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Abstract: This paper investigates the stochastic logistic difference equation, X,; = rX,(1 — X,,)&,,
where X, is a random variable of population size, and {&,} represents independent random perturbations
with E[g,] = 1 and E[sﬁ] = v > 1. Under the Gaussian moment-closure approximation, we
derived a closed system of difference equations for the mean and variance of X,. The analysis of
the system of difference equations identified two classes of equilibria: a trivial equilibrium (0, 0)
representing extinction, and nontrivial equilibria corresponding to positive steady population levels.
Explicit conditions for the existence and local stability of these equilibria were obtained, showing
that the extinction state is stable when r*v < 1, whereas nontrivial equilibria arise for » > 1 with
stability dependent on the stochastic intensity v. The saddle-node (fold) bifurcation induced by
variations in the stochastic intensity v was explicitly formulated. Monte Carlo simulations confirmed
the analytical analysis.
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1. Introduction

The logistic difference equation is a fundamental model in ecology and applied mathematics, used
to describe the dynamics of population growth in environments with finite resources. It captures the
essential interplay between a population’s growth potential and the limitations imposed by its
environment, making it a powerful tool for studying nonlinear dynamics in ecological and other
resource-constrained systems.

In their deterministic form, these models capture an initial phase of exponential expansion that
gradually slows as the population approaches the carrying capacity, the maximum number of
individuals that the environment can sustain. The behavior of the logistic model is highly sensitive to
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the intrinsic growth rate, which determines the speed of population increase and governs transitions
between stability, oscillation, and chaotic dynamics [1-4]. Because of their simplicity and rich
dynamic structure, deterministic logistic equations have become fundamental tools for studying
nonlinear population dynamics and resource-limited ecological systems.

Stochastic extensions of the logistic model significantly enhance the deterministic framework by
accounting for the unpredictable nature of real-world ecosystems. Unlike deterministic models, which
predict a single, fixed trajectory based on starting conditions, stochastic models capture a range of
possible population outcomes, revealing both the average trend and the uncertainty around it. By
incorporating random environmental fluctuations, such as shifts in climate, resource availability, or
unexpected disturbances, these models offer a more realistic picture of how populations evolve in
dynamic, uncertain settings. This makes them especially valuable for studying ecosystems affected
by irregular conditions, like variable weather patterns or resource instability. As a result, research
into stochastic logistic models, both in discrete and continuous forms, has become a dynamic field,
with extensive studies exploring their behavior and practical implications for understanding ecological
systems and guiding conservation efforts [3-8].

Quantitative analysis of stochastic difference equations often relies on moment-closure methods,
which approximate the evolution of a system’s statistical moments through a finite set of recursive
equations. In this approach, expectations are taken over the stochastic updates to obtain relations for the
mean and variance, while higher-order moments are expressed in terms of these lower ones under the
assumption of approximate distributions. This closure transforms inherently stochastic dynamics into
a deterministic system describing the evolution of the mean and variance, thereby avoiding the need to
track individual realizations. The Gaussian moment closure provides an efficient analytical framework
for investigating nonlinear, noise-driven discrete-time systems, such as stochastic logistic models, and
facilitating studies of stability, bifurcation, and long-term population behavior while preserving the
influence of environmental variability [5,9-13].

Our focus in this paper is the dynamics of the derived system of difference equations for the mean
and variance of X, obtained directly from

X =rX,(1-X)e,, n=1,2,..., (L.1)

where X, is a random variable representing a population size at time n, r > 0 is a constant
representing the intrinsic growth rate, and &, is a random variable accounting for stochastic
perturbations, independent of X,,, with

Ele, =1, E[el]]=v> 1.

We show that this moment system under the Gaussian moment-closure approximation admits two types
of equilibria: the trivial equilibrium (u*, s*) = (0, 0), and one or two nontrivial equilibria (u*, s*) > 0,
corresponding to sustainable positive population levels. The stability analysis reveals that the trivial
equilibrium is locally asymptotically stable when r*v < 1, a condition under which small populations
inevitably decline to extinction. When r > 1, the system gives rise to nontrivial equilibria whose
stability depends on the interaction between the intrinsic growth rate r and the stochastic intensity
v = E[g?]. For moderate values of v, a stable nontrivial equilibrium emerges, ensuring long-term
persistence at a positive mean population level, whereas large stochastic perturbations or high growth
rates can destabilize the equilibrium, leading to fluctuations or collapse. The study also includes the
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analysis of the saddle-node (fold) bifurcation that emerges as the stochastic intensity v varies. These
results provide a unified theoretical framework linking the parameters of the stochastic logistic model
to population persistence, extinction, and the stabilizing influence of environmental variability.

The study continues the work in [14, 15] where the authors investigated the relations between the
parameters in (1.1) and the transitions from steady states to chaos in the stochastic models with the
gamma distribution [16]. The key new contributions of this paper include: 1) the development of a
system of difference equations for the mean and variance of X, obtained directly from (1.1) under
the Gaussian moment-closure approximation, establishing a moment-based framework for analyzing
stochastic logistic dynamics; 2) the derivation of explicit analytical expressions for the equilibrium
conditions and stability criteria of both trivial and nontrivial equilibria under the Gaussian moment-
closure approximation, as well as analysis of how changes in the stochastic intensity v give rise to
a saddle-node (fold) bifurcation in the system; and 3) a comprehensive investigation of the effects
of stochastic perturbations and distributional parameters on the intrinsic growth rate and population
persistence, providing new biological insights into how environmental variability shapes population
stability and extinction risk.

The remainder of this paper is organized as follows. Section 1 provides an introduction to the
logistic difference equation and its stochastic extensions, highlighting the motivation, results, and
significance of this study. In Section 2, under the Gaussian moment-closure approximation, we derive
a system of difference equations for the first and second moments of X,, directly from the stochastic
logistic equation (1.1), establishing the analytical foundation for the subsequent stability analysis.
Section 3 examines the trivial equilibrium (u*, s*) = (0, 0), representing population extinction, and
presents the conditions under which this equilibrium is locally asymptotically stable. Section 4
focuses on the existence and stability of nontrivial equilibria (u*, s*) > 0, corresponding to sustainable
population levels, and explores how the parameters r and v influence their stability and bifurcations.
Finally, Section 5 discusses the biological implications of the stability results, compares the analytical
findings with Monte Carlo simulations, and summarizes the broader significance of the study in
understanding population persistence and extinction under stochastic environments.

2. Gaussian moment—closure and difference equations

The stochastic process X1 = rX,(1 — X,,)e, forms a Markov chain as each ¢, is independent of the
past. The Markov property allows the moment hierarchy to be written in recursive form. Moment
closure is a prevalent method to study nonlinear stochastic differential equations. To obtain a closed
system of equations for the first few moments, it is common to invoke a Gaussian moment-closure
approximation, assuming that fluctuations around the mean are approximately normal. This
approximation is justified when stochastic perturbations are small and the process remains near its
deterministic trajectory. Thus, while the Markov property enables the recursive moment formulation,
the Gaussian closure provides an analytically tractable approximation for solving it [5,9-13,17].

In particular, [10] provided theoretical justification for using a Gaussian moment-closure
approximation in stochastic population differential equations. They demonstrated that population
growth governed by nonlinear logistic-type dynamics can be described as a Markovian jump process
whose moment equations are unclosed, since lower-order moments depend on higher-order ones. To
address this, they tested several standard moment-closure approximations, including the normal

Mathematical Biosciences and Engineering Volume 23, Issue 2, 449-473.



452

(Gaussian) closure, which expresses higher moments as functions of the first two moments. They find
that Gaussian or normal-type closures substantially improve predictions of stochastic dynamics
compared to purely deterministic descriptions by incorporating variance effects in a tractable way.
Thus, their analysis supports the adoption of Gaussian moment assumptions as an effective
second-order approximation for nonlinear stochastic difference equations as well.

The stochastic logistic model (1.1) with random perturbations &, generates fluctuations around the
deterministic trajectory due to the small independent random perturbation in each iteration. To obtain
a tractable system for the stochastic difference equations, we adopt the Gaussian moment-closure
approximation. This approach does not assume that X, itself is normally distributed, but rather that its
first few moments satisfy the same relationships as those of a Gaussian random variable. Specifically,
we assume that the moments of X,,,n = 1,2, ..., satisfy

E[X,] = E[X*] =i + o2,

2.1
E[X}] = i + 3,02, E[X}] = b + 61207 + 307, @1

with u,, o, > 0. The Gaussian moment-closure approximation closes the infinite hierarchy of moment
equations and allows use to derive consistency conditions to preserve the nonnegativity of the mean
of X, for biological feasibility. If a random variable X follows a normal distribution, it satisfies the
relation (2.1) [18] or from the Appendix at the end of [15].

We now derive a system of difference equation for the first and second moments of X, directly
from (1.1).

Theorem 2.1. Consider the stochastic logistic difference equation (1.1). Suppose that €, is any random
variable and independent of X,, with

Ele, ] =1, E[el]=v > 1.
Assume that X, satisfies the Gaussian moment-closure approximation (2.1). Defining
Hnst = E[Xp1], Sper = 0’54.1 = Var[X,,],

we obtain the following system of difference equations:

Mn+1 = Fl(lun, Sn), (22)
Sn+1 = FZ(/ln’ Sn)’ (23)
where
Fi(u,s) = r(/J—u2 —5)
and

Fo(u, s) = rPv(u® — 24 + p* + 6pPs — 6us + s + 35%) — r*(u — (i — s)%.

Proof. From (1.1), the first moment of X, is given by

E[X,i1] = rE[X,(1 = X,)] = r(u, — 12 — 02) (2.4)
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and the second moment of X,,,; is
E[X.,,] = PVE[X:(1 - X,)°] = FPVE[X} - 2X, + X}].
It follows that

E[X?

n+l1

1= AE[XA(1 - X,)]
= Pv(y = 24, + Hy + 6507, — Oty + 0 + 307). 2:5)

Finally, Var[X,.,1] = E[X?, |1 — (E[X,+1])* gives

fnet = My = f1 — 00), (2.6)
ol = vl = 2 + i+ 6o — 6,0 + 0+ 30 — P (w, — i — o) (2.7)
Letting s, = o> completes the proof. O

Theorem 2.1 provides a general framework for analyzing the mean and variance of stochastic
populations. The system (2.6)—(2.7) captures the nonlinear interaction between the mean population
level y, and its dispersion o2 under random perturbations. The parameters r and v jointly determine
how strongly stochasticity influences both the expected growth and the spread of the population size.
In the deterministic limit v = 1 and 0> — 0, the system approximately reduces to the classical
logistic map

Mn+1 = rlun(l _,un)-

3. Trivial equilibrium

3.1. Stability analysis of trivial equilibrium

In this section, we analyze the equilibria of the trivial equilibrium system of difference equations
(2.2)—(2.3), where r > 0 is the intrinsic growth parameter and v = E [8,21] > 1 represents the stochastic
intensity of the perturbation &,. The local stability of each equilibrium is determined by the eigenvalues
of the Jacobian matrix evaluated at that equilibrium point. If all eigenvalues lie inside the unit circle,
the equilibrium is locally asymptotically stable [3, 19].

Theorem 3.1 (Trivial equilibrium and local stability). The system (2.2)—(2.3) always admits
the equilibrium

(', s = (0,0),

corresponding to the extinction state of the population. Under the assumptions of Theorem 2.1, the
equilibrium (0, 0) is locally asymptotically stable if and only if

v < 1.

Proof. Substituting (u,, s,) = (0,0) into (2.2)—(2.3), we find that w,,,; = 0 and s,,; = 0, establishing
that (0, 0) is an equilibrium for any r, v > 0. Now we compute the Jacobian J(u, s) = DF(u, s), where

F(u,s) = (2) .
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We compute the partial derivatives of F; and F,. For F(u, s) = r(u — w—s),

BFl aFl
M1 =2 i
o r(1 —2p), s

=-r.

For Fy(u, s) = r*vA(u, s) — r*B(u, ), where
A, s) = p* = 24 + 1 + 6p%s — 6us + s + 357, B(u, s) = (u — pu* — s)%,

we have (by direct differentiation)

0A 0A
— =4 — 64 + 2u + 12us — 65, — =6u° —6u+1+6s,
ou os

and OB OB
— =2u-p@ =1 =2,  — =2u-u-s)(=1).
ou 0s

Therefore
0F, , OA ,0B oF, , 0A ,O0B
— 2,8 _ _

a3 s

ou ra, as Vs ds’

We now evaluate the Jacobian at (0, 0) by substituting i = 0, s = 0 into the partials computed above:

8F1 6F1 '
_— = r’ _— =
ou 1.0 0s 10,0

b

and
OF, 5

- =r
ou 10,0

oF,

— =r*v-1-r"-0=r.
0s 10,0)

v-0-r>-0=0,

Thus the Jacobian at (0, 0) is the upper triangular matrix

r -r
J(0,0) = (O rzv]'

Because J(0, 0) is triangular, its eigenvalues are the diagonal entries:
A=, Ay = 1.

The standard discrete-time linearization theorem ( [19]) implies that the sufficient and necessary
conditions such that the equilibrium (0, 0) is locally asymptotically stable is

r<1 and rv<l.

Forv > 1, r?v < 1 implies r < 1 and therefore only 7*v < 1 is needed. This completes the proof. O

The equilibrium (0,0) represents complete extinction, a degenerate population distribution
centered at zero with vanishing variance. For small r and weak noise (v = 1), the stability conditions
are satisfied, and the population mean and variance decay to zero exponentially. When r > 1, this
equilibrium becomes unstable and the population either diverges or oscillates due to
stochastic amplification.
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3.2. Monte Carlo simulations

Figure 1 displays the temporal evolution of the sample mean and variance obtained from Monte
Carlo simulations together with the corresponding analytic results from the moment-map equations for
two small growth rates, » = 0.1 and v = 1.05. The trajectory of the mean and variance rapidly decays
toward zero, indicating convergence to the trivial equilibrium (u*, 0**) = (0,0). The close agreement
between the moment-map predictions and the Monte Carlo ensemble averages confirms the accuracy
of the Gaussian moment-closure approximation in this weakly nonlinear system. Because r is small,
the local stability condition 7?v < 1 is satisfied, and the stochastic perturbation &, has only a minimal
effect on the dynamics. Consequently, both the deterministic and stochastic trajectories remain near
the origin and quickly stabilize, exhibiting nearly identical behavior. These results demonstrate that,
when the intrinsic growth rate is small, the system is strongly attracted to the extinction state and
the influence of random fluctuations is negligible, leading to perfect consistency between analytic and
Monte Carlo solutions.

Mean evolution (r=0.1, v=1.05) Variance evolution (r=0.1, v=1.05)
1L04-¢ —e— Moment-map variance
0.00 4 ¢ Monte Carlo variance
' 0.8 +
_0.02 = 1+
[ i
£ —0.04 - ‘ g 06
g g
\ g
—0.06 1 0.4 4
|
—0.08 +— 0.2 4
—e— Moment-map mean
0104 & Monte Carlo mean L
T T T T T T T T T 0.0 T T 7 T T T T T 7
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 J0 80
n n

Figure 1. Simulated trajectories of u, and s, converging to (0, 0) for r = 0.1, v = 1.05.

From a biological perspective, the stability of the trivial equilibrium (u*, 0**) = (0, 0) corresponds
to the extinction state of the population. When this equilibrium is locally asymptotically stable, small
populations subjected to environmental fluctuations inevitably decline to zero over time, regardless of
random perturbations, implying that the intrinsic growth rate r is insufficient to sustain persistence.
The analytical stability condition 7?v < 1 thus defines the parameter region in which extinction is
inevitable, even in the presence of mild stochastic variability. In this regime, the effects of random
environmental noise do not generate recovery but rather may accelerate convergence toward extinction
by amplifying the effective damping around the zero state. Conversely, when the trivial equilibrium
becomes unstable, the population can escape extinction and approach a positive nontrivial steady state,
marking the transition from extinction risk to sustainable growth. Therefore, the stability of the trivial
equilibrium provides a quantitative threshold for the persistence or collapse of a biological population
under stochastic environmental perturbations.
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4. Nontrivial equilibria

4.1. Existence of nontrivial equilibria

Theorem 4.1 (Existence of nontrivial equilibria). Under the assumptions of Theorem 2.1, and assume
that r > 1. Then any nontrivial positive equilibrium (u* > 0, s* > 0) of (2.2)—(2.3) must satisfy

. 1
(1= = =), 4.1
s =(1- 1 i) (.0
P r,v) i= 2™ — 4P v + Briv = 3mu —rv+riv+r—1=0. 4.2)

A positive root u* of (4.2) corresponds to a positive feasible equilibrium ( u* > 0, s* > 0) if
1
O<pu <1 —-.
r

In addition, P(u*; r,v) has no feasible solution for r > 3.

Remark 4.2. The trivial solution (0, 0) always exists. In the proof of Theorem 4.1, we assume u* > 0,
and in addition, because of the assumption that » > 1, then 7*v > 1 and

PO;r,v)=—rv+riv+r—1 (4.3)
=(r—-1(1-r) <0. (4.4)

Therefore, O is not a solution of (4.2) and the trivial equilibrium (0, 0) is not included in Theorem 4.1.
In addition, in view of the proof in Appendix,

1
Hl-=:rv)=@-1D(1-v)<0,
r
and (1 — %, 0) is not an equilibrium. As a result, a nonnegative equilibrium of (2.2)—(2.3) would be
either a positive feasible solution (u* > 0, s* > 0) or a trivial solution (0, 0).
We now proceed to prove Theorem 4.1.
Proof. An equilibrium (u*, s*) solves
W= Fi,s"), st = Fy(u’, s7),
which can be written as
po=rut -t - s,
S* — rZV(/J*‘l _ 2/1*’; +/l*2 + 6,U*ZS* _ 6/1*5'* + S* + 3S*2) _ I’Z(/.t* _N*Z _ S*)Z'

Now eliminating s* from the first equation, we can solve for s™:
and hence
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This expresses s* as an explicit function of u*. Note immediately that for s* > 0 we must have

1 —1/r > 0, and hence necessarily r > 1 for any nonnegative equilibrium; and furthermore
1
S
,

is required for feasibility.

Substituting into the second equilibrium equation, we first observe a useful simplification:

%2
W — % — 5 = li_z, Pt —p? = s = i

Now we have
§F = FZVA(/J*, s*) _/-1*2,
where
AQu, 8) 1=t =28 + 1% + 6p°s — 6us + s + 357

Substituting s = (1 — 1/r — w) into the polynomial A(u, s), noting that

-
2 1 2
:,uz(l——+—2—2,u+—#+/,tz)
r r r
22 2 23
L L s
r r r
we have
Ay, 5) =
it =2+ P
63
+(6,u3 K 6,u4)
r
62
+(—6,u2+i+6,u3)
r
ot}
r
6>  3u? 6u°
+(3,12_L+L2_6#3+L+3ﬂ4).
r r r

A direct expansion (grouping powers of u*) yields

1
A5 = =2+ 4+ B0 = D)+ (1=

4.5)

(4.6)

4.7)

(4.8)

4.9)
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Note that

372 - 1) o =1,
Mt M

r r

PVA(®, s*) = r’v (—Z,u*4 + 4 -

= =2/t + 4% = 302 - Dv™ + (r — Doy

Substituting the expression for A(u*, s*) into s* = r?v A(u*, s*) — u*?, we have

s = 2wt + 4t = 3 — Dvd™ + (r — Drog® — 2.

In view of
* T 1 * r—1 %2
s =p -y = po—
r
we have
-1
d W=t = =2t + 4% = 307 - Dve™? + (r — Drvp” — 2.
B
Thus

2% — 4rtvet? + 307 = D 0.

— 1)1 =72
*2+(” )(r VV)’U*:

Noting ¢* > 0, we can divide the above equation by u* on both sides. Then multiplying through by
r to clear the denominator 1/r, one arrives at the cubic polynomial

2 —4rtv?t + By = 3mut - Py + v+ r—1=0,

which we denote by P(u*; r,v) = 0. Therefore any positive equilibrium (u*, s*) corresponds to a positive
root u* of the cubic P(u; r,v); and, conversely any real root u* of P with

1
O<u <1--
-

gives a feasible equilibrium by taking s* = u*(1 — 1/r — u*) (which is then > 0). Because P is a cubic
in y, it has at most three real roots; one of these may be u* = 0 (the trivial root) and up to two further
positive roots can lie inside the feasible interval (0,1 — 1/r]. Thus for » > 1, the system can admit
one or two positive biologically admissible equilibria (in addition to the trivial (0, 0)) depending on the
parameters r and v. This completes the derivation and characterization of nontrivial equilibria. The
proof that P(u*; r,v) has no feasible solutions for r > 3 is carried out in Section 5. O

The trivial equilibrium (0, 0) always exists, but nontrivial equilibria appear when r > 1. For r > 1,
Eqgs (4.1)—(4.2) may admit up to two positive feasible roots uj,u5 € (0,1 — 1/r), corresponding to
distinct stochastic steady states. For small v (close to 1), both equilibria lie near the deterministic
logistic equilibrium y* ~ 1 — 1/r.
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4.2. Graphs of P(u; r,v) and stability

Figures 2a-2c show the behavior of the cubic polynomial P(u;r,v) for three representative
parameter combinations. Each curve corresponds to the equilibrium condition P(u*;r,v) = 0, whose
roots determine the feasible nontrivial equilibrium means y* of the stochastic logistic model under the
Gaussian moment closure.  The shaded region indicates the biologically feasible interval
u € (0,1 = 1/r), within which positive equilibria are meaningful. For r = 2.0 and v = 1.1 (Figure 2a),
the polynomial intersects the horizontal axis twice inside the feasible range, yielding two distinct
nontrivial equilibria, one stable and one unstable. Similarly, for r = 1.5 and v = 1.02 (Figure 2b), two
real roots also appear within the feasible region, but they occur at smaller u values, indicating a lower
equilibrium population level. For » = 3 and v = 1.01, Figure 2c shows there is no feasible solution.
These results confirm that for 1 < r < 3, system (4.1)—(4.2) may admit up to two positive feasible
roots, and that there is no positive feasible solution for r > 3.

P{u; r=2.0, v=1.1) P(y; r=1.5, v=1.02)
0.0 I 0.00 feasible p € (0,1-1/r] H
1
—-0.5 : —0.25
1
~1.01 i —0.50 -
— 1
> 1.5 i < —0.75 1
= i =
£ 201 i & —1.00 A
1
—251 1 —1.257
1
1 4
30 | ~150
i feasible 1 € (0,1-1/r] ~1.751
354
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
u u
(@) P(ur,v) forr=2,v=1.1 (b) P(u;r,v) forr = 1.5, v = 1.02

P(u; r=3,v=1.01)

feasible u€(0, 1 —1/r]

1207 ¢ root at 0.738243

100 A
80 4

60

Pu; r,v)

40

201

—-20 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
u

() P(u;r,v) forr = 3.1, v=1.01

Figure 2. Plots of P(u;r,v).

For r = 2.0 and v = 1.1, as shown in Figure 2a, solving (4.2) gives three real roots:

u =037, w =044, puz=1.19.
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For r = 2, s* = p*( — u*), and hence s* > 0 requires u* < % Only uy and u, are within (0, 0.5).

2
Using (4.1),
s ~ 0.048, s ~ 0.028.

Linearization shows that (u3, s3) is stable (all eigenvalues |4] < 1), while (uj, s7) is unstable. This
pattern reflects a bistable structure typical in stochastic logistic systems: the lower equilibrium acts as
a threshold separating extinction and persistence.

To determine local stability we linearize the moment system at an equilibrium (u*, s*). The Jacobian
of the moment map (u, s) — (F(u, s), F»(u, s)) has the block form

0, F, GSFl] (r(l—Zy) -r
0,F, ,F, L, 8) o, s) )

where, with r = 2 and v = 1.1, the lower-left and lower-right entries are

J(u, s) =(

Ior(u, 8) = Pv(d — 60 + 2u + 12us — 65) — 1 - 2(u — 1 — s)(1 = 2p),
I, §) = (6 — 6+ 1+ 65) — r* - 2(u — pi = s)(=1).

Evaluating these expressions at the two feasible equilibria u; ~ 0.371449, s; =~ 0.048 and u, =
0.436165, s, ~ 0.028 yields the numerical Jacobians

0.514204 —2.000000] 7 [0.255340 —2.000000
; 2,82) =

J(uy, s1) = .
(1. 50) [—0.177869 0.982669 ~0.040288  0.387282

The eigenvalues of these matrices are
spec (J(u1, s1)) =~ {0.108, 1.389}, spec (J(uz, 52)) ~ {0.030, 0.613}.

Because one eigenvalue of J(ui,s;) exceeds unity in modulus, (u;,s;) is a saddle-type (locally
unstable) equilibrium. By contrast both eigenvalues of J(u,, s,) lie strictly inside the unit disk, so
(12, 52) is locally asymptotically stable. Thus, for r = 2.0 and v = 1.1, the moment system has two
feasible nontrivial equilibria. Trajectories near (u,, s,) are attracted to the positive steady state, while
(1, s1) forms an unstable threshold separating extinction-like behavior from persistence at the stable
positive equilibrium.

Figure 3a plots the locations of the feasible equilibria y* as functions of v for r = 2, with the upper
branch (orange) denoting the stable equilibrium and the lower branch (blue) the unstable one. The
equilibrium equation P(u*;r,v) = 0 was solved numerically to obtain all feasible equilibrium
solutions, and the eigenvalues of the Jacobian matrix were computed to determine local stability. As v
increases, the stable equilibrium u* gradually decreases, indicating that stronger environmental
variability lowers the steady-state mean population level. Figure 3b shows the maximum eigenvalue
modulus |1] of the stable equilibrium as a function of v, illustrating how increasing stochastic intensity
pushes the eigenvalues toward the unit circle. When |A| approaches 1, the system reaches the stability
boundary, and the equilibrium loses stability. Together, these results demonstrate that higher noise
intensity reduces both population stability and equilibrium abundance, implying that environmental
fluctuations can destabilize otherwise persistent populations by weakening the restoring forces around
the equilibrium state.
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Locations of feasible p* vs v (r=2.0)
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Figure 3. Stability of nontrivial equilibria vs v.
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Figure 4. Stability of nontrivial equilibria vs r.

Figures 4a—4d illustrate the existence and stability of nontrivial equilibria for the stochastic logistic
model as the intrinsic growth rate r varies. Figure 4 shows the number of feasible nontrivial equilibria
(u*, s*) identified from the analytic cubic equation P(u*;r,v) = 0 for two values of the perturbation
parameter v, while Figures 4b—4d display the corresponding equilibrium locations u* and their
stability classification. Each equilibrium point is obtained by solving the moment system under
Gaussian moment closure, with stability determined from the eigenvalues of the Jacobian matrix. In
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the scatter plots, orange diamonds indicate the locally stable ones. These results were generated by
sweeping r across the interval [0.5,3.0] and computing equilibrium solutions numerically for each
value using the analytic formulas derived in this section.

The comparison between the two cases, v = 1.05 and v = 1.005, in Figure 4 demonstrates the
impact of stochastic perturbation strength on equilibrium structure. For both values of v, nontrivial
equilibria emerge when r > 1, consistent with the classical logistic bifurcation threshold. However,
as the noise intensity increases (from v = 1.005 to v = 1.05), the feasible range of r supporting
two nontrivial equilibria becomes slightly narrower, and the upper stable branch shifts downward.
This indicates that stronger environmental variability reduces the region of parameter space where the
population can sustain a positive stable mean level, effectively stabilizing the system around smaller
equilibrium values. In other words, increasing stochastic fluctuations suppresses excessive growth
and limits the persistence of large population states, a phenomenon commonly observed in noise-
regularized dynamical systems.

4.3. Monte Carlo simulations
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Figure 5. Monte Carlo simulation and Gaussian moment—closure predictions for r =
1.13,v =1.01.

Figure 5 compares Monte Carlo simulations, the Gaussian moment—closure approximation, and the
deterministic logistic fixed point for the stochastic logistic map at parameters r = 1.13 and v = 1.01.
In the left panel, both the Monte Carlo mean trajectory (black curve) and the moment—closure mean w,
(red dashed curve) rapidly converge to a small positive equilibrium. The horizontal green line marks
the moment—closure fixed point u* ~ 0.1099, while the purple dotted line shows the deterministic fixed
point x* = 1 — % ~ (0.1150. The two values are close, and the Monte Carlo mean settles between them,
illustrating that the stochastic perturbations slightly depress the long—term population level relative to
the deterministic prediction.

The right panel shows the corresponding variance dynamics. The Monte Carlo variance (blue curve)
fluctuates around a small steady level, while the moment-closure variance s, (orange dashed curve)
relaxes quickly to the predicted equilibrium s* ~ 5.66 x 10~ (green line). The agreement is again
excellent, with the closure equations capturing both the magnitude and transient behavior of variance.
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Overall, the figure demonstrates that for moderate growth rates 1 < r < 3 and weak noise (v = 1),
the Gaussian moment—closure system accurately tracks the Monte Carlo dynamics in both mean and
variance, while deviating slightly from the deterministic logistic equilibrium due to stochastic effects.

Biologically, the stability of a nontrivial equilibrium (u*, s*) represents the long-term persistence
of a population at a positive mean abundance under stochastic environmental fluctuations. When the
nontrivial equilibrium is locally asymptotically stable, the population converges toward a steady-state
level u* after transient fluctuations, indicating a balance between intrinsic growth, density-dependent
regulation, and random environmental effects.

In this regime, the variance s* quantifies the expected amplitude of natural population fluctuations
around the mean equilibrium, reflecting environmental variability. The parameter condition r > 1
ensures the existence of positive equilibria, while increasing stochastic intensity v can reduce stability
by narrowing the feasible range of r and lowering the equilibrium population size. Thus, stability of
the nontrivial equilibrium signifies ecological resilience—the capacity of the population to maintain
a sustainable level despite environmental randomness—whereas loss of stability marks the onset of
stochastic instability and heightened extinction risk.

4.4. Bifurcation analysis

System (2.2)—(2.3) is a two—dimensional map driven by two parameters (r,v), unlike the
one—dimensional deterministic model depending only on r, and its bifurcation structure may be
substantially richer. In this study, however, we focus on the saddle-node (fold) bifurcation with
respect to the stochastic intensity v because it represents the primary mechanism through which
environmental variability alters the qualitative behavior of the system, leading to the coalescence and
disappearance of positive equilibria. This type of bifurcation is consistent with the canonical
one-dimensional fold, where two equilibria (one stable and one unstable) merge as a control
parameter varies, producing a qualitative transition from persistence to extinction in the underlying
dynamical process [20,21].

Theorem 4.3 (Saddle-node bifurcation ). Under the assumptions of Theorem 2.1, and assume that
r > 1, the saddle-node bifurcation of (2.2)—(2.3) occurs at a critical noise level v = v, at
r—1
2r3(ue)? — 4r3(ue)? + 3r* =3, — P + 12

ve(r) = (4.10)

Y v

o forl <r<3.

where u.(r) =

Proof. The saddle-node bifurcation occurs at a critical noise level v = v, where the equilibrium
equation P(u*; r,v) = 0 and its derivative with respect to y* vanish simultaneously, that is,

oP .
P rve) =0, — (W) =0.
ou*

At this bifurcation point, the two real roots of P(u*;r,v) coalesce into a single double root,
corresponding to a marginally stable equilibrium. For v < v, two distinct equilibria exist—one stable
and one unstable—whereas for v > v., no feasible positive equilibrium persists. This analytic
condition precisely characterizes the threshold at which increasing environmental variability
eliminates the population’s stable steady state.
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Recall that

P(u;r,v) = 2r3v,u3 - 4r3v,u2 + (3r3v - 3rv)u — Pv+rtv+r—1.

Differentiating P with respect to u gives

oP
i 6r’vi® — 8r’vu + 3rv — 3rv).
u

Factor v (we are interested in v > 0):

oP
% =v(6r°w? =8 +3r =3r) =v Q(u; r).

Thus for v > 0 the saddle-node condition 0, P = 0 reduces to the quadratic
O(u;r) = 6r°u* —8ru+3r —=3r = 0.

Solving 6r°u? — 8r°u + 3r* — 3r = 0 gives

813 + /(8r3)2 — 4(6r3)(3r% — 3r)
123 '

lj =
The discriminant simplifies algebraically:
(8 = 4(6r)(3r° = 3r) = 64r° — 24°3r° - 3r)

= 64r° = 72r° + 72/
=8r'(9-1r).

Substituting and simplifying yields the two candidate roots:

Ar= N2V 4r=\209-1)

He(n) or or

4.11)
(4.12)
(4.13)

These are real only when 9 — r? >0, 1i.e., r<3. The polynomial P is affine (linear) in v; we write it as

P(u;r,v)y =v-Bu;r)+ (r—1),
where
B(u;r) = 2r3p3 - 4}’3,u2 + (3r3 —3ru — o+

Solving P(u; r,v) = 0 for v gives
r—1

CBr)

The saddle-node candidates are obtained by evaluating the formula for v at u = 1 (r).

As shown in Figure 6, we only need u_ (r) because of 0 < u < 1 — 1/r (equivalently s* > 0). These
are real only when 9 — 72 > 0, i.e., r < 3. The saddle-node candidates are obtained by evaluating the

formula for v at u = u_(r). Thus
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Deterministic and Moment-Closure Fixed Points
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Figure 6. Deterministic and moment-closure fixed points.

where B(u; r) is the cubic coefficient function above and

4r £ 2(9 - r?)
6r ’

As a result, the analytic candidate locations of fold points (., v.) are

4r— O e

6r

M (r) =

He(r) =
r—1

B : 4.1
2r3(ue)? = 4r3(pe)* + (3r? = 3ru — 3 + 12 (4.15)

ve(r) =

1.200

—— Analytic closure v¢(r)
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Figure 7. Fold (saddle-node) bifurcation curve v.(r).

We now look at the representative case r = 2. To investigate the influence of stochastic intensity v on
the stability of the nontrivial equilibrium, numerical simulations were performed for a fixed intrinsic
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growth rate r = 2.0 while varying v incrementally above 1. For the prototypical case r = 2, the
bifurcation threshold v, is found by imposing the saddle-node (fold) conditions on the equilibrium
polynomial P(u*;r,v):

. oP
P(u*;2,v) =0, —;2,v)=0.
ou*
Substituting r = 2 into (4.2) gives
P(u;2,v) = 16vu® — 32vu® + 18vu — 4v + 1.
The saddle—node conditions are

oP
P(u;2,v) =0, —(w;2,v) =0.
ou

Differentiating gives
P'(u;2,v) = 48vu® — 64vu + 18v.

Since v > 1, the equation P’(u; 2, v) = 0 reduces to the quadratic
A8 —64u+18=0 = 244> -32u+9=0.

Solving this quadratic yields the two exact roots

+

W1

55
—
)

IJ:

Thus

2 V10 2 V10
mi=3-—57 "~ 0.4031435283, Ho=3 + T~ 0.9301898050.
To obtain the corresponding v values, substitute either root into P(u; 2, v) = 0 and solve for v. This

gives the closed-form values

8+ V10
10

_ 8- 10

~ 1.1162277660,
"2 10

V) = ~ 0.4837722340.

Recall the equilibrium relation
1
koK 1 o )
st=p ( S H )

For r = 2, this becomes s* = /J*(% — 1), hence physical admissibility of the equilibrium (nonnegative
s*) requires u* < % Of the two algebraic roots above only u; ~ 0.40314 satisfies this constraint; the
root i, ~ 0.93019 yields s* < 0 and is therefore not admissible. The relevant saddle—node (fold) for
r=21is

e = 0.4031435283, ve = 1.1162277660.

The fold curve v.(r) in Figure 7 first increases with r and then decreases until » =~ 3. For small
values of r > 1, population growth is weak and even moderate noise destroys the positive equilibrium,
resulting in small v.. As r increases, the intrinsic growth rate strengthens the system’s resilience to
stochastic fluctuations, allowing larger noise intensities before the stable and unstable equilibria
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coalesce; consequently, v.(r) rises and reaches its maximum near r =~ 1.8. However, when r becomes
large (r > 3), the deterministic logistic map itself loses stability through period-doubling
bifurcations [2], and the cubic equilibrium equation P(u;r,v) = 0 no longer possesses two real
feasible roots. Thus, the fold bifurcation disappears.

Biologically, the fold bifurcation represents a critical threshold of environmental noise intensity: as
stochastic variability increases beyond the bifurcation point v, the population loses its stable positive
equilibrium and is driven toward extinction or large fluctuations. Thus, the saddle-node bifurcation in
v quantifies how increasing environmental noise undermines population stability, providing a
mechanistic explanation for noise-induced collapse in stochastic logistic systems. Biologically, this
means that populations with moderate intrinsic growth rates are most robust to environmental
variability, whereas those with very small or very large r values are more susceptible to noise-induced
extinction.

5. Conclusions and discussion

This study develops a moment-based analytical framework for understanding the dynamics of
stochastic logistic population models. Under the Gaussian moment-closure approximation, by
deriving a system of difference equations for the first and second moments directly from the stochastic
logistic equation, we establish a unified approach to study population persistence and extinction under
environmental variability. The stability analysis reveals two qualitatively distinct equilibria: a trivial
equilibrium corresponding to extinction and one or two nontrivial equilibria representing sustainable
population levels. The condition 7?v < 1 ensures the stability of the extinction state, while r > 1 leads
to the emergence of positive equilibria whose stability depends on the stochastic intensity v = E[£2].

We analyzed the saddle-node (fold) bifurcation that arises as the stochastic intensity v varies,
illustrating how increasing noise intensity leads to the merging and disappearance of stable and
unstable equilibria. These results provide theoretical and biological insights into how the balance
between intrinsic growth and environmental variability governs long-term population stability,
resilience, and extinction risk. Numerical simulations were carried out to illustrate the theoretical
predictions of the moment-based stability analysis and to visualize the dependence of the equilibrium
structure on the parameters r and v. By numerically solving the equilibrium condition P(u*;r,v) = 0
across a range of r values for fixed v, we identified two feasible nontrivial equilibria within the
interval (0, 1 — 1/r) and determined their stability through the eigenvalues of the Jacobian matrix. The
simulation results revealed a clear bistable structure: an upper stable branch and a lower unstable
branch that merge at a critical value of v, beyond which no positive equilibrium exists. These
numerical results confirmed the analytical predictions based on the saddle-node bifurcation result,
showing excellent agreement between the theoretical stability boundaries and the computed
equilibrium curves.

To further validate the analytical and numerical findings, Monte Carlo simulations were performed
by generating large ensembles of stochastic trajectories based on the recurrence relation
X1 = rX,(1 — X,)e,, where g, are independent lognormal perturbations with Efg,] = 1 and
E[£2] = v. The ensemble mean and variance of X, were tracked over time and compared with the
theoretical moment-map predictions.

The Monte Carlo simulations consistently confirmed the validity of the Gaussian moment—closure
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approximation across the full range of parameter values examined. In the regime O < r < 1, both the
deterministic and stochastic models predict extinction, and the simulations showed rapid convergence
of the sample mean and variance to the trivial equilibrium (%, s*) = (0, 0), in precise agreement with
the moment—closure dynamics. For 1 < r < 3, where the moment-map analysis identifies a single
stable nontrivial equilibrium, the ensemble average of X, approached the predicted mean u*, while the
sample variance settled near the corresponding s*, thereby confirming the local stability inferred from
the Jacobian eigenvalue analysis. When both the intrinsic growth rate r and noise intensity v remained
close to unity, the Monte Carlo trajectories stabilized rapidly and exhibited nearly Gaussian
fluctuations around equilibrium.  This behavior reflects the regularizing influence of weak
multiplicative noise, which tends to suppress the nonlinear distortions characteristic of the
deterministic logistic map and maintain an approximately normal distribution of population states.
Overall, the Monte Carlo results validate the theoretical assumptions underlying the Gaussian
moment closure and provide strong numerical support for the analytic conclusions regarding
extinction, equilibrium existence, and local stability.

The nonexistence of biologically feasible solutions of P(u; r,v) = 0 for r > 3 stands in clear contrast
to the deterministic logistic map, where the first flip (period—doubling) bifurcation occurs precisely at
r = 3, when the positive fixed point x* = 1 — } loses stability and a period—two orbit is created [2]. This
is consistent with the saddle-node bifurcation boundary at r = 3 in Theorem 4.3. Since no feasible
equilibrium exists for the moment equations when r > 3, a flip bifurcation cannot occur in this region
of parameter space, and the classical period—doubling cascade of the deterministic logistic map has no
direct analogue in the present closure framework.

It is also important to note that the moment system is a two—dimensional map driven by two
parameters (r, v), unlike the one-dimensional deterministic model depending only on r. Consequently,
its bifurcation structure may be substantially richer, potentially including higher—dimensional
phenomena that have no deterministic counterpart. However, the present paper focuses specifically on
saddle-node bifurcations with respect to the noise-intensity parameter v, as our primary goal is to
understand how varying the level of multiplicative stochasticity affects the emergence and
disappearance of equilibria. A systematic exploration of other possible bifurcations in the (r,v)
parameter plane is beyond the scope of this work and will be examined in future studies.

In addition, it is worth emphasizing that the nonnegativity of the population mean is not
automatically guaranteed by the Gaussian moment-closure approximation. Even if the process begins
with a nonnegative mean, the update rule for the next-step mean does not, on its own, ensure that
subsequent values will always remain biologically feasible. This is precisely where the structure
imposed by moment-closure theory becomes essential. The moment-closure framework provides the
consistency conditions needed to keep the first moment in a biological feasibility region, even though
the normal approximation itself assigns probability to negative values. Thus, even though the
Gaussian approximation assigns a small probability to negative population values, the closed system
of moment equations restricts attention to the dynamics of the mean, which remains nonnegative
throughout the iteration. In this sense, the Gaussian moment closure preserves a form of
nonnegativity appropriate for deterministic descriptions of expected population behavior: the
population mean never becomes negative, and the variance, by definition, is nonnegative as well. This
allows the approximation to remain biologically interpretable at the level of (u,, s,), even though the
normal distribution assumed for closure extends over the entire real line.
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The limitations of the Gaussian moment-closure approximation become most apparent when
viewed across different growth-rate regimes. When r < 1, both the Monte Carlo simulations and the
moment equations predict rapid convergence to the extinction state, and the approximation performs
exceptionally well because stochastic fluctuations remain small and the trajectories remain close to
zero. For 1 < r < 3, where the deterministic logistic map retains a single stable fixed point, the
moment closure continues to provide reasonably accurate predictions: Monte Carlo simulations show
that the sample paths fluctuate around a well-defined positive level, and the mean and variance
predicted by the closure closely match those observed in simulation. However, as r approaches the
bifurcation threshold near r = 3, the situation changes markedly. As shown above, the cubic
equilibrium condition P(u;r,v) = 0 has no feasible positive root in Theorem 4.1 whenever r > 3,
which means that the moment-closure system does not admit a biologically meaningful equilibrium in
the very region where the deterministic logistic map undergoes its first flip bifurcation.

These observations underscore an important structural difference between the deterministic and
moment-closure descriptions. Whereas the deterministic map develops increasingly complicated
dynamics beyond r = 3, the moment equations lose their equilibrium structure and are no longer
reliable as a reduced representation of the stochastic process. Thus, the Gaussian closure should be
regarded as an accurate and practical approximation primarily within the range 1 < r < 3, where
Monte Carlo simulations confirm its predictions for both mean and variance. Beyond this regime,
especially near bifurcation boundaries, and more refined closure schemes may be required to capture
the full range of noise-induced phenomena. Developing and analyzing such improved closures is a
natural direction for future work.

The theoretical framework developed in this study can be directly applied to the analysis of real
ecological or biological population data. By estimating the intrinsic growth rate r, the stochastic
intensity v = E [sﬁ], and the empirical moments E[X,,] and Var[X,] from observed time-series data, the
derived system of moment equations can be used to evaluate the stability properties of the underlying
population. Fitting the stochastic logistic model to data allows researchers to identify whether the
population operates near a stable nontrivial equilibrium or within a parameter regime that leads to
extinction or strong fluctuations. In practice, parameters can be estimated using regression or
likelihood-based techniques, and Monte Carlo simulations can then be employed to assess how
environmental noise affects the predicted population trajectories. This integration of theory and data
provides a powerful tool for predicting long-term population behavior under variable environmental
conditions, assessing extinction risk, and evaluating the potential effects of management or
conservation strategies on population persistence.
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Appendix

In this section, we prove that the claim in Theorem 4.1 that P(u; r,v) = 0 has no feasible solution
for r > 3.

Proof. Fix r > 1 and v > 1. Recall that a nontrivial equilibrium must satisfy P(u; r,v) = 0 for some u
in the feasible interval

with the associated variance s* = u(1 — % —u) > 0. We show that when r > 3, the cubic P(u;r,v) is
strictly negative on 7, and therefore admits no feasible root. Evaluate P at i = 0:

PO;r,v) = -rv+riv+r—1= (- 1(1-r).
Since r > 1 and v > 1, we have r*v > r*> > 1, and therefore

PO;r,v)<0.
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Next evaluate P at the upper boundary u =1 - %

f(l - %; r, v) = 2r3v(1 - %)3 - 4r3v(1 - %)2 +(3rv - 3rv)(1 - %) —rv+rtver-1

3 3 1 2 1
:2r3v(1—;+ﬁ—ﬁ)—4r3v(l—;+ﬁ)

1
+ (3r3v - 3rv)(1 - —) —rv+riv+r-1
r

= (2r°v = 6r°v + 6rv — 2v) + (=4r°v + 8%y — 4rv)

+(Brv=3rv=3mv+3v) - rv+riv+r-1
=2-4+3-Dr'v+(-6+8-3+1)r'v
+(6-4-3)rv+(-2+3w+r-1
=0-rv+0-rv—rv+v+r—1
=(r—-1)—-v(r-1)
=(r—=1)(1-v).

For v > 1, this quantity is strictly negative. Thus,

F(l—%;r,v)<0 forallr > 1, v>1.

Differentiate P with respect to u:

P,(u;r,v) = 6r°vu* — 8rvu + (3rv = 3rv).

Factor rv > 0 to obtain
P,(u;r,v) = rv(6r2/J2 — 8+ 3r% - 3).
Define the quadratic
q(u) = 6u° — 8 + 3.

Its discriminant is (-8)> —4-6-3 = —8 < 0, so g(u) > 0 for all # € R. The minimum occurs at u = 2/3

and gmin = ¢(2/3) = 1/3. Thus

1
6u*—8u+3 > =  forallueR.

(O8]

Using this lower bound,

P,(u;r,v) > rv(r2 .

[SSI
|
(O8]
~—
Il
~
<

Therefore, if r > 3, then > — 9 > 0 and
P,(u;r,v) >0 forallu e 7,.

Hence P(u; r,v) is nondecreasing on the entire feasible interval.
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Since P(u) is nondecreasing on 7, and negative at both endpoints, it must satisfy

P(u;r,v) <0 forevery u € 7,.

Thus P(u; r,v) cannot vanish on 7, when r > 3 and v > 1. Hence no biologically feasible nontrivial
equilibrium exists in this range. This proves that the moment-closure system admits no positive
solution (u*, s*) for r > 3, establishing the claim. m]
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