the
parameter £(x, z), which represents the initial proportion of asymptomatic individuals, are estimated
using data over the time interval [#y, 7, ], being #, as the initial time (e.g., October 8th, 2020) and ¢, the
final time (e.g., October 20th, 2020). In this period of time, there were no specific restrictions to the
mobility and life on the individual. To count for uncertainty, we generate samples {y;}*_, from y, and
{ya}™_, from y,. These samples are constructed using a collocation approach based on Gauss-Jacobi

polynomials with M = 5 nodes. Forany m = 1, ..., M, we solve the following optimization problem:
,,min f T, 1,20, 1,0, RO, 1,20, Ry, 0)dy,  for 1 € [1o,1,], (12)
m(X Sm X ﬂ
being
JC) = plH»,t,2,) = 1y, Dll2 + (1 = PR, 1, 2) — Ry, DIz, (13)

for p € [0, 1], where I(-), R(:) are the numerical solutions to the underline model assuming Hy = 1,
meaning that no specific restrictions are set during this period of time, while I(:), R(-) are the avail-
able data.

Once the epidemic parameters have been estimated, the second optimization procedure consists
of identifying the optimal functions H(x, t;,z), which mimic the implementation of governmental in-
terventions such as mask mandates and mobility restrictions, and &(x, ¢;,z), which is the number of
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unknown asymptomatic for ¢; € [t; — k;,t; + k] with j = 1,...,N,, where N, is the total number of
considered time steps, k; = 3 and k., = 4. This choice corresponds to averaging the epidemic data
over a one-week window for each value of z representing uncertainty and for each age class x. The
data used for this second optimization correspond to the subsequent phase of the second wave of the
pandemic, specifically the interval [z;, T'], with 7, marking the start date (October 21st, 2020) and T
marking the end date (January 18th, 2021). As in the previous optimization, we sample the recovery
rates from beta distributions and solve the following optimization problem for eachm = 1,..., M and
fort e [t; -k, t; + k,]:

min f TA,t,20), 1, ), R, 1, 2), R, 1))y, (14)
A

Hm(xs[j)"fm(xy[j)

where J(+) is defined as in (13). Both optimization problems (12)—(14) have been solved using the
Matlab function fmincon combined with an RK4 integration method of the systems of ordinary differ-
ential equations (ODEs). Figure 1 shows the comparison of the above described optimization strategy
for the social STAR model (5) in terms of the number of infected individuals. In the figure, the mean
trajectory and the 95% confidence interval, together with the available reported data on infected cases,
are shown. The black dashed line distinguishes between the first and second phases of the pandemic,
which correspond to the two optimization procedures. Figure 2 shows the corresponding results for
the age-structured model (8). As before, the mean trajectory and the 95% confidence interval are dis-
played, together with the reported data on infected cases. The black dashed line separates the first and
second phases of the pandemic. Each image corresponds to a different age group.

Infected
0.02 ‘
95% Cl
——Mean
* Data
0.015 -

0.01 ¢

0.005 |

E

0 ‘ ‘
Oct 8 Oct 21 Nov 21 Dec 21 Jan 18

Figure 1. Dynamics of the infected population obtained by solving the calibrated social-
SIAR model (5) and compared with experimental data. The figure shows the mean epidemic
trajectory with the 95% confidence interval (shaded area), alongside the observed data. The
black dashed line separates the two epidemic phases.
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Figure 2. Dynamics of the infected population obtained by solving the social-SIAR
model (8) and compared with experimental data. The plots show the mean epidemic tra-
jectory with the 95% confidence interval (shaded area), alongside the observed data. The
black dashed line separates the two epidemic phases. Each image corresponds to a different
age group.

4. Predictions of COVID-19 dynamics using neural networks

Building upon the methodology introduced in our previous work [40], we aim to train neural net-
works on augmented datasets to enhance the accuracy of their solution both in terms of interpolations
and predictions. In our earlier study, we considered deterministic synthetic data that arose from the
solution of a simplified epidemic model, namely the social-SIR model (4). Since the observational
data were recorded on a daily basis (with time step & = 1), we generated additional data over the same
interval by solving the system of ODEs with a finer resolution (4 = 0.2). In this work, we extend
this strategy to more complex models (5)—(8), with the important distinction that we now incorporate
uncertainty in the model parameters, as outlined in the previous sections. Our goal is to train neural
networks that are well-suited for predictive tasks, such as PINNs, and NAR networks. Both PINNs and
NAR networks are implemented using a Feed-Forward neural network architecture with L + 1 layers
as follows:

x'=Wlx+b', d=coWixt+bh, 1=2,....L-1,

15
SN b, W) = W+ bt ()
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where x = (x', ..., x%) € R?is the input, o is an activation function to convert the input signals to output
signals,and W = (W', ..., W)y and b = (b', ..., b") represent the weights and biases, respectively. The
weights and biases associated with these connections serve as the parameters of the network, which
are iteratively adjusted through techniques such as gradient descent or the Adam method during the
training phase to minimize prediction errors and enhance the model’s performance. To find the optimal

parameters 8 = (W', b, ..., WL, bh), we solve the following minimization problem:
0" = arg mgin L(0), (16)
being
L(0) = waLy(0) + w, L,(0), (17

the loss function, for w,; > 0, w, > 0. Specifically, in (17), the function .L;(#) measures the discrepancy
between the neural network solution and the data, while £,(6) encodes the physics of the problem. In
the following, we present PINNs and NAR networks in the context of the age-structured model (8).
A similar formulation applies to the simpler model (5), where integration is performed over all age
classes x € A, with A denoting the age-classes.

4.1. Physics informed neural networks

PINNS offer a physics-driven learning framework where the network is trained not only to fit the data
but also to satisfy the underlying differential equations governing the system dynamics. This makes
them particularly appealing in scenarios where data are scarce or noisy, as the physical constraints serve
as an effective regularizer. In our context, we define the PINN using the epidemic model equations,
thereby incorporating uncertain parameters z sampled as described earlier. The architecture consists of
the following:

e Input Layer: Takes both the age-time variables x, # and the uncertainty parameter z as the input.

e Hidden Layers: Several fully connected layers with non-linear activation functions (e.g., tanh)
are used to approximate the solution.

e Output Layer: Returns the approximated solution values fl.NN (x,t,7)fori e I ={S,1,A,R} for
any x, t and z.

To determine the optimal parameters, we solve the minimization problem in (16), thereby defining the
loss function as in (17) with w4, w, > 0. Specifically, the loss function that encodes the data constraints
reads as follows:

N
L4(0) = Z Z f (ﬁNN(x, t;0) — fi(x, t,,))2 dx, (18)
icl n=1 YA
being
M M
NG00 = D N O b 2y OW i 1030) = D Fi6 T 2 O, (19)
m=1 m=1

where w,, are the weights associated to the uncertainty values z,,, and N,, M are the total number of
samples that we consider in time and in the uncertainty space, respectively, while f; are the data that
represent the number of Susceptible, Infected, Asymptomatic, and Recovered individuals.
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Then, we compute the derivative via automatic differentiation with respect to time of the quantities
JS¥N(x,1,2;0) for any i € I, and we define the physical loss as follows:

Ne
IROEDI f R2(x, 1, 6)dx, (20)
A

i€l n=1

being
M
Rix, 13 0) = > R, by 2 O, 21)
m=1
with w,, weights associated with the Gauss-Jacobi nodes, and

Rs = 0, f VN (X, by, 23 0) + A(X, 1y 23 6),

Rp = 001N (X, tyy 23 0) = EX s Z) AKX, Ly 23 0) + Y1(X, ) 17 (X, By 23 0),

Ra = O, f3™ (X, b 23 0) — (1 = EQX Ly Z)) A B 2 0) + Va (X, ) [ (X, s 23 0),
R = 0uf " (X, Ls 23 0) = V1(X, Za) 7 (X Ly 2o 0) = Ya (6 Z) S (X, B T3 0),

(22)

where

A = B Zn) f3 N (X, by 2y OH(X, 1y Z) f H, by ) KN s ts 2003 0) + NG, by 2ns )y, (23)
A

for k € [0, 1].

4.2. Non-linear autoregressive networks

NAR networks leverage past time series values to forecast future states, making them particularly
effective for time-dependent predictions, especially in short term forecasting. The NAR architecture
includes the following components:

e Input Layer: Composed of infected population values at previous time steps, I(x,t —
d,z),...,I(x,t — 1,7), for a chosen delay d > 1 and for any value of the uncertain variable z
and of the age variable x.

e Hidden Layers: A set of fully connected layers equipped with nonlinear activation functions
(e.g., ReLLU or tanh) to model complex temporal dependencies.

e Output Layer: Produces the predicted value /(x,t, z), which represents the number of infected at
time ¢ for each realization of z and of the age variable x.

Once trained, the NAR network can recursively predict the epidemic evolution by feeding its own
predictions as inputs for future time steps (closed-loop strategy). The NAR approach is particularly
effective for qualitative short-term forecasting, as it can directly learn epidemic dynamics from data
without relying on the underlying model equations. This data-driven nature allows the NAR network
to outperform PINNSs in the short-term setting, both in terms of accuracy and computational efficiency.
However, when it comes to long-term forecasting, PINNs provide a more reliable framework, as their
physics-informed structure enables them to incorporate the underlying epidemic dynamics and capture
long-term trends that the NAR network can not.
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The training process involves the minimization of the loss function (17), where we suppose w, > 0,
w, =0, and

N. M
£00= 33 [ (V00020 = 1 2) 4)
A

n=1 m=1

being I"V the solution computed by the neural network and I the data, with N, denoting the number of
samples in time, and M is the total number of samples in the uncertainty space.

Remark 1. In the case of PINNS, it is essential to include constraints for all population compartments
in the loss function to accurately capture the dynamics prescribed by the social SIR model, even if the
primary objective is to only reproduce the infected population. In contrast, for the NAR network, the
dynamics are not explicitly enforced in the loss function, but the calibrated model is instead used to
produce an augmented data set used to feed the network.

5. Numerical experiments

Now, we proceed with numerical experiments to validate our methodology. In particular, we aim
to show that neural networks trained on larger synthetic datasets achieve a higher accuracy in both
prediction and extrapolation tasks. In addition, the goal is to demonstrate that NAR networks pro-
vide a viable alternative to PINNs in the context of short term predictions, especially when trained on
synthetic data. The synthetic datasets are generated by solving systems (5)—(8) over the time interval
[#0, T'], with typ = 15 and T = 105, using a time step of 4 = 0.2. This time window corresponds to the
second phase of the pandemic in Italy, specifically from October 21st, 2020 to January 18th, 2021. We
empathize that data are generated over the entire time horizon to guarantee sufficient samples for both
short- and long-term forecasting. However, the neural networks are exclusively trained on data within
the specified training window, without any use of information from the test period. Model parameters
are treated as uncertain, as previously described, and uncertainty is represented by sampling M = 5
Gauss-Jacobi nodes z,,. The macroscopic incidence rates H,(-) for J € {S,1,A} and the number of
asymptomatic £(-) are reconstructed from the discrete dataset, and computed by solving the minimiza-
tion problem (14), is selected the value corresponding to the time index immediately preceding the
desired time ¢ is selected. For the sake of comparison, we also train the same neural networks only
using the real data at disposal. We will mainly focus on the short term forecast, thereby splitting the
datasets into training and test sets: the training set covers the period from October 21st to January
8th, while the test set spans the period from January 9th to January 18th. At the end of the section,
we compare the performances of the PINNs and NARs networks by focusing on the short and long
term forecasting. For the long term forecasting, we split the dataset into a training set (from October
21st to November 19th) and a test set (from November 20th to January 3rd), to capture the peak of
the pandemic.

5.1. Physics informed neural network

We start by defining two Feed-Forward network architectures with width 32 and 3 hidden layers,
using tanh as activation function. The networks are designed to approximate the solutions of the social
SIAR model and the age-structured social SIAR model by means of PINNs. Both networks are trained
on real and synthetic data, assuming w,; = w, = 1 in the loss function (17) to account both for the

Mathematical Biosciences and Engineering Volume 23, Issue 2, 474-498.



485

data and the underline physics. For real data, in the case of the non-age structured model, the trained
network takes the time 7 as the input and produces the corresponding value f;(¢) for any compartment
i €{S,1,A, R} at time t as the output, for any ¢ corresponding to real data. In the case of synthetic data,
the input consists of both the time ¢ and the uncertainty variable z, and the output is the value fi(¢, z)
for each compartment i € {S, 1, A, R}, for any ¢ corresponding to synthetic data. In the age-structured
setting, the network input is the triplet (x, z, z) and the output is f;(x, ¢, z), where x € A, with A denoting
the different age classes. The networks are trained for 50,000 epochs using the Adam optimizer with
a learning rate 1072, Following previously described procedure, we ensure that both the data and the
physics of the system are learned by the network.

In Figure 3, a comparison between the PINN solutions and the available data in the case of the social
SIAR model (5) is reported. On the left, the image shows the part relative to the training set, while the
image on the right refers to the test set. We clearly see that the network trained on real data achieves
a better fit on the training set, whereas the network trained on synthetic data produces a more accurate
solution on the test set; thus, it is able to better forecast the time evolution of the epidemic. Figure 4
shows the comparison between the PINN solutions and the available training data in the case of the age-
structured social SIAR model (8) for the training part. Figure 5 shows the same results but computed
on the test set. In most of the cases, despite of the complexity of the solution, the networks achieve a
good approximation in interpolation; however, they still face challenges in prediction accuracy, even
when synthetic data are used to enhance their forecasting capabilities.

PINN (training) %1073 PINN (test)
0.02 ; ; 8 ;
e Data * Data
NN synthetic data 7.5+ NN synthetic data ||
NN real data NN real data
0.015 ¢ , 7h
6.5+
0.01+ 6% ° e .
5.5+
0.005 + 5l
4.5+¢
0 : : 4 :
Oct 21 Nov 14 Dec 14 Jan 8 Jan 9 Jan 13 Jan 18

Figure 3. Physics informed neural network for the social SIAR model (5). Solutions obtained
by training a PINN network on both real and synthetic data, compared to the available data.
On the left, the solution computed on the training set. On the right, the solution computed on
the test set.
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Figure 4. Physics informed neural network (training set) for the age-structured social SIAR
model (8). Solutions obtained by training a PINN network on both real and synthetic data,
compared to the available data. Each plot corresponds to a different age class.
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Figure 5. Physics informed neural network (test set) for the age-structured social STAR
model (8). Solutions obtained by training a PINN network on both real and synthetic data,
compared to the available data. Each plot corresponds to a different age class.
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5.2. Non-linear autoregressive network

Now, we consider the NAR networks. We define two additional Feed-Forward network architectures
with a width of 32 and 3 hidden layers, using ReLu as activation function. One network is designed
to approximate the solution of the social SIAR model (5) and the other for the age-structured SIAR
model (8). As for the PINNSs, both networks are trained on real and synthetic datasets, assuming w,; = 1
and w, = 0 in the loss function (17). In the case of real data, and for the non-age structured model, the

network takes the number of infected individuals at times ¢ — d, ..., — 1 within the training set as the
input and predicts the number of infected at time ¢, for any ¢ corresponding to real data. In the case of
synthetic data, the input includes the number of infected at time ¢ — d, ..., ¢ — 1 for any value of z, and

the output is the number of infected for any value of z at time ¢, for any 7 corresponding to synthetic
data. To select the lag parameter d, we performed a series of preliminary tests on the simpler model
in (5), thereby evaluating the accuracy of the predicted solutions. Specifically, we set d to vary in the
range d = 3,..., 10, and we measure the Root Square Mean Errors (RMSE) between the available data
and the neural network predictions, defined as the following:

M
RMSE(t) = [ D (1(t,20) = INN(t, 205 00w, (25)
m=1

where (1, z,,) denotes the observed data and IINN(t, Zm; 6,) 18 the output of the neural network trained on
real or synthetic data, and w,, are the nodes associated to the uncertain parameters z,,. The results show
that, for both synthetic and real data, changing the value of d does not lead to a significant improvement
in the accuracy of the neural network predictions, with mean RMSE being of the order of 10~* for
synthetic data and of the order of 10~ for real data. Therefore, in all subsequent experiments, we set
d = 5. For the age-structured model, both the input and output include the infected number for all age
classes. The networks are trained for 20,000 epochs using the Adam optimizer with a learning rate
of 1072, To assess their performance, we first compute the solutions on the training set. Then, using
a closed-loop strategy, where the network predictions are recursively used as inputs—we compute the
solutions on the test set.

Figure 6 shows the comparison between the NAR network predictions and the available data in
the case of the social SIAR model (5). For synthetic data, we plot the mean solution with respect to
the uncertainty, computed as in (19). The image on the left corresponds to the training set, while the
results on the test set are shown on the right. The network trained on synthetic data yields more accurate
solutions, demonstrating qualitative improved performances in both interpolation and prediction with
respect to the PINNs. Figure 7 presents the comparison between the neural network predictions and
the available data for the age-structured social SIAR model (8) computed on the training set, while
Figure 8 shows the corresponding results on the test set. Each plot corresponds to a different age class.
In most of the cases, the network trained on synthetic data produces qualitatively more accurate results
with respect to the one trained on real data and to PINN, both in terms of interpolation and prediction.
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Figure 6. Nonlinear autoregressive network for the social STAR model (5). Solutions ob-
tained by training a NAR network on both real and synthetic data, compared to the available
data. On the left, the solution computed on the training set. On the right, the solution com-

puted on the test set.
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Figure 7. Nonlinear autoregressive network (training set) for the age-structured social STAR
model (8). Solutions obtained by training a NAR network on both real and synthetic data,
compared to the available data. Each image corresponds to a different age class.
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Figure 8. Nonlinear autoregressive network (test set) for the age-structured social STAR
model (8). Solutions obtained by training a NAR network on both real and synthetic data,
compared to the available data. Each image corresponds to a different age class.

5.3. Comparison between PINNs and NARs

Now, we compare the performance of the NAR network and the PINN. We focus on both short
term forecasting. First, we compare the trained networks in terms of the computational cost. For com-
parison purposes, we assume to train the PINNs and NAR networks, both on synthetic and real data,
over 50,000 epochs. Training a PINN involves significantly higher computational costs with respect to
training NAR networks, particularly in the case of the age-structured model. Indeed, automatic differ-
entiation 1s needed to enforce the physical constraints imposed by the system of ODEs. The results are
confirmed by Table 1, which reports the training time, in seconds, required to complete 50,000 epochs

referred to both models (5)—(8).

Table 1. Training time in seconds required to complete 50,000 epochs in the cases of NAR
and PINN trained both on synthetic and real data. First row: social STAR model (5). Second
row: age-structured social STAR model (8).

NAR (synthetic) NAR (real) PINN (synthetic) PINN (real)
Non-aged model 32s 26s 307 s 205 s
Age-structured model 51 s 34s 468 s 234 s
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Figure 9. Comparison between NAR and PINN in terms of accuracy over the test set referred
to the age-structured social STAR model (8). Short term forecasting. The error between
available data and neural network solutions in time is computed as in (26). Markers have
been added just to denote different lines.

Short term forecasting. In short-term forecasting, NAR networks offer a competitive alternative to
physics-informed approaches, particularly when used in combination with data augmentation strate-
gies. By directly learning the epidemic dynamics from available data, NAR networks provide accurate
quantitative estimates that can be highly valuable to monitor the progression of the pandemic and sup-
port decision-making aimed at mitigating its impact. Additionally, their data-driven nature allows for
faster training and computational efficiency, making them particularly suitable for timely analyses in
rapidly evolving scenarios. The results are confirmed by Figure 9, which displays the error between
the real data and the neural network solutions computed as follows:

8(x, 1) = |[I(x,0) = I'N(x,1;6,)

: (26)

where I(x, t) denotes the observed data, and IINN (x,t; 6,) 1s the output of the neural network trained on
real or synthetic data. In the case of synthetic data, the network output corresponds to the mean solution
with respect to the uncertainty, as in (19). Training either a PINN or a NAR network on synthetic data
provides clear benefits in terms of accuracy. In particular, NAR networks trained on synthetic data
proved to be effective in nearly all cases. We present the results only for the age-structured model (8);
however, similar findings hold for the simpler model (5) as well. These results are further supported
by Table 2, which reports the maximum error (26) over time between real data and the different neural
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network solutions. In the case of model (5), we integrate over x € A, where A represents the age-
classes.

Table 2. Accuracy of the neural network solutions w.r.t. the available data computed as
the maximum of &(¢) over time. Short term forecasting. First row: social STAR model (5).
Second-Seventh rows: age-structured social STAR model (8).

NAR (synthetic) NAR (real) PINN (synthetic) PINN (real)

Non-aged model 2.1 x 10~ 1.2x1072% 107° 1.2x107?
Age < 18 2x 107 1.9x1073 3x10™* 4x10™

19 < Age <24 2x 107 1.7x1073% 3x10™ 1.7x 1073
25 < Age <49 107 1.6x1073 3x10™* 1.4x 1073
50 < Age < 64 1074 1.5x107° 4x10™* 1.4 %1073
65 < Age <74 2x 107 1.7x1073 1073 1.4 %1073
75 < Age 1.7x 1073 1.5x1073 14x107? 2.7 %1073

Finally, let us mention that NAR networks achieve, in general, good accuracy after 20,000 training
epochs, whereas PINNs require at least 50,000 epochs to produce good results. This is valid for both
the social SIAR model and the one with age-structure.

Long term prediction Pointwise error (synthetic data)
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Figure 10. Long term forecasting for the social STAR model (5). On the left, the solution
obtained by training a PINN and a NAR network on synthetic data, compared to the available
data. On the right, the pointwise error over the test set computed as in (26).

Long term forecasting. In long-term forecasting, PINNs prove to be more accurate than NARs, by
offering a qualitative understanding of the epidemic dynamics. While their quantitative accuracy may
be lower than that of NAR networks in the short term, PINNs are particularly useful to explore strate-
gies to mitigate epidemic peaks and understand broader trends in disease progression. By embedding
the underlying physical and epidemiological laws into the learning process, they can capture the overall
behavior of the system over extended periods, which helps to inform public health interventions and
long-term planning. Since the main goal of this test is to illustrate the capability of PINNs to repro-
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duce the epidemic peak, we restrict our analysis to the simpler model in (5). Capturing the additional
complexity introduced by age-structured dynamics would likely require a significantly greater training
effort from the network. Furthermore, as we have already shown that the augmented data strategy
improves the accuracy of neural network solutions, we exclusively train both PINNs and NARs on
augmented datasets, without reporting results obtained from training on real data.

Figure 10 (left) compares the NAR and PINN networks trained on synthetic data for long-term
forecasting. The PINNs achieve a higher accuracy than the NARs, thus successfully reproducing the
epidemic peak and capturing the qualitative behavior of the solution. These findings are further sup-
ported by the error plot, computed as in (26) on the test set, as shown in the right panel of Figure 10.

All the numerical experiments were run on a Desktop Computer equipped with an Intel(R)
Core(TM) 17-8700 CPU processor and 32 GB RAM.

5.4. Effectiveness of the data augmentation strategy

To conclude our study and assess the effectiveness of the proposed data augmentation strategy, we
perform an additional test that focuses on short-term forecasting, referring for simplicity to the model
introduced in (5). We assume the recovery parameters to follow beta distributions defined as follows:

y; =0.04+0.05z,  y; =0.04+0.052,, 27)

where z; ~ Beta(1.95,4.95) and z; ~ Beta(2, 6). Following the procedure described in Section 3, we
set v, = 2y} for i = 1,2 and determine the transmission parameter 3, the unknown number of asymp-
tomatic &(-), and the macroscopic incidence rates H,(-) for J € {S, I, A} by solving the corresponding
minimization problems. As in the previous experiments, we generate synthetic data by solving the
ODE system in (5) and evaluate the performance of both the PINN and NAR networks on this dataset.
Specifically, we select the period from October 21st to January 8th as the training set, and the inter-
val from January 9th to 18th as the test set. Figure 11 illustrates the solutions computed by the two
networks trained on the respective datasets for the different uncertain parameters. Specifically, dataset
one and two correspond to z; ~ Beta(1.95,4.95) and z, ~ Beta(2, 6) , respectively. The plots display
the mean predicted solutions, with the confidence intervals represented by the shaded area. The left
panel corresponds to the training phase, while the right panel to the testing phase. The first row plots
the results for the NAR network, and the second row for the PINN. In terms of mean the solution, the
results are comparable.

Finally, we compute the accuracy of the solution on the test set according to different error metrics.
Specifically, we consider the RMSE computed as in (25), as well as the Mean Absolute Error (MAE)
and the coefficient of determination (R?) as follows:

1 <G

MAE() = <= ) 1. 20) = INN(1, 202 0.) i,
ml (28)
St (18, 2) = INN(E 205.6)) Wi

Rt =1-
(1) = ,

where I(t, z,,) denotes the observed data, IINN(t, Zm; 0.) 1s the output of the neural network trained on
real or synthetic data, N, is the number of considered time points, 6% is the variance of the observed
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data with respect to the uncertainty parameter z,, and w,, are the nodes associated with z,, for m =
1,...,M. Table 3 reports the mean value with respect to the time ¢ of the quantities computed in
(25)—(28). The coefficient of determination R? indicates that the model provides an excellent fit to
the data, a conclusion which is further supported by the other error metrics. Moreover, the neural
networks demonstrate robustness, as the errors remain comparable across different uncertainty levels.
Once again, the results confirm that the NAR network yields more accurate approximations than the
PINN for short-term predictions.
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NN synthetic dataset 1 14+ © NN synthetic dataset 1 |

= = NN syntetic dataset 2 = = NN syntetic dataset 2
95% Cl dataset 1 95 % Cl dataset 1
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Figure 11. NAR network and PINN for the social SIAR model (5). Comparison between two
different datasets of uncertain parameters computed as in (11) and following the procedure
described in Section 3. First row: PINN. Second row: NAR networks. On the left, the
solution computed on the training set. On the right, the solution computed on the test set.
Dataset one and two correspond to z; ~ Beta(1.95,4.95) and z, ~ Beta(2, 6) , respectively.

Table 3. Accuracy of the neural network solutions to the social SIAR model (5) w.r.t. the
available data computed as in (25)—(28). Short term forecasting.

NAR (dataset 1) PINN (dataset 1) NAR (dataset 2) PINN (dataset 2)

RMSE 2x10™* 6.2 x 107 1074 6x10™*
MAE 1.8x10™* 1073 22x 107 7% 1074
R? 0.99 0.99 0.99 0.99
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6. Conclusions

In this work, we explored a data augmentation strategy aimed at enhancing the performance of
neural networks for epidemic modeling, thereby focusing on both interpolation and prediction tasks.
By combining real-world data with synthetic data generated through simulations of socially structured
SIAR models that incorporate parameter uncertainty and age dependence, we demonstrated the ability
of neural networks to effectively capture complex epidemic dynamics when additional data from suit-
able models are included into the training. In addition to PINNs, we considered an emerging class of
models known as NAR networks. These networks, which use past time-step solutions to predict future
dynamics, have shown particular effectiveness in capturing temporal dependencies, especially in the
short time forecasting. Unlike PINNSs, which require embedding the governing equations directly into
the training process, NAR networks adopt a purely data-driven approach that has proven to be both
more accurate and significantly less computational expensive. A key finding of this study is that incor-
porating uncertainty into model parameters not only enables the generation of more realistic synthetic
datasets but also improves the predictive accuracy of neural networks.

Future research will explore alternative neural network architectures within the class of recurrent
models, such as Long Short-Term Memory (LSTM) networks, which may offer further advantages for
time-series forecasting. Moreover, we plan to extend our framework to spatially dependent epidemic
models under uncertainty. This direction is motivated by the fact that disease transmission is often
spatially heterogeneous. For example, urban areas typically exhibit a faster spread than rural regions,
and spatially targeted interventions such as localized lockdowns or travel restrictions introduce ad-
ditional complexity. Incorporating spatial structure and uncertainty will enable a more realistic and
localized understanding of epidemic dynamics, thus supporting more effective and adaptive contain-
ment strategies.
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