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Abstract: In recent years, numerous advances have been made in understanding how epidemic dy-
namics are affected by changes in individual behaviors. We propose a Susceptible-Infected-Susceptible
(SIS) based compartmental model to tackle the simultaneous and coupled evolution of an outbreak and
of the adoption by individuals of the isolation measure. The compliance with self-isolation is described
with the help of the imitation dynamics framework. Individuals are incentivized to isolate based on the
prevalence and the incidence rate of the outbreak, and are tempted to defy isolation recommendations
depending on the duration of the isolation and on the cost of putting social interactions on hold. We
are able to derive analytical results on the equilibria of the model under the homogeneous mean-field
approximation. Simulating the compartmental model on empirical networks, we also perform a pre-
liminary check of the impact of a network structure on our analytical predictions. We find that the
dynamics collapse to surprisingly simple regimes where either the imitation dynamics no longer plays
a role or the equilibrium prevalence depends on only two parameters of the model, namely the cost
and the relative time spent in isolation. Whether individuals prioritize disease prevalence or incidence
as an indicator of the state of the outbreak appears to play no role on the equilibria of the dynamics.
However, it turns out that favoring incidence may help to flatten the curve in the transient phase of the
dynamics. We also find a fair agreement between our analytical predictions and simulations run on an
empirical multiplex network.
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1. Introduction

The survival and well-being of populations can be seriously threatened by the circulation of com-
municable diseases. At the same time, the very individuals concerned with the spread of a pathogen
are often actively involved in the effort to mitigate the spread and to control the pathogen’s health-care
impact. Indeed, mitigation measures usually rely on the encouraged but voluntary adoption by indi-
viduals of attitudes that are expected to lower the probability of new infections, and thus benefit all.
However, voluntary adoption as a behavioral decision is believed to be more than just a spontaneous
immutable and homogeneous state of a population. Multiple surveys have identified individual factors
(e.g., psychological, socio-economic) and message delivery factors (communication about the impor-
tance of a measure, and about the severity of the circulating pathogen) that influence whether a person
can or will adopt a measure [1–4]. In addition to these factors, people form such decisions based on
the influence of their social surroundings [5–7].

The coupled evolution of disease dynamics and mitigation behaviors has emerged as a vibrant re-
search field, as evidenced by literature reviews published across a range of scientific communities,
including mathematical modeling [8–12], physics [13, 14], public health [15, 16], and human behav-
ior [17]. Two independent monographs [18, 19] further attest to the establishment of this line of re-
search. However, the complex phenomenology that arises from this coupling remains only partially
understood. Various approaches have been proposed to include human behavior into epidemiological
models. Among them, the framework of imitation dynamics relies on the hypothesis that individuals
carefully weigh their different options based on the observed payoffs of others before actively taking
a side [20]. This framework has been used to model choices related to vaccinations [21–25], social
distancing [26–29], mask-wearing [30, 31], and the use of insecticide-treated nets [32]. For certain
diseases, seasonality plays a pivotal role, and is included within the mathematical models. However,
even without such periodic modulations, the coupling between the dynamics of the disease and human
behavior is able to generate oscillations as long as the population only partially complies with the mit-
igation measure in place. If individuals update their opinions sufficiently fast relative to the spreading
rate of the disease, then the oscillations are either necessarily damped [33] or possibly sustained [21].
However, the scalar measure which represents the state of the outbreak that should be communicated
or the rate of exposure to information that would be beneficial for mitigation are not yet thoroughly
understood. In the present work, we propose to address these questions, with the aim of better orienting
policy makers and communication during present and future outbreaks.

In the initial stages of a novel outbreak, efficient vaccines and drugs are rarely available and popu-
lations are forced to resort to non-pharmaceutical interventions (NPI) in order to slow down the spread
of the disease. Depending on the disease [34], the most efficient NPI to mitigate the spread might vary.
However, self-isolation of known infected individuals is a standard NPI that relies on the complete
interruption of social interactions over a limited period of time, and was heavily relied upon during
the COVID-19 pandemic. Although the measure would ideally only isolate individuals while and if
they are infectious, logistical reasons often force healthy or recovered individuals to spend time in
complete isolation from the community. Some modeling works have accounted for this type of ineffi-
ciency [35,36], while others have allowed individuals to enter and break self-isolation at any time [37].

Here, we focus on the impact of an imitation dynamic on the efficacy of the self-isolation measure.
To do so, we build on a compartmental model introduced in [38] that explicitly accounts for the follow-
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ing inefficiencies in its implementation: partial adoption, and pre- and post-isolation infections. Partial
adoption described in the model allows individuals to decide not to isolate at all, as opposed to several
other models for isolation or quarantine where quarantine is not a choice [39,40]. For individuals who
comply, pre-isolation infection due to a delayed start of quarantine can be a consequence of unaware-
ness of the infected status (asymptomatic or pre-symptomatic infection, unspecific symptoms, absence
of accurate diagnostic tests) or of logistical difficulties with interrupting the current levels of activity
(e.g., work-related). Post-isolation infection due to the overhasty termination of the isolation period
can instead be a consequence of ‘isolation fatigue’ [41] or of isolation recommendations which require
individuals to isolate for a duration that does not always cover the entire infectious period of patients.

In the present work, we make two substantial additions to this model. First, we introduce the
possibility for individuals exiting quarantine before full recovery to re-enter the community with a
reduced infectiousness. This lowered contribution to the force of infection can be attributed either to
the adoption of precautionary measures (e.g., social distancing, mask-wearing) or to the pathogen load
diminishing as the host’s immune response progresses [42, 43].

Second and more importantly, while in [38], the probability of deciding whether to isolate or not is
constant, we here let it evolve over time. The decision of an individual is made after carefully ponder-
ing the cost of isolating and the responsibility towards the community, based on some information on
the state of the outbreak at a given time. In the framework of imitation dynamics, the level of preva-
lence is the most common information that is used by agents to make their decision. However, both
the prevalence and incidence are considered as the main indicators in epidemiology for the description
of the state of an outbreak [44]. In the present work, we include both indicators to compare their effect
on the efficacy of the isolation measure and the dynamics of the disease, when the population self-
regulates the levels of adoption (see [45] for another model with a composite source of information).
We expect the dynamic and reactive nature of the self-isolation measure to affect the phenomenology
of the coupled behavior and disease dynamics in a different way compared to measures such as vacci-
nations and mask wearing [21, 33]. While self-isolation has previously been modeled in combination
with imitation dynamics (albeit in a different context, [46]), to our knowledge, it has not yet been
studied in the presence of such dual source of information.

We analyze the equilibria of our model and perform a local stability analysis. We find five equilibria
and no bi-stable state. Surprisingly, the type of information used (i.e., prevalence or incidence) does not
affect the equilibrium values or their stability regions. However, prioritizing incidence over prevalence
when making decisions may reduce the peak height of the epidemic curve, while marginally contribut-
ing to the total number of cases. This bias remains neutral under low basic reproduction numbers or
the limited volatility of opinions. In contrast, if the disease propagates fast and individuals update their
strategy at a quick pace, then emphasizing on incidence-based data can help contain the overall impact
of the disease.

In Section 2, we introduce our model in its homogeneous mean-field formulation and describe its
implementation on a two-layers network. Section 3 is devoted to the investigation of the dependence
of stationary points of the dynamics and their local stability on the model parameters; additionally, we
explore the impact of a sparser and more heterogeneous network structure on our analytical conclusions
through simulations on an empirical network. Finally, in Section 4, we discuss our results and comment
on perspectives for future work.
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2. Modeling framework

2.1. ODE model

2.1.1. Disease dynamics

Figure 1. Schematic description of the compartmental model for an SIS-like epidemic evo-
lution with an imitation dynamic that affects the probability that individuals cooperate with
the isolation measure.

We build a compartmental model based on the standard Susceptible-Infected-Susceptible (SIS) epi-
demic model [47]. Let S denote the compartment of susceptible individuals who may contract an
infectious disease. Here, the standard infected compartment of the SIS model is split into four distinct
compartments—U, Q, I and F—to distinguish contagious from ‘harmless’ (because isolated) infected
individuals.

With infection rate β and conditional to the contact between a susceptible and a non-isolated infected
individual, newly infected individuals enter the compartment U of infected and undecided agents. We
assume the standard homogeneous mean-field formulation of the probability of a contact between a
susceptible and an infected individual. Individuals in the undecided compartment are infectious and
have yet to decide whether or not to isolate (e.g., being unaware of their infected status or for logistical
reasons). The spontaneous transition out of the undecided compartment occurs with the decision rate
µU . Then, individuals either enter the isolated compartment Q with the compliance probability x
or the still infectious compartment I with the complementary probability 1 − x. Individuals in the
Q compartment are assumed to be perfectly isolated from the community. Although we describe
the self-isolation of known infected individuals and not preventive quarantine, we call the isolation
compartment Q to refer to the already existing literature on SIQS models [39,40,48–50]. Quarantined
individuals can exit the Q compartment to enter yet another infectious compartment F (fatigued) - a
transition that spontaneously occurs with the rate µQ. While individuals in compartment I who refuse
to comply with the isolation measure are as contagious as individuals in compartment U, fatigued
individuals in compartment F are conferred a decreased infectiousness β(1−ε) to account for a potential
increased awareness after the isolation period (resulting in protective behaviors such as mask wearing
and social distancing) or a lower pathogen load due to the natural course of the infection. Although the
rest that individuals get during isolation might help them to recover faster, we neglect it in the present
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framework and consider that the time to recovery is identical on average, regardless of the decision
made by individuals, and more in general regardless of the path they undertake in the flow diagram.
To ensure this, direct transitions from compartments U, Q, I or F back to the susceptible compartment
S occur with the same rate µ (see Appendix A). Note that undecided individuals may recover before
ever making a decision. This happens when the recovery rate is much higher than the decision rate and
corresponds to one limit where our model reduces to the standard SIS model.

Overall, the fraction of individuals in each compartment undergoes the following dynamics:

Ṡ = −βS (U + I + (1 − ε)F) + µ(U + Q + I + F)
U̇ = βS (U + I + (1 − ε)F) − (µ + µU)U
Q̇ = µU xU − (µ + µQ)Q
İ = µU(1 − x)U − µI
Ḟ = µQQ − µF,

with the assumption that demographic changes are negligible, which translates into S+U+Q+I+F = 1.
For convenience, let Itot denote the total prevalence (i.e., Itot = U + Q + I + F).

2.1.2. Coupled disease and opinion dynamics

To make the here-above model for isolation more realistic, we let the probability x that undecided
individuals comply with the isolation measure to be another variable of the model which evolves in
time. We assume that an individual can either be a cooperator or a defector, depending on whether
or not the individual undergoes self-isolation when aware of being infected. Now, the real number x
can be understood as the fraction of cooperators in the population. In addition, people are assumed
to dynamically change their opinion on self-isolation based on the comparison between the payoff of
their own strategy and the payoff of the alternative strategy, which is in the fashion of the imitation
dynamics framework [13, 21, 51]. Overall, the variable x undergoes the following dynamics:

ẋ = σx(1 − x)(πQ − πI),

whereσ is the rate at which individuals challenge their opinion, and πQ and πI are the payoffs associated
to the adoption (cooperation) or not (defection) of the isolation measure, respectively.

In the present imitation dynamics framework, we are able to account for the deterioration of com-
pliance over longer isolation periods by making the payoff of cooperation decay with the duration of
quarantine. More precisely, we model the cost to comply as the product of the daily cost to self-isolate
multiplied by the average duration of isolation:

πQ = −k ·
1

µ + µQ
.

The parameter k can be thought of as a straightforward monetary loss from being unable to commute
to work, a burden from reorganizing housework, or a social cost from not seeing relatives and friends.
A detailed derivation of the average time spent in compartment Q is provided in Appendix A.

In contrast, the payoff associated with defecting is assumed to decay with the prevalence Itot and the
incidence β(1 − Itot)(Itot − Q − εF), with respective weights kp and ki:

πI = −kpItot − kiβ(1 − Itot)(Itot − Q − εF).
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Combining both payoffs, the time evolution of the proportion of cooperators in the population reads as
follows:

ẋ = σx(1 − x)
(
kpItot + kiβ(1 − Itot)(Itot − Q − εF) −

k
µ + µQ

)
.

Note that we assume that the fraction of cooperators is homogeneously distributed across all compart-
ments. In particular, this implies that someone’s current opinion is not affected by learning they are
infected.

2.1.3. Final system of equations after nondimensionalization

Before conducting the mathematical analysis, we nondimensionalize our system by relying on the
fact that the time of recovery provides a natural timescale µt for the system. Let R0 := β

µ
be the basic

reproduction number, which is also defined as the average number of secondary cases for each primary
infected case in an otherwise susceptible population. After rescaling the time by µ, the final system
reads as follows: 

İtot = R0(1 − Itot)(Itot − Q − εF) − Itot

U̇ = R0(1 − Itot)(Itot − Q − εF) − (1 + u)U
Q̇ = uxU − (1 + q)Q
Ḟ = qQ − F

ẋ = κx(1 − x)
(
pItot + (1 − p)R0(1 − Itot)(Itot − Q − εF) − c

1+q

)
,

(2.1)

where we have introduced the following:

– the relative decision-making rate (exit from compartment U), denoted u := µU
µ

;
– the relative isolation-breaking rate (exit from compartment Q), denoted q := µQ

µ
. Note that since

the average time spent in isolation is 1
µ+µQ

, we can say that the average time for recovery is q + 1
longer than the average time spent in isolation. Therefore, the mathematical condition q > 0
implies an infectious period always longer, on average, than the isolation period;

– the normalized opinion update rate κ := σ(kp+ki)
µ

;
– the relative importance given to prevalence when deciding whether to isolate or not, denoted

p := kp

kp+ki
;

– the normalized daily cost of self-isolation c := k
µ(kp+ki)

.

Table 1. Summary of the final nondimensionalized model parameters.

Symbol Name Plausible range Reference

R0 ∈ (0,∞) Basic reproduction number (0.3, 6) [52, 53]
ε ∈ [0, 1] Level of protection of infectious fatigued individuals (0.05, 0.95) [54, 55]
u ∈ (0,∞) Ratio of the decision-making rate over the recovery rate (0, 5)
q ∈ (0,∞) Ratio of the isolation-breaking rate over the recovery rate (0, 2)
κ ∈ (0,∞) Rescaled rate of opinion update (0, 50)
p ∈ [0, 1] Relative importance given to prevalence in the ‘Defect’ strategy [0, 1]
c ∈ (0,∞) Rescaled cost to self-isolation (0, 3)
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When x(t = 0) = 0 or u → 0, we recover the SIS system of equations. Instead, the case where
κ = 0 is identical to the Isolation-Delay-Fatigue (IDF) model introduced in [38], where the compliance
probability x is constant in time. In this paper, we only consider non-negative values for the parameter
κ.

The parameter p of the model accounts for the relative importance of prevalence and incidence in
the decision making of individuals. Fully tailoring compliance with isolation on the epidemic preva-
lence targets the containment of prevalence-related quantities, such as the hospital saturation levels and
mortality. On the other hand, fully relying on incidence focuses on the probability of new infections,
hence a refusal to isolate if there are either already too many infected individuals (the chances of meet-
ing a susceptible individual whom they might infect are low) or still too few infected individuals (they
would be among the few people isolating).

A schematic description of the compartmental model is provided in Figure 1 and the parameters
used in the nondimensionalized model are summarized in Table 1.

2.2. Simulations

The mean-field equations for the imitation dynamics can arise from different implementations of the
underlying stochastic dynamics. We simulate the dynamics using a Gillespie optimized algorithm [56]
alongside the help of the Quasistationary State method, which was proven to be an efficient way of
solely considering surviving runs in simulations of absorbing phase transitions [57].

We distinguish two stochastic implementations that we call ‘one way’ and ‘two ways’. The ‘two
ways’ implementation allows a change in strategy, even if the other strategy has a lower payoff. It
sees the change in strategy just like an infection event, whereby an individual ‘infects’ a neighbor and
makes it adopt its strategy. However, if the payoff of the explored strategy is much lower than the one
of the original strategy, then the ‘infected’ individual quickly tends to transition back to its original
strategy. Instead, the ‘one way’ implementation only allows the transition if the difference of payoffs
between the two strategies is advantageous. In both implementations, the strategy changes are only
performed if the strategy of the individuals who change is still carried by some (> 1) individuals in the
population.

We compare the performances of the two designed implementations in terms of their error (i.e.,
deviation from the ordinary differential equations (ODE) model, and in terms of their execution times).
More precisely, for each implementation, we simulate the time series of U, Q, I, F, and x on a complete
network of N = 500 nodes. Averaging over a given number of runs, we obtain a time series for each
compartment, and compute the ‘combined mean error’ as the sum of the absolute value of the difference
between these time series and ODE predictions over all time steps and compartments. In Figure 2a,
we compare the distribution of 50 combined mean errors for both implementations and for different
numbers of runs. For both implementations, the error of simulations run on a complete network decays
with the number of runs. However, we find that the error of the ‘two ways’ implementation decays
more slowly. This is a consequence of the fact that the ‘two ways’ implementation allows quickly
reversed and thus ‘inefficient’ transitions, whereby individuals change their strategy even though the
new strategy incurs a lower payoff. In Figure 2b, we show the comparison between the distributions
of execution times for each implementation. As a consequence of its inefficient transitions, the ‘two
ways’ implementation appears to be also consistently slower in execution times compared to the ‘one
way’ implementation. Moreover, these conclusions appear to persist on a network structure where the
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stochastic implementation no longer perfectly agrees with the ODE predictions.
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Figure 2. The ‘one way’ implementation is more efficient than the ‘two ways’ implementa-
tion. We compare the performance of both implementations on a complete network of size
N = 500 until time 20. The other parameters are R0 = 5, u = 4, q = 0.25, c = 0.5, p = 0.7,
κ = 10, and ε = 0.5, with the initial values U(0) = Itot(0) = 0.05, Q(0) = F(0) = 0, and
x(0) = 0.01. A total of 1000 runs were performed, and the associated error and execution
time were stored. a) Violin plots of the distribution of 50 combined mean errors for the ‘one
way’ (green) and the ‘two ways’ (blue) implementations, and for different numbers of runs.
The red lines are the median (dashed) and the lower and upper quartiles (dotted). b) Distri-
bution of the execution time for both the implementations.

Since the two approaches are both consistent but the ‘one way’ implementation is more efficient,
results are here-after only shown for the ‘one way’ implementation.

Our model describes two spreading phenomena that occur on two distinct network layers. Thus
we consider two different networks: one for the behavioral influence of individuals and one for the
physical proximity (see for example [58] for a similar setting). For the empirical network structure, we
consider data that was collected as part of the Copenhagen network study (CNS) [59, 60], which was
a study that involved more than 700 students from a university in Copenhagen. Multi-layer temporal
data was harvested over a period of four weeks through the mobile phones of the participants. Among
other signals, the physical proximity of the students was estimated via Bluetooth signal strengths, and
information about their Facebook friendships was also recorded. For the propagation of the synthetic
disease, we use the copenhagen/bt Bluetooth dataset. Instead, for the layer where the adoption of
measures propagates, we consider the copenhagen/facebook Facebook network. We assume that if
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the number of nodes differs from one layer to the other, then it is a consequence of missing data and
not a consequence of the inactivity of some nodes in either of the layers. The multi-layer network is
aggregated over the entire observation period, and interactions between individuals are assumed to be
unweighted and undirected.

3. Results

A stability analysis of the nondimensionalized ODE model (System (2.1)) reveals that the system
has two disease-free equilibria as well as three endemic equilibria, which are distinguishable by the
fraction of cooperators in the population. The equilibria of the dynamics and their conditions of sta-
bility shed light on the role played by pre-isolation and post-isolation infections, partial compliance,
increased awareness after isolation, source of information and volatility of opinion. Moreover, simu-
lating the stochastic dynamics of the present compartmental model on a network structure suggests a
fair agreement with analytical results, although oscillations found in the ODE model may be damped
faster on the network.

3.1. ODE model: equilibria and stability

The technical details of the assessment of the local asymptotic stability are postponed to Ap-
pendix B. In a nutshell, the procedure involves the following: (i) identifying the equilibria of the
model; (ii) computing the Jacobian matrix associated with System (2.1); (iii) plugging the equilibria
into the Jacobian matrix; and (iv) finding the eigenvalues.
Two of the equilibria correspond to disease-free situations (i.e., characterized by I∗tot = 0 and thus also
U∗ = Q∗ = F∗ = 0). Consequently, the equilibria only differ by the level of compliance, which can
only take two values. On the one hand, if x∗ = 1, which corresponds to a scenario with full com-
pliance, then we call the equilibrium Disease-Free with Full Compliance (DFFC). This equilibrium is
unconditionally unstable. On the other hand, if x∗ = 0, the equilibrium is called Disease-Free with No
Compliance (DFNC), and is locally asymptotically stable if and only if R0 ⩽ 1. Indeed, in the absence
of a threat, the incentive to self-isolate vanishes, which leads to the complete absence of cooperators
in the population.

Since the other equilibria correspond to endemic situations, we assume R0 > 1 from this point
onward. We are able to derive the equilibrium values of the fractions of individuals in compartments
U, Q, I, and F along with the share x of cooperators in the population. In the stationary limit, the
fractions of individuals in compartments U, Q, and F can be expressed as functions of x∗ and I∗tot as
follows: 

U∗ = 1
1+u I∗tot

Q∗ =
(
1 − 1

1+u

)
1

1+q x∗I∗tot =
u

1+u
1

1+q x∗I∗tot

F∗ =
(
1 − 1

1+u

) (
1 − 1

1+q

)
x∗I∗tot =

u
1+u

q
1+q x∗I∗tot,

(3.1)

where the stationary values x∗ and I∗tot solve the following two equations: 1
R0
= (1 − I∗tot)

(
1 − u

1+u
1+εq
1+q x∗

)
0 = x∗(1 − x∗)

(
I∗tot −

c
1+q

)
,

(3.2)
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under the assumption that κ > 0. We are left with the computation of the equilibrium values of x∗ and
I∗tot.

Provided x∗ lies in [0, 1], the first line of System (3.2) gives the following:

I∗tot(x∗) := 1 −
1
Rx∗
.

where Rx∗ reads as follows:

Rx∗ :=
(
1 −

u
1 + u

1 + εq
1 + q

x∗
)
R0. (3.3)

In the case of no compliance (i.e., x∗ = 0 (‘No Compliance’, ENC)), this expression reduces to the
following standard SIS result:

I∗tot = 1 −
1
R0
.

If full compliance is reached (i.e., x∗ = 1 (‘Full Compliance’, EFC)), then the equilibrium prevalence
is as follows:

I∗tot = 1 −
1
R1
.

The parameter R1 can be understood as the basic reproduction number of a SIQS model with an ex-
tra compartment for fatigued individuals (pre- and post-isolation infections are modeled but partial
adoption is not).

Finally, in case 0 < x∗ < 1 (‘Partial Compliance’, EPC), the second equation of System (3.2) yields
a simple dependence of the equilibrium prevalence on the model parameters:

I∗tot =
c

1 + q
, (3.4)

and the first equation provides the following equilibrium share of compliers:

x∗ :=
1 + u

u
1 + q
1 + εq

1 − 1

R0

(
1 − c

1+q

) . (3.5)

Equating this expression to 0 and to 1 provides the stability conditions for the ENC and EFC equilibria,
as well as the equations for the boundaries that separate the stability regions. It is worth to note that
none of the equations depends on the initial conditions (except the conditions κ > 0 and x(0) ∈ (0, 1)).

All the results regarding the large time asymptotics of the model are summarized in Table 2.

3.2. The equilibrium prevalence reduces to a surprisingly simple dependence on the model
parameters

We refer the reader to Figure 3 for heatmaps of the equilibrium prevalence across a variety of
parameter combinations. Both the parameters p of the source of information (prevalence vs incidence)
and κ of the volatility of opinions are omitted as they do not affect the equilibria. Indeed, at equilibrium,
the incidence R0(1− Itot)(Itot−Q−εF) equals the prevalence Itot, and the two contributions of the source
of information cancel each other out.
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Note that the intertwined evolution of disease and compliance with the self-isolation measure results
in a surprisingly simple set of equilibria. In the two regimes ‘Full Compliance’ and ‘No Compliance’,
the dynamics collapses to one where the imitation does not play any role. Instead, in the third and last
regime, namely ‘Partial Compliance’, the equilibrium prevalence reduces to a very simple function of
only two model parameters: the (rescaled) cost of isolation c and the relative isolation-breaking rate q.

Surprisingly, in this regime, the prevalence does not depend on the delay to enter isolation (through
u) nor on the level of caution of individuals at the exit from isolation (through ε). Rather, delay and
level of caution affect the equilibrium level of compliance x∗ and the stability conditions of this regime.
In ‘Partial Compliance’, being more careful to start the isolation period promptly (a larger u) or to limit
risky behaviors after the isolation period (a larger ε) does not restrain the outbreak size, but makes the
containment more efficient, which allows the same equilibrium prevalence I∗tot with a lower overall
compliance of the population x∗.

In the absence of changes in the adoption of the isolation measure, these two parameters are in-
stead expected to always affect the equilibrium prevalence, unless there is no compliance at all. In
Appendix C, we compare analytical predictions in the presence and in the absence of changes in com-
pliance. We show that under the trivial condition where the static level of adherence of the population
is given by the equilibrium level of adherence, the equilibrium prevalences are identical. Moreover,
depending on the comparison between the initial level of adherence x(t = 0) and the equilibrium level
of adherence x∗, we can predict whether the dynamics with higher rates of imitation will generate
consistently higher or lower prevalences in the transient phase.

3.3. Optimal isolation duration

We find that an optimal isolation period emerges. We typically observe that the equilibrium preva-
lence is minimized by an intermediate isolation duration, thereby balancing the trade-off between the
increased efficacy of extended isolation periods against the importance of widespread adoption for
breaking transmission chains.

For a sufficiently large c and sufficiently low q (long isolation duration), the system is in the ‘No
Compliance’ regime and the prevalence is independent of q. When q reaches the value at which it
leaves the ‘No Compliance’ regime to enter the ‘Partial Compliance’ regime, the prevalence starts
monotonically decaying with an increasing q: shortening the isolation duration allows one to increase
the population’s adoption levels and to better contain the spread of the pathogen. However, above a
certain value of q, the system changes the regime once again and enters the ‘Full Compliance’ regime,
where further increasing q (and shortening the isolation duration) makes the prevalence grow again:
the adoption level reaches a ceiling, and shorter isolation periods can only be detrimental for the con-
tainment of the disease spread. Thus, the value of q that minimizes the equilibrium prevalence is the
value of q that separates the ‘Partial Compliance’ and the ‘Full Compliance’ regimes. This value of q
corresponds to the longest isolation period such that everyone complies. Still, a lower prevalence is al-
ways achieved for longer optimal isolation periods. The improvement offered by choosing the optimal
duration might be modest (Figure 3, bottom panels) or dramatic (top right panel, for rather low costs
c), depending on the celerity to enter isolation u and on the caution after exiting isolation ε.

However, such an optimal isolation period does not exist in all regions of the space of parameters.
In particular, it is necessary that the cost of quarantine is sufficiently large. Indeed, if c is too small
(c < 1 − 1+u

R0
), then a large fraction of the population cooperates, and there is no further compliance to
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be won by shortening the isolation period.

Figure 3. Equilbrium prevalence. Heatmaps of the equilibrium prevalence depending on
the cost c of quarantine, the lack of coverage q of the infectious period by quarantine, the
celerity of entrance in isolation u, and the degree of caution ε when breaking quarantine. The
limits separating the ENC and EPC regimes, as well as the ones separating the EPC and EFC
regimes are shown (black lines). The basic reproduction number is set to R0 = 5.

In Figure 4, we show the impact of different choices of the cost c of quarantine on the existence
of an optimal isolation duration. In Figure 4a, we focus on the central panel of Figure 3, and propose
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the exploration of several trajectories in the c vs q space. First, we consider different constant costs c
and make the parameter q vary. Then, we postulate various correlations between c and q, and explore
their impact on the equilibrium prevalence. Since we expect that the perspective of a long isolation
duration heavily weighs on complying individuals, we propose two minimal ways in which the cost of
isolation decays with q (light green and blue lines). However, we can also imagine that the perceived
cost of isolation is the largest for very short isolation periods. Thus, we also provide one example of
the behavior of the system under such an unrealistic scenario (red line). In Figure 4b, we see how the
choice of the cost affects the existence of an optimal isolation period as well as the range of values of
prevalence that can be achieved.

Table 2. Properties of the equilibria associated to System (2.1). Only the values of I∗tot and
x∗ are displayed, since the other fractions can readily be deduced from their values, using
System (3.1). ‘Existence conditions’ are obtained by requiring I∗tot, x

∗ ∈ [0, 1] × [0, 1].

Name Abbr. Value of x∗ Value of I∗tot Existence Stability
Disease-Free with
No Compliance

DFNC 0 0 R0 ⩽ 1 R0 ⩽ 1

Disease-Free with
Full Compliance

DFFC 1 0 R1 ⩽ 1 Never

Endemic with
No Compliance

ENC 0 1 − 1
R0

R0 > 1 1 − 1
R0
⩽ c

1+q

Endemic with
Partial Compliance

EPC
x∗ ∈ (0, 1)

given by (3.5)
c

1+q

R0 > 1, c
1+q ∈(

1 − 1
R1
, 1 − 1

R0

) At least for κ
‘small enough’

Endemic with
Full Compliance

EFC 1 1 − 1
R1

R1 > 1 c
1+q ⩽ 1 − 1

R1

3.4. The source of information plays a role in the transient phase of the dynamics

Although the relative importance given to prevalence compared to incidence plays no role on the
equilibria, we find that it affects the initial transient phase of the dynamics. More specifically, it appears
that the peak of the prevalence is always minimized by a smaller value of p (i.e., a preference given
to the incidence rate as a source of information as opposed to the prevalence). In Figure 5, we show
how increasing the parameter p in the ‘Partial Compliance’ regime leads to a higher peak prevalence
without significantly affecting the average prevalence over the entire time window considered (i.e., the
temporal average). Similarly, the authors of [46] found that a parameter of perceived cost could have
a large effect on the height of a single wave epidemic peak, while affecting the final epidemic size
in a negligible way. In our model, it appears that it is equivalent to use prevalence or incidence as a
source of information under certain conditions, while it is beneficial to consider incidence in others.
This effect is the strongest for faster dynamics (i.e., higher basic reproduction numbers and higher
volatility of opinions). This result is surprising in the sense that using incidence as the indicator of the
responsibility of individuals towards the community allows them, in principle, to refuse to isolate when
the prevalence is excessively large. However, the incidence grows faster at the beginning of an outbreak
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compared to the prevalence, which allows for a swifter reaction of the population to the outbreak. We
stress that the difference between the curves remains small in most of the cases. Additionally, we show
that these conclusions hold when simulating the model on the multi-layer empirical network described
in Section 2.2.

3.5. The decision process only affects undecided individuals

Our model demonstrates the capacity for sustained oscillations under specific conditions.
The coupling of disease and behavior dynamics in models has been shown to produce oscillations,

particularly in the presence of an imitation dynamic and a sufficiently high opinion update rate [21,37].
However, there are nuances in the nature of the oscillations that can arise. For instance, a model for
vaccination [21] identifies a threshold above which oscillations are sustained, a finding that contrasts
with a model for mask-wearing [33], where only damped oscillations are observed. This discrepancy
can be attributed to the delayed effect of a change in strategy on the disease dynamics. In [33], when
individuals change strategy, their new behavior has an immediate impact on the transmission rate.
Conversely, in [21], a parent’s decision to vaccinate their child is irreversible once immunization has
occurred at birth. Thus, a change in their opinion can only impact the system through the birth of
another child.

Our current model adopts a similar philosophical stance regarding decision irreversibility. When
individuals enter the U compartment, they make a definitive choice regarding self-isolation. Any
potential regret concerning this strategy necessitates recovery from the current infection, followed by
a subsequent reinfection, before a new decision can be made.

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

EFC

EPC
ENC

c

q

(b)

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8
Itot

q

Figure 4. Conditions for an optimal duration of quarantine. a): Different choices of the
parameter c: c = 0.15 (dark green), c(q) = 0.1 ∗ exp

(
0.4 ∗

(
1 + 1

q

))
(light green), c = 0.6

(yellow), c(q) =
√

1 + q (blue), c = 1 (orange) and c(q) = 1√
1+q

(red). b): Equilibrium

prevalence as a function of q when considering the values of c shown in panel a. Parameter
values: R0 = 5, u = 3, ε = 0.5.
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Figure 5. The incidence as an indicator of the state of the outbreak can help to flatten the
curve. We show the value of the peak prevalence (purple) and its temporal average (dark
cyan) as functions of the parameter p for various choices of the basic reproduction number
R0 and of the volatility of opinions κ. In all panels the system is in the ‘Partial Compliance’
regime. We show both the effect of p in the ODE formulation (continuous line) and in the
stochastic simulations run over an empirical two-layers network (dot-dashed line). Parameter
values: u = 5, q = 0.25, c = 0.3, p = 0.4, ε = 0.5, and x(0) = x0 = 0.4.
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4. Conclusions

We build an SIS-based compartmental model that accounts for the simultaneous spread of the fol-
lowing: i) a pathogen on a network of physical contacts; and ii) opinions driving adoption of self-
isolation on a network of social influence. By taking the coupled evolution of opinions and disease
into account, we want to identify optimal implementations of the self-isolation measure combined
with post-quarantine awareness.

The compartmental model that we propose allows for a partial adoption of the self-isolation mea-
sure, pre-isolation and post-isolation infections. In the compartment of infectious individuals who
break quarantine, the infectiousness is assumed to be reduced as a consequence of an increased aware-
ness, resulting in behaviors such as mask wearing or social distancing. The partial adoption of the
measure refers to the binary choice that individuals make: to isolate or not to isolate. This decision
is governed by an imitation dynamic and depends on a careful comparison of one’s current decision
with the one of the contacts. The costs of the two possible strategies are carefully weighted by the
deciding individuals who are considered to behave rationally: a change of strategy only takes place
if the opposite strategy would incur a lower cost. On the one hand, the cost of complying with the
isolation measure is assumed to increase with the isolation duration and with the incurred cost. On
the other hand, the cost of not complying arises from the state of the epidemic. The prevalence is
often considered as the indicator of the state of an outbreak that affects the compliance of players in
imitation dynamics models. However, the incidence rate is another standard indicator in epidemiology,
and here, we study how this additional source of information can affect the dynamics of the coupled
disease-behavior model. Instead of solely using the prevalence to assess the state of the epidemics, we
model the cost of quarantine through a convex combination of prevalence and incidence.

We find that despite a seemingly complex intertwined behavior, the equilibria of the dynamics are
fairly simple. There are two disease-free equilibria and three endemic equilibria that can be distin-
guished by the share of complying individuals in the stationary limit. The ‘No Compliance’ and the
‘Full Compliance’ endemic equilibria are stable when the cost of quarantine is too big or too small, re-
spectively. In the regions of the parameter space where these equilibria are stable, the system collapses
to a long-time state that is independent of the imitation dynamics. The third endemic equilibrium is
characterized by a partial level of compliance in the population. This regime becomes particularly rele-
vant in more optimistic scenarios, characterized by lower basic reproduction numbers, shorter delays to
enter isolation (large u), and larger levels of caution after the isolation period (large ε). In this regime,
the equilibrium prevalence reduces to the total cost to self-isolate, which is the product of the (relative)
average time spent in isolation (through q) and the cost per time unit (through c) (see Equation (3.4)).
In contrast, the equilibrium fraction of complying individuals decays with u and ε. Consequently,
encouraging individuals to hurry into isolation and to stay cautious after exiting isolation allows to
achieve the same level of disease circulation with fewer people complying, thus helping to relieve the
social burden imposed by the implementation of the self-isolation measure.

In this work, we also address the well-known trade-off between the benefits of longer isolation
periods and of widespread compliance in breaking chains of transmission. Within our framework, we
are interested in seeing the conditions for the resolution of the imitation dynamics being governed by
this vary trade-off. We find that there exists a duration able to minimize the equilibrium prevalence,
given by the longest isolation duration that still allows full compliance of the population, at a given
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cost of quarantine. The existence of this minimum implies that it is essential to reach high levels of
adoption, even if this means that the isolation duration needs to be shortened. However, if the cost of
isolation is too small, then it is always beneficial to have the longest isolation duration; alternatively, if
the cost is too high, then increasing the isolation duration further than a certain point brings no benefit
at all. Still, as expected, the equilibrium prevalence always becomes smaller, the lower the cost of
quarantine. To summarize, in many settings, it is beneficial to shorten the isolation duration, while
a lower cost of quarantine is always advantageous. Reducing the cost of quarantine can be achieved
through incentives such as paid sick leave.

Although the parameter p that indicates the relative importance given to prevalence compared to
the incidence rate plays no role on the equilibria nor on their stability conditions, it turns out that it
may affect the transient phase of the dynamics. More specifically, either different choices of p give the
same dynamics, or a lower p systematically gives a lower peak prevalence in the transient phase. We
measure this effect both in the mean-field framework and on a multiplex network. We find that favoring
the incidence rate as an indicator of the state of an outbreak might help limit the amplitude of an initial
overshoot. Additionally, the observed advantages of incidence over prevalence become stronger the
faster the dynamics (i.e., for a larger reproduction number and a larger volatility of opinions).

We test our analytical predictions against numerical simulations on an empirical multiplex network
from the Copenhagen Network Study. Our mean-field results hold fairly.

This study comes with a set of limitations including the following: (i) the minimal design of a com-
partmental model counting a small number of compartments; (ii) the representation of how individuals
access information about the state of the outbreak; (iii) the assumptions regarding how adoption of
self-isolation spreads within the population; and (iv) the preliminary nature of our investigation of the
impact of network structure on our predictions.

First off, for the sake of simplicity and so that we could draw analytically tractable conclusions,
we have decided to work with a compartmental model - that comes with its own limitations - and
we have opted for a limited amount of compartments. Being a compartmental model, we assumed a
constant and homogeneous infectiousness and susceptibility of individuals. However, we incorporated
a post-quarantine reduced infectiousness to partially account for a lower pathogen load at the end of
the infectious period, though this reduced infectiousness is missing in the course of infection of in-
dividuals who do not comply. The rates of transition from one compartment to the next are assumed
to be Poissonian, despite evidence that, for example, the infectious period follows more complex dis-
tributions [42, 43]. A more detailed modeling of the time spent in isolation could be obtained using
age-structured partial differential equations (PDE); for instance, consider the time elapsed since the
start of quarantine [61] or structure the population with respect to the pathogen load [62]. Apart from
limitations that affect compartmental models in general, we opted for a limited amount of compart-
ments to keep analytical derivations tractable and interpretable. For example, we decided to disregard
the isolation of healthy individuals. Such a situation would be interesting to account for a more realistic
toll of the isolation measure. Healthy individuals may indeed be asked to isolate from the community
when preventive quarantine is implemented (e.g., because of the lack of accurate, widely distributed,
and affordable diagnostic tests) instead of the self-isolation of only known cases treated in the present
work. Moreover, we have not considered isolation periods that exceed the time for recovery needlessly,
but as a consequence of the difficulty in estimating the end of the infectious period. In addition, in or-
der to better describe the evolution of infectious diseases such as COVID-19, an exposed compartment
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and a transitory removed compartment that accounts for temporary immunity are generally considered
to be important [35, 37]. In this light, our model corresponds to a worst case scenario. Additionally,
we disregarded the possibility for individuals to leave the dynamics as a consequence of death or of
permanent measures such as vaccinations.

Second, we made some assumptions, on how information on the state of the outbreak is accessed;
they should be examined in future work. To keep the model simple, the information about the state
of the epidemic has been treated as memoryless, although some works have relaxed this assump-
tion [63,64]. We assumed that individuals access real instantaneous values of the prevalence and of the
incidence rate, and we completely disregarded delays or deviations from the actual values (e.g., due to
cognitive biases and underdetection). If the underdetection is systematic, in our model, we would ex-
pect it to affect the effective rate of change of opinion and the cost of quarantine. Moreover, the addition
of a compartment for hospitalized patients would allow one to account for the number of hospitaliza-
tions as an indicator of the severity of the outbreak and the saturation of health care [65]. Distinguishing
between local and global information about the state of an outbreak would be interesting for a future
analysis on networks [29, 66] or using a PDE approach [67]. Indeed, these frameworks could account
for biases that arise from estimations of the severity or state of an outbreak based on observations made
in people’s local social environments and compare the effect of local and population-level information.

Third, our analysis has limitations concerning the way compliance is assumed to evolve in time.
There is evidence that complex contagion better describes the propagation of opinions on social net-
works [68, 69]. In our model, the exposure to a single individual with opposite strategy is sufficient
to allow someone to challenge its strategy. Additionally, our model disregards homophily, in partic-
ular homophily in the network of social influence [70]. We expect a threshold type of model and the
introduction of homophily to reduce the parameter κ that accounts for the strategy update rate, but
the phenomenology could change in more complex ways. We did not consider that individuals could
spontaneously change their mind regarding the compliance with the control measure [26]. Moreover,
as briefly discussed above, we considered that a change of opinion only affects individuals who have
yet to decide whether to isolate or not. As a consequence, isolating individuals who change their opin-
ion are assumed to not immediately exit quarantine. Instead, it would make sense to consider that
individuals who change their mind during the isolation period could abort it. In this case, we expect
that sustained oscillations would no longer be possible, which is similar to what was found for mask
wearers [33].

Finally, we only performed a preliminary comparison of analytical predictions against stochastic
simulations run on an empirical network. We did not perform any systematic analysis of the impact of
different network structures on the transient and stationary parts of the dynamics for different values
of the parameters. Our results suggest that the network structure affects our analytical predictions in
the stationary limit and may affect the amplitude of observed oscillations (potentially as a consequence
of weak multi-layer degree correlations). In the future, it would be important to check what network
features are responsible for this discrepancy and whether specific network structures are able to affect
the dependence of population-level quantities on the model parameters.
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P(tS < tF) = P(tS = t)P(tF > t),

where P(tS = t) = µe−µt and

P(tF > t) =
∫ ∞

t
µQe−µQ s ds = e−µQt.

Similarly, the probability that the path Q→ F is chosen is as follows:

P(tF < tS ) = µQe−µQte−µt.

The normalization of P(tS < tF) is as follows:

NS =

∫ ∞

0
µe−(µ+µQ)t dt =

µ

µ + µQ
,
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while, the normalization of P(tF < tS ) is as follows:

NF =

∫ ∞

0
µQe−(µ+µQ)t dt =

µQ

µ + µQ
.

Thus, the average time taken to recover through the direct recovery path Q→ S is as follows:

τQ→S =

∫ ∞

0
t
P(tS = t)P(tF > t)

NS
dt,

=

∫ ∞

0
(µ + µQ)te−(µ+µQ)tdt,

=
1

µ + µQ
,

where we performed an integration by parts in the last step. This average time is the same as the one
of the transition Q → F. Thus, the average time spent in isolation is also 1

µ+µQ
. This is because the

sharpest exponential dominates the other one, whether it be the one of the Q → S or of the Q → F
transition. The probability of the Q→ S transition is as follows:

pQ→S =

∫ ∞

0
P(tS = t)P(tF > t)dt = NS =

µ

µ + µQ
.

For the Q→ F transition, it is instead as follows:

pQ→F =

∫ ∞

0
P(tF = t)P(tS > t)dt = NF =

µQ

µ + µQ
.

Therefore,

τ = τQ→S pQ→S + τQ→F→S pQ→F→S =
1

µ + µQ

µ

µ + µQ
+

(
1

µ + µQ
+

1
µ

)
µQ

µ + µQ
,

=
1
µ
,

where the average time for the recovery of individuals in compartment Q is simply the average time
of a Poissonian transition with rate µ. The same reasoning can be repeated for compartment U, which
also shows multiple alternative paths to recovery. In this way, the average time of recovery of Itot =

U + Q + I + F is also 1/µ, as expected for an SIS model.

B. Stability of the fixed points

We begin this section by recalling the Routh-Hurwitz criteria, specified for polynomials of order 3
and 5, that we will use to prove the local asymptotic stability of the EFC and EPC equilibria.

B.1. Routh-Hurwitz criteria

Lemma 1 (Routh-Hurwitz Conditions for Orders 3 and 5 [71]). Let the monic real polynomial P(λ) =
λn + α1λ

n−1 + · · · + αn−1λ + αn be given. Then, P(λ) is Hurwitz stable, that is, all roots have strictly
negative real parts if and only if the following conditions hold:
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For n = 3: 
α1 > 0,
α3 > 0,
α1α2 > α3.

For n = 5: 
αi > 0, for i ∈ {1, 2, 3, 4, 5}
α1α2α3 > α

2
3 + α

2
1α4,

(α1α4 − α5)(α1α2α3 − α
2
3 − α

2
1α4) > α5(α1α2 − α3)2 + α1α

2
5.

These algebraic conditions are necessary and sufficient for the roots of P(λ) to lie entirely in the
open left-half of the complex plane.

B.2. Jacobian matrix

To assess the stability of each endemic equilibrium, we compute the jacobian matrix JE =

R0
Rx∗
−Rx∗ 0 −

R0
Rx∗

−ε
R0
Rx∗

0
R0
Rx∗
−Rx∗+1 −(1+u) −

R0
Rx∗

−ε
R0
Rx∗

0

0 ux∗ −(1+q) 0 u
1+u

(
1− 1
Rx∗

)
0 0 q −1 0

κx∗(1−x∗)
[
1+(1−p)

(
R0
Rx∗
−Rx∗

)]
0 −κx∗(1−x∗)(1−p) R0

Rx∗
−εκx∗(1−x∗)(1−p) R0

Rx∗
κ(1−2x∗)

[
1− 1
Rx∗
− c

1+q

]

 .
and specify its values based on E ∈ {ENC,EPC,EFC} (i.e., x∗ = 0, x∗ = 1, or in-between).

B.3. Disease-free fixed points of the dynamics

For the two disease-free equilibria, we recover classical conditions: they always exist, and the
DFNC is locally asymptotically stable if R0 ⩽ 1 (the special case R0 = 1 being dealt with by hand),
while the DFFC is never stable.

B.4. Endemic fixed points of the dynamics

B.4.1. ENC equilibrium

For the ENC equilibrium, the Jacobian matrix reduces to the following:

1 − R0 0 −1 −ε 0
2 − R0 −(1 + u) −1 −ε 0

0 0 −(1 + q) 0 u
1+u

(
1 − 1

R0

)
0 0 q −1 0
0 0 0 0 κ

[
1 − 1

R0
− c

1+q

]
,


,

which is a block-triangular matrix, and its associated characteristic polynomial is as follows:

P(λ) = (1 − R0 + λ) (1 + u + λ) (1 + λ) (1 + q + λ)
(
κ

[
1 −

1
R0
−

c
1 + q

]
− λ

)
.
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It yields two conditions for local asymptotic stability, namely R0 > 1 and

1 −
1
R0
<

c
1 + q

.

B.4.2. EFC equilibrium

For the EFC equilibrium, the Jacobian matrix instead reads as follows:

R0
R1
− R1 0 −

R0
R1

−εR0
R1

0
R0
R1
− R1 + 1 −(1 + u) −

R0
R1

−εR0
R1

0
0 u −(1 + q) 0 u

1+u

(
1 − 1

R1

)
0 0 q −1 0
0 0 0 0 −κ

[
1 − 1

R1
− c

1+q

]


,

and developing with respect to the last row provides the stability condition

1 −
1
R1
>

c
1 + q

.

The rest of the spectrum is given by computing the determinant∣∣∣∣∣∣∣∣∣∣∣∣
R0
R1
− R1 − λ 0 −

R0
R1

−εR0
R1

R0
R1
− R1 + 1 −(1 + u + λ) −

R0
R1

−εR0
R1

0 u −(1 + q + λ) 0
0 0 q −1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣ ,
which can be processed, for instance, by applying the following operations:

1. L1←− L1 - L2 - L3 - L4,
2. Factorization of −(1 + λ) in the first row,
3. ∀ j ∈ {2, 3, 4}, C j←− C j + C1,
4. Developing along the first row,
5. L1←− L1 - 1−R1

q L3,

to obtain

− (1 + λ) ×

∣∣∣∣∣∣∣∣∣
R1 −

R0
R1
− u − λ 0 (1 − ε)R0

R1
+ (1 − R1) + 1−R1

q (1 + λ)
u −(1 + q + λ) 0
0 q −(1 + λ)

∣∣∣∣∣∣∣∣∣ ,
= (1 + λ)×[(
R1 −

R0

R1
+ u + λ

)
(1 + q + λ)(1 + λ) − uq

(
(1 − R1) + (1 − ε)

R0

R1
+

1 − R1

q
(1 + λ)

)]
,

using the rule of Sarrus.
We aim to apply the Routh-Hurwitz criterion to prove that all roots have a negative real part. De-

veloping the polynomial in the brackets, we obtain P(λ) = λ3 + α1λ
2 + α2λ + α3 with
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– α1 = R1 −
R0
R1
+ u + q,

– α2 = R1(u + q) − R0
R1

(q + 1) + uq = R1(u + q) − R0
R1

(q + 1) + uq,

– α3 =
(
R1 −

R0
R1
+ u − 1

)
q + (u − 1)(q − 1)

[
(R1 − 1) q

q−1 − (1 − ε)R0
R1

]
.

We need to check that α1 > 0, α3 > 0, and α1α2 > α3. The first positivity is readily obtained by
observing that

R0

R1
=

(u + 1)(q + 1)
(u + 1)(q + 1) − u(1 + εq)

⩽ u + 1,

combined with R1 > 1. The second is obtained by computing the following:

α3 = R1(u + 1)(q + 1) −
R0

R1
(q + 1 + (1 − ε)uq),

= (u + 1)(q + 1)
(
R1 −

q + 1 + (1 − ε)uq
(u + 1)(q + 1) − u(1 + εq)

)
,

= (u + 1)(q + 1)(R1 − 1),

so positivity is obtained by the condition R1 > 1. Finally, we show the last inequality be rewriting the
following:

α1 =

(
u + 1 −

R0

R1

)
+ R1 + q + 1 and α2 = (q + 1)R1 + (q + 2)

(
u + 1 −

R0

R1

)
+ (u + 1)(R1 − 1),

which are both sums of three non-negative terms, with the product of the last of each being exactly α3.

B.4.3. EPC equilibrium
To assess local stability, we have to study the negativity of the roots of the following:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Rx∗ −
R0
Rx∗
− λ 0 −

R0
Rx∗

−ε R0
Rx∗

0
1 + Rx∗ −

R0
Rx∗

−(1 + u + λ) −
R0
Rx∗

−ε R0
Rx∗

0
0 ux∗ −(1 + q + λ) 0 u

1+u

(
1 − 1

Rx∗

)
0 0 q −(1 + λ) 0

κX
[
p + (1 − p)(1 − Rx∗ +

R0
Rx∗

)
]

0 −κX 1−p
Rx∗

−εκX 1−p
Rx∗

−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with X = x∗(1 − x∗) > 0. First, we perform the following:

1. C4←− C4 - ε C3,
2. L2←− L2 - L1,

then we develop with respect to the last column to obtain the associated characteristic polynomial (up
to the sign) as follows:

P(λ) = λD4(λ) + κ
u

1 + u

(
1 −

1
Rx∗

)
R0

Rx∗
XD3(λ),

with D4(λ) and D3(λ) being the resulting 4×4 determinants, which leads to polynomials in λ of degree
4 and 3, respectively. Then, we compute the following:

D4(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣
Rx∗ −

R0
Rx∗
− λ 0 −

R0
Rx∗

0
1 + λ −(1 + u + λ) 0 0

0 ux∗ −(1 + q + λ) ε(1 + q + λ)
0 0 q −(1 + εq + λ)

∣∣∣∣∣∣∣∣∣∣∣∣ ,
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=

∣∣∣∣∣∣∣∣∣∣∣∣
Rx∗ −

R0
Rx∗
− λ 0 −

R0
Rx∗

0
1 + λ −(1 + u + λ) 0 0

0 ux∗ −(1 + λ) −(1 − ε)(1 + λ)
0 0 q −(1 + εq + λ)

∣∣∣∣∣∣∣∣∣∣∣∣ ,
= (1 + λ)

[
λ3 + (

R0

Rx∗
− Rx∗ + u + q + 2)λ2

+

(
R0

Rx∗
ux∗ +

(
R0

Rx∗
− Rx∗

)
(u + q + 2) + (1 + u)(1 + q)

)
λ

+
R0

Rx∗
ux∗(1 + εq) +

(
R0

Rx∗
− Rx∗

)
(1 + u)(1 + q)

]
,

and straightforwardly apply the Routh-Hurwitz criterion to the polynomial in the brackets. As a result,
all roots of D4 have negative real parts. Some additional computations lead to the following:

D3(λ) = (1 − p)
R0

Rx∗
(1 + εq + λ)

(
R0

Rx∗
− Rx∗ + λ

)
(1 + u + λ),

which has three negative roots. For any κ > 0, all coefficients that appear in P are positive; thus, for
sufficiently small positive perturbations of λD4(λ) by the other term of P, the two last conditions to
check in the Routh-Hurwith criterion still hold. As a result, all roots of P have negative real parts
at least for a sufficiently small κ > 0. The code provided as a companion for this proof explicitly
computes the critical bound above which the local asymptotic stability is not guaranteed. Additionally,
the code displays two plots of the temporal dynamics of the x variable: one for a κ lying 5% below
the critical value and the other 5% above. The former converges to a single value, whereas the latter
exhibits sustained oscillations.

C. Impact of imitation on the dynamics

C.1. Equilibrium prevalence

When the imitation is completely turned off, our model collapses to the IDF model and the disease
prevalence equation in the stationary limit reads as follows:

I∗tot(pQ) := 1 −
1
RpQ

,

with

RpQ :=
(
1 −

u
1 + u

1 + εq
1 + q

pQ

)
R0,

which is analogous to Equation 3.3, if we have a fixed compliance pQ instead of the equilibrium
compliance x∗ that depends on the model parameters.

This suggests that, whether a coupled disease and opinion dynamics would yield a higher or lower
equilibrium prevalence compared to the same disease model without opinion dynamics uniquely de-
pends on the comparison between pQ (the population baseline compliance) and x∗. In general, an
imitation dynamic or self-regulation provides better epidemiological results as long as we are in the
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regions of parameter space where x∗ > pQ is satisfied. When a population has very low adoption levels,
it is better for people to get exposed to information such as prevalence and incidence to have a chance
to increase the overall compliance and improve mitigation. Instead, when a population has a very large
baseline level of adoption, it is advantageous for people to not rethink their behavior to maintain high
levels of compliance.

C.2. Transient prevalence

Although there is a discontinuity in the equilibrium prevalence between the limit case κ = 0 treated
in the IDF model and the case κ > 0 studied in the present work, we see that this discontinuity arises
in the following way from a common initial condition.

When κ = 0, the dynamics initially follows the trajectory predicted by the IDF model with pQ =

x(t = 0) given by the initial condition. However, as soon as κ > 0, the long-time regime is characterized
by a convergence to the trajectory predicted by IDF with pQ = x∗. Further increasing κ anticipates the
moment in which the initial condition is forgotten by the system and the system collapses onto its long-
time trajectory. Thus, we find that despite the fact that the volatility κ of opinions does not contribute
to the equilibria, it affects the transient phase.

Moreover, if the initial condition x0 < x∗ (or the reverse x0 > x∗), then the IDF model predicts
Itot(pQ = x0) > Itot(pQ = x∗) (or the reverse Itot(pQ = x0) < Itot(pQ = x∗)). This has a straighforward
implication on the effect of κ on the transient phase: if x0 < x∗ (or the reverse x0 > x∗) then a lower
cumulative number of infected individuals is achieved when the volatility κ is high (low).

See Figure 6 for a representative example of the effect of κ on the transient phase of the dynamics.

Mathematical Biosciences and Engineering Volume 23, Issue 2, 333–365.



363

Figure 6. Effect of κ on the transient phase, in the EFC, EPC, and ENC regimes. Evolution of
the prevalence in time with x(0) = x0 the initial condition on the fraction of cooperators. We
distinguish between the scenarios with x0 < x∗ (‘Full compliance’ and ‘Partial compliance’)
and those with x0 > x∗ (‘Partial compliance’ and ‘No compliance’). Parameter values: R0 =

4, ε = 0.2, µ = 1, µU = 5, and µQ = 1/3. In ‘No Compliance’: x0 = 0.3 and c = 2 ; in ‘Partial
Compliance’: x0 = 0.3 and c = 0.7 (top, right) or x0 = 0.9 and c = 0.7 (bottom, left) ; and in
‘Full Compliance’: x0 = 0.96 and c = 0.1.

C.3. Optimal isolation duration with and without imitation dynamics

In the model with imitation dynamics, the compliance takes a negative contribution given by the
average duration of the isolation period (the payoff πQ of isolating). In Figure 7, we compare the κ > 0
case (main text) with the κ = 0 limit but such that the level of adoption is a decaying function of the
isolation duration (similarly to [38]). This coupling between the level of adoption and the isolation
duration allows the q→ 0 limit of very long quarantines to be associated with a larger prevalence than
in the case without coupling. This yields an optimal isolation duration in the entire space of parameters
when κ = 0, which is not observed when κ > 0.

Mathematical Biosciences and Engineering Volume 23, Issue 2, 333–365.



364

Figure 7. Equilbrium prevalence in the absence of imitation dynamics but with compliance
that decays with the duration of isolation. Heatmap of the equilibrium prevalence depending
on the cost c of quarantine, the lack of coverage q of the infectious period by quarantine,
the celerity of entrance in isolation u, and the degree of caution ε when breaking quarantine.
We assumed that the compliance pQ decays as q/(0.15 + q), which is similar to the minimal
assumption made in [38]. Parameters: R0 = 5 and x(0) = x0 = 0.8.
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