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Abstract: Epidemic severity indices that incorporate disease information are essential tools for
decision-makers, as these indices allow the design and evaluation of possible control strategies in
advance of implementation in susceptible populations. In spatially structured settings, indices that
consider human mobility provide valuable information on the spread of infectious diseases and the
potential impact of mobility restrictions during outbreaks. In this context, the final epidemic size
in metapopulation models serves as an effective measure of outbreak severity in geographical terms.
However, the existence and uniqueness of the solution to the corresponding equation have only been
established in particular cases. In this study, we derived conditions that guarantee the existence and
uniqueness of the solution to the final epidemic size equation in a SIR-type metapopulation model. We
also conducted a sensitivity analysis in a two-region, unidirectional infection scenario, which allowed
us to examine the effects of mobility between an infected region and a susceptible one. Our results indi-
cate that, under relatively simple conditions, restricting mobility can help contain outbreaks. However,
we also identified situations in which mobility is not detrimental and may even be beneficial. These
findings provide a preliminary framework for assessing the appropriateness of mobility restrictions
during infectious disease outbreaks in spatially structured regions.

Keywords: Mobility in epidemics; epidemic final size; control strategies; severity indices



https://www.aimspress.com/journal/mbe
https://dx.doi.org/10.3934/mbe.2026012

292

1. Introduction

One of the main reflections left by the COVID-19 pandemic in modern societies is the need to adopt
new social, political, and cultural behaviors to address future high-impact infectious outbreaks that can
spread on a large geographic scale. The use of face masks in high-density settings, timely mainte-
nance and renovation of public health infrastructure, vaccination of vulnerable populations, constant
monitoring of the evolution of the virus and its various mutations, and the proposal of different phar-
macological treatments for sick patients were some of the actions implemented to contain the disease
in susceptible populations [1-3].

Furthermore, the high degree of interconnectedness between countries in a completely globalized
society, the current population densities in the world’s major metropolises, and natural human mobility
have generated deep concern among governments about the potential socioeconomic consequences of
new epidemic outbreaks that have the capacity to become not only pandemics but endemic diseases
that are impossible to eradicate [4-6].

The COVID-19 pandemic also demonstrated the rapidity with which an infectious disease can
spread among susceptible populations, even under the application of strict virus control and contain-
ment policies (partial and total quarantines) from the early stages of detection [7, 8].

In this sense, it is essential to quantify the severity of the consequences of an epidemic outbreak,
not only in the region where it originated, but also in all regions where the epidemic could have spread.
This is done in order to determine which areas are most affected and, therefore, which require the most
resources to mitigate the consequences of outbreaks caused by this type of infectious disease.

In this context, mathematical modeling (and particularly mathematical epidemiology) has gener-
ated a wide range of research focused on analyzing the dynamics of emerging infectious diseases with
significant epidemic impact [2, 9-11]. These studies include both theoretical analyses and the use of
real databases to estimate key parameters governing disease dynamics. In the case of the COVID-19
pandemic, the mathematical community showed great interest in developing various models that repro-
duced the dynamics of infectious outbreaks in isolated populations [12—15] as well as in populations
connected through human mobility [16-24]. These works contributed to a better understanding of how
the disease spread globally and to identifying the most effective control strategies to contain the virus,
while considering the socioeconomic costs associated with these measures [25].

In addition to this, a particular interest of mathematical modeling has always been to provide mea-
sures that quantify the severity of a high-impact infectious outbreak. An example of this is the interest
in calculating the basic reproductive number or equivalent measures [19, 26]. However, one measure
that has sparked great interest in mathematical modeling is the epidemic final size, which quantifies
how many susceptible people in an isolated region contract the disease at the end of the infectious
outbreak. Nevertheless, when we want to observe this phenomenon in spatially structured regions, it is
necessary to resort to epidemiological modeling using metapopulation networks [27-29].

Metapopulation models have been used not only as proposals to describe the dynamics of infectious
diseases in spatially structured regions [20-25, 27-31] but have also served as a basis for estimating
parameters of human mobility between regions with the help of databases and Bayesian inference (see
Ramirez et al. [19] and Akuno et al. [17, 18] and some of the references therein). However, theoretical
analyses of these types of models are often complex, and proposing and analyzing measures to quantify
the severity of infectious outbreaks remain a challenge for the scientific community.
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Some research has advanced the theoretical analysis of metapopulation models [19-24, 27-29],
where the authors conducted theoretical analyses of the stability and soundness of the proposed
metapopulation model. On the other hand, Kiihn et al. [16], using a modified SEIR-type metapop-
ulation model, conducted a numerical analysis of the consequences of quarantines and how, in certain
situations, without substantial mobility restrictions (only preventing travel by infected individuals), in a
highly connected regional environment, epidemic mitigation is possible. This is achieved when testing
for infection is carried out appropriately and frequently in populations with high epidemic incidence
and when local outbreaks are contained promptly, indicating that there are other determining factors,
besides mobility that trigger infectious outbreaks in regions with a specific spatial structure. This con-
trol strategy reduces the social and economic costs incurred by total quarantines in modern societies
with high human mobility.

In [25, 30, 31], the authors have calculated the epidemic final size for susceptible-infectious-
recovered (SIR) diseases in multigroup and metapopulation models, providing us with explicit ex-
pressions of this measure for each region of the network. This has made it possible to establish explicit
measures that quantify the severity of the epidemic, both in each individual population and in the over-
all network. Furthermore, these works provide simple iterative algorithms that allow these expressions
to be calculated under specific hypotheses and scenarios.

However, studies that calculate the final epidemic size have been limited to performing in-depth
theoretical analyses of this equation for specific cases. Some advances in the literature for this case
study are presented in [32-35], which demonstrate, in the case of an isolated population, the existence
and uniqueness of the solution to this equation for SIR models. On the other hand, the work by Pierre
Magal et al. [30], for a multi-group SIR model in an n-dimensional network establishes the conditions
for the existence and uniqueness of the solutions to this equation. In particular, the result holds when
the infection-rate matrix between susceptible individuals in group i and infectious individuals in group
J, defined by B = (B;)); ._,, is nonnegative, nonzero, and irreducible, especially in the case where this
matrix is lower triangular. On the other hand, the work presented in [25, 31] presents more general
SIR and SEIR metapopulation models, respectively, and demonstrates methodologies that allow the
calculation of the value of this measure through an iterative process (based on the works [33, 34, 36]),
where convergence is guaranteed when the solution to this equation exists and is unique.

For the reasons stated above, in this work, using fixed-point theory, we propose a test that guarantees
the existence and uniqueness of the solution to the final epidemic size equation of the metapopulation
model presented in [31]. This is a generalization of the model presented in [20] and includes all pos-
sible interactions between individuals in a network of dimension n through human mobility. Only
general conditions will be imposed on the parameters used in this model, which extends the usefulness
of this measure to more general scenarios. As a result, the calculation of this measure can be guar-
anteed through the iterative processes shown in [25, 31]. Likewise, a parametric sensitivity analysis
was carried out in a particular case that considers two regions unidirectionally connected by human
mobility with the aim of evaluating how a disease can invade a susceptible population through con-
tacts established with infected individuals from the issuing region. This provides evidence that human
mobility is a relevant factor in the spread of this type of infectious diseases in regions with a spatial
structure, which allows us to propose specific control strategies for different local scenarios that both
populations may present.

This document is organized as follows. In Section 2, an epidemiological model is presented that
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describes the dynamics of an SIR-type infectious disease on an n-dimensional metapopulation network
in which the connectivity between regions is determined by human mobility. Likewise, the expression
corresponding to the final size of the epidemic in said network is obtained. In Section 3, through
fixed-point theory, necessary and sufficient conditions are established that guarantee the existence and
uniqueness of the solution to the equation associated with the final size of the epidemic in the pro-
posed model. In Section 4, a sensitivity analysis is carried out with respect to the mobility parameter,
considering the particular case of two regions unidirectionally connected by human mobility, with the
purpose of determining how the interaction between geographically separated regions influences the
spread of this type of disease. Finally, in Section 5, we present our conclusions.

2. Epidemic final size in a networked population

Consider the following system of ordinary differential equations that describes the dynamics of a
human-to-human SIR-type infectious disease in an n-patched metapopulation network [30, 31]:

7;-—&m;mwx 2.1)
dIi(1) 2

— = &@;kﬂﬂhwam (2.2)
dR(D)

= v, (2.3)

where each patch is labeled with the subscript i, and each of them is inhabited by a homogeneously
mixed human population with size N; that can be classified into susceptible residents S (), infected
residents /;(f), and recovered residents R;(#) such that for any time instant ¢, it holds that N; = §;(¢) +
I;(t) + R;(). That is, each population remains constant throughout the epidemic. Furthermore, the
parameter y; > 0 describes the recovery rate of infected residents in each patch i, while the parameter
Bij represents the effective risks of infection between the inhabitants of patches i and j, which is defined
by

O, PikPik ..
By= ) By Vijell ), (24)
k=1 k

where S is the effective infection rate of patch k, while the parameters p;; indicate the fraction of the
population of patch i that is located in patch j, thus describing the mobility of humans between patches
in the network. Due to their meaning, the p;; should satisfy

0<p;<l; and Y pu=1 Vij. 2.5
k=1

This parameterization corresponds to the Lagrangian description of mobility [37, 38].

Furthermore, due to human mobility between network patches, the effective number of people
present in patch i is given by P; = ¥, p;N;, where the fraction of residents staying in their own
patch is given by p;N;, while the fraction of neighboring residents visiting patch i daily is given by
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p;iN;, with j = 1,...n. It is worth noting that for the calculation of the mobility parameters p;;, it is
assumed that the mobility of infected individuals is the same as that of non-infected individuals.

In the case where f;; remains constant at any time instant ¢, the metapopulation model (2.1)—(2.3)
could be interpreted as a multi-group epidemic model, where §;; is the contact rate between residents
of patch i and patch j as analyzed by Pierre Magal et al. [30]. However, for our case study, the
interpretation taken by S;; has different meaning, being the effective infection rate of residents of patch
i with infected individuals of patch j, considering even the contacts occurring in patches k € {1,...,n}
with k # i, j. Because the model assumes that the mobility of infected individuals does not change
significantly over time, this model can be applied to diseases for which symptoms do not considerably
affect individuals in two scenarios: the first one would be that once they recover from the disease, they
acquire permanent immunity and the second if only a single wave of infection is to be quantified, and
the recovery gives temporary immunity for a significant time.

In the context of mathematical epidemiology, the final epidemic size is the total number of in-
fected individuals over the entire duration of an infectious outbreak [9, 10, 25, 30, 31, 35]. A common
methodology for assessing this is by mathematically expressing the total number of recovered indi-
viduals = R;(c0), that is, by explicitly solving the recovery compartment (Eq (2.3)) and evaluating the
bound as time approaches infinity.

In order to derive an explicit expression for R;(c0) in each patch, we sum and integrate the suscep-
tible S,(7) (Eq (2.1)) and infected /;(r) (Eq (2.2)) compartments and obtain

o (T(dSi() | dli() N; = §i(c0) ~
—y! + —|dt= —= = I;(t)dr, 2.6
where we have used
Ii(00) =1lim [;(1) =0, R;(0)=0 and N;=S;0)+10) Vi 2.7
t—00
On the other hand, from Eq (2.1) and Eq (2.6), we obtain
S(0) y N;—S ()
( ) Zﬁ’ff I;(dt = Z,Bij; , (2.8)
Si(e0) < Vi
then S ;(c0) = S;(0)e~%, where the expressions
" N;— ()
0:(S1(00), ..., S p(00)) = > fij———, (2.9)
= Yi
for each patch i = 1, ..., n, determine the total number of susceptible individuals who did not contract

the disease by the end of the infectious outbreak.
Because N; = S;(¢) + I;(¥) + R;(f) remains constant all the time, by Eq (2.7), when t — oo, we obtain
Ri(0) = N; — §(c0). Then, the equation satisfies the epidemic final size in a given patch i is

Ri(00) = N; — §,(0)e~ 0 (R1(00), s Ra(20)) oo =1, (2.10)

where

6,(Ry (), . R(m))_zﬁ UR (o). 2.11)

= i
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Remark: As in the case of an isolated population, in a metapopulation network, although we have an
explicit expression for the final disease size, solving this equation represents a very difficult problem
due to its implicit dependence on the terms R;(0), ..., R,(0).

In a related context, J. Miller [33, 35, 39] derived expressions similar to Eq (2.10) for stochastic
SIR models with the main focus on using probability generating functions to study infectious diseases.
This approach allows the calculation of the final size distribution in multigroup stochastic models,
which aligns with the scope of our proposed SIR model (2.1)—(2.3). On the other hand, P. Magal et.
al. [30] managed to establish existence and uniqueness conditions for a solution to this equation in the
case of irreducible infectious transmissions, that is, when the matrix whose entries are §3;; is irreducible
and nonnegative or, in other words, the matrix has no nonzero invariant eigenspaces. In our case, the
matrix defined by the coeflicients §;; is a nonnegative matrix with always real eigenvalues that may
have nontrivial invariant eigenspaces, which may limit the application of this procedure.

Works such as [25, 31] present discrete-time iterative algorithms for solving Eq (2.10) based on the
concept of discrete generations (or ranges), introduced by D. Ludwig [32] and extended in later work
by L. Pellis et. al. and J. Miller [39, 40]. By constructing a directed graph of all possible transmission
events, an individual’s range is defined as the shortest transmission path from any initial infection.
Despite temporal variations in transmission chains, this rank-based contact process often produces
the same end result as the continuous-time epidemic, justifying a discrete time frame. In this sense,
the discrete equation associated with 6; in Eq (2.11) denotes the expected cumulative exposure that a
random individual from group i has received according to rank k, while the discrete equation associated
with e~% gives the probability of escaping infection up to that point. Therefore, the iterative method
converges to a fixed point that quantifies the final proportion of recoveries that remain uninfected after
an infinite number of ranks. This equivalence, rigorously supported by branching process theory and
probability generating functions [33, 34], extends to structured and multi-group populations [36].

However, these algorithms depend on the existence of a solution to Eq (2.10), so there is no criterion
that guarantees the existence and uniqueness of said solution in cases of metapopulation models where
the B;; matrix only has nonnegative entries. Next, we will present a procedure for writing the final
epidemic size equation (2.10) as a fixed-point problem. This allows us to impose conditions on the
model’s epidemiological parameters (2.1)—(2.3) which guarantee the existence and uniqueness of a
solution to this equation.

3. Existence and uniqueness of a solution of the final size equation of the epidemic

In this section, we will provide a proof that guarantees the existence and uniqueness of the solution
to the final epidemic size equation (Eq (2.10)) associated with the system (2.1)—(2.3) using fixed-point
theory applied to an equivalent problem of the form F(X) = X.

3.1. Equivalence of problems.

R;(c0)

Let us define g; = € [0, 1]. Then, from Eqs (2.10) and (2.11), we have

O BN,
- —e

i

R (c0)

= 1 ,

8i
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Zn: ﬁz‘ijg_
= 1 — —S (0) Jj=1 ’)/j j.

i

Thus, denoting by x; = 1 — g;, which represents the proportion of individuals who do not contract
the disease in patch i, we obtain that

N = Si(O)e = Yi
_ = BiiN; iﬁijNij
— Sl(o)e j=1 71 €j=1 7]
N;

Then, if we define F : [0,1]* — [0, 1]" such that for X = (x;,...,x,) € [0,1]", we have that
FOrty e %) = (fiX1s s X, o eos fulX, - . %)), where

Z’BUN X

filxi, .o x,) = e ™! , (3.1

with

BijN
$10), Z ;

=" 7 . (3.2)

Therefore, the system of equations (2.10) for the epidemic final size can be reduced to a vector
equation of the form
F(X) =X, (3.3)

which tells us that proving the existence and uniqueness of solutions to (2.10) is equivalent to proving
the existence and uniqueness of a solution to Eq (3.3), but the advantage of this equation is that we
reduce the problem to finding a fixed point for function F.

3.2. Existence and uniqueness of solution to the fixed point problem.

One of the most common ways to guarantee the existence and uniqueness of equations of the form
F(X) = X is through contractivity criteria associated with fixed-point theory, which also allows solving
this type of equations through iterative processes with initial conditions. This methodology will allow
establishing conditions on the model parameters (2.1)—(2.3), where the final size equation (2.10) has a
unique solution. To do this, it will be necessary to present the following theorem:

Theorem 3.1. [41][Theorem 10.6] Let D = {(x1, X2, ...,x,) |a; < x; < b; ,foreach i = 1,2, ...,n} for
some collection of constants a,,as, . ..,a, and by, b,, . ..,b,. Suppose F is a continuous function from
D c R" — R" with the property that F(X) € D whenever X € D. Then F has a fixed point in D.
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Moreover, suppose that all the component functions of F have continuous partial derivatives, and a
constant q < 1 exists with

< whenever X € D,

9fi(X)
ij

4
n’
for each j=1,2....,n and each component function f;. Then the sequence (X)), defined by an
arbitrarily selected X' in D and generated by

X% = p(x*)y, foreach k > 1,

converges to the unique fixed point X* € D, and
P
I X9 = X" |l T2 XD =X, .
—q

To apply this result to our case study, let us first define A as the matrix whose entries are the
coeflicients

N,
ag =Ba—; Vile{l,..,n}. (3.4)
Vi
app a1 ... Ay f] o ... 0
ajpp dxy ... dp 0 fg e 0
J; _ . . R . . e | (3.5)
ay, Ay ... dpg 0O 0 ... fu

In a simplified form the previous equation is J; = AT[F(x)], where [F(x)] denotes the matrix in the
right side of equation (3.5). Because || J¢(X) |lo=Il J2(X) |l; and || F(X) |lo=Il F(X) |l;, we can bound
the infinity norm of the Jacobian matrix Jr by

I JE(X) [leo=Il A llooll F(X) leo; VX € [0, 1]". (3.6)

Now, let us consider the closed set €2, as

Q; ={X [0, 11" : | A lloll F(X) llo< g < 1}, (3.7

on which it is fulfilled:
| Jr(X) llo< g < 1. (3.8)

Assuming €2, is not empty, we have the following proposition:
Proposition 1. The set Q, is convex.

Proof. From the fact that the exponential function is convex, it follows that each component function
f(X) of the vector function F(X) is also convex. Then for

X, YeQ, and 0<a<1,
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we obtain
IFAX+ A -DY) [lo = max | fi(AX + (1 -DY)],
< max | Af(X) + (1 - ) fi(¥) |,
<i<n
< Amax | £(X0 | +(1 = Hmax | (V) |
q q
< A +(1-2) )
Il Al I A lleo
< 9 .
I Al
Therefore AX + (1 — )Y € Q,, and so €, is convex. O

With this result, the following is concluded:
Proposition 2. For any 0 < g < 1, the vector function F is contracting at Q, of rate q.

Finally, by defining the set D, as:

q
D,={Y eR":| Y.< } (3.9)
! { " Al

it is easy to see that €, is the preimage of D, by the function F’; it follows from the fact that in this
case we can identify || F(X) ||o=| F(X) |- Then, if the function F had a fixed point X*, the fixed point
would have to satisfy:
| F(X) looll A llo< g,

and therefore
| X* |ooll A [l < g,

which implies that X* € D,, which suggests looking for the fixed point of F' in the set D,. With this,
we have the following theorem:

Theorem 3.2. Let us denote by « the vector with components «;, with i = 1...,n and suppose that
| @ ||l A llo< 1/e. Then
D, cQ,,

for any value O < g < 1 such that | @ ||| A ||< ge™4, and the function
F:D,— D,
is contracting, so it has a unique fixed point X* in D,. Also, for any X©' € D,, the sequence of iterates
x® = F(k)(X(O)) — F(X(k_l))
converges to X*, and it holds that
¢

| XO =X o2 77— 1 XV =X s
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Proof. We know that the function g(x) = xe™* defined on [0, 1] is increasing, g(0) = 0, and g(1) = 1/e.
From the assumption that | & ||| A ||< 1/e, it follows that there exists g* € (0, 1) such that g*e™¢ =|
@ |ol| A ||, and therefore ge ™ >| @ |o|| A || , Vg € (g7, 1).

Suppose now that X € D, for some g € (¢*, 1). First we note that

n

E Cl,'ij

_ =1
= q;e\’ ,

o BiiNjx;
2.7

filX) = et

where a;; are the coefficients of the matrix A.
n

But because (Z aij]X <A ool X |, and X € D, then[

J=1

a; j] X < g, and therefore
j=1

| iX) 1] i | e

we obtain
| F(X) |oo<| @ | €. (3.10)
With this, we have chosen ¢ such that | @ ||| A ||< ge™?. So from Eq (3.10), one has

|l Alle , _ ge™e” _ g

I Al Al 1A lle

(3.11)

But from the inequality (3.11), it follows that X € Q,. That is, we have proved that, under the conditions
of the theorem imposed on | @ |, we have D, C Q, and, therefore, F transforms D, into D,, because
F[Q,] = D,.

Applying Theorem (3.1), the proof of this theorem is concluded. O

From Theorem (3.2), we can see that condition | @ ||| A [l< 1/e guarantees 0 € €, for some
0 < g < 1, because @ = f(0). This theorem gives conditions for the existence of at least one fixed
point.

Furthermore, the same theorem provides us with a simple algorithm to obtain the fixed point X*.
First, it is necessary to verify that the vector « satisfies condition | @ ||| A ||< 1/e, which guarantees
that there exist positive values of g close to 1 for which f contracts in D,. Then, if we start from any
X© e D, and construct the iterations X® of X, we will know that they will converge to the fixed
point X™.

Remark: Note that if || A [[o< 1, then we explicitly bound the value of g. In fact, g <
max {ﬂ, &, e &} < 1, so we proceed in the same way as above.
Ny N, N,

It is worth mentioning that this algorithm is equivalent to the one presented in [25, 31], where
convergence is guaranteed by branching theories and probability generating functions [33, 34, 36].

In the next section, we will use equation (2.10) to perform a sensitivity analysis for a particular case,
which will allow us to understand how human mobility between regions can be an important factor in
the spread of infectious diseases through person-to-person contact.
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4. Parametric sensitivity analysis

In the study of infectious diseases in spatially structured regions, one of the central questions is
determining how human mobility between regions influences the spread of infection [1, 42, 43].

The interest in this issue was increased by the pandemic caused by the SARS-CoV-2 virus, the
causative agent of COVID-19. Although early detection of the outbreak allowed the implementation
of control measures (including the isolation of infected individuals; the confinement of urban areas;
and the suspension of land, sea and air transportation), these proved insufficient to contain the rapid
global spread of the virus [1, 7].

Furthermore, mobility restrictions generated high socioeconomic costs, raising questions about the
effectiveness and appropriateness of total lockdowns as a mitigation strategy [8, 44]. A remarkable
work in this direction is the work developed by Kiihn et al. [16], where the authors demonstrated that
restricted mobility coupled with continuous surveillance through infection confirmation tests in popu-
lations with high incidence effectively helped prevent outbreaks between surrounding regions. On the
other hand, in [17-19], using metapopulation models and real-world databases, researchers were able
to quantify, through Bayesian inference, mobility matrices that recreated the dynamics observed dur-
ing the COVID-19 pandemic. This represented a significant advance in understanding these infectious
processes in contexts where spatial dynamics play a fundamental role.

Therefore, in this work, we will develop a sensitivity analysis of the mobility parameters p, in a
system composed of two regions interconnected by human movement. Our aim is to analyze a scenario
where one region experiences an initial epidemic outbreak, while the other is progressively affected by
the disease. This simplified framework allows for a more precise assessment of the impact of people’s
mobility from one region to another on disease transmission, highlighting its relevance as a determining
factor in the spread of epidemics in structured spatial environments.

4.1. Parametric sensitivity analysis on the human mobility parameter p,

Let us consider the particular case of a two-patch unidirectional network where we will assume
that the recovery rate y; and infection rate 5; only depends on the specific region. Furthermore, we
assume that travelers moving from one patch to another mix with individuals from the visited patch
and maintain the same internal contact rate of the patch they arrive at. We will assume that individuals
from patch 2 do not travel to patch 1, so the mobility rates will be given by p; + p;» = 1 and pyp =
1, obtaining as densities Py = p; N, for patch 1 and P, = p;,N; + N, for patch 2. Under these
hypotheses, we want to analyze the dynamics under which conditions with an infectious outbreak
can spread the disease to another, completely susceptible region through human mobility. Thus, the
two-patch unidirectional model is expressed as follows:

ds\(®  BipLS1OL@)  BopinS (D)
i puNi paN N, (p2li (1) + (1) (4.1)
dli(ny  BiphSIOLM)  BapiaSi(h)

. N N s N, PO EO) =N, 4.2)
dR

dlt(t) = 7L, 43
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ds »(1) B2S (1)
= —-—— I I 4.4
o DN+ N (P21 (@) + L(2)) , 4.4)
d (1) BaS (1)
= — Li(t) + I(1)) — y. (1), 4.5
o DN, + N, (P21 (1) + L(D)) — y21a(1) 4.5)
dR(1)
= L(1). 4.6
0 Y216 (2) (4.6)
Bap12S1(1) . . . .
The term —————— (p1211(¢) + Ir(¢)) in Egs (4.1)—(4.2) indicates that although the infections of
PNy + N>

susceptible people in patch 1 can be caused in patch 2, these people can return to their place of origin.

So(t
'82—2() (p1211(¢) + Ir(¢)) in Eqs (4.4)—(4.5) indicates that susceptible
p12N1 + N>

people from patch 2 contract the infection through interaction with both infected individuals from the
same patch and infected travelers from patch 1.

By using the equation (2.10) to calculate the final size of the epidemic in the two study patches, we
obtain that these are given by

On the other hand, the term

fi:= Ny =81(0)e™ 4.7)
with
o, = [(ﬁl(l - P12) N B2pi, )Rl(oo)+ ( Bapi2 )Rz(oo)],
Y1V Y1(p12N1 + N2) Y2(p12N1 + N2)
and
o= Ny = S»(0)e™® (4.8)
with

_ Bapia o B> N
" [((71(1712]\]1 + NZ))RI( ) ((72(P12N1 + Nz))Rz( )]'

About the Eqgs (4.7) and (4.8), we will do the sensitivity analysis with respect to the mobility pa-
rameter pp,. This is to know how the direct introduction of individuals from one area to another can
affect the spread of the disease, this being one of the main causes of the spread of epidemics in regions
with spatial structure. For this, the total derivatives of Eqs (4.7) and (4.8) are calculated with respect
to the parameter p,; that is

dfi _ ofi .\ ofi ORi(0) dfi  ORa(c0)

= , 4.9
dpi,  0pin  ORi(0) Jdpin OR>(c0) Opi» 49)

and
dfy _ 0fs N df,  OR;(0) N 0fy  ORy(0)
dpiz  Op1z  OR|(0) dpiy  ORy () dpiy
If we consider R;(c0) and R,(c0) as functions of the parameter p;, assuming that the rest of the

epidemiological parameters remain constant at any instant of time ¢, we obtain the following system of
ordinary differential equations with variable coeflicients p;, € [0, 1]:

(4.10)

R R 'R
[Ny = Ri(o)] | @1R1(00) + brRo(00) + ¢ Tol) g dRo() | dR () (4.11)
dplz dPlz dplz
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dR dR dR
[N — Ra(oo)] [aszoo) ~ byRy(e0) + ¢, RN 2(“)] - Ry
dpi dpi dpn
where the parameters associated with Eq (4.11) are
o = (ﬁzplz(Plle +2N)) B ) b — ( BN, )
1 = - Ul — )
Y1(P2Ny + N>)? Y1Vi Y2(p12N1 + N»)?
3 (ﬁ1(1 - P12) N B2, ) g = ( Bapiz )
1 = s U] — ’
Y1V Y1(p12N1 + N2) Y2(p12Ny + N2)
and the parameters associated with the Eq (4.12) are
_ BN, B BNy
as = 7] b2 - 2]
Y1(p12N1 + N2) Y2(p12N1 + N2)
_ ( Bapi2 ) B ( B> )
Cyr = ,d2 = .
Y1(p12N1 + N2) Y2(p12Ny + N2)
dR dR
From the system of ordinary differential equations, we can clear the terms dl(oo) and d2(oo)
P12 P12
with what we obtain:
dR () _ —(a1R(e0) + b1Ry(0))(ds — [N> — R>(00)]™") — di(by3Ry(00) — ar R (e0)) 4.13)
dpi> (c1 = [Ny = Ri(c0)]"1)(d, = [Ny — Ry(0)]™") = dc; ’ '
and
dRy(0) _ (baRy(0) — xR (0))(c1 — [N — R;(00)]™") + c2(a1 R (00) + by Ry(c0)) 4.14)

dp, (c1 = [Ny = Ri(c0)]"))(d> — [N = Ry(c0)]™1) — djc,

Remark: Although from the formal point of view Eqs (4.13) and (4.14) make epidemiological sense,
interpreting their meanings will depend on the different geographic levels that are being modeled. At a
global geographic level, it would be analyzed what happens with the exchange of infected individuals
between countries. At the regional geographic level, it would be analyzed what happens with the ex-
change of individuals between the states of a country or even between the municipalities of a particular
state of a country. One of the fundamental differences between the global and regional geographic
analysis is the value of the mobility parameter p;,. In the global case, this should take values very
close to zero, while in the regional case, this would only happen if very severe policies are applied to
restrict the mobility of individuals in the affected sectors.

In this work, we will concentrate on performing a global analysis; that is, we consider the mobility
parameter p;; — 0. Under this assumption, we can simplify the parameters of the Eqs (4.13) and
(4.14) as follows:

alz—ﬂ,blzﬁ—z, lzi,dlzo’
Y1V Y2N> viN
and N
QQZﬁ,bzzﬁz—;,sz(),dz: ﬁZ .
YN, Y2N; Y2N>
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We can then simplify Eqs (4.13) and (4.14) obtaining

( mR1(0) o) Ra(e0)
dR(00) B 0 N, 0 N,
dpn - RE)” ’ e
-2 _[N,-R -l
[Nl [V, 1(c0)] }
and ) D2
(e e
dRy() _\ N2 Mo L
2(0) _ Y , (4.16)
dp R, -1
7 — [Ny — Ry(00)]
2

where R(()l) = B1/v1 and R(()z) = f,/v, represent the local basic reproductive numbers of patch 1 and
patch 2, respectively.

The approach where p;, — 0 is performed in the derivative of R;(c0) for i = 1,2; that is, the
approximation tells us the change in R;(c0) when mobility is decreases. This is done at a regime of
small mobilities. In other words, the sensitivity analysis is based on changes in R;(c0), and studying
these changes reveals whether the final size will increase or decrease because of mobility. The values
of R;(co0) are similar to those without mobility, owing to the regime under consideration. So, when
Rg) > 1 fori = 1,2, the following inequality makes for i = 1,2, [11]:

Ry 1

N, "S5
Therefore, from Eq (4.17) and from the fact that §;(c0) = N; — R;(o0) for i = 1,2, it follows that the
denominators of Eq (4.15) and Eq (4.16) are always negative in case of Rg) > 1 for i = 1,2, which
concludes that the signs of these equations only depend on the signs of their numerators.
We observe that the final size of patch 1, R (c0) is increased if the mobility from 1 to 2 is also
increased if
R>(o0) (1)R1(°°)

2)
Ry N, >R, N

As Rf)z) and R,(co) are measures of the severity of the outbreak in patch 2, this indicates that travelers
from a low-severity region to a high-severity outbreak region increase the severity of the epidemics in
their own patch; see Figures 1 and 2 (left). Remember the model just takes into account the mobility
from patch 1 to patch 2. In contrast, if the outbreak is more severe in region 1,

for i=1,2. (4.17)

R;(o0) S R(z)Rz(OO)
N1 o N,
the derivative dR(c0)/dp;, is negative, indicating that travelers from a high-severity outbreak region
to a low-severity region lead to a reduction in the severity of its own region’s severity (see Figures 1
and 2, right). Eq (4.16) describes the effect of in-migrants to a particular region. It is concluded that

the severity of the disease increases in the region 2 if

Ri(0) 1 S R>(0)
Ny B N,

R : (4.18)

)
RO
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In order to gain insight from this inequality, we write it in an equivalent form as follows:

R;(0)

1 R1(e0) 2
ROy > RP 22y, (4.19)
N, N,
a) b)
—— patch 1: R0=4.50
patch 2: R0O=3.5
0.985 0.9851
=4 =z
S 0.980 5 0.980 1
3 g
() [}
L 0.9751 L 0.9754
£ =
0.9701 0.970+
—— patch 1: RO=3.5
patch 2: R0=4.50
0.965 1~ : . : . 0.965 = T . . .
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
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c) d)
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Figure 1. Final size change due to mobility from region 1 to region 2 and when the difference
between patches is the contact rate. a) High R, case. Traveling from a region of lower-
severity to a region of high-severity increases the severity in the original traveler region. b)
Traveling from a high-severity region to a lower-severity region reduces the severity in the
traveler’s region of origin and only increases the severity of the outbreak in the visited region
when its severity is low, as seen in d). c¢) Low R, case. Traveling from region of lower-
severity to a region of high-severity, increases the severity in the original traveler region.

This means that for a case where y; =~ 7y,, meaning the recovery rate is similar in both regions,
the severity of the disease increases in region 2 if the immigrants come from a region with greater
severity. On the other hand, if the immigrants come from a lower-severity region, the size of the
epidemic in region 2 can decrease. This phenomenon is due to the dilution of susceptibles in region
2, leading to a noticeable split of contagions between the immigrants and the susceptibles of region 2.
The appearance of y; and y, in inequality (4.19) indicates the existence of a possibly uncommon but
interesting scenario. If the recovery rate of the immigrants, y;, is lower than the recovery rate of the
inhabitants of patch 2, y,, it could lead to an effective dilution effect that reduces infections in patch 2
even if the severity in patch 1 is higher than in region 2. An interpretation is that, because the recovery
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rate y; of the population in 1 is smaller, to keep the same epidemic severity given by R, and R(c0) at
a similar level, the contact rate §; also must decrease, effectively causing there to be fewer infected
individuals at every instant of time even though the epidemic lasts longer. This is another process that
also gives rise to the dilution effect.

This same phenomenon gives us special conditions where mobility reduces the overall size of the
disease instead of increasing it. As mobility of travelers from a high-severity zone to one of lower
severity reduces its local size of the epidemic, and this doesn’t depend on the rate of recovering 7y,
(4.18), this rate could be big enough that this mobility doesn’t affect or even helps region 2 (4.19),
leading to a global reduction in the size of the epidemic; see Figure 2 (bottom right).

a) b)
—— patch 1: RO=3.5 —— patch 1: R0=4.86
0.990 patch 2: R0=4.86 0.990 | \W
0.9851 0.9851
z z
® 0.980 $0.980
] ]
[9) Q
o g
£ 0.975 ‘£ 0.975
0.970 0.9701
0.965+. : , ‘ , 0.965 L. : : : ‘
00 02 04 06 08 00 02 04 06 08
P1,2 P1,2
c) d)

0 8 4 —— patch 1: RO=1.05 0 8 4 —— patch 1: R0=2.06
patch 2: R0O=2.06 patch 2: R0O=1.05

o
o

o

o

e
I
e
IS

Infected/N
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[N)
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Figure 2. Final size change due to mobility from region 1 to region 2 and when the difference
between patches is the recovery or isolation rate. a) and d) High R, case. Traveling from a
region of lower-severity to a region of high-severity, increases the severity in the original
traveler region. b) and d) Traveling from a high-severity region to a lower-severity region,
reduces the severity in the traveler’s original region and normally increases the severity of
the outbreak in the visited region if the contact rates are similar in both regions.

5. Conclusion

To begin, we have shown the existence and uniqueness of the solution to the final size equation of
an SIR metapopulation model. This provides further theoretical support for using the final epidemic
size as an index of regional and global severity.
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This study is intentionally theoretical. The deliberate simplifications introduced in the model are
not shortcomings; they are the means by which we isolate and expose the dynamical mechanisms that
can produce non-trivial, counterintuitive outcomes when human migration is coupled with epidemic
spread. We do not aim to reproduce or forecast any particular outbreak. Instead, we follow the long-
standing tradition of conceptual epidemic modeling (Kermack & McKendrick, [45]) whose hallmark
is to extract interpretable, mechanistic insight from minimal mathematical structures.

Next, through parametric sensitivity analysis performed on the human mobility parameter, we were
able to affirm how travel from a low-severity region to a high-severity region increases the impact of
the epidemic in the low-severity region. Conversely, the high-severity region has little impact. On
the other hand, travel from a high-severity region to a low-severity region reduces cases in the high-
severity zone, while the total number of cases in the lower-severity region is low, unless Ry is close to
1 (from above) and, therefore, the outbreak is small. This interesting and important result shows that
the total number of infected people in a community is primarily due to social behavior acquired during
infectious outbreaks and minimally by potentially infected visitors.

This phenomenon can be understood because it assumes that local behavior will be the same among
local and foreign individuals. In general, during outbreaks characterized by high Ry, restricting mo-
bility might be useful to prevent the introduction of the disease into specific regions. However, once a
local outbreak has begun, visitors have little impact on the final magnitude of the epidemic in that loca-
tion. However, for epidemics characterized by R, close to 1 from above, the impact of immigrants must
be considered. This is understandable, as any increase in infections in a small outbreak is noticeable
due to the high sensitivity of the relative size of the epidemic.

It is also worth considering a less common, but possible, scenario. In a situation where control
measures are primarily based on isolation, thereby increasing the effective recovery rate y, the conse-
quences of travel are completely different, as can be seen in Figure 2. In this scenario, mobility always
increases the final size of the outbreak in the region of lower severity. This is because it was hypoth-
esized that isolation only occurs among local residents, while visitors continue to transmit diseases
throughout their stay.

The objective of this study is to uncover the mechanistic relationship between a targeted control
rule and the final epidemic size. We used biologically grounded simulations to isolate the causal effect
of mobility on the propagation process. Once these mechanisms are formally understood, future field
studies can be designed to measure the corresponding empirical quantities. It should be noted that the
described effects of mobility on disease spread are the most basic, in the sense that their combination
in multiregional systems can lead to more complex overall behavior. Furthermore, average mobility
could change over time, and isolation and behavioral changes among infected individuals could reduce
their mobility, thereby reducing the effective contact rate.

In summary, this work reinforces the use of the final epidemic size not only as an index of magnitude
or classification but also as a guide for designing control strategies. Furthermore, the local analysis of
human mobility for each region allows for simple but non-trivial conclusions to be drawn about the ef-
fect and relevance of mobility restrictions during an infectious outbreak, facilitating decision-making in
these scenarios. General, concise insights of this kind are often more useful to public health authorities
than highly specific tactical recommendations: they provide an immediate, qualitative understanding
of what can happen, thereby alerting decision-makers to unintended consequences before detailed data
or computationally intensive simulations become available.
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