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Abstract: The cardiovascular and ocular systems are intricately connected, with hemodynamic inter-
actions playing a crucial role in both physiological regulation and pathological conditions. However,
existing models often treat these systems separately, thus limiting the understanding of their interde-
pendence. In this study, we present the EYE2HEART model, which is a novel closed-loop mathematical
framework that integrates cardiovascular and ocular dynamics. Using an electrical-hydraulic analogy,
the model describes the interactions between the heart and retinal circulation through a nonlinear sys-
tem of ordinary differential equations. The model is tested against clinical and experimental data, thus
demonstrating its ability to reproduce key cardiovascular parameters (e.g., stroke volume, cardiac out-
put) and ocular hemodynamics (e.g., retinal blood flow). Additionally, we explore in silico the effects
of intraocular pressure and left ventricular compliance on both local ocular and global systemic cir-
culation, thus revealing critical dependencies between cardiovascular and ocular health. The results
highlight the model’s potential for studying cardiovascular diseases with ocular manifestations and
support emerging research in oculomics by providing a mechanistic basis to interpret ocular biomark-
ers within a systemic context. This paves the way for patient-specific data integration and broader
applications in personalized medicine.
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1. Introduction

The ocular circulation is an integral component of the cardiovascular system, yet it possesses
unique anatomical and physiological features that make it especially sensitive to systemic hemody-
namic changes. Understanding this tight coupling is essential to study a wide range of physiological
and pathological processes [1,2]. The cardiovascular system regulates the systemic blood flow, which
includes ocular perfusion, while the intraocular pressure (IOP) and retinal blood flow are critical to
maintain ocular health. Studies have examined retinal vascular characteristics as indicators of cardio-
vascular health [3,4], and changes in the cardiovascular status are known to affect the retinal microvas-
culature [5]. This forms the foundation of oculomics, which is an emerging field that leverages ocular
imaging to uncover systemic health conditions, particularly cardiovascular diseases [6, 7]. The retina,
being a privileged access where microvasculature can be non-invasively visualized, serves as a pow-
erful window into systemic physiology. Recent advancements, such as automated retinal photography
and Al-based cardiovascular disease (CVD) risk assessment systems, have shown promise for non-
invasive CVD risk evaluations, thereby presenting a more streamlined alternative to traditional clinical
methods [8]. Additionally, the standardization and clinical use of retinal imaging biomarkers for CVD
are becoming increasingly important in the effort to incorporate ocular data into cardiovascular risk
assessments [9].

However, existing models often treat the cardiovascular and ocular systems as separate entities,
thereby concentrating on either cardiac and vascular dynamics or isolated ocular physiology. This
compartmentalized approach has led to a limited understanding of how the two systems interact. A
more integrated view is necessary to capture their physiological interdependence. Current cardiovas-
cular models typically do not account for the unique hemodynamic requirements of ocular perfusion,
while ocular models frequently overlook the dynamic effects of cardiac function. The lack of a unified
modeling framework has constrained the potential for accurate simulations of cardiovascular-ocular in-
teractions across various physiological states. A recent study by Caddy and co-authors [10] attempted
to model large-scale arterial hemodynamics from the heart to the eye under simulated microgravity
conditions. Although this research represents a significant step in connecting cardiovascular and oc-
ular dynamics, it primarily focuses on arterial circulation without incorporating closed-loop feedback
mechanisms, which are vital to fully understand the complex interactions between these systems.

Previous work from our research group has developed theoretical models of both cardiovascular [11]
and retinal networks [12], which were validated against clinical and experimental data. However, these
models have remained isolated from each other. To address this limitation, we propose the develop-
ment of a novel coupled EyE2HEArRT model. This model will serve as a virtual laboratory to investigate
the integrated dynamics of cardiovascular and retinal blood circulation. The EYE2HEART framework is
inherently multi-scale, thereby linking these two systems. Although the retina only receives a small
fraction of cardiac output [13,14], this flow is tightly coupled to the central hemodynamics and is criti-
cal for visual function. Therefore, even modest alterations in cardiac performance can have measurable
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consequences at the ocular level, which makes the integration of macro- and micro-scale dynamics clin-
ically relevant. The specific objectives of this research are twofold: (i) to develop and test a closed-loop
heart-eye model that integrates both cardiovascular and ocular dynamics; and (ii) to simulate clinically
relevant scenarios, such as variations in the IOP or changes in cardiac elastance, to explore the system
behavior under diverse conditions. Through these efforts, we aim to provide a more comprehensive un-
derstanding of cardiovascular and ocular health, thus leading to new insights for clinical applications
and therapeutic interventions. In doing so, our modeling framework contributes to the emerging field
of oculomics by providing a mechanistic and quantitative approach to interpret ocular biomarkers in
the context of the systemic cardiovascular function.

The remainder of the paper is as follows: Section 2 presents the mathematical framework, the as-
sumptions underlying the EYyE2HEART model, and the value of the parameter employed in the model for
baseline simulations; Section 3 first details the testing process, thereby comparing our baseline results
with experimental and clinical data, and then explores key simulation scenarios, including variations
in the IOP and heart elastance; and finally, Section 4 discusses the implications of our findings, the
limitations of the study, and directions for future research, including a preliminary local sensitivity
analysis to quantify the influence of key parameters on systemic and ocular outputs.

2. Model and methods

This work presents a novel closed-loop mathematical model designed to capture the interplay be-
tween ocular and cardiovascular circulation, where variations in one system directly influence the
other. The proposed coupling is formulated using a well-established set of ordinary differential equa-
tions (ODESs) derived under the assumption that hemodynamics can be represented by an electrical
analog circuit. This modeling approach is widely used in the study of vascular dynamics and provides
a robust foundation to simulate the bidirectional relationship between cardiovascular and ocular cir-
culation. In this section, we describe the development, implementation, and parameterization of the
closed-loop eye-heart model we designed, thereby emphasizing its potential to provide novel insights
into the integrated function of these critical systems.

2.1. Closed-loop EYE2HEART model

Figure 1 illustrates the novel closed-loop Eye-Heart model, referred to as EYE2HEART hereafter.
The system is built using an electrical circuit analogy, which is a widely adopted methodology in
cardiovascular modeling [15]. In this framework, blood pressure, blood volume, and blood flow are
represented by voltage, charge, and current, respectively.

Cardiovascular compartments, including blood vessels and heart ventricles, are represented using
resistors (R) for vascular resistance, capacitors (C) for compliance, and inductors (L) for inertance. The
heart is modeled using a time-varying elastance formulation, a standard approach in lumped-parameter
cardiovascular modeling. By writing Kirchhoff laws for the nodes (conservation of current/flow rate)
and for closed circuits (conservation of the voltage/pressure difference), the resulting mathematical
model is a system of 23 ODEs that capture the dynamic interactions between the ocular and the car-
diovascular circulatory systems. This structure provides a robust foundation to analyze and model the
interconnected dynamics of these compartments. For clarity, the description is divided into three parts:
the cardiovascular subsystem, the ocular subsystem, and the eye-heart coupling dynamics. All model
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state variables and parameters are summarized in Tables 7 and 8 (in Appendix A), respectively, using
physiologically descriptive symbols.

2.1.1. Cardiovascular System

The EyE2HEART model describes the cardiovascular system using a lumped-parameter formulation
that is extended here to include the upper circulation that supplies the eye. This implementation builds
upon the framework of Avanzolini et al. [16], with modifications introduced to enable coupling with
the ocular circulation.

The left and right ventricular pressures are expressed as follows:

Piy(t) = Ur(t) + E(t) Viv(2), 2.1)
Pry (1) = Ug(t) + Eg(t) Vrv(2), (2.2)

with the following time-dependent elastance and offset terms:

Ur®t) = U a(t), E (t) = Eip + Ers a(?), (2.3)
Ug(?) = Ugo a(?), Eg(t) = Egp + Egs a(?). (2.4)

This formulation reproduces physiologically realistic pressure—volume dynamics during systole and
diastole, thus supporting the generation of pulsatile flow patterns in the coupled system. We adopt
the iso-volumic pressure generator formulation of Avanzolini et al. [16] to preserve the simplicity and
parameter legacy of that model while focusing this study on the novelty of the systemic—ocular cou-
pling. This choice allows us to reuse a well-established parameter set without re-estimating elastance
parameters, thus limiting additional uncertainty.

The aortic pressure (P,o,) and the right venous-atrial pressure (P,.) are now interfaced with an ad
hoc upper circulation module, which is designed to model blood flow to the ocular compartment and
specifically to the retinal circulation.

To incorporate these dynamics, the original equations have been reformulated, thus ensuring the
seamless integration of the new blood circulation pathway into the system. A key parameter, Rpody,
which represents the equivalent peripheral resistance of the body, has been updated to reflect the
redistribution of blood volume toward the eye. In the original model, Ry,qy Was assigned a value
of 6.75 - 102 [mmHg - s - ml™']. In the revised eye-heart model, this parameter is adjusted to
6.93 - 102 [mmHg - s - ml™'], thus capturing the additional resistance introduced by the retinal blood
flow dynamics.

Importantly, all other aspects of the cardiovascular system remain unchanged from the original
model proposed by Avanzolini et al. [16]. These modifications solely focus on integrating the eye-
specific circulation while preserving the original framework for the rest of the cardiovascular system.
As such, the adopted strategy ensures consistency with the validated physiological dynamics described
in the original model.

2.1.2. Ocular System

In the EyE2HEART model, the ocular subsystem incorporates a detailed representation of retinal
circulation, divided into five main compartments: the central retinal artery (CRA), arterioles (art),
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Figure 1. Model schematic of the EYE2HEART closed loop circuit. Variable resistances and

capacitors are marked with arrows.
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capillaries (cap), venules (ven), and the central retinal vein (CRV). Alphanumerical labels further
distinguish between specific segments within each compartment. The blood flow within the retina is
driven by a pressure difference between the inlet, P, ;,, which is the blood pressure upstream of the
CRA, and the outlet, P, .., Which is the pressure downstream of the CRV. At periodic steady state,
the cycle-averaged CRA inflow equals the CRV outflow. In the reported values, small differences may
appear because the CRA flow is measured pre-laminar and the CRV flow is measured post-laminar,
with transient storage in the intervening compliances. We verified that no net fluid accumulation occurs
over consecutive cycles. External pressures affect different parts of the retinal network: intraocular
segments are exposed to the IOP, while retrobulbar segments behind the eye experience retrolaminar
tissue pressure (RLTp). This combination of resistances and pressures provides a comprehensive blood
flow model through the retinal vasculature. Following the notation in Figure 1, we can write the
equations that describe the non-linear resistances. The resistances in the CRA, denoted as R.,,», and
R.,42p, are functions of the transmural pressure difference AP, = P.,» — IOP, where P, is the
pressure in the CRA segment and the IOP is the intraocular pressure (see Figure 1).
They are modeled as follows:

1 APy, \7*
— (1 + K—) , 1 €{2a,2b}. (2.5a3)

Pcra,i lcra,i

The venous segment includes two nonlinear components: Ry, and Ry, for the retinal venules, and
Rerv.1qa and R,y 1 for the CRV. The nonlinearity arises due to the transmural pressure differences, which
are defined as follows:

APyen = Pyen — 10P, AP, = Py — 1OP, respectively

For the venular segments (i € {1,2}), the resistance is defined as follows:

1 ven - .
1+ AP , AP, >0,
koveni vacni Klvcni
Rven,i = 1 ' AP ’ 4/3Y (2.5b)
- —= , if APye, < 0.
koven,i vaen,i
For the CRV segments (j € {1a, 1b}), the resistances are defined as follows:
-4
1 AP, .
1+ < , AP, >0,
kocrv i Kpcrv i lerv,i
Rcrv,i = 1 ‘ AP , 4/3’ (25C)
(1 - CW) , if AP, <O.
Ocrv,i Derv,i

These nonlinear components are fundamental to capture the dynamic interplay between pressure,
flow, and vessel mechanics in the coupled eye—heart system.

In the EYE2HEART model, the ocular subsystem incorporates the retinal circulation as described by
Guidoboni et al. [12]. This framework, which includes vascular resistance, compliance, and blood
flow dynamics across the CRA, arterioles, capillaries, venules, and the CRYV, is adopted without mod-
ification to preserve consistency with validated physiological and experimental observations of retinal
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hemodynamics. Moreover, building upon the base model of the retinal circulation, we further introduce
an additional parallel circuit, referred to as the eye branch, which represents the blood flow directed
toward non-retinal structures. Although the term “eye branch” can be seen as a simplification, it is
intended to encompass all ocular vascular beds outside the retina, such as the choroid and ciliary body.
This extension enables the model to capture the broader ocular circulation, thereby accounting for the
distinct hemodynamic properties and functional roles of these non-retinal structures. By incorporating
the eye branch, the model provides a more comprehensive representation of blood flow within the eye
and accounts for flow redistribution mechanisms under conditions of elevated external pressure.

2.1.3. Eye-Heart Coupling

The EvE2HEART model incorporates a dedicated eye—heart coupling component that captures the
dynamics of blood circulation between the heart and a single eye. The systemic cardiac output is
partitioned into two branches: one directed to the ocular circulation and the other representing the rest
of the body, including the brain and peripheral tissues. This separation enables a targeted analysis of
the ocular hemodynamics without compromising the systemic integrity.

The resting cardiac output in healthy adults is about 5 L/min [13], while the ophthalmic artery
flow is reported as roughly 10 mL/min per eye [14], which only corresponds to ~0.2-0.3% of the
cardiac output per eye (~0.4—0.6% for both eyes). Despite this small fraction, its tight coupling to
central hemodynamics makes even small systemic variations detectable at the microvascular level.
This macro-to-micro integration is a key novelty of the model.

The direct connection between the heart and the eye is described using an aorta-to-eye and eye-
to-vena cava equivalent circuit, which is represented by resistive, capacitive, and inductive elements.
These elements collectively simulate the vascular resistance, compliance, and volumetric blood flow
within the pathway from the aorta to the ocular circulation and back to the venous system. By calibrat-
ing the R, C, and L parameters, the model captures the distinctive hemodynamic properties of the eye,
including its dependence on the systemic blood pressure and flow rates which originate from the heart.

This simplification enhances the computational efficiency and allows for a detailed exploration of
the interplay of cardiovascular and ocular systems. It provides a robust framework to investigate eye-
specific circulatory phenomena, such as retinal blood flow regulation and pressure-induced vascular
changes. A detailed formulation of the full set of model equations is provided in Appendix C.

2.2. Solution strategy and model calibration

Whenever possible, we adopted parameter values reported in prior studies, as summarized in Ap-
pendix B. Parameters introduced in this work, particularly those which govern the coupling between
cardiovascular and ocular circulation, were obtained through a calibration strategy based on steady-
state physiological targets. Specifically, we used literature data on retinal flows reported by Dorner et
al. [17] as reference values. To calibrate the coupling parameters, we considered the reduced circuit
with only resistive components and applied Kirchhoff’s laws to compute the parameter values offline.
Then, these offline estimates were directly adopted in the coupled model without further tuning. To
check the parameter consistency, we verified that the steady-state solutions produced physiological
values when literature-based flows and pressures were imposed. A full verification of the complete
model against literature data is presented in the results section.
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The initial conditions for state variables were taken from published references for cardiovascular
and ocular compartments [12, 16]. For the coupling compartments, the pressures and flows were set by
running preliminary simulations until a periodic steady state was achieved. Appendix A summarizes
the state variables and corresponding initial conditions.

In terms of the numerical strategy, the EYE2HEART mathematical model was implemented in MAT-
LAB and solved using the stiff solver ODE15s [18], which is a variable-step, variable-order solver
designed to efficiently solve stiff ODEs. ODE15s was chosen to solve the system of ODEs due to
its ability to efficiently handle the strong nonlinear components of the model, thus ensuring stable
and accurate numerical solutions. The solver was configured with a relative tolerance of 1073 and
an absolute tolerance 107>, thus ensuring a high numerical precision. A fixed time step of 0.001 s
was used throughout the simulations. Transient dynamics at the beginning of the simulation were dis-
carded to ensure analysis was performed under periodic steady state. Although only a small fraction
of cardiac output is directed to the eye, this configuration provides stable and accurate solutions across
both the macro- and micro-scale compartments, thus preserving the mass balance and pressure—flow
consistency.

3. Simulation results of the EyE2HEArRT model

3.1. Model simulations against clinical ranges

The calibration of model parameters was based on values reported in the literature and adjusted
to match steady-state physiological targets in simplified settings. These parameters had been previ-
ously validated in separate cardiovascular and ocular models, but not within a fully coupled framework
where the closed-loop feedback between the two systems can emerge. For this reason, we simulate
the complete EyE2HEART model, thereby comparing its results against clinical ranges and assessing
whether the coupled dynamics consistently reproduce physiological values across systemic and ocular
compartments. The following key parameters are computed and contrasted with clinical literature:

e End-Diastolic Volume (EDV): Maximum ventricular volume during the cardiac cycle.

e End-Systolic Volume (ESV): Minimum ventricular volume during the cardiac cycle.

e Ventricular End-Diastolic Pressure (VEDP): pressure in the ventricle at the end of diastole, rep-
resenting the preload required to achieve the desired cardiac output.

e Stroke Volume (SV): SV = EDV — ESV, representing the amount of blood ejected per beat.

SV
e Cardiac Output (CO): CO = HR X 1000° measuring total blood flow per minute, where HR is the
heart rate.

. . SV - . .
e Ejection Fraction (EF): EF = 100 X ZDV’ quantifying ventricular efficiency as the percentage of
blood ejected during each beat.

End-Systolic Elastance (E,;): slope of the end-systolic pressure-volume relationship.
Arterial Elastance (E,): estimate of aortic input impedance.

Central Systolic and Diastolic Pressures (SP/DP).

Right Atrial Pressure (P,,).

Table 1 presents a comparison between the model predictions and clinical reference values, thereby
considering these quantitative indicators.
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Table 1. Cardiovascular physiology indicators, left and right ventricles: Comparison be-
tween clinical ranges from literature and simulation results from the present work.

PARAMETER UNIT CLINICAL RANGES FROM LITERATURE PRESENT WORK
Left Right Left Right
Ventricle Ventricle Ventricle Ventricle

End-Systolic [ml] 47 (27,68) [19] 50 (22,78) [20] 42.59 43.81
Volume (ESV) 35 £13 [21] 43 + 19 [21]

30 £ 12 [22] 50-100 [23]
End-Diastolic [ml] 142 (102,183) [19] 144 (98,190) [20] 112.76 115.25
Volume (EDV) 108 £27 [21] 115 + 31 [21]

109 + 27 [22] 100 - 160 [23]
Ventricular [mmHg] 8.3 £3.6 [24] 0-8 [25] 6.923 1.846
End-Diastolic
Pressure (VEDP)
Stroke [ml/beat] 95 (67, 123) [19] 94 (64, 124) [20] 70.18 71.45
Volume (SV) 60 - 100 [23] 60-100 [23]

81 + 18 [26]

78 + 20 [22]
Cardiac [I/min] 4-8 [23] 4-8 [23] 5.26 5.36
Output (CO) 5.524 + 1.488 [26]

4.8 + 1.3 [22]
Ejection [%] 67 (58, 76) [19] 66 (54, 78) [20] 62.32 61.99
Fraction (EF) 72 £ 7 [22] 40 - 60 [23]
End-Systolic [mmHg/ml] 1.74 [27] 0.7 +£0.2 [28] 1.03 0.32
Elastance (E,y)
Arterial [mmHg/ml] 1.2 [27] 0.5+0.2 28] 1.65 0.52
Elastance (E,)
Central Systolic ~ [mmHg] 124.1 + 11.1 [29] 125.7
Pressure (SP)
Central Diastolic [mmHg] 77.5+7.11[29] 72.7
Pressure (DP)
Right Atrial [mmHg] 3+2[30] 3.78

Pressure (P,,)

The model predictions for key cardiovascular biomarkers, including ventricular volumes, stroke
volume (SV), cardiac output (CO), and ejection fraction (EF), show good agreement with clinical val-
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ues. EDV and ESV for both ventricles fall within expected ranges, with only slight underestimations,
likely due to simplifications in compliance or pressure—volume assumptions.

The SV is well reproduced within the physiological limits, and the CO remains in the expected 4—8
L/min range, thus confirming the model’s ability to capture fundamental cardiac dynamics. The EF is
slightly lower than some reports but within a reasonable range, thus suggesting possible refinements in
contractility or vascular resistance could improve the accuracy. Overall, the model provides a robust
framework for cardiac function.

The predicted end-systolic elastances (E,,) are 1.03 mmHg/ml (LV) and 0.32 mmHg/ml (RV), which
are slightly higher than values in [27,28]. This difference may stem from simplified elastance dynamics
and the lack of inter-individual variability, particularly for the LV.

For the arterial elastance (E,), the LV predictions are modestly higher than clinical values [27],
while the RV predictions align well. This is consistent with the slightly reduced EF observed, since EF
= SV/EDV: higher elastance lowers the EDV while preserving the SV, which leads to a reduced EF.
Despite this deviation, all simulated indices remain physiological.

The predicted systolic and diastolic pressures (125.7/72.7 mmHg) match the clinical values, and the
right atrial pressure (3.78 mmHg) lies within the 3 + 2 mmHg range [30], thus supporting the model’s
ability to capture the venous pressure.

Physiological consistency is further illustrated by the Wiggers diagram (Figure 2) and pres-
sure—volume loop (Figure 3), which reproduce typical phases of ventricular function, including iso-
volumetric contraction and relaxation [31].

E 1 50 —Aortic Pressure
% —ﬁeﬂtV;tricular Pressure 1 40
£1007 | 120
o L
> 50 (phase b)
2 100
—
p= 0 L L 1
& 17 17.5 18 £ 50
Timel[s] 2
S 60
j 1 OO —Left Ventricular Volume| g
E 40 (phasg c)
o 80
g 20
2 60 (phase d)
> ‘ ‘ ‘
‘ 0
17 175 18 40 60 80 100 120
Time[s] Pressure [mmHg]

Figure 3. P-V loop simulated via the

Figure 2. Wiggers diagram simulated Eva2HEArT model.

via the EYE2HEART model.

The model predictions for key ocular biomarkers are tested against quantitative indicators of blood
flow in the CRA and CRV (Figure 4).
Key metrics include the following:

e CRA Mean Blood Flow (BF): average blood flow in the CRA, compared to clinical measurements.
e CRA Peak Systolic and End-Diastolic BF: Maximum and minimum values of CRA BF.
e CRV Mean Blood Flow: Mean blood flow in the CRV, considering different age groups.
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Figure 4. CRA (blue line) and CRV (orange line) blood flows.

e Mean Blood Pressures in the CRA (P,,,), retinal arterioles (P,,;), retinal venules (P,,,), and CRV
(PCVV)'

Table 2 presents the model predictions alongside the experimental reference values.

The model shows a strong agreement with clinical data for ocular circulation, particularly CRA and
CRYV blood flows. The predicted CRA mean flow (46.56 ul/min) is consistent with the reported values,
with minor deviations likely due to vessel diameter assumptions.

The CRA peak systolic and end-diastolic flows are slightly higher than some measurements, possi-
bly reflecting differences in experimental conditions or systemic pressure assumptions. The CRV flows
align well with the literature, thus confirming the model’s ability to capture venous return.

Since direct pressure measurements are rarely available in clinical practice, we compared predic-
tions with those from the validated model of [12], thus finding good consistency.

In conclusion, while minor deviations exist, the model successfully replicates cardiovascular and
ocular circulation metrics, thus supporting its validity. Refinements in the parameter estimation and
integration of additional experimental data could further enhance the predictive accuracy, particularly
in capturing inter-individual variability.

3.2. Predictive scenarios

To explore the physiological implications of altered cardiovascular and ocular dynamics, we de-
signed three predictive simulations (Scenarios A, B, and C). Each scenario examines a distinct combi-
nation of systemic and local regulatory factors, thereby focusing on how specific parameters influence
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Table 2. Experimental data, blood flow. * uses assumption on CRA diameter value of about
160 um [17,37].

DEScRIPTION UniT VALUE REFERENCE PRESENT WORK
CRA mean BF [ul/min) 40.91 [12] 46.56
[ul/min]  38.1 £9.1 [17]
[ul/min) 33+96 [32]
CRA peak systolic BF [ul/min]) 120.6 * [33] 129.46
[ul/min) 1225 [34]
CRA end diastolic BF [ul/min) 30.1* [33] 54.76
[ul/min] 30 * [34]
CRYV mean BF [ul/min] 64.9 +12.8 [35] 43.47
25 - 38 years [ul/min) 80 + 12 [36]
54 - 58 years [ul/min) 73 £13 [36]
CRA Mean Pressure (P.,,) [mmHg] 43.92 [12] 44.55
Retinal Arterioles [mmHg] 36.09 [12] 35.71
Mean Pressure (P,,;)
Retinal Venules Mean [mmHg] 22.13 [12] 20.47
Pressure (P,.,)
CRV Mean Pressure (P.,,) [mmHg] 18.84 [12] 17.4

perfusion across the coupled heart-eye system. The two key parameters investigated in this study are
the left ventricular compliance (LVc) and the IOP. These were chosen based on their established clini-
cal relevance and their central role in modulating global and local hemodynamics. From a cardiological
perspective, the LVc is a proxy for left ventricular contractility and is closely linked, in our modeling,
to E;s. Indeed, in our model, E;g is dynamically modulated by the cardiac activation function a(¢), as
described in Appendix D. Variations in the LVc may reflect pathological changes such as those seen
in systolic heart failure, where reduced contractility leads to impaired systemic perfusion [38]. On the
other hand, the IOP is a fundamental parameter in ocular physiology and is tightly linked to diseases
such as glaucoma. An elevated IOP can impede the ocular blood flow and increase the retinal venous
pressure, thus contributing to progressive damage to the optic nerve head (ONH) [1]. Moreover, be-
cause the eye is a uniquely accessible site to directly observe the microvasculature, changes in retinal
perfusion offer a noninvasive window into systemic vascular health. Prior studies have demonstrated
associations between alterations in the retinal vasculature and cardiovascular conditions such as arterial
hypertension and coronary heart disease [39].

The formulation of these predictive scenarios is inspired by clinical questions that bridge cardiology
and ophthalmology. For instance, Optical Coherence Tomography Angiography (OCTA) studies have
shown that patients with chronic systolic heart failure exhibit reduced retinal and ONH flow density
compared to healthy individuals. These reductions were found to correlate with the left ventricular
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ejection fraction [40]. Such findings suggest that an impaired cardiac function can have measurable
consequences on ocular microperfusion, thus motivating our focus on the LVc in particular.

Our simulations aim to test plausible hypotheses that arise from these clinical observations. Specif-
ically, we examine how reductions in the LVc (i.e., diminished contractility) and elevations in the IOP,
individually and in combination, affect the perfusion patterns in both the cardiovascular system and
the retina. This approach allows us to assess not only the direct hemodynamic consequences but also
the interplay between systemic and local regulatory mechanisms. While we do not claim to replicate
specific pathologies, the scenarios are constructed to reflect physiologically plausible perturbations that
can guide future experimental and clinical investigations.

3.2.1. Simulation A: impact of an increase in IOP on the EYE2ZHEART model

In this scenario, we investigated the effect of varying the IOP from 15 mmHg to 30 mmHg.
This study is motivated by clinical insights which
highlight the crucial role of venous circulation and the

collapsibility of veins in ocular hemodynamics [41]. % | | pasee
Given the challenges associated with directly measur- > _:8E >
ing venous parameters in clinical settings, mathemat- % 45 U
ical modeling provides a valuable tool to infer these % 40
values and to gain a deeper understanding of the un- §35 7
derlying physiological mechanisms. 2

As the IOP increases, a marked decrease in the &30
CRA blood flow is observed, thus reflecting the re-  © 5.
striction of the vascular supply due to elevated pres- 20 | |
sure. In contrast, the CRV blood flow increases due 0.28 0285 029 0295 0.3 0.305
to augmented resistance in the venous return pathway Time [min]
(see Figure 5). Figure 5. Scenario A: CRV blood flow.

The simulation results, reported in Table 3, indi-
cate a clear trend of decreasing the CRA blood flow and increasing the CRV blood flow as the IOP
rises. Despite these variations, the other cardiovascular parameters at a systemic level, such as SP/DP,
EDV/ESY, and CO, remain largely unaffected by changes in the IOP, as expected.

Table 3. Scenario A. IOP: Intraocular Pressure.

Outpur Unrit IOP = 15 mmHg 1IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg
SP /DP [mmHg] 128/69 127/69 127/69 127/69
EDV /ESV [ml] 113/43 113/43 113/43 113/43

CO [//min] 5.26 5.26 5.26 5.26

CRA mean BF  [ul/min] 46.6 43.6 36.3 30.8

CRV mean BF  [ul/min] 43.5 40.5 29.1 233
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3.2.2. Simulation B: effect of left ventricle compliance reduction on the EYE2ZHEART model.

Simulation B focused on the impact of reducing the LVc, adjusted by 10%, 30%, and 50%. This
change was modeled by altering the elastance scaling (ELS) parameter, which reflects the ability of
the left ventricle to stretch and contract during the cardiac cycle. This simulation setup builds upon the
work of [42], which primarily investigated cardiac dynamics. Here, we extend the analysis to include
ocular circulation, thus allowing for a comprehensive assessment of how changes in the LVc influence
both systemic and retinal hemodynamics.
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Figure 6. Scenario B simulation results.

Table 4. Scenario B. LVc: Left Ventricle compliance.

Output Unir LVc: Baseine  LVce: -10%  LVc: -30%  LVc: -50%
SP /DP [mmHg] 128/69 123/69 116/67 107/61
EDV /ESV [ml] 113/43 113/46 114/53 119/62
CO [//min] 5.26 5.03 4.59 4.24
CRA mean BF  [ul/min] 46.6 45.6 43.0 38.1
CRV mean BF  [ul/min] 43.5 43.3 41.1 35.2

The simulation results in Table 4 show a decrease in the SP/DP and CO, as well as an increase
in both the EDV and ESV as the LVc is reduced. These changes can be attributed to the decreased
ability of the left ventricle to expand and contract effectively when its compliance is reduced. A
lower LV compliance leads to less efficient filling and ejection, lowering pressures and cardiac output.
At the same time, the reduced compliance causes the ventricle to hold more blood at both the end of
diastole and systole, which is reflected in the increase in the EDV and ESV. These results highlight how
an impaired ventricular compliance can significantly affect both the pumping efficiency and volume

Mathematical Biosciences and Engineering Volume 23, Issue 2, 421-448.



435

dynamics of the heart (see Figure 6b).

On the ocular side, changes in the LV compliance also impact the retinal blood flow. As the LVc
decreases, there is a reduction in the CRA and CRV blood flows. These changes are more pronounced
in the CRA blood flow, which decreases in response to a lower cardiac output. Additionally, the CRV
flow (Figure 6a) is affected, especially when the LVc is reduced by 50%. These results suggest that
cardiovascular alterations may influence the ocular circulation, thereby reflecting the dependencies
between the heart and ocular dynamics.

3.2.3. Simulation C: combined effects of LVc reduction and IOP increase

Finally, Simulation C explores the combined effects of reducing the LVc while simultaneously
varying the IOP. Variations in the IOP, similarly to Scenario A, primarily affect the ocular system
at a local level, without a significant impact on the overall cardiovascular dynamics. As reported in
Table 5, the overall cardiovascular functions - SP/DP, EDV/ESYV, and CO, respectively - remain largely
unchanged when varying the IOP. This confirms the hypothesis that IOP-related effects are confined to
the local ocular circulation, while global system parameters remain stable.

Table 5. Scenario C: simulation results for systemic cardiovascular outputs.

SP/DP [mmHg] | IOP = 15 mmHg IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg

LVc: BASELINE 128/69 127/69 127/69 127/69
LVc: -10% 123/69 123/69 123/69 123/69
LVc: -30% 116/67 116/67 116/67 116/67
LVc: -50% 107/61 107/61 107/61 107/61

EDV/ESV [ml] | IOP = 15 mmHg IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg

LVc: BASELINE 112.8/42.6 112.8/42.6 112.8/42.6 112.8/42.6
LVc: -10% 112.76/45.7 112.8/45.7 112.8/45.7 112.8/45.7
LVc: -30% 114.2/52.9 114.2/52.9 114.2/52.9 114.2/52.9
LVc: -50% 118.6/62.1 118.6/62.1 118.6/62.1 118.6/62.1
CO [I/min] IOP = 15 mmHg IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg
LVc: BASELINE 5.26 5.26 5.26 5.26

LVc: -10% 5.03 5.03 5.03 5.03

LVc: -30% 4.59 4.59 4.59 4.59

LVc: -50% 4.24 4.24 4.24 4.24

However, the combination of reduced LVc and increased IOP has a marked effect on ocular hemo-
dynamics. For the CRA (top of Table 6), as IOP increases, blood flow decreases in a predictable
manner, which is consistent with the vascular resistance caused by elevated pressure. However, the
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impact is moderate and does not lead to a dramatic alteration in flow until IOP reaches higher levels
(e.g., 30 mmHg). This shows the resilience of the CRA in maintaining blood flow despite increasing
IOP.

Table 6. Scenario C: simulation results for ocular circulation outputs.

CRA MEaN BF [pl/min] | IOP = 15 mmHg IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg

LVc: BASELINE 46.6 43.6 36.3 30.8
LVc: -10% 45.6 42.0 35.0 29.6
LVc: -30% 43.0 38.3 31.8 26.8
LVc: -50% 38.1 33.6 27.8 23.1

CRYV MEAN BF [ul/min] | IOP = 15 mmHg IOP =20 mmHg IOP =25 mmHg IOP =30 mmHg

LVc: BASELINE 43.5 40.5 29.1 23.3
LVc: -10% 43.3 38.8 28.5 23.1
LVc: -30% 41.1 35.0 27.4 22.4
LVc: -50% 35.2 31.7 26.2 21.2

More strikingly, the CRV (bottom of Table 6) shows a pronounced sensitivity to both factors. As
the IOP rises, the pressure exerted on the veins increases, and this external pressure can interfere with
the venous return, especially when the internal pressure within the veins, driven by cardiovascular
dynamics, is lower than the external pressure (IOP). This phenomenon, known as the Starling effect,
can cause venous collapse and a reduced blood flow.

For example, at IOP = 25 mmHg, the blood flow in the CRV is noticeably impaired even with
a baseline LVc. However, when the LVc is reduced by 50%, the CRV blood flow is significantly
compromised even at lower IOP levels (e.g., [OP = 15 mmHg). This drop in blood flow in the CRV
under lower IOP conditions suggests that the combination of reduced LVc and IOP increase could be
indicative of certain pathologies, such as Normal Tension Glaucoma (NTG), where the vascular flow
is impaired despite normal values of the IOP.

This shift in blood flow dynamics highlights the critical interaction between cardiovascular health
and ocular pressure in regulating retinal blood flow. Additionally, it points to the potential for these
combined factors to serve as biomarkers for ocular conditions such as NTG, where the blood supply to
the retina may be compromised despite typical IOP values.

4. Discussions and conclusions

This study introduces the EyE2HEarT model, a novel closed-loop framework designed to bridge the
gap between cardiovascular and ocular dynamics. By integrating cardiovascular and retinal models,
Eve2HEarT provides a comprehensive platform to simulate the interconnected functions of these sys-
tems. Using a hydraulic-electrical analogy, the model effectively captures the dynamic interactions,
thus offering a robust tool that can be adapted for multiple applications, such as studying the impact of
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cardiovascular diseases on ocular health and understanding how retinal pathologies are influenced by
systemic circulation.

Section 3 presented the validation against clinical and experimental data thereby demonstrating the
model’s ability to replicate key physiological parameters within acceptable ranges. For the cardiovas-
cular system, parameters such as EDV, ESV, SV, CO, and EF align with clinical values, thus confirming
the model’s capacity to simulate fundamental cardiac dynamics. Ocular parameters, including CRA
and CRV blood flow, also align with experimental data, supporting the model’s accuracy in retinal
hemodynamics.

Additionally, scenario predictions demonstrate the model’s ability to explore the effects of various
physiological changes on both ocular and cardiovascular systems. For instance, simulations reveal
how variations in the LVc and IOP influence the retinal blood flow and overall cardiovascular function.
These predictions highlight the potential of the EyE2HEArT model for detailed in silico experimentation,
thus allowing for the testing of different physiological states and their impact on ocular health and
cardiovascular dynamics. In particular, the EYE2HEART model highlights the multi-scale nature of
cardiovascular—ocular interactions: systemic cardiac output, pressures, and elastance at the macro-
scale directly shape retinal hemodynamics at the micro-scale. This explicit linkage clarifies how even
modest variations in central dynamics can manifest as measurable ocular biomarkers.

Beyond in silico experimentation, the EYE2ZHEART model also has a clear translational scope. First,
it provides a mechanistic framework to interpret ocular biomarkers within the context of systemic
physiology, thus contributing to the emerging field of oculomics. Second, it can be extended toward
patient-specific simulations by incorporating individualized parameters, thus opening the way to dig-
ital twin applications in ophthalmology and cardiology. Third, it supports hypothesis generation, for
instance, on the role of ocular hemodynamics in normal-tension glaucoma or on mechanistic links
between heart failure and retinal circulation. It is worth noting that the IOP is routinely measured in
clinical practice using tonometry, which facilitates the integration of this model with available patient
data.

In terms of clinical applications, the EyE2HEarT model holds significant potential for early detection
of cardiovascular dysfunction, particularly through a CRA waveform analysis. Previous work, such as
that by the group [43], has demonstrated how the analysis of the CRA waveform can yield valuable
insights into cardiovascular health. Embedding such a waveform analysis within the EYE2HEART frame-
work, though not yet available in its current implementation, would enable quantitative, model-
informed interpretation of ocular signals as surrogates for cardiovascular health, supporting transla-
tional applications and the development of noninvasive digital biomarkers.

Nonetheless, certain limitations are acknowledged. Discrepancies such as slight underestimations
in the EDV and ESV, as well as deviations in E,; and E,, likely stem from model simplifications, as-
sumptions in pressure-volume relationships, and the exclusion of individual variability. Additionally,
the ’eye branch” simplification, while computationally efficient, does not fully represent the complex-
ity of non-retinal ocular circulation and represents only a single eye. The model currently assumes
a balance between the CRA inflow and the CRV outflow. However, collateral pathways such as the
Circle of Zinn—Haller and the cilioretinal artery, present in about half of the population, may alter optic
nerve head circulation. These are not captured in the present framework and represent a direction for
future refinement. Furthermore, the use of 0D modeling and assumptions regarding parameterization,
such as differences between males and females [44], introduces potential limitations in accuracy.
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The present version of the model does not include short- and long-term systemic feedbacks such as
the arterial baroreflex and the renin—angiotensin—aldosterone system (RAAS), nor ocular autoregula-
tory responses. These mechanisms are essential to capture homeostatic adaptation across time scales
and will be the focus of future extensions. On the ocular side, autoregulation has been investigated in
prior modeling work (e.g., [12]), which offers a principled pathway for integration within EYE2HEART .
Given the added complexity and parameter burden, we adopt a step-by-step strategy: first establish and
validate the coupled hemodynamics, then incrementally incorporate systemic and ocular regulatory
loops with dedicated calibration and validation.

Especially in terms of the parameterisation, one of the limitations of the present work is that a
full joint calibration of all parameters is currently not feasible due to the absence of a comprehensive
dataset simultaneously capturing cardiovascular and ocular measurements. Such a dataset would re-
quire the concurrent acquisition of systemic and retinal hemodynamics under standardized protocols
and instrumentation, ideally across a large cohort of subjects. Its development would represent a signif-
icant advancement to quantitatively assess the interplay between cardiovascular regulation and ocular
physiology, both in health and disease.
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Figure 7. Local sensitivity analysis of the coupled EyE2HEART model.

Despite these limitations, the EYyE2HEarT model represents a significant advancement in the inte-
grated modeling of cardiovascular and ocular systems. By providing a unified framework, this model
offers a valuable tool to explore the complex interactions between these systems and for investigating
the potential impact of ocular dynamics on overall cardiovascular health. Future work should focus on
refining the model parameters, incorporating individual variability, and expanding the model to include
more detailed representations of ocular substructures and both eyes. This expansion would enable the
investigation of personalized treatments and their differential effects on each eye. To better account for
individual variability, future work should incorporate a systematic sensitivity analysis and uncertainty
quantification, as proposed by the group for the ocular system in [45]. Such analyses would allow us
to identify the parameters that most strongly influence key systemic and ocular outputs, disentangle
macro- and micro-scale interactions, and assess the robustness of the model under different physio-
logical conditions. Beyond improving confidence in the predictions, this step is essential to translate
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the model toward clinical applications, where patient-specific variability and parameter uncertainty
play a central role. As a first step toward this goal, we performed a preliminary local sensitivity anal-
ysis to quantify the influence of selected key parameters on systemic and ocular outputs (Figure 7).
The analysis identifies the left-ventricular compliance (ELS) and the peripheral resistance (Rpoqy) as
the most sensitive parameters across both cardiovascular and ocular variables. Increases in the ELS
enhance the SV and MAP, thus reflecting the role of ventricular contractility, whereas a higher R4y
amplifies the arterial pressure and retinal blood velocities through vascular coupling. Conversely, the
IOP primarily affects the ocular hemodynamics with minimal systemic impact. These results are con-
sistent with our previous work on ocular and cardiovascular modeling [11, 45, 46] and reinforce the
physiological coherence of the coupled framework. Identifying ELS, Ry,qy, and IOP as key determi-
nants highlights parameters that are physiologically meaningful, thus supporting future calibration and
validation efforts.

Additionally, future extensions should incorporate biomechanical and electro-chemo-mechanical
couplings, to capture how reciprocal interactions between pressure, tissue mechanics, and electrical
activity shape patient-specific eye—heart responses. Furthermore, extending the model to include a 4-
chamber heart and both eyes would enhance its predictive capabilities, thereby improving its potential
clinical applications to diagnose and manage conditions that affect both the eye and the heart.

Importantly, this work aligns with the emerging field of oculomics by providing a mecha-
nistic framework to interpret ocular biomarkers in relation to the cardiac dynamics. Thus, the
Eve2HEearT model offers a quantitative, physiologically grounded complement to Al-based approaches,
thus contributing to the development of explainable digital biomarkers and precision medicine strate-
gies at the intersection of ophthalmology and cardiology.

In conclusion, this study opens new avenues for experimental research investigating the relation-
ship between a patient’s visual field deterioration and cardiac health. Understanding these connections
could pave the way for new diagnostic approaches that link ocular hemodynamics with systemic car-
diovascular conditions. This novel coupling of cardiovascular and retinal circulation models represents
a significant step forward in exploring the interdisciplinary relationship between heart function and oc-
ular health, with the potential to improve the diagnostic and therapeutic strategies in both fields.
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A. Model state variables

Table 7. Summary of model state variables and their initial conditions.
CRA=Central Retinal Artery; CRV=Central Retinal Vein.

'VARIABLE DESCRIPTION INITIAL CONDITION Units REFERENCE
Cardiovascular
Pooria aortic pressure 90.1 mmHg [16]
Pioay body pressure 70.5 mmHg [16]
Pyc vena cava pressure 3.32 mmHg [16]
Ppa pulmonary artery pressure 13.4 mmHg [16]
Prpgs lungs pressure 13.3 mmHg [16]
Ppy pulmonary vein pressure 11.2 mmHg [16]
Quorta aortic flow rate 8.89 ml/s [16]
Oboay body flow rate 67.3 ml/s [16]
Olungs lungs flow rate 0.78 ml/s [16]
Opv pulmonary vein flow rate 23.8 ml/s [16]
Vry vena cava volume 105 ml [16]
Viv left ventricle volume 112 ml [16]
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Portazeye,1 aorta-to-eye pressure 80.25 mmHg  This work
Pcrain pre-laminar CRA pressure 70.2 mmHg  This work
Pcrvou post-laminar CRV pressure 8.57 mmHg  This work
Py, eye pressure 65.5 mmHg  This work
Pyeven eye-to-vena cava pressure 4.52 mmHg  This work
Oeyerve eye-to-vena-cava flow rate 0.15 ml/s This work
Quortazeye aorta-to-eye flow rate 0.15 ml/s This work
Ocular Circulation
Pcras CRA pressure 43.5 mmHg [12]
P arteriole pressure 35.5 mmHg [12]
P,., venule pressure 21.8 mmHg [12]
Pcry2 CRV pressure 18.9 mmHg [12]
B. Model parameters
Table 8. Summary of model parameters.
CRA=Central Retinal Artery; CRV=Central Retinal Vein.
SymBoOL DEScRIPTION VALUE Units REFERENCE
Cardiovascular system
Reuortan aortic resistance 3.751-1073 mmHg s / ml [16]
Ruoriaz aortic resistance 6.93- 1072 mmHg s/ml  This work
Rioay body resistance 1.0 mmHg s / ml [16]
R,. vena cava resistance 3.751-1073 mmHg s / ml [16]
Ry pulmonary artery resistance 3.751-1073 mmHg s / ml [16]
Riungs,1 lungs resistance 3.376 - 1072 mmHg s / ml [16]
Riungs2 lungs resistance 0.1013 mmHg s / ml [16]
Ry, pulmonary vein resistance 3.751-1073 mmHg s / ml [16]
Cuora aortic compliance 0.22 ml / mmHg [16]
Chody body compliance 1.46 ml / mmHg [16]
Cye vena cava compliance 20.0 ml / mmHg [16]
Cpa pulmonary artery compliance 9.0-1072 ml / mmHg [16]
Clungs lungs capacitance 2.67 ml / mmHg [16]
Cpy pulmonary vein capacitance 46.7 ml / mmHg [16]
Loora aortic fluid inertance 8.25-107* mmHg s? / ml [16]
Lpoay body fluid inertance 3.6-1073 mmHg s? / ml [16]
Liyngs lungs fluid inertance 7.5-107* mmHg s? / ml [16]
L, pulmonary vein fluid inertance 3.08-1073 mmHg s? / ml [16]
Heart system
Ry left ventricle resistance 8.0-1073 mmHg s / ml [16]
Rry right ventricle resistance 1.75-1072 mmHg s / ml [16]
U left ventricle isovolumic pressure 50.0 mmHg [16]
E:p left ventricle diastolic elastance 0.1 mmHg / ml [16]
E; left ventricle systolic elastance 1.375 mmHg / ml [16]
Uro right ventricle isovolumic pressure 24.0 mmHg [16]
Erp right ventricle diastolic elastance 3.0-1072 mmHg / ml [16]
Exrs right ventricle systolic elastance 0.3288 mmHg / ml [16]
Ocular hemodynamics
10P intraocular pressure 15 mmHg [12]
Riala pre-laminar CRA resistance 2.68 - 10* mmHg s / ml [12]
Rea1n pre-laminar CRA resistance 43103 mmHg s / ml [12]
Ruea retinal arterioles resistance 6.0-103 mmHg s / ml [12]
Ru2 retinal arterioles resistance 6.0-103 mmHg s / ml [12]
Reap,i retinal capillaries resistance 5.68-10° mmHg s / ml [12]
Reapo retinal capillaries resistance 5.68-10° mmHg s / ml [12]
Rirv2a post-laminar CRV resistance 1.35-10° mmHg s / ml [12]
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Revop post-laminar CRV resistance 22.09-103 mmHg s / ml [12]
leraza CRA nonlinear resistance parameter 58.223 [-] [12]
K, CRA nonlinear resistance parameter 58.223 [-] [12]
Peraza CRA nonlinear resistance parameter 23.0894 mmHg [12]
Kperurs CRA nonlinear resistance parameter 23.0894 mmHg [12]
Ocraza CRA nonlinear resistance parameter 0.005115 [-] [12]
Ocra2t CRA nonlinear resistance parameter 0.001023 [-] [12]
lerm1a CRYV nonlinear resistance parameter 1.48425 - 10° [-] [12]
leretb CRYV nonlinear resistance parameter 1.48425 - 10° [-] [12]
Pervla CRYV nonlinear resistance parameter 0.358774 mmHg [12]
Koo CRYV nonlinear resistance parameter 0.358774 mmHg [12]
Ocrn.la CRYV nonlinear resistance parameter 0.00324 [-] [12]
ko, 1 CRV nonlinear resistance parameter 0.0162 [-] [12]
K, retinal venules nonlinear resistance parameter 1.2-10° [-] [12]
K,m;2 retinal venules nonlinear resistance parameter 1.2-10° [-1 [12]
Dren retinal venules nonlinear resistance parameter 0.0543 mmHg [12]
ren2 retinal venules nonlinear resistance parameter 0.0543 mmHg [12]
Ovont retinal venules nonlinear resistance parameter ~ 2.8025 - 107* [-] [12]
ko, retinal venules nonlinear resistance parameter ~ 2.8025 - 107* [-] [12]
Ceral CRA compliance 7.22-1077 ml / mmHg [12]
Cur retinal arterioles compliance 7.53-1077 ml / mmHg [12]
Cren retinal venules compliance 1.67-107° ml / mmHg [12]
Coni CRV compliance 1.07-107° ml / mmHg [12]
Cardiovascular - ocular connection
Roortazeye,1 aorta-to-eye resistance 55.062 mmHg s/ ml  This work
Roortazeye aorta-to-eye resistance 55.062 mmHg s/ ml  This work
Reraina pre-laminar CRA resistance 5254.828 mmHg s/ ml  This work
Rerainn pre-laminar CRA resistance 5254.828 mmHg s/ ml  This work
Rirvour pre-laminar CRV resistance 16331.607 mmHg s/ ml  This work
Rervou2 pre-laminar CRV resistance 16331.607 mmHg s/ ml  This work
Reyeove,1 aorta-to-vena cava resistance 4.599 mmHg s/ ml  This work
Reyeove aorta-to-vena cava resistance 4.599 mmHg s/ ml  This work
Reyer eye resistance 268.7717 mmHg s/ ml  This work
Reyes eye resistance 268.7717 mmHg s/ ml  This work
Caortareye aorta-to-eye compliance 1.66125 - 1073 ml / mmHg This work
Crain pre-laminar CRA compliance 1.72-107° ml / mmHg This work
Coye eye compliance 3.6125-10°° ml / mmHg This work
Cervou pre-laminar CRV compliance 1.6125-107* ml / mmHg This work
Ceyerve eye-to-vena cava compliance 6.58-10°% ml / mmHg This work
Leoriazeye aorta-to-eye fluid inertance 0.0343 mmHg s> /ml  This work
Leyerve eye-to-vena cava fluid inertance 0.0042 mmHg s> /ml  This work

C. Model equations

The overall description results in the following set of ODEs, which models the coupling between the
eye and heart dynamics. These equations describe the hemodynamics between various compartments,
including the aorta, body, lungs, and the eye. The system of equations accounts for pressure and
flow rates in the cardiovascular and ocular systems, thereby considering factors such as resistance,
compliance, and inductance in each compartment. We gather the following equations which govern
the overall dynamics of the coupled system:

dp aorta __ 1
dl - Caorm

(PLV - Paorta)S aorta
RLV - Raorm,l

(C.1)

- anrtaZeye - anrm
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anora
dr = = L(wrm (Paorta - Pbody - Raortu,Z anrta) (CZ)
deudy
or 0 C3
dt Cbod) (Qa ta Qb dy) ( )
deody 1
Pioay — Pvc — Ry, ody C4
7 Lbod)( body — Pvc = RiodyObody) (C.4)
dPVC 1 (PVC - PRV)S vC
ody + OQeve C.S5
ar  Coe ((Qb dy + Qeyeave) — Roc (C.5)
dVRV — (PVC - PPA)S vC _ (PRV - PPA)SPA (C 6)
dt Ryc RRry + Rpa '
dPps _ 1 ((Prv = Pra)Spa _ O €7
dt Cpa Rry + Rpa
dQlungs
= Pra = Plungs = Riungs ungs C3
7 Llungs( b Jung tungs,1 Qlungs) (C.8)
Prints L Qs = O0) (€9)
dt - CPA lungs PV .
do 1
dPV = _(Plungs — Ppy — RlunngPV) (C.10)
t PV
dPpy _ L ((Ppy — Pry)Spy — 0w (C.11)
dt Cpy Rpy
dv, Ppy — Pry)S Prv—Pioria)S aora
LV — ( PV LV) PV _ ( LV 1 ) 1 (C12)
dl RPV RLV + Raorm,]
anorta2eye 1
dt = Laorngye (Paorta - PaortaZeye - RaortaZeye,lanrtaZeye) (C13)
dPaorae'e 1 Paoraee _Paorae*e
e = (anrtaZeye - e taey ’2) (C14)
dt Caorta2eye Raorta2eye,2
dPeye _ 1 PaorlaZeye,Z - Peye _ Peye - PeyeZVC (C15)
dt Ceye Reye,l Reye,Z
dpP in 1 Paora eye - P in P in - P
CRAin _ ( taeye,2 CRA _ CRA CRA,1 ) (C16)
dt Ccrain Rcrain,1 RcRrain2 + Reraia
dPcran 1 ( Pcrain = Peraa Pcray — Pant ) (C.17)
dt Ccra1 \Rcrain2 + Rcraa Reraip + Rerana + Reraop + Rar .
dPar 1 P _Par Par _Pven
t — ( CRA,1 t _ t ) (C18)
dt Cart RCRA,lb + RCRA,Za + RCRA,Zb + Rart,l Rart,Z + Rcap,l + Rcap,Z + Rven,l
deen 1 Par _Pven Pven_P
_ ( t _ CRV,2 ) (Clg)
dt Cven Rart,l + Rcap,l + Rcap,Z + Rven,l Rven,Z + RCRV,la + RCRV,lb + RCRV,Za
dPCRV,Z _ 1 ( Pven - PCRV,2 _ PCRV,Z - PCRV()ut ) (C 20)
dt Ccrvii \Ryen2 + Rcrviia + Rerviay + Rervaa Rervan + Rervour, '
dPCRVout _ 1 ( PCRV,Z - PCRVout _ PCRVrJut - PeyeZVC,l) (C 21)
dt Ccrvour \Rcrvap + Rervour, Rervour2 .

Mathematical Biosciences and Engineering Volume 23, Issue 2, 421-448.



447

dPyerve 1 Poyeover = Peyeaven
— = - — — Quyerve (C22)
dt Ceyerve Reyerve,t

dQe e2VC 1
; = (PeyeZVC,Z - P, - ReyeZVC,Z QeyeZVC) (C23)
dt LeyeZVC

where all the state variables are defined in Table 7. Valve states S ; with i = aorta, PV, PA, VC represent
the valve opening or closure, depending on the local pressure gradients, thus controlling the direction
and timing of blood flow between compartments.

D. Nonlinear Model Equations

This appendix reports the full mathematical expressions used in the model for nonlinear resistances
and cardiac activation functions. The nonlinear resistances in the retinal vasculature and the time-
varying elastance of the heart are central to capturing the effects of the IOP and the cardiac dynamics.
These equations are taken from [12] and [11], and are reproduced here for completeness.

D.1. Nonlinear Resistances in Retinal Circulation

The resistances in the CRA, denoted as R.,,2, and R.,,25, are functions of the transmural pressure
difference AP, = P.4» — IOP, where P,,,, is the pressure in the CRA segment and the IOP is the
intraocular pressure (see Figure 1). They are modeled as follows:

1 APcra
Reray = — |1 + XK

k() Pera,i lcra,i

-4
) , 1€{2a,2b}. (D.1a)

cra,i

The venous segment includes two nonlinear components: Re,; and Ry, for the retinal venules,
and R 1, and R 1, for the CRV. The nonlinearity arises due to the transmural pressure differences,
which are defined as follows:

APye, = Pyen — 1OP, APy = Py — 1OP, respectively.

For the venular segments (i € {1,2}), the resistance is defined as follows:

1 APy, \*
1+ - , 1f APy >0,
koven i vaen i Iven,i
Ryeni = 1 Y AP . 4/3 ’ (D.1b)
1- = , if APy, < 0.
kOven,,' vaen,i
For the CRV segments (j € {1a, 1b}), the resistances are defined as follows:
-4
1 AP, .
1+ , IfAP,, >0,
kocrv i Kpcrv i lervii
Rcrv,[ = 1 , AP ’ 4/3’ (ch)
- —= , if AP, <O.
kocrv,[ Kpcrv,i
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D.2. Time-Varying Elastance in the Heart

The time-varying elastance model captures the contraction and relaxation of the left and right ven-
tricles using a periodic activation function a(f). The cardiac cycle duration is as follows:

60

Tc = T’
HR

T,=0.16+03T.

where HR is the heart rate. The activation function is as follows:

1 (1 — COoS (27rtm;j)) , iftmodT,.<T;

a(t) =42 s (D.2a)
0, otherwise

The left and right ventricular pressures are given by the following:
Pry(1) = UL(t) + EL(t) Viv(0) (D.2b)
Pry(t) = Ug(t) + ER(?) Vry(?) (D.2c)

where:

UL(®) = Uy a(?), E () = Erp + Ers a(?) (D.2d)
Ur(t) = Ugo a(1), ER(t) = Erp + Egs a(?) (D.2e)

These expressions capture the pressure-volume dynamics during systole and diastole and are critical
for reproducing realistic pulsatile flow patterns in the coupled system [16].
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