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Abstract: Oncolytic viruses (OVs) are designed to selectively target and destroy cancer cells while
sparing normal, healthy tissue. Several viruses for oncolytic virotherapy are currently developed. In
this paper, we will use mathematical modeling to consider key strategies that can improve the efficacy
of oncolytic virotherapy. These include the integration of immunotherapy approaches with virotherapy
to amplify anti-tumor immune responses, as well as optimizing the timing, dosage, and sequencing of
viral administrations. Specifically, we consider strategies that increase the burst size of the virus, im-
munostimulation and immunosuppression, we optimize for different weekly virus injection schedules,
and we consider the combination of OV therapy with chimeric antigen receptor (CAR) T-cell therapy.
A limiting factor is the availability of data. We parametrize the model using several different data sets.
These, however, correspond to different cancers and experimental setups. Hence our model cannot be
considered to be validated. Consequently, our results are qualitative. Our results highlight the critical
importance of timing for virotherapy’s efficacy and overall success. They outline strong evidence for
promising treatment scenarios that needs to be further tested experimentally in the future.

Keywords: virotherapy; immunotherapy; cancer modelling; optimized schedule; oncolytic virus

1. Introduction

The mechanism of oncolytic viruses (OVs) is similar to that of conventional viruses; they enter the
host cells and exploit the cell’s genetic machinery to replicate and spread [1-3]. What distinguishes
OVs is their capacity to selectively target and destroy cancer cells while sparing normal, healthy tis-
sue. The immune system was once considered a limiting factor, with the belief that its response to the
virus would inhibit replication, restrict viral spread, and reduce tumor cell killing. However, this view
has largely shifted, as it is now recognized that the immune system plays a pivotal role in OV—cancer
interactions [4,5]. Viral infection of the tumor enhances its visibility to the immune system, promoting
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recognition and attack [4, 6, 7]. Moreover, virus-induced lysis of tumor cells leads to the release of
tumor antigens into a microenvironment modified by infection, thus reversing tumor-induced immune
suppression. The first genetically engineered OV, a herpes simplex virus 1 (HSV-1) mutant with defi-
cient thymidine kinase, was developed in 1991 and used to treat malignant glioma in nude mice [8].
These viruses preferentially target and eliminate cancer cells, often leveraging dendritic cells to medi-
ate their effects [6].

Baadbdulla et al. [9] extensively studied a mathematical model for the temporal and spatial inter-
actions of the virus and the cancer cells without considering the effect of the immune system. In the
absence of OVs, tumors are known to create an immunosuppressive environment, effectively silencing
the body’s immune response against cancer cells. However, once oncolytic viruses are introduced, they
induce pro-inflammatory signaling within the tumor microenvironment. This shift not only weakens
the tumor’s defenses but also enhances its susceptibility to immunotherapies. Oncolytic virotherapy
(OVT) awakens the immune system, enabling a robust response against the tumor. Therefore, incor-
porating the immune system into the model is essential. It is important to note that the oncolytic virus
may be cleared from the body before treatment can fully eliminate the tumor. Despite the fact that OVs
were translated into clinical trials, with talimogene laherparepvec (T-VEC) receiving U.S. Food and
Drug Administration (FDA) approval for melanoma, there are still challenges, such as limited viral
infection and immune clearance, that need to be overcome [7].

Based on the model of Al-Tuwairqi et al. [10], we incorporate the population of immune cells into
a model and build a base model, which investigates the fundamental interactions of immune response
with cancer and with the oncolytic virus. In [10], the authors conducted a qualitative analysis of the
model and its steady states. They examined the existence and stability of equilibrium points, and
through numerical analysis they found oscillatory behavior. Moreover, they demonstrate the impact
of various parameters on treatment outcomes. We continue this research by including specific OV
treatment strategies and combination treatments. Specifically, we analyze the outcome of an increased
effective viral production rate, the effect of immuno-suppression and immuno-stimulation, we optimize
the scheduling of OV injections, and we combine OV therapy with chimeric antigen receptor (CAR)
T-cell therapy.

We find an important aspect of combination therapies, which is often forgotten in theoretical or
experimental studies, the timing of the treatments. Using our oncolytic virus model, we show that
the efficacy of treatment can be significantly boosted compared to the traditional dosing, when a mas-
sively different timing is applied. In our case, optimal schedules gives an initial dose on day one, and
additional, larger doses in the following weeks. We obtained that the outcome of the treatment is sig-
nificantly more successful when the virotherapy is re-administered three or four weeks after treatment
began. The sensitive dependence of the treatment outcome on the scheduling is surprising, and offers
a simple way to improve these treatments.

After exploring various treatment variations, we extended our analysis of the OVT base models in
appendix B by incorporating a more specific representation of immune responses and analyzing the
same treatments within this enhanced framework. We find essentially the same results as the more
complex model. Also in this case, a careful treatment scheduling of viral injections makes a huge
difference in the model outcome.

It needs to be pointed out that our work has not been validated against data and results that we
have obtained in this work should not be considered as treatment recommendations. Our results are
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quantitative. They outline strong evidence for promising treatment scenarios that need to be further
tested experimentally in the future.

1.1. Previous modeling of OV therapy

There is a considerable history of mathematical modeling of oncolytic virotherapy. The works
by Baabdulla et al. [9] and Al-Tuwairqi et al. [10], mentioned earlier, build on this foundation. One
of the earliest models was introduced in 2001 by Wodarz [11]. His proposed model explored how
virotherapy could be optimized to achieve maximal therapeutic effects. Wodarz examined three main
mechanisms of action: direct viral killing of tumor cells, immune responses against the virus that
indirectly aid therapy, and the induction of tumor-specific immune responses triggered by the infection.
The analysis demonstrated that simply increasing the virus’s cytotoxicity is not always beneficial, as
overly rapid killing can limit virus spread and reduce treatment efficacy. Instead, an optimal balance
must be struck between viral replication and cytotoxicity. Building on this, in 2009 Komarova and
Wodarz [12] presented a broader modeling framework that accounted for different modes of virus
spread (fast vs. slow) and tumor growth kinetics. Their key insight was that the dynamics of OV therapy
can fall into two qualitatively distinct regimes, the fast spread and the slow spread. In the following
year, in [13], they continued their study of the OVT dynamics and developed a general system of
ordinary differential equations (ODEs) that builds on biologically motivated properties of tumor growth
and viral spread. They analyzed how varying these assumptions would alter system dynamics and
defined conditions under which virus-mediated tumor eradication would be possible. Their work also
underscored the importance of model robustness and cautioned that many classical modeling results
may be artifacts of arbitrary mathematical choices. Their work on oncolytic virotherapy has served as
a foundational framework upon which more complex models have been constructed.

In 2011, Tian [14] introduced a model comprising of three variables, the uninfected and infected
cancer cells, and the virus and his analysis showed the burst size of the oncolytic virus plays a crucial
role in the success of virotherapy. His findings underscored the importance of optimizing the burst
size of oncolytic viruses in virotherapy. In the other studies of the OVT, the focus was on the role
of the immune system in the cancer-virus interactions. In the work done by Eftimie et al. [15], a
detailed ODE-based model with two compartments (lymphoid and peripheral) was developed to repre-
sent interactions between uninfected/infected tumor cells, memory/effector immune cells, and the two
viruses-adenovirus (Ad) vaccine and an oncolytic vesicular stomatitis virus (VSV). This model could
accurately reproduce the experimental tumor dynamics and immune responses. Using this mathemat-
ical model, they explored the conditions necessary for achieving permanent tumor elimination. They
had their focus on two complex dynamic behaviors: multi-stability and multi-instability. Their work
also identified that the prolonged oncolytic virus presence is lined to a distinct phenomenon—multi-
instability. Additionally, they assessed whether viral persistence alone was sufficient for tumor elim-
ination. The findings revealed that without an active anti-tumor immune response, even a sustained
anti-viral effect could not prevent tumor growth. Thus, successful treatment requires the combined
action of both immune-mediated tumor killing and oncolytic viral activity. In another study on the
immune-virus interactions, Storey et al. [16] distinguished between the innate and adaptive (tumor and
virus specific) immune response. They pointed out that the innate immune system clears the virus too
quickly, reducing its ability to infect tumor cells and stimulate an effective antitumor immune response
and as a result, OVT alone is often insufficient for tumor clearance. They modeled a combination ther-
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apy of OVT and the protein 1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint inhibitor. This
combination therapy prevents T-cell exhaustion, improves immune-mediated tumor killing, and signif-
icantly lowers the viral infectivity threshold required for successful treatment. They highlighted the
importance of careful scheduling and dosing in combination therapy. Their analysis pointed out that
administering a second viral dose too soon after the first can worsen treatment outcome due to immune
system redirection toward viral rather than tumor antigens.

In 2021, Pooladvand et al. [17] developed a 3D spatiotemporal model to study the dynamics of
cancer-virus interactions, specifically focusing on adenovirus therapy within a solid tumor. In their
study, by linking partial differential equation (PDE) modeling with bifurcation analysis, they revealed
deep insights into why virotherapy often falls short as a standalone treatment, and underlined the
limitations of virotherapy as a monotherapy. They also highlighted the need for combination strategies
to achieve complete tumor control.

2. The basic OV-immune mathematical model

Our model for immune response to oncolytic virotherapy is based on a standard oncolytic virus
model as analyzed recently in Baabdulla [9]. This model is well known in the literature and has been
used in many publications [10,11,14,17]. Their model considers three populations: uninfected cancer
cells C(7), infected cancer cells I(¢), and free virus particles V(¢). Here, we extend this framework to
incorporate the immune response. The most straightforward way to include immunity in the system
is by introducing a population of effector immune cells Y (), following the approach of Al-Tuwairqi
et al. [10]. We make two minor modifications to the model studied in [10], resulting in the following
space-independent system:

ac C+1

< rC(l— )—,BCV—plYC,

dt

dl

i BCV —al — q,YI, (2.1)
av

' = abl —wV - 51VY,

dy

e mYC+aOYl-&Y,

where Y (f) represents the population of immune cells.

The first equation describes the logistic growth of uninfected cancer cells at rate r, with carrying
capacity L, and their infection by virus particles at rate 5. The second equation accounts for the
formation of infected cancer cells through infection and their subsequent lysis at rate @. The third
equation models the production of free viruses from lysed infected cells, where b is the viral burst size
and w is the viral clearance rate.

The interactions between the immune system and the other populations are represented by standard
mass-action terms: pp,q;, and s; denote the rates of immune-mediated killing of uninfected cancer
cells, infected cancer cells, and viruses, respectively. The last equation describes the stimulation and
proliferation of immune cells by both uninfected and infected cancer cells, with stimulation rates 7,
and ¢;. Immune cells are cleared at rate &;. From this point forward, we will refer to system (2.1) as
our base model.
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In contrast, the model proposed by Al-Tuwairqi et al. [10] included a viral loss term of the form
—B,CYV in the virus equation. However, several studies [9, 11, 15, 18] have argued that such a term can
be neglected, as viral infection typically has a negligible effect on the total viral population. For this
reason, we omit this term here. Additionally, we do not include a natural cancer cell death term, —dC,
in the C-equation, since on the short time scale relevant to OV therapy (a few weeks), this effect is
minimal. Additionally, choosing the natural death rate of cancer to be zero corresponds to the worst
case scenario, and it is expected that good treatment will do well if such a term would be included.

In Figure 1(a),(b), we sketch the interactions of the elements of the Baadbulla et al. model from [9],
and our onco-virus-immune base model (2.1), respectively.

(a) (b)
Figure 1. (a) The blue arrows represent the viral infection of cancer cells at rate 5. The
red arrows indicate the burst of viruses released from lysed infected cells at rate b. All black
arrows depict cell death and virus degradation (b) The blue and black arrows represent similar
dynamics as in (a). The yellow arrows indicate cell and virus death by the immune system
at rates pi, ¢, and s; respectively. The pink arrow shows immune stimulation by uninfected
cancer cells, while the red arrow shows stimulation by infected cancer cells.

We consider the system (2.1) with the initial conditions:
CO)=Ny>0, 10)=1,=0, VO0)=Vy>0, YO0 =Y,>0.
The values of the initial conditions are presented in Table 1.

Table 1. Initial conditions for model variables.

Variable Value Unit Description

Co 106 cells/mm? Initial density of uninfected cells
I 0 cellsymm®  Initial density of infected cells
Vo 1.9x 10" virons/mm®  Initial density of virus particles
Yy 10* units/mm? Initial density of immune cells

We choose parameter values based on previous studies. Pooladvand et al. [17] considered the car-
rying capacity of a solid tumor of radius 1 mm is about L = 10° cells per mm?; this value is based on
Lodish [19]. We consider this value as the initial density of uninfected tumor cells, Ny, in our model.
Based on the experiments by Kim et al. [20] on adenovirus in the glioblastoma U343 cell line, the tumor
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growth rate was estimated to be approximately 0.3 per day. This value was also adopted by Baabdulla
et al. [9] in their model. The initial condition for the amount of adenovirus virions is V, = 1.9 x 10'°
virions per mm?. We also adopt the same parameter values for L,3, w, and b as those used in the
model by Baabdulla et al. [9]. These parameters are associated with a reovirus and were applied in
the context of breast cancer. For the remaining parameters, we use estimates based on the immune-
virotherapy interaction model developed by Al-Tuwairqi et al. [10]. In their study, these parameters
were examined in the context of glioma treatment. The virus-related parameters in their model were
derived from the study by Friedman et al. [21], which focused on the mutant herpes simplex virus 1
(hrR3). Al-Tuwairqi’s immune model [10] incorporated components of the innate immune response,
including natural killer cells and cytokine activity. We summarize the model parameters in Table 2,
and for completeness, we report the parameter values of the cited papers in Appendix A, Table Al.

Table 2. Parameters for the base model (2.1), their baseline values, and their references.

Parameter Description Baseline value Units Source
r Growth rate of uninfected tumor 0.3 (day)™! [9]
Tumor carrying capacity 10° (10° — 10%) cells [9]
B Infection rate of uninfected tumor cells by OV 1.5%x107° (virus-day)™'  [9]
12 Killing rate of tumor by immune cells 0.48 x 107° (cell-day)™'  [10] (estimated)
Death rate of infected tumor cells 1 (day)™! [9]
q1 Killing rate of infected tumor by tumor-specific immune cells 0.63 x 107° (cell-day)™! [10] (estimated)
b Viruses released by lysed infected tumor cell 3500 (virus)(cel)™" [9]
w Virus-induced immune response rate 4 (day)™! 9]
51 Killing rate of virus by immune cells 0.21 x 10°° (cell-day)™'  [10] (estimated)
m Stimulation of immune response by uninfected cells 3.84x 1077 (cell-day)™! [10] (estimated)
T Stimulation of immune response by infected cells 7.8 x 1077 (cel-day)™! [10] (estimated)
& clearance rate of immune cells 0.036 (day)™! [10]

To simplify our analysis, we apply the non-dimensionalization method by considering

. C . I . BV . Y 7 )
C=—, I=—, V=—  Y=— = —_—, d =1t
L L p L Vb, " T

N

The dimensional model (2.1) transforms into the nondimensional system:

dé . N oan .
—= = CQ—C—Q—CV—pnx
di s
— = CV —-al—-qYl,
dt
dv e A an
~ = [ —yV-sVY, 2.2
= yV—s (2.2)
L
a -7 ’
where
L L L bSL L
p:p;, q:ql_’ s:SI— a:g’ Qzalf s ’)/:g, 77:771—, (23)
r r r r r r r
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The parameter values before and after non-dimentionalization are given in Tables 2 and 3, respectively.

Table 3. Parameters for the base model (2.1) and their baseline values after non-
dimensianlization (2.3).

Parameter Description Baseline value

6 Effective viral production rate 58.33 (16.6-500)
p Killing rate of tumor by immune cells 1.6

q Killing rate of infected tumor by tumor-specific immune cells 2.1

y Virus clearance rate 13.33

s Killing rate of virus by immune cells 0.71

n Stimulation of immune response by uninfected cells 1.28

4 Stimulation of immune response by infected cells 2.6

'3 clearance rate of immune cells 0.16

Note that we solve (2.2) numerically using MATLAB’s built-in ODE solvers (ode45 or ode23),
and rescale the results into dimensional variables so that densities and time are presented in their
physical units.

3. Analysis of the base model

The base model (2.1), in the absence of immune cells, was analyzed by Baabdulla et al. [9]. Their
analysis showed that, under the baseline parameters, the system settles at a coexistence equilibrium,
indicating that OVT alone would not be sufficient for tumor eradication. They also noted that while
their mathematical results were insightful, predictions beyond the first few days are not realistic due to
the eventual activation of the immune system. Before analyzing the full model, we should note that the
immune system alone is often insufficient to eradicate tumors because many cancers develop immuno-
suppressive microenvironments that prevent effective immune recognition and attack. As described
in [22], oncolytic viruses can overcome this limitation by “heating up” otherwise immunologically
“cold” tumors. In the context of our model, this biological mechanism directly affects the immune
stimulation rate parameter, 77, which captures the enhanced activation and recruitment of immune ef-
fector cells in response to viral therapy.

Now, we consider the full system and here we summarize the basic dynamical properties of model
(2.2). A complete analysis of the model is presented in [5]. Model (2.2) has the following equilibria:

trivial Ey = (0,0,0,0) | cancer only E; = (1,0,0,0) | immune free E, = (%, _9‘(’3197)9, _;‘1;9, O)

. 1-£ . A A A
cancer-immune E5 = (f—;, 0,0, T’) coexistence E4 = (C4, 14, Vs, Y4)

where E, is the coexistence point which cannot be expressed explicitly.
In [5], we prove the following theorem.

Theorem 1. For our base immune-oncolytic virus model (2.2), we have the following results. The ba-

sic reproduction number is given by Ry = —. Ej is always a saddle, and when the basic reproduction
ay
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number Ry is less than one, E is locally asymptotically stable and E, is not biologically relevant. When
Ry is greater than one, E\ becomes unstable and the coexistence steady state arises through a trans-
critical bifurcation at 6, = ay, where E, becomes biologically relevant. E, is locally asymptotically
stable when

) Y +na=-8) +y (€ +na - +4at(l - &)
>
2% ’

3.1

and
0>6,=ay and «(6) >0, 3.2)

where
k() = —6° + m&* + ymo + a)/3, and m=(a+ y)2 +a(y +1).

There exists a bifurcation value 6y > 6, with k(6y) = 0 such that the system undergoes a Hopf bifur-
cation at E,. Ej is locally asymptotically stable only if we have

L

For parameter values beyond the Hopf bifurcation point (8 > 6y), the system exhibits strong oscil-
latory dynamics characterized by sharp bursts of viral activity followed by extended quiescent phases
during which the tumor regrows. Despite these fluctuations, the cancer population repeatedly drops to
very low levels between oscillations, which can be interpreted as a favorable therapeutic outcome. To
quantitatively assess the overall treatment efficacy, we evaluate the tumor control probability (TCP) as
a measure of long-term tumor suppression.

3.1. Tumor control probability

To effectively compare treatment strategies and better estimate their expected success, we need a
suitable metric. Traditionally, TCP has been used in radiotherapy as a measure of the likelihood that
treatment has successfully eliminated all clonogenic cells. In the study by Gong et al. [23], the Poisson-
based TCP was identified as a reasonable first-order approximation for comparing the effectiveness of
different treatment protocols. The Poissonian TCP is based on a stochastic process for the random
variable X, of viable cancer cells at time . Assuming that individual cell deaths occur independently
and that survival events are rare, X; can be approximated by a Poisson distribution. We have that under
a Poisson distribution with the expectation of A events in a given interval, the probability of k tumor
cells surviving is given by [24].

Ake
k!
If Ny denotes the initial number of tumor cells and S () the surviving fraction at time ¢, then the expected

number of surviving cells is given by E(X;) = A. Approximating this expectation by NS (7), we obtain
A = NyS (?). Consequently, the Poisson-based TCP is

PX =k)=

(3.4)

TCP(f) = Pr(X, = 0) = ¢ M5O, (3.5)
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In our model (2.1), we normalize the cell density C(¢) with L = N,. Hence, here the survival fraction

C(t A
is simply S (¢) = % = C(?). Therefore, our TCP is given by
0

TCP(t) = e MCW = (€O, (3.6)

In addition, we employ the area under the curve (AUC) as a quantitative measure of the total tempo-
ral effect of a treatment over a specified time period. This approach enables us to compare the temporal
tumor control achieved under different parameter sets in a consistent and objective manner. A higher
AUC indicates a more sustained TCP over time, whereas a lower AUC reflects less effective or shorter
control. When comparing simulations with differing time horizons, the AUC is normalized by the total
duration to yield an average TCP value, ensuring comparability across cases.

Cell and virus densities TCP
S, x10° 1
10 =)
C
o) =1t
o —V(t) o
C
o5 Y(t) 80.5
5
-
Q.
g o 0
{4 10 20 30 40 50 60 £+ 10 20 30 40 50 60
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> X105 1
210 ~C()
C
o) —I(t)
o V(1) o
C
5 Y(t) ©o05
>
Q
o , —
o O 0
44 10 20 30 40 50 60 4 10 20 30 40 50 60
6 = 350 1 Day 1 Day
> x10° 1
310 —Cw)
C
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C
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©
-
- N 4
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Figure 2. Strategy (S1): Dynamics of the cancer cells, virus, and immune cells of model (2.2)
for a single dose of virus with different values of 6. The density of virus particles is re-scaled
by dividing by 10*. Note that we solve (2.2) numerically and rescale the results into dimen-
sional variables so we can present densities and time in their physical units. The right column
shows the corresponding TCP plots. The small blue arrow indicates the day of administration
of the viral dose.

Overall, while the shape of the TCP curve captures transient effects in tumor dynamics, the AUC
condenses this temporal behavior into a single scalar metric suitable for systematic comparison. Letting
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TCP(#) denote the tumor control probability at time ¢, the normalized AUC over a time interval [7, /]
is defined as:

Normalized AUC =

1f
f TCP(?) dt. 3.7
tf -1 fo

We use our base value parameters from Table 3 to numerically solve system (2.2), and compute the
cell densities, virus load, and TCP in the first row of Figure 2.

In our simulations, we introduce a cutoff threshold to regulate the viral load. Specifically, if at any
time the viral concentration falls below 1074, it is considered cleared and is set to zero. This cutoff
is applied because values below 107'* correspond to a fraction of a virion, which is not biologically
meaningful and should be treated as zero.

The plots of the base case in the first row of Figure 2 indicate a rapid initial decline in cancer cells
when the OV is administered; however, the cancer cells quickly recover and approach their carrying
capacity. Activated immune cells manage to reduce the population of cancer cells, but the tumor is
not cleared. There is no signal in the TCP value throughout the base case, indicating that with these
parameter values the OVT alone is not successful.

A sensitivity analysis of the parameters of this model was performed in [5], where it was observed
that the success of OVT is strongly influenced by the virus effective proliferation rate and the immune-
related parameters. In particular, the immune stimulation rate (r7) and immune exhaustion rate (&)
had the most pronounced effects on treatment outcome, while the viral production rate (6) also played
a significant, though comparatively smaller, role. These findings suggest that therapeutic strategies
targeting these key parameters—enhancing immune stimulation, reducing immune exhaustion, and
optimizing viral production—could substantially improve OVT efficacy.

4. Model strategies to improve treatment efficacy

We observed in the previous section, that the mathematical model predicting OVT as a monotherapy
with one viral injection would not be successful. In this section, our goal is to use the model to discuss
improved treatment strategies. We will refine our model, explore different parameter values, and test
various combination therapies to achieve a more effective approach for cancer eradication. One of our
key strategies will be combining virotherapy with immunotherapy, as this has been recognized as one
of the most promising ways to enhance OVT efficacy. At the end of this section, we will compare
all the results to gain a better understanding of how virotherapy can be optimized for more successful
treatment outcomes. Our base model will be system (2.2), where Y is considered a general immune
response which acts on both the virus and cancer cells. We will build upon this model by incorporating
enhancements to improve treatment effectiveness. Here is a quick look at the strategies we will consider
in the following:

(S1) Increasing the effective viral production rate . The parameter 6 is a combined quantity (see (2.3)),
which includes the viral binding rate 8 and the burst size b. Increasing either of these parameters
increases 6.

(S2) Developing optimized daily and weekly dosing schedules for up to four weeks following the first
viral injection.

(S3) Combining virotherapy with immunotherapy:
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(a) Immunosuppression strategies
(b) Immune stimulation approaches

(c) Combination with CAR-T cell therapy, including optimized scheduling strategies.

4.1. Strategy (S1): Increase of viral production rate

The efficacy of the virus in eradicating cancer cells largely depends on its inherent properties,
including the infection rate S and burst size b. Therefore, we will closely examine the parameter
abBL
0=—
size b gf adenoviruses was found to range between 1000 and 100,000. In our simulations shown in
Figure 2, we use the baseline parameter values from Table 2, where 5 was considered to be 3500, and
thus, 6 was set to 58.33. According to the findings in [25], the possible range for 6 extends to over
1600. In this section, we investigate whether increasing the effective production rate has a positive
impact on the outcome of OVT.

As it 1s seen in Figure 2, increasing 6 value in model (2.2) is an effective approach to enhance the
efficacy of OVT. The therapy becomes relatively successful, with the TCP curve approaching one, only
when 6 is nearly ten times higher than our baseline value. While this strategy significantly improves
OVT’s effectiveness and brings it closer to achieving complete cancer eradication, it is important to
note that this value is currently out of reach for realistic viruses.

which incorporates both of these factors. In the estimations performed by [25], the burst

4.2. Strategy (S2): OVT schedule optimization

Related to the under performance of OVT, many have argued that lower doses distributed over sev-
eral days, rather than the maximum tolerated dose, may be associated with improved tumor response
[26-28]. In [27], Naumenko et al. pointed out that despite a lack of direct infection, subsequent viral
doses—through a monocyte-dependent mechanism—enhance and sustain the infection initiated by the
first dose. This process enhances CD8" T cell recruitment, delays tumor progression, and improves
survival in multi-dosing OV therapy. These findings highlight the importance of dose optimization for
the successful clinical development of OVT. Having an available mathematical model (2.2), we now
address such a scheduling optimization. Our objective is to identify treatment schedules that minimize
tumor load at the end of therapy, improving upon the results observed previously. The goal is to in-
crease TCP values and maintain them at 1 for an extended period. To relate our theoretical treatment
schedules to clinical practice, we refer to the recently published International Virotherapy Association
Guidelines on the Use of RIGVIR® in Oncology (2024) [29]. These guidelines summarize protocols
used in human virotherapy with the ECHO-7 oncolytic virus (RIGVIR®). The treatment is adminis-
tered intramuscularly according to the regional principle, typically in muscles near major lymph node
groups such as the deltoid or gluteal regions. The standard protocol is long-term (2-3 years) and
consists of repeated injection cycles. For instance, in patients undergoing melanoma excision, three
intramuscular injections are given on consecutive days around the primary site, starting 5—7 days be-
fore surgery and continuing postoperatively, followed by monthly or bimonthly injections for up to
three years. After lymph node excision, the injections alternate between regions to stimulate different
lymphatic areas. For patients with brain metastases, combined intramuscular and intranasal adminis-
trations are recommended to enhance delivery across the blood-brain barrier. Moreover, RIGVIR®
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is often given between, but not concurrently with, chemotherapy or radiotherapy to avoid immune
suppression while maintaining antiviral and antitumor activity.

Although our numerical protocol is simplified for modeling purposes, it is conceptually consistent
with these clinical regimens: both involve periodic viral administrations designed to sustain viral activ-
ity, stimulate immune responses, and improve tumor control over extended periods rather than relying
on a single high-dose treatment.

We incorporate a control term u(¢) into our model (2.2) to analyze treatment success. We test various
dosing schedules with different viral dose levels. Our analysis considers treatment durations ranging
from one week to five doses over a four-week period. A key constraint in our optimization is that the
total dose administered each week must be equal to 95, which is equal to the initial value that was used
by Baabdulla et al. [9]. Adding a control term u(¢) in the nondimensional model (2.2) gives

% = C(1-C-I)-CV - pYC,

g = CV—-al -qYlI,

dt

62—‘; = 0l —yV—-sVY + u(y), “4.1)
dy

il nYC + Yl - &Y.

We focus on treatment schedules that can be realistically implemented in clinical practice. Specifically,
we allow at most one treatment per day and exclude treatments on weekends. We set the treatment to
be performed in a period of 4 weeks or 28 days. However, it is important to note that the model (4.1)
is nondimensionalized, and the nondimensional time 7 is defined by 7 = 0.3 x ¢. This implies that
day 28 corresponds to 7 = 8.4. Consequently, the objective function of this optimization problem
is to minimize the uninfected tumor load C(7) at the end of the period (f = 8.4). For simplicity,
we will omit the hats from this point forward, with the understanding that all variables refer to their
nondimensionalized form unless otherwise specified. We let N denote the total number of doses and
S represent the schedule matrix. S has 4 rows and 5 columns. Each row stands for a week of therapy
and each column corresponds to a day of the week. Since no therapy is performed on the weekends,
we only consider 5 columns— Monday, Tuesday, Wednesday, Thursday, and Friday. The matrix S
consists of 0’s and /’s. We set an element of the matrix to be 1 if a dose of virus is administered on the
corresponding day noting that we do not consider multiple doses on a single day. We also consider a
matrix D with the same size as S, representing the value of dose given on the corresponding day. The
schedule matrix S and the dosage matrix D can be written as

I si2 s13 Sia 815 dy din diz dia dis

S§21 S22 823 824 825 dyy dy dyy dyu  ds
S = , D= . 4.2
$31 S32 833 834 S35 dyy dxn dy dy dss (42)

S41  S42  S43 Sa4  S45 dy dyp diz dis ds
5;;€10,1}, d;jeR,, d;jj=0ifs; =0. 4.3)
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The element (1, 1) is considered to be 1, since we assume that we always perform virotherapy on day
1, which in this version corresponds to t = 0.3. On treatment days (s;; = 1) a treatment is given once
with dose d;;. Hence, we write out the treatment function as

4
mn:}j

i=1 j

5
dijsijétij(t) where tij =0.3x% ((l - 1) X7+ ]) (44)
=1

and ¢,,(r) denotes the Dirac-delta distribution. The 7;; represents the days that the treatment is adminis-
tered starting from 1 to 28. We also add the constraint that the total dose in each week should be equal
to 95 and write it as

5
d;20,  Ydy=95, i=1..4 (4.5)

Given a treatment schedule S, our constraint optimization problem is
min C(f = 8.4) (4.6)

with the constraint (4.5).

Example 2. Consider a treatment schedule such that the virotherapy is applied on the Monday of week
one with dose 95, and Thursday and Friday of week three, and Monday and Tuesday of week four, each
with dose 47.5. The suitable values of each dose are obtained through the optimization simulation and,
thus, the corresponding schedule and dosage matrices S and D are written as

1 0000 95 0 0 O 0
000O00©O0 0 0 0 O 0

S = 000 1 1y b= 0 0 0 475 475| “.7)
1 1000 475 475 0 O 0

The optimization problem (4.6, 4.5) was solved numerically using MATLAB’s fmincon routine
(interior-point algorithm), which performs a gradient-based constrained nonlinear optimization. The
system of ordinary differential equations (4.1) describing the oncolytic virus and immune—tumor dy-
namics was integrated at each iteration using ode23s with adaptive time stepping. The optimization
was initialized using uniform or clinically motivated dose distributions and iterated until convergence
criteria were satisfied (relative improvement in objective value < 107°).

In the first case in Figure 3, we distribute the initial viral dose of 95 over the first week of therapy.
The cancer cell count remains low for some time period during the first week, which is slightly longer
than the case of treatment on day 1 (Figure 2 top). While this schedule shows partial improvement,
the cancer is not fully eradicated, and as a result, the TCP value remains at zero throughout the entire
period. Next, in the middle row of Figure 3, we consider treatments in week one and two. A total
dose of 190 is administered over two weeks, with four doses in total (95 per week). After the fourth
dose on day 8, the cancer curve remains at zero for almost 30 days and the TCP shows a signal, a clear
improvement compared to Figure 2 top.

To further investigate the effects of prolonged treatment, we distribute a total of 285 doses over three
weeks in Figure 3 and over four weeks in Figure 4. In the three-week case, we see a clear treatment
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success after day 15, where the TCP raises to 1. In the four-week treatments, we see good outcomes
after 22 days.
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Figure 3. Strategy (S2), optimized scheduling. Examples of some of the optimized treat-
ments. Left shows the dynamics of the cancer cells, virus, and immune cells and right the
corresponding TCP. The density of virus particles are re-scaled by dividing by 100. The first
row shows treatments on days 1 (with dose 78.94), 3 (2.33), and 5 (13.73), the second row on
days 1 (10), 2 (77.76), 3 (7.24), and 8 (95), and third row days 1 (95), 8 (64.35), 10 (30.65),
15 (95). Note that we solve (2.2) numerically and rescale the results into dimensional vari-
ables such that we present densities and time in their physical units.

005
Oﬁ 049 20@D 30 40 50 Oﬁ % 20% 30 40 50
1 8 10 22Day 1 8 10 2223 Day
(a) (b)

Figure 4. Strategy (S2), optimized scheduling. (a): The TCP curve of 4 doses of virus of
value of 285 on days 1 (value 95), day 8 (value 64.86), day 10 (value 3.14), and day 22 (value
95). (b): The TCP curve of 5 doses of virus of value of 285 on days 1 (value 95), day 15
(value 47.50), day 16 (value 47.50), day 22 (value 47.47), and day 23 (value 47.53).
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We optimize many more schedules and we find a large number of successful schedules. We sum-
marize them as a heat map in Figure 5. Each line in Figure 5 presents a schedule, where the days per
week are the columns. On a treatment day, we use a color from dark red for a low dose to yellow for a
high dose. The last column indicates the resulting maximum TCP. Bright yellow indicates successful
cases. This figure illustrates the impact of various dosing schedules on the tumor control probability,
highlighting how prolonged and optimized administration influences treatment outcomes. This aligns
with the findings of Naumenko et al. [27], who suggested that while subsequent treatments may not
have a direct infection effect, they enhance and sustain the infection initiated by the first viral dose,
promote immune cell recruitment, and delay tumor growth.

Day 1 Week 1 Week 2 Week 3 Week 4 TCP

- 80

o
o

TCP (0.9-1.0)

2
8
Dosage value (0-100)

o
©
k4

0.20

Figure 5. Summary of treatment schedules alongside their corresponding optimized dose
values and the highest TCP values over a four-week period. Each row represents a schedule,
where the days per week are the columns. On a treatment day we use a color from dark red
for a low dose to yellow for a high dose. The last column indicates the resulting maximum
TCP. We find a large set of good treatments, showing that scheduling matters and that several
good strategies can be explored.

4.3. Strategies (S3): Combination of virotherapy and immunotherapies

As aresult of tumor cell infection with OVs, an antitumor immune response is activated, transform-
ing immunologically “cold” tumors into “hot” ones [30]. The lysis of tumor cells induced by OVs
releases tumor antigens and stimulates the immune system, triggering immunogenic cell death. This
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process leads to the release of danger-associated molecular patterns (DAMPs), pathogen-associated
molecular patterns (PAMPs), and innate immune signaling molecules such as high mobility group
box 1 (HMGB1) and adenosine diphosphate (ADP). Consequently, the immunosuppressive tumor
microenvironment (TME) shifts to a proinflammatory state, activating innate immunity in nearby
cells [31]. A combination of OVT and immuno therapies opens new avenues for developing more
effective treatment regimens [32]. In this section, we will examine the efficacy of combining OVT with
immune suppression, immune stimulation and with CAR-T cell therapy.

4.3.1. Strategy (S3a): Immunosuppression

The activation of the immune system may significantly limit viral replication and spread. This ul-
timately causes the reduction of the therapeutic efficacy of OVs [33]. The use of immunosuppressive
drugs could be a strategy to inhibit this effect, as demonstrated in glioblastoma models, where systemic
high-dose dexamethasone treatment or cyclophosphamide administration modulated and enhanced the
efficacy of oncolytic virotherapy [34,35]. There has also been studies, which have shown that immuno-
suppressive treatment at the time of OVT did confer a negative impact on cancer survival and there was
a trend toward worse overall survival, although not statistically significant [36]. In our model (2.2),
we applied the immunosuppressive effect of the drugs with the factor €. Our modified model is given
as follows:

dcC

n = C(1-C-1)-CV -pYC,

dl

— = CV—-al -qgYl,

dt a4

dv

— = 0l —-yV-sVY, 4.8
7 yV=s (4.8)
dyYy

E = EIT]YC + Et§YI—§:Y.

We consider the effect of the drug only on the stimulation terms and not on the clearance rate. We
study the results of the immunosuppression treatment combined with oncolytic virotherapy for different
values of ¢ in Figure 6, and we do not observe any improvement in the TCP values of the system.
We observe that the TCP values stayed zero (plots not shown), and thus the combination of these two
treatments is one of the strategies that would not improve the outcome of OVT, according to our model.

5 5 5
.4?10)(10 g10x10 .é,mxm
[72] (2} [7}
c (= c
[ [) [
a a a
S5 85 S5
] © ©
= =] =]
Q Q Q
£ o £ o —— £ o
10 20 30 40 50 60 G 10 20 30 40 50 60 G 10 20 30 40 50 60
1 Day 1 Day 1 Day
€ =0.25 € = 0.50 e =0.75

Figure 6. Strategy (S3a) Immunosuppression: Dynamics of the infected and uninfected can-
cer cells, the virus, and the immune cells of model (4.8) in combination therapy of immuno-
suppressive drugs and oncolytic virotherapy for different values of €. Again, the solutions
are presented in dimensional coordinates. All the parameters are taken from Table 3.
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We observe that immune suppression has almost no direct effect on the viral decline, indicating that
viral clearance is primarily governed by other mechanisms. However, it exerts a pronounced impact
on tumor control, as reducing the immune response allows cancer cells to proliferate more freely. This
highlights the dual role of the immune system in OVT dynamics: while it can limit viral propagation
by clearing infected cells and free virions, it is also essential for achieving effective tumor eradication.
When immune activity is suppressed, the weakened antitumor response enables tumor regrowth despite
the presence of the virus, underscoring the importance of maintaining a balanced immune function
during virotherapy.

4.3.2. Strategy (S3b): Immune stimulation

One of the promising strategies of OVs enhancement is to combine them with the use of T-cell
engager molecules. This stimulates existing T cells to lyse tumor cells [4]. Scientists might call the
immune modulators as the gas pedals of the immune system. Different types of therapies have been
developed that improve the immune system’s ability to attack and eliminate cancer [37]. Similarly, we
add the factor y of immune stimulator to the model (2.2). The model is given in Eq (4.9).

dcC
il cC(-C-1)-CV - xpYC,
dl
i CV —al — yqYI,
av
il 0l — yV—ysVY, 4.9)
dy
’n = ynYC + I - €Y.
>10 x10°
g: —C(t)
o) —1(t)
@] —V/(t)
§5 Y(t)
© /
-}
2 L
£ 0

ﬁ 10 20 30 40 50 60

1 Day
Figure 7. Strategy (S3b) immune stimulation: Dynamics of the infected and uninfected
cancer cells, the virus, and the immune cells in combination therapy of immunostimulation
drugs modulating the immune system by a factor of y = 2.5 and oncolytic virotherapy for
model (4.9).

The results we obtained showed no improvement in the outcome of the treatment. In Figure 7, after
modulating the immune system by a factor of 2.5, we observe that it temporarily reduces the tumor
load in an oscillatory manner; however, the TCP plot remains sustained at zero (plots not shown). In
our baseline case, the virus is already relatively weak and unable to achieve tumor eradication on its
own. Enhancing the immune response further lowers viral replication and spread, thereby reducing the
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therapeutic potential of the virus. As a result, a moderate increase in immune activity does not lead to a
favorable balance between viral replication and immune clearance. In this setting, immune stimulation
contributes primarily through direct antitumor effects rather than by supporting the virotherapy, effec-
tively shifting the mechanism toward pure immunotherapy rather than combined oncolytic treatment.

4.3.3. Strategy (S3c): Combination with CAR-T cells therapy

Our next strategy for improving the OVT eflicacy is its combination with CAR-T cell therapy.
In this therapy, in order to help T-cells recognize tumor-derived antigens, T-cells are extracted from
the patient’s body, genetically engineered to express CARs, and then they are infused back to the
patient [38]. However, it has been shown that tumor-mediated immunosuppression is one of the biggest
challenges in CAR-T cell therapy [39]. By combining OVT and CAR-T cell therapy, oncolytic viruses
infect the tumor cells and make infected cells express target tumor antigens that are recognized by
CAR-T cells [40].

Figure 8 helps to have a better understanding of how the infected, uninfected cancer cells interact
with the virus and the CAR-T cells.

Figure 8. Sketch of the OVT-CAR-T model. The blue arrows represent the viral infection
of cancer cells at a rate of 8. The red arrow shows the burst of viruses released from lysed
infected cells at rate b. The light cyan arrows indicate the virus-induced cancer cell killing
of the T cells at rate o, while the orange arrows illustrates their direct killing of the virus and
the cancer cells at rates A and o7, respectively. The pink and red arrows denote denote the
CAR-T cell death by the cancer cells at rate u. All black arrows depict cell death and virus
degradation.

Our base CAR-T cell ODE model in dimensional form is as follows:

I

il—f - rC(l _o )—,BCV—éTCT—o-VCT,

dl

E = ,BCV—Q’I—(STIT—O'VIT,

av

S = abl-wV-AVT + i), (4.10)
AT

S = pCHDT+KTV =u(C+ DT =T,

In this model, similar to our base model (2.1), we consider C and I to represent the populations of
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uninfected and infected cancer cells, respectively. We introduce 7" as both the CAR-T cell population
and the general immune cells that targets both cancer cells and free viruses— noting that effector CAR-
T cells alone only target cancer cells. Additionally, the population of free viruses (V) is represented in
the third equation. The first two terms in equation one are similar as in model (2.1). The third and forth
terms account for tumor cell killing by the effector CAR-T cells at rates 67 and o respectively, but the
difference is that the fourth term denotes the OV-induced CAR-T killing. Terms one and two in the
infected cancer cells equation are the same as in Eq (2.1), and the two following terms represent the
CAR-T cell killing similar to the first equation. In equation three, we have the effective replication term
of the virus and their clearance in terms one and two respectively, and the last term denotes the killing
of the OV by the immune cells. i(?) is the dimensional control term and has a similar definition as
(4.4) after non-dimensionalization. p represents the rate at which CAR-T/immune cells are stimulated
and proliferate upon interacting with both infected and uninfected cancer cells, as described in the first
term of equation four. The second term represents an OV-induced recruitment of CAR-T cells at rate «
inspired from [41]. The third term denotes the inactivation of CAR-T cells by both types of the tumor
cells at the rate u and their natural death at rate v is accounted for in the last term.

In this model, the similar parameters as the Eq (2.1) have the same values as in Table 2. The rest of
the parameter values are given in Table 4.

Table 4. Model parameters for the onco-virus CAR-T cell model (4.10), and their baseline
values, units, and references. Parameters not listed here are given in Table 2.

Parameter Description Baseline value Units Source

or Killing rate of tumor cells by CAR-T cells 1077 (3.7 x 107%,3.36 x 107®) (cell-day)! [38,41]

o Tumor cell proliferation rate 0.23x 107 (virus-cell-day)~' [41] (estimated)
Pl Killing rate of virus by immune cells 0.21x 1076 (cell-day)™! [10] (estimated)
P CAR-T cells proliferation rate 6x107%(2.3x107%,6 x 107°) (cell-day)! [38]

K Virus-induced CAR-T cell recruitment rate 1.5 x 10710 (virus-day)~! (estimated)

u Immune cell exhaustion rate 45x%x1078 (cell-day)™! [38]

v Natural death rate of immune cells 0.350 (day)™! [38]

The parameters that are taken from Mahasa et al. [41] are from their study of glioma and the hrR3
virus. The CAR-T cell parameters from Barros et al. [38] are taken from their study on CAR-T cell
therapy for mice with Hodgkin’s disease.

We set the initial conditions to be

C0)=10°% 1(0)=0, V(0)=19x10" 7T(0)=2x10. 4.11)

In Figure 9, we show several cases of treatment timing. In the first row of Figure 9, we first simulate the

Vv
behavior of model (4.10) after non-dimenstionalization in the absence of virotherapy (Z =0,Vy=0).

We start the simulations without considering any optimization, and thus, the control term i(z) in
(4.10) is zero. In Figure 9(a), we see that although this monotherapy brings the cancer cells signif-
icantly down for a long time, the TCP curve only rises to slightly over 0.6. Combination of these
two therapies is one of the suggested strategies to improve the efficacy of the treatments [42—44]. As
OVs are armed with therapeutic transgenes, this causes a boost in the CAR-T activation. Also, in the
immunosuppressed tumor’s microenvironment, OVs could be able to survive and even maintain their
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cytotoxicity functions [42]. When combined, we see in Figure 9(b) that the TCP value has a quick jump
to about 0.98 just by an injection of CAR-T cells and the OV on day one. This shows the importance
of the combination of virotherapy with immunotherapy for treatment efficacy and patients benefit.
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Figure 9. Strategy (S3c) combined with CAR-T: Dynamics of cancer cells and CAR-T cells
in model (4.10) and the corresponding TCP. The density of virus particles are re-scaled by
dividing by 10* and CAR-T cells by 100. (a) A single dose of CAR-T cells without oncolytic
virus. (b) CAR-T cells and oncolytic virus both administered on day one. (c¢) Optimized
treatment: CAR-T therapy on day one and virus injection on day two.

We apply a similar optimizing strategy as in model (4.1) by considering similar restrictions for the
combination of CAR-T cells and virotherapy model (4.10) after non-dimensionalization. The goal is
to improve the results we obtained from the non-optimized combination therapy.

We test different schedules to obtain a more optimal boost for this combination therapy. During op-
timization simulations, we observe that by a slight delay in the administration of the initial virus dose,
a more minimized tumor load is achieved as this delay significantly improved treatment outcomes. As
we see in Figure 9 row (c), when CAR-T cell therapy is administered on day one, followed by on-
colytic virus treatment on day two, the outcome is significantly more effective. The initial CAR-T cell
injection reduces the cancer cell population. Once the tumor burden is lowered, virotherapy starts. At
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this stage, in addition to directly infecting cancer cells, OVs act as a booster for CAR-T cells as well.
When the delay between the OVT and CAR-T cell administration is increased, the treatment remains
effective; however, excessively long delays allow the tumor to repopulate, which can reduce the overall
probability of tumor eradication. Therefore, while introducing a delay between therapies can be ben-
eficial, its duration must be carefully optimized. An appropriately timed delay can enhance treatment
synergy and maximize TCP, whereas an overly long interval may compromise therapeutic success.

4.4. Sensitivity analysis of treatment parameters

To evaluate the robustness of the proposed treatment protocols, we performed a sensitivity analy-
sis of the TCP with respect to key biological parameters. Starting from the baseline TCP shown in
Figure 9(a), we systematically varied selected parameters within physiologically relevant ranges and
plotted the resulting TCP bands (Figure 10).

TCP range (p = 7.6-25) TCP range (u = 1-1.5)

0.8 —TCP base (p = 20) 0.8 —TCP base (v = 1.166)
0 06 L 06

2 2
0.4 0.4
0.2 0.2
0 0
10 20 30 40 50 60 10 20 30 40 50 60
Day Day

Figure 10. TCP for CAR-T cell therapy alone. The figure on the left shows the sensitivity to
the CAR-T stimulation by cancer cells parameter (p), while the figure on the right shows the
sensitivity to the CAR-T cell clearance parameter (v). All other parameters are at base value
in Table 4.

For the CAR-T-only treatment, the TCP was moderately sensitive to the proliferation rate parameter
p and the CAR-T clearance rate v. The TCP increased substantially when p approached higher values
(around 2) or when v decreased from its baseline value of 1.1 to 1, suggesting that slower CAR-T
clearance enhances therapeutic performance.

In contrast, when OVT and CAR-T treatments were applied simultaneously (Figure 11), the TCP
curve remained relatively stable, showing reduced sensitivity to parameter variations. The combined
therapy maintained a high TCP across the entire range of parameter perturbations.

Finally, when a 1-4 days delay between OVT and CAR-T administrations was introduced, the TCP
remained close to 1 even under significant parameter variations. This observation indicates that the
delayed combination protocol is robust and capable of achieving successful tumor control across a
broad spectrum of biological conditions.

We summarize the outcome of our various strategies in Table 5. Successful treatments are shown
in bold.
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Figure 11. TCP for simultaneous CAR-T cell and OVT on day one. The shaded region indi-
cates the sensitivity of the TCP curve to variations in the corresponding parameter within the
specified range. The figure on the top left shows the sensitivity to the CAR-T cell killing of
infected and uninfected cancer cells (0); the top right shows the sensitivity to viral clearance
by CAR-T cells (1). The bottom left panel shows the sensitivity to the CAR-T stimulation
by cancer cells parameter (o), and the bottom right panel shows the sensitivity to the CAR-T
cell clearance parameter (v). All other parameters are at base value in Table 4.

5. Conclusions

Using a virus to treat cancer is an intriguing idea. Research on oncolytic viruses is at full swing and
some have made it already through clinical trials and FDA approvals [45]. However, the efficacy of OV
therapy, even for approved viruses, is rather limited because of physical barriers, tumor heterogeneity,
and an immunosuppressive tumor microenvironment [46]. Several strategies to improve the efficacy of
OV therapy are currently considered. Researchers genetically modify viruses to make them stronger,
more or less infective, diffuse faster, and reproduce better [47]. The combination of OV with different
methods of immunotherapy has been extensively studied because OV is a natural activator of both
innate and adaptive immunity [48]. However, treatment scheduling as an approach to increase the
efficacy of OV therapy, has so far been ignored. Here, we use a mathematical model to compare OVT
and OVT combination therapies with optimized treatment scheduling.

Our analysis confirmed earlier findings that OVT, when used as a monotherapy at baseline values,
is insufficient to fully eradicate cancer cells or prevent tumor relapse following treatment. To enhance
the therapeutic outcome of OVT, we explored several strategies. We first examined the effect of in-
creasing the effective viral production rate. Although this demonstrated a significant improvement in
therapeutic outcomes, achieving such levels remains unrealistic with the viral strains currently existing
in clinical use. A particularly novel contribution of this study was the implementation of optimized
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dosing and scheduling of OVT within our model. Simulation results highlighted the critical importance
of secondary dosing. In fact we found a large set of effective treatment schedules (see Figure 5), each
involving OV treatments that could even be two weeks apart from each other.

Notably, the therapeutic benefit of OVT following the initial dose was not primarily due to direct
infection of target cells, but rather its role in stimulating and boosting the immune response. Our
final strategy involved combining OVT with immunotherapies. The first combination tested included
immunosuppression and immune stimulation. Neither approach enhanced the effectiveness of OVT:
in the case of immunosuppression, OVT remained too weak to eradicate the infection on its own;
in contrast, immune stimulation alone cleared the virus more aggressively, undermining the potential
benefits of OV therapy. Our final combination therapy was the combination of OVT with CAR-T
cell therapy. Using our optimization framework, we found that the most effective treatment outcome
occurred when OVT was applied a day after immune therapy was administered. This was because
simultaneous application hindered proper stimulation of CAR-T cells by initial rapid reduction of
cancer cells. A summary of these results is given in Table 5.

Table 5. Summary of treatment strategies, schedules, viral doses, and TCP for model (2.1).
The most promising combinations are shown in bold.

Strategy Treatment week (s)  Schedule (Days) Total Dose Max TCP  Normalized AUC
Week 1 Day 1 (6 = 58) 95 0 0
(S1) Increasing 6 Week 1 Day 1 (6 = 350) 95 0.39 0.029
Week 1 Day 1 (6 = 500) 95 0.96 0.217
Week 1 Days 1,3 95 0 0
Weeks 1, 2 Days 1,2,3,8 190 0.40 0.025
(S2) Optimized schedule Weeks 1, 2,3 Days 1, 8, 10, 15 285 0.99 0.397
Weeks 1, 2, 4 Days 1, 15, 16, 22, 23 285 0.97 0.254
Weeks 1, 3, 4 Days 1, 8, 9, 22 285 0.96 0.246
Combination therapies
Week 1 Day 1 (¢ = 0.25) 95 0 0
(S3a) Immunosuppression () Week 1 Day 1 (¢ = 0.5) 95 0 0
Week 1 Day 1 (¢ = 0.75) 95 0 0
(S3b) Immunostimulation (y = 2.5) Week 1 Day 1 95 0 0
Week 1 CAR-T: Day 1 CAR-T: 2 0.62 0.09
(S3c) CAR-T Model (A) Week 1 CAR-T: Day 1, OV: Day 1 CAR-T:2,0V:95 0.98 0.275
Week 1 CAR-T: Day 1,0V: Day2 CAR-T:2,0V:95 1 0.963
Week 1 CAR-T: Day 1 CAR-T: 2 0.6 0.0875
(S3c) CAR-T Model (B) Week 1 CAR-T: Day 1, OV: Day 1 CAR-T:2,0V:95 O 0
Week 1 CAR-T: Day 1,0V: Day2 CAR-T:2,0V:95 1 0.979

The model that we use here is not calibrated to a single tumor or a single virus type. Hence, the
optimized treatments identified here are not applicable to patients. However, we show that much can
be gained by varying OVT scheduling, and it is worthwhile to further explore treatment scheduling in
more detail for specific cancers and specific viruses.

In the models presented in this work, immune effects were represented through a single global
immune compartment that encompassed immune cells responding to cancer cells, viral antigens, and
CAR-T cells. However, immune interactions are inherently more specific, and we also considered
a version of the model where we distinguish between immune responses according to their specific
targets—cancer cells, viral antigens, and CAR-T cells (see Appendix B). In Section B.1, we introduce
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amodel that separates CAR-T cells from the general immune population, and in Section B.2, we extend
the framework further to include distinct immune compartments targeting the virus and cancer cells,
respectively. Our findings of such an extended models are consistent with the earlier results, namely,
that an appropriate choice of viral treatment schedule has a substantial impact on therapeutic outcomes.

The cancer, the virus, and the immune response live in a spatial domain, and spatial effects might
be important, too. In [9] and [49], the base model for oncolytic virus therapy including diffusion terms
was studied. It describes the interactions between uninfected cancer cells, infected cancer cells, and
free virus particles within a spatial domain €2 and is given by the following system of partial differential
equations:

oC C+1

%~ D.AC C(l——)— cv,

ot cat+r L B

ol

i D,AI + BCV — al, (5.1
oV

E = DvAV+Q’bI—(L)‘/,

with homogeneous Neumann boundary conditions on 9€). The above PDE describes a system of
spatially coupled oscillators, and the authors in [9] found that spatially complex patterns can arise,
including hollow-ring patterns, traveling waves, and spiral waves. In [49] it was further shown that the
above PDE can be transformed into a 4 — w model, which is a normal form for spiral waves [50]. This
shows that spatial communtication between cells and viruses can lead to largely heterogeneous effects,
and the significance of these effects for OVT still needs to be explored.
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Appendix

A. Parameter values from the literature

Table A1 summarizes and compares the key model parameters used in different oncolytic virother-

apy modeling studies. The values illustrate the variability in parameter choices across the literature,
reflecting differences in biological assumptions, tumor types, and model formulations. Our parameter
set is included for reference and consistency within the present work.

Table A1. Comparison of parameters used across different studies.

Parameter used in paper r B a b y
Units day™! (virus-day)™' day™! (virus)(cel)”! day”!
Baadbullah et al. [9] 0.3 1.5%x107° 1 58.33 4

Al Tuwairqi [10] 0.48 16.8 x 107° 1.33 50 0.28
Mahasa et al. [51] 0072 1.7x10° 1 1350 0.6
Friedman et al. [21] 0.48 16.8 x 107° 1.33 50 0.6
Our parameters 0.3 1.5%107° 1 58.33 4
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B. Modeling with separate immune compartments

B.1. Separate compartments for CAR-T cells and general immune cells

In model (B.1), we extend the model presented in (4.10) by distinguishing between general immune
cells and CAR-T cells. The outcome closely resembles what we observe in Figure Al(a): CAR-T
cells initially reduce the cancer cell population rapidly, yet this effect is insufficient to raise the TCP
curve above 0.6. We then proceed by combining virotherapy with CAR-T therapy. As shown in Figure
Al(b), the TCP remains at zero when the two therapies are administered simultaneously. This outcome
arises because the rapid action of oncolytic virotherapy eliminates cancer cells too quickly, limiting the
opportunity for stimulation of CAR-T cell proliferation. By implementing our optimization strategy,
which introduces a short delay in the administration of OVT, we allow CAR-T cells sufficient time to
become effectively stimulated. Consequently, the virotherapy not only acts directly against cancer cells
but also amplifies the cytotoxic response of CAR-T cells. In Figure A1(c), we observe that introducing
just a one-day delay in virotherapy administration boosts the TCP value to 1.

Our general immune system consists of both tumor-specific and virus specific immune cells and,
thus, will kill and be stimulated by both cancer cells and the virus. Our suggested extension of (2.1) is

dC C+1

~ rC(l - )—ﬂCV—éTCT—o-VCT—szC,
dt L

dl

E = ﬁCV—CUI—éTIT—O'VIT—qZIY,

av -

— = bl - wV-AVT — VY +il), (B.1)
o yC+oy-gy

a ’

daT

E = pz(C+I)T—/,t2(C+I)T—‘U2T.

In this model, we consider five cell populations: uninfected cancer cells (C), infected cancer cells (7),
general immune cells (Y), CAR-T cells (T), and free viruses (V). The first four terms in equation one
are similar to those in model (2.1), with the fifth term accounting for the killing of uninfected cancer
cells by general immune cells at a rate of p,. Similarly, in equation two, all terms except the fifth
remain the same as in Eq (2.1), while the last term represents the killing of infected cells by immune
cells at a rate of ¢g,. In equation three, the first two terms describe the effective replication of the
virus and its clearance, respectively, while the third term accounts for the elimination of the OV by
general immune cells at a rate of s,. As before, ii(¢) is the dimensional control term and has a similar
definition as (4.4) after non-dimensionalization. Equation four remains identical to the immune cell
equation in the base model (2.1). Finally, in equation five, the first term represents the stimulation and
proliferation of CAR-T cells upon interaction with both infected and uninfected cancer cells at a rate
of p,. The second term denotes the inactivation of CAR-T cells by both tumor cell types at a rate of
U, while the last term represents their natural death at a rate of v;,.

Mathematical Biosciences and Engineering Volume 23, Issue 2, 388—420.



417

1021°
z
| =
Q
[a)
c
5 |
o
(a) B \.
= | N
[e] /
o .t —
G 5 10 15 20 25 5 10 15 20 25 30
. Day Day
10.X10°
2
2
[)
a
C
5
k]
(b) 5
=
Q.
o L //
)
{} 5 10 15 20 25 5 10 15 20 25 30
Day Day
x105
210 -TCP
2
[
[a]
c
5
S
(c) g
= I
[o% 1\
= i
o 0 L S
5 10 15 20 25 5 10 15 20 25 30
72 Day T2 Day

Figure A1. Dynamics of the cancer cells, immune cells, and CAR-T cells. The density of
virus particles are re-scaled by dividing by 10* and CAR-T cells by 100. (a) No virus and
injection of CAR-T cells on day one. (b) CAR-T cells and virus both on day one. (¢) An
optimized schedule with virus injection delayed to day two.

Figure A2. The blue arrows represent the viral infection of cancer cells at a rate 8. The red
arrow indicates the burst of viruses released from lysed infected cells at rate 5. The light
cyan arrows shows the virus-induced cancer cell killing of the CAR-T cells at the rate o,
while the orange arrows illustrate their direct killing of the cancer cells at the rate 67. The
pink and red arrows denote the CAR-T cell death by the cancer cells at the rate u. The
interaction of general immune cells with uninfected cancer cells, infected cancer cells, and
the virus is denoted in green arrows, and the immune cells kill them at the rate p,, ¢,, and s,,
respectively. All black arrows show cell death and virus degradation.
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We see these interactions between the elements in Eq (B.1) more clearly in Figure A2. In this model,
the similar parameters as in Eq (4.10) have the same values as in Table 4. The rest of parameters values
are given in Table A2. We set the initial conditions to be

C0)=10°% 1(0)=0, V(0)=19x10" Y(©) =10 T()=2x10° (B.2)

For choosing parameter values, since we are considering the innate immune system, we use the param-
eters from Al-Tuwairqi et al. [10] in this model as well and for the CAR-T therapy related parameters,
we use the values from Barros et al. [38]. We again begin by applying CAR-T cell therapy alone. The
simulation results are shown in Figure Al.

Table A2. Genreal immune cells and CAR-T cells model parameters, and their baseline

values.

Parameter Description Baseline value Units Source

D2 Killing rate of tumor cells by general immune cells 0.48 x 10~ (cell-day)~! [10] (estimated)
a0 Killing rate of infected tumor cells by immune cells 0.63 x 10~ (cell-day)~! [10] (estimated)
5 Killing rate of virus by general immune cells 0.21 x 107 (cell-day)~! [10] (estimated)
I Stimulation of immune response by uninfected cells 3.84 x 1077 (cell-day)~! [10] (estimated)
0 Stimulation of immune response by infected cells 7.8 x 1077 (cell-day)~! [10] (estimated)
& Clearance rate of general immune cells 0.036 (day)~! [10]

02 CAR-T cells proliferation rate 45%107°(2.3x107%,6x 107%) (cell-day)~! [38]

o Immune cell exhaustion rate 1.24 x 1078 (1.24 x 1078,4.5 x 107®) (cell-day) ! [38]

v Natural death rate of immune cells 0.350 (0.350, 0.830) (day)~! [38]

B.2. Model with virus and cancer specific immune cells

Our next step to extend our results is making the immune response more specific. We assume that
the T-cells are divided into two groups that primarily target either viral antigens or tumor antigens [52].
Thus, model (2.1) is extended to:

dc Cc-1
e Cl——)— CV - pY,C

dt d ( L B Pl

dl

E = ﬁCV - Cll - q[YtI - quvI

dv

n = abl —yV-sVY, (B.3)
dy

d—t’ = nY(C+1)-¢Y,
dy,

= Y, ]—-VY,.
dt ¢ v

The model now consists of five cell populations: the uninfected tumor cells (C), tumor cells infected
with OVs () and tumor and virus specific T cells (Y;) and (Y,), respectively, and an OV population (V).
Same as the base model (2.1), first term in equation one denotes the logistic growth of the uninfected
cell in the absence of the treatment and the second term accounts for the infection of the cancer cells.
The third term in this equation is describing the killing of the cancer cells by the tumor specific immune
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cells at the rate of p. In the second equation, the first and the second term are similar to the base model
describing the increase in the population of the infected cells and the death of such cells in the rate q,
respectively. The infected cells are marked by the virus, so as we see the next two terms we have the
death of the infected cells at the rate g, by the tumor specific immune cells in the third term and also in
fourth term their death at the rate g, by the virus-specific T-cells. In the first term of equation three we
have the effective replication of the virus by bursting out of the infected cell at rate b and their natural
clearance at rate y in the second term. The viruses are killed by the virus-specific immune cells at the
rate s as described in the last term of equation three. The tumor-specific immune cells are stimulated
by both infected and uninfected cancer cells. The first term of equation four denotes this stimulation
at the rate 7, andthe second term accounts for the clearance of this type of immune cells at the rate &.
The first term of the last equation (B.3) accounts for the stimulation of the virus-specific immune cells
at the rate { and the very last term describes their death the rate v. We did not consider any clearance
of the immune cells caused by the tumor cells. This was inspired by the model studied in [16]. In [16],
K. Storey et al. incorporated both innate and adaptive immune responses in their virotherapy model.
They further divided adaptive immune cells into antitumor and antiviral categories.

We see how the cancer cells, virus, and the immune cells interact with each other in Figure A3.

Figure A3. Interactions of the cancer cells, the oncolytic virus, and the virus and tumor
specific immune cells.

We simulate the behavior of this model (figures not shown), and the parameter values are given in
Table A3. We assume that at time t = 0 the tumor is at its maximum carrying capacity, with no infected
cells. We also assume there is no virus specific immune cell before the injection as they get stimulated
once the virus gets administered to the patient. The initial conditions of the system are

CO)=L, I1000=0 V(0)=19x10" Y,0) =10% Y,(0)=0. (B.4)

Parameter values were chosen similar to the model (2.1). We had to keep the values we had from
Al-Twairqi et al. [10] for the immune stimulation related parameter values while for the clearance rate
we could use a more specific value taken from Mahasa et al. [S1]. The results are essentially the same
as before, and we summarize those in Table A4.
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Table A3. Immune specific model parameters, and their baseline values.

Parameter Description Baseline value Units Source

r Growth rate of uninfected tumor cells 0.3 (day)’l [9]

L Tumor carrying capacity 10 (106 = 10%) cells [9]

B Infection rate of uninfected tumor cells by free viruses 1.5%x107° (virus-day)™!  [9]

P Killing rate of tumor cells by tumor-specific immune cells 0.48 x 10°° (ce11~day)’1 [10] (estimated)
r Death rate of infected tumor cells 1 (day)™! [9]

q: Killing rate of infected tumor cells by tumor-specific immune cells 0.63 x 107° (cell-day)™! [10] (estimated)
qy Killing rate of infected tumor cells by virus-specific immune cells 0.63 x 107° (cell-day)! [10] (estimated)
b Viruses released by lysed infected tumor cell 3500 (virus)(cel)™ [9]

0% Virus-induced immune response rate 4 (day)™! [9]

s Killing rate of virus by virus-specific immune cells 0.21 x 10°° (cell-day)™'  [10] (estimated)
n Stimulation of immune response by uninfected cells 3.84 x 1077 (cell-day)! [10] (estimated)
e Stimulation of immune response by infected cells 7.8%x 1077 (cell-day)! [10] (estimated)
¢ clearance rate of tumor-specific immune cells 0.009 (day)~! [51]

v clearance rate of virus-specific immune cells 0.1329 (day)~! [51]

Table A4. Summary of treatment strategies, schedules, viral doses, and TCP outcomes for
model (B.3). The most promising scenarios are shown in bold.

Strategy Treatment week (s)  Treatment schedule (Days)  Total dose Max TCP
Week 1 Day 1 95 0
(S1) Increasing 6 Week 1 Day 1 95 0.39
Week 1 Day 1 95 0.96
Week 1 Days 1, 3,5 95 0
Weeks 1, 2 Days 1, 5, 11 190 0.53
(S2) Optimized OVT schedule Weeks 1-3 Days 1, 8,9, 15, 16 285 0.99
Weeks 1, 2, 4 Days 1, 8,9, 22 285 0.97
Weeks 1, 3, 4 Days 1, 15, 16, 22, 23 285 0.96
Combination therapies
Week 1 Day 1 (¢ = 0.25) 95 0
(S3a) Immunosuppression () Week 1 Day 1 (¢ =0.5) 95 0
Week 1 Day 1 (e = 0.75) 95 0
(S3b) Immunostimulation (y = 2.5) Week 1 Day 1 95 0
(S3¢) CAR-T therapies Week 1 CAR-T: Day 1 CAR-T: 0.2 0
Week 1 CAR-T: Day 1; OV: Day1 CAR-T: 0.2; OV: 95  0.99
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