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Abstract: Dengue remains a major public health challenge in Colombia, with Valle del Cauca
experiencing recurrent outbreaks characterized by seasonal fluctuations and long-term variability.
Understanding the transmission dynamics of Dengue across age groups is critical for targeted
interventions.  In this study, we developed an age-structured stochastic host—vector model,
incorporating a compartmental SIR-SI framework within a stochastic differential equation (SDE)
approach. The population is stratified into youths (0—17 years) and adults (18 years and older), enabling
analysis of age-specific infection and recovery patterns. Simulations and forecasts were performed
using the Euler-Maruyama method, informed by fixed parameters from the literature, estimated
disease-specific parameters, and epidemiological data from Colombia’s Public Health Surveillance
System (SIVIGILA) spanning 2013-2023. Additionally, a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model was employed as a complementary approach to capture and forecast
monthly Dengue incidence. Our results highlighted distinct epidemic patterns across age groups, the
higher infection burden among adults, and the complementary roles of mechanistic SDE modeling and
SARIMA forecasting for surveillance and control planning.

Keywords: Dengue; stochastic differential equations; Euler—Maruyama method; SARIMA;
forecasting

1. Introduction

Dengue outbreaks represent a major public health challenge across tropical and subtropical regions
worldwide. In Colombia, the disease remains a persistent concern, particularly in the department of
Valle del Cauca, where 18,112 cases were reported in the epidemiological bulletin for week 13
of 2024. The transmission dynamics of Dengue are strongly associated with the presence of the Aedes
aegypti mosquito, the principal vector of the virus. The limited effectiveness of vector control
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strategies has facilitated the continued spread of Dengue, underscoring the urgent need for more
efficient preventive measures.

Dengue is a viral infection caused by a member of the Flaviviridae family, comprising four distinct
but closely related serotypes: DENV-1, DENV-2, DENV-3, and DENV-4. Infection with any of these
serotypes can result in two clinical manifestations: Classic (mild) Dengue and severe (hemorrhagic)
Dengue, as reported in [1]. Successive infections involving different serotypes substantially increase
the risk of developing the severe form of the disease, which can be fatal, particularly among individuals
with a history of infections.

Mathematical modeling provides a fundamental framework for understanding the dynamics of
epidemic outbreaks such as Dengue. Deterministic models, as discussed in [2, 3], provide consistent
predictions through systems of differential equations; however, they often fail to capture external
environmental factors, such as temperature, rainfall, and humidity, which play a critical role in the
transmission process.  To address these limitations, stochastic models incorporate random
perturbations into the transmission parameters, thereby offering a more realistic representation of the
inherent variability observed in epidemic dynamics (see [4—7]).

Within this framework, we introduce a compartmental SIR-SI host-vector structured model,
formulated as a system of stochastic differential equations (SDEs). The model incorporates
population stratification into two age groups: youth (0—17 years) and adults (18 years and older). This
stratification is essential for accurately characterizing Dengue transmission in Valle del Cauca, as
infection risk and exposure conditions vary by age. For younger individuals, transmission risk is
primarily associated with school environments and public transportation, whereas adults are more
likely to be exposed in workplaces and social settings. This demographic segmentation contributes to
a more nuanced understanding of the long-term transmission dynamics of Dengue within the region.

Model parameters and initial conditions are derived from other studies and Dengue incidence data
reported by the Public Health Surveillance System (SIVIGILA) [8] for Valle del Cauca. The parameters
governing transmission dynamics and stochastic fluctuations were estimated by solving a nonlinear
least-squares problem using the Trust-Region Reflective (TRF) optimization algorithm. Using these
parameter estimates, simulations were performed covering the historical observation period and a one-
year forecast horizon. The simulation results were subsequently compared with empirical data to assess
the model’s goodness-of-fit and predictive performance.

Complementing the SDE-based modeling framework, a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model was implemented to forecast the temporal evolution of monthly Dengue
cases in Valle del Cauca. This time-series model effectively captures trend and seasonal components
of the data, characterized by periodic variations in the mean, as discussed in [9]. Seasonal fluctuations
in Dengue incidence largely reflect climatic conditions, such as temperature and humidity, that directly
influence mosquito population dynamics. Incorporating these seasonal effects enhances the robustness
and accuracy of the predictive analysis.

The remainder of this paper is organized as follows: In Section 2, we present the formulation of
the proposed stochastic model for Dengue transmission and its numerical discretization via the Euler—
Maruyama scheme. In Section 3, we describe the Dengue case data for Valle del Cauca, the parameter
calibration procedure, and the simulation results, including the short-term forecasts. In Section 4,
we detail the implementation of the SARIMA model and evaluate its predictive accuracy. Finally, In
Section 5, we summarize the major conclusions and discuss the implications of the findings for public
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health surveillance and epidemic control.
2. A stochastic model: Equations and methods

To analyze the dynamics of Dengue transmission in Valle del Cauca, we propose a stochastic
compartmental SIR—SI model that extends the deterministic frameworks developed in [10, 11]. To
incorporate the uncertainty associated with disease transmission, a stochastic component is introduced
to represent environmental variability and other sources of random fluctuations, following the
methodology of [4, 5]. In this context, each equation is modeled as a stochastic process defined on a
complete probability space (Q, 7, {F:}i=0, P), where the filtration {F,},» satisfies the usual conditions
of completeness and right-continuity.

Suppose now that a stochastic environmental factor simultaneously affects all individuals in the
population. In this case, the transmission rate 8 becomes a random variable, denoted by 5. More
precisely, the number of potentially infectious contacts made by each infected individual in the small
time interval [z, t + df) is expressed as

Bdt = Bdt + o dB(1), 2.1)

where £ and o are positive constants, and {B(f)},>o denotes a standard Brownian motion. Parameter o
quantifies the intensity of the environmental noise.

We assume that the number of infectious contacts a single infected individual makes with another
individual during the infinitesimal interval [7, 1 +dr) is normally distributed with mean 8 dt and variance
o2 dt. As dt — 0, the variance tends to zero, ensuring that the stochastic model remains consistent with
the deterministic case in the limit. This formulation provides a biologically plausible representation of
random fluctuations in the transmission process, enabling the explicit incorporation of environmental
noise into population dynamics models.
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Figure 1. Flow diagram of the dynamics of the proposed stochastic SIR-SI model.

The flow diagram in Figure 1 illustrates the dynamics of the proposed stochastic model.
Individuals transition between compartments at specific rates and are influenced by stochastic
perturbations, thereby simulating the inherent randomness observed in epidemic processes. The total
human population is assumed to be homogeneous and constant, denoted by N,
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In this study, the model captures the transmission dynamics of the Dengue virus between humans
and vectors (mosquitoes) through a compartmental structure of type SIR—SI. The human population N,
is stratified into two age groups: h; (young individuals) and 4, (adults). The vector population, denoted
by N,, consists entirely of mosquitoes. For the human population, the compartments are susceptible
individuals S, (#) and S ;,(¢); infected individuals 1;,(¢) and 1,,(¢); and recovered individuals Ry (¢) and
Ry»(t), who are assumed to have acquired immunity to the infecting serotype. The mosquito population
is divided into susceptible S ,(7) and infected /() compartments. All state variables and parameters are
assumed to take non-negative real values.

Table 1 summarizes the model parameters used in this work. Parameter values were obtained from
demographic data and experimental studies conducted in Valle del Cauca. The recruitment rates Ay,
A,, and A denote the inflow of new individuals into the young, adult, and mosquito populations,
respectively. The natural mortality rates y;, and p, account for deaths unrelated to Dengue in humans
and mosquitoes. The recovery rate y characterizes the per capita rate at which infected humans
recover and acquire immunity. The transmission rates S;, £,, and S, quantify the per-contact
probabilities of transmission from infected mosquitoes to young and adult humans, and from infected
humans to susceptible mosquitoes, respectively. Finally, o, 03,and o, denote the intensities of
stochastic perturbations affecting the corresponding transmission channels.

Table 1. Model parameters and descriptions.

Parameter Description

Ay, Ay Recruitment rates of susceptible young and adult individuals, respectively.

U Natural mortality rate for human individuals (both age groups).

Yy Recovery rate of infected humans (both age groups).

A Recruitment rate of susceptible mosquitoes.

My Natural mortality rate of mosquitoes.

Bi Transmission rate from infected mosquitoes to susceptible young individuals.

B2 Transmission rate from infected mosquitoes to susceptible adult individuals.

By Transmission rate from infected humans to susceptible mosquitoes.

o1, 03,0, Intensities of stochastic perturbations affecting the corresponding transmission
pathways.

Susceptible individuals S ;(f) and S ,,(f) may become infected through contact with the same pool
of infected mosquitoes with transmission rates 8, and j3,, respectively. We represent the stochastic
infection rate as

Bidt = Bidt + o;dB!, i=1,2,v,

where Bﬁ denotes independent Brownian motions associated with the youth, adult, and vector
populations, respectively. Susceptible humans are also subject to natural mortality at a rate uy,.
Infected individuals 7,;(¢) and I;,(f) increase via new infections and decrease through recovery at rate
v or death at rate u;,. Recovered individuals Ry (7) and R, (¢) arise from recovery and decline only due
to natural mortality. Susceptible mosquitoes enter the vector population at rate 4 and may become
infected by biting infected humans 7;,;(r) and I;,(¢) at transmission rate §3,. All mosquitoes, whether
susceptible or infected, experience natural mortality at a rate y,. We assume that the total human
population N, remains constant over time. Under this constant-population assumption, the
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recruitment rates must satisfy A; + A, = u, Ny, ensuring that births (or inflow) balance natural deaths
in the human population at demographic equilibrium.

Next, we present the system of stochastic differential equations for the modified SIR—SI model
with random perturbations (see [5]). Let {S 1(?), In1(2), Ri1(2), S 1o (2), Ina (1), Rin(2), S (1), I,(1)},t > 0, be
governed by the following It system:

I, 11
dShl(t)ZAldt—ﬁIShl(t) () dt—,uhShl(t)dt—UlShl(t) ()dBtl,
Ny, Np,
I, I,
ity = P2, gt gty i+ ZEOND g,
h h

ARy (1) = 11 () dt — Ry (¢) dt,

dS 1n(0) =A2dt—ﬁ25h2(t)IV(t) dt — 1S 1a(0) it — 028 1 (DH1,(2) B,
N, N, o)
dlo(f) = BaS i (D1,(1) dt — (, + ) (0) di + 028 i (DH1,(2) B,
Nh Nh
dRx(t) = vl (2) dt — pRyp (1) dt,
dS (1) = Adi — BuS (@) (L1 (1) + Lo (1)) di— 1,8 (1) di — oSy (O (1) + Ip(1)) 4B,
Nh Nh
Al (1) = BuS (@)U () + Ln (1)) dt — 1, (t) dt + oS (O (1) + Iip(1)) dB’.
Nh Nh

Here, {B;(t)};»o for i = 1,2, v denote independent standard one-dimensional Brownian motions, and
o1,07,0, > 0 represent the intensities of the corresponding stochastic perturbations.

Under standard local Lipschitz continuity and linear growth conditions on the drift and diffusion
coeflicients, and for nonnegative initial data, system Equation 2.2 admits a unique strong solution
that remains nonnegative for all # > 0. This follows from classical results on existence, uniqueness,
and positivity for stochastic differential equations (see [12—14]). In particular, for epidemiological
SDE models with multiplicative noise, positivity of the state variables is preserved almost surely. We
therefore state the following lemma without proof:

Lemma 2.1 (Existence, Uniqueness, and Non-Explosion). Let X, € R? satisfy the stochastic
differential equation
dX, = F(X)dt +T(X,)dW,,  Xo = xo € (0,00)",

where W, is an m-dimensional standard Brownian motion, and F : RY — R4, T : RY — R are
measurable functions. Assume that:

1) (Local Lipschitz condition) For each compact set K C R, there exists a constant Lx > 0 such that

IF) = FOll +I0(x) =TI < Lllx=yll,  ¥Yx,yeKk.

2) (Linear growth condition) There exists a constant C > 0 such that
IF)I? + ITolIE < €A+ (1), VxeR?,

where || - || denotes the Frobenius norm.
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Then there exists a unique strong solution X, to the SDE for all > 0, and the solution is non-explosive.
Furthermore, if X; € (0, c0)? and both F and I preserve positivity, then

X, € (0,00)? forallt>0

almost surely.

2.1. Numerical discretization

The Euler—Maruyama method, described in [13] and introduced by the Japanese mathematician G.
Maruyama [15] as an extension of the Euler method, is a numerical integration technique used to obtain
approximate solutions to a system of stochastic differential equations given an initial value X, = xo.
Moreover, a time partition 0 = 7y < t; < --- < fy = T with step size At = t;;; — t;, and increments
AB; = B(ti11) — B(t;) ~ N(0, At). For each trajectory of the stochastic process {X;, t > 0}, the value X _,
is approximated using the value of the previous step X,. The approximate solution of the stochastic
differential equation is given by

X, =X, + f(X,)At + g(X,)AB;, (2.3)

forall i = 0,1---, k— 1, and where f and g are the drift and diffusion coefficients of the SDE,
respectively.

Applied to our model, the corresponding discretization in Eq (2.2) must be carried out, which is
given by:

Sntj) = Su@) + A — M _,uhShl(tj)] At — %MAB}].,
h h
S (¢; S (¢;
Iy (tjr) = I (1)) + ['%;)(1) — (up + )’)Ihl(fj)] At + L}JI)WAB,IJ.,
Rui(tjs1) = Ry (t)) + [?’Ihl(lj) - ,Uh]Rhl(lj)] At,
S ()t S ot (1
Snatjr1) = Spa(t)) + [Ay — oS a(t)hity) hzj(vj) ) _,UhShZ(tj)] At — T2 h ) IZI(VI) ( ‘/)AB,Z,,
h h :
[ B>S 1o (£)1,(2; St
Lip(tjcr) = Inp(t)) + '%;)(1) — (un + Y)Ihz(fj)] At + MAB?’
Rip(tjc1) = Ryp(t)) + [)’Ihz(tj) - ,Uthz(fj)] At,
Syt = Sulty) + | 1 - ﬁvSv(tj)(Ihl]E]tj) + (1) ,quv(tj)] Ar— O-VSv(tj)(Ih;\([tj) + IhZ(tj))Aij,
L h h
L) = I,(1) + [ﬂvsv(fj)(lhl(fj) + Ip(t)) 3 ,lev(tj)] Af + oS (@)U (t)) + Io(2)) AB!.
Nh Nh !
(2.4)

3. Computational results from statistical data: A case study of the department of Valle del
Cauca

In this section, we analyze the stochastic dynamics of Dengue transmission under environmental
noise using real-world data from the Department of Valle del Cauca. The data employed for
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simulations, parameter calibration, and analysis were obtained from the National Public Health
Surveillance System database [8]. This database includes both quantitative and qualitative variables,
such as event codes, notification dates, age, hospitalization and mortality records, and geographical
information corresponding to the department of residence. All computational implementations were
carried out using Python 3.11.7.

For the proposed stochastic model described in Eq (2.2), Dengue case data from January 2013 to
December 2023 were used, together with a forward projection for 2024 (January to December). The
model was calibrated using age-stratified infection data, distinguishing young and adult populations
in Valle del Cauca. The simulated infected populations, I;; and Ij,, corresponding to these two
demographic groups, were directly compared with the reported Dengue cases. It is important to note
that surveillance data represent newly reported cases (incidence) rather than the instantaneous
prevalence generated by the model; thus, the simulated results were interpreted accordingly. All
parameters were defined on a daily scale, while the simulations were evaluated at monthly intervals
(every 30 days), recording the system state at the end of each month. Consequently, the initial
conditions were established considering the total population at the beginning of the first month.

The simulations were executed using the discretization scheme defined in Eq (2.4). The parameters
considered in the simulations include:

(Ab AZaﬁbﬁZ’ﬁv’ Y9 :uh9 /JV’ /la 01,072, O-v)’

while the initial conditions correspond to:
Ny(0), $11(0), Sn2(0), 111(0), 12(0), R (0), Ry2(0), S.(0), £,(0).

Figure 2 depicts the monthly time series of reported Dengue cases in Valle del Cauca from 2013
to 2023, categorized into two age groups: young and adult individuals. This figure is based on data
obtained from [8] for the period between January 2013 and mid-2019. Analysis of the data reveals
that the number of infections among young individuals was generally lower than among adults.
However, starting in 2019, this difference became less evident: In some periods, infections among
minors exceeded those among adults, whereas in others, the opposite occurred.
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Figure 2. Monthly Dengue cases by age group in Valle del Cauca [8].
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Figure 3. Total monthly Dengue cases in Valle del Cauca [8].

Further analysis shows that Dengue case peaks tend to occur more frequently during the early
months of the year. This seasonal pattern may be associated with environmental factors such as higher
temperatures and humidity, which enhance the proliferation of mosquito vectors. Additionally, human
mobility patterns play a significant role in transmission dynamics: Among younger populations,
exposure often occurs in schools and public transportation settings, whereas for adults, transmission
risk is typically associated with occupational and social environments.

Figure 3 presents the overall monthly time series of reported Dengue cases from January 2013 to
December 2023. The data, obtained from [8], display temporal trends consistent with those observed
in Figure 2. Notably, significant peaks occurred in 2016, 2020, and 2023, suggesting a potential
cyclical pattern.

This recurrent behavior provides the basis for forecasting future outbreaks. Given the peak observed
in 2023 and the emerging trend, an increase in Dengue incidence is anticipated for 2024. Accordingly,
these historical data were also used to construct forecasts using a Seasonal Autoregressive Integrated
Moving Average (SARIMA) model, enabling an assessment of the risk and potential magnitude of
future outbreaks.

3.1. Deterministic and stochastic simulations of Dengue dynamics

Before making predictions with the stochastic model, the deterministic behavior of Dengue in
Valle del Cauca was simulated using parameters from previous studies and official data. For the
deterministic SIR-SI model simulations, eight main parameters are considered: the recruitment rate
of new individuals into the human population (A, A, ), the transmission rates between humans and
mosquitoes (81, B>, and S,), the recovery rate of infected humans (y), the natural mortality rates of
humans and mosquitoes (u; and y,), the recruitment rate of new mosquitoes (1), and the stochastic
noise intensity (o).

These parameters were established based on epidemiological and demographic information,
complemented by previous studies that have estimated realistic ranges for Dengue transmission
dynamics. The parameter values of the model are presented in Table 2, while the initial conditions
used in the simulations are shown in Table 3. The procedure for determining these values is
described below.
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Table 2. Fixed parameters of the stochastic SIR-SI model.

Parameter Value Units Reference
A 105 humans - day! [16]

A, 105 humans - day™! [16]

Bi 0.1 day! [17]

B> 0.1 day! [17]

By 0.5 day! [17]

0% 0.07142 day! [18]

Up 0.0000391 day! [18]

My 0.008 day! [19]

A 2500 mosquitoes - day™! [17]

tox 0.1 — Assumed
lop) 0.2 — Assumed
o, 0.3 — Assumed

Table 3. Initial conditions of the stochastic SIR—SI model.

Initial conditions Value Units Reference
S11(0) 1,681,310 individuals [20]

1,,1(0) 435 individuals [8]

R,1(0) 31 individuals [18]
S2(0) 2,107,303 individuals [20]

15(0) 742 individuals [8]

R»(0) 52 individuals [18]

S.,(0) 312,500 mosquitoes [18]

1,(0) 100 mosquitoes [19]

N,(0) 3,789,874 individuals [20]

Dengue transmission in Valle del Cauca was first simulated deterministically using the SIR-SI
model with parameters and initial conditions summarized in Table 2. Deterministic trajectories
(Figure 4) for compartments S 1, S, Ints Ino, Ruts Rin, Sy, and I, show smooth trends over January
2013 to December 2023. Susceptible humans decline, infections rise and fall, and recovered
compartments increase steadily. While deterministic simulations capture general epidemic patterns,
they do not reflect stochastic fluctuations or abrupt outbreak peaks.

To account for variability, stochastic simulations were performed using the Euler—-Maruyama
method applied to the discretized system (Eq (2.4)) based on Eq (2.2), with the same parameters.
Figure 5 shows four stochastic realizations per compartment. Susceptible humans decrease, while
infections exhibit seasonal fluctuations and occasional intense outbreaks, capturing peaks absent in
deterministic trajectories. Recovered compartments increase steadily, and mosquito dynamics
reflect ongoing transmission. Stochastic simulations thus provide a more realistic representation of
epidemic variability.
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Figure 4. Deterministic simulations of Dengue dynamics. Four trajectories per compartment
are shown; observed infections are superimposed.
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Figure 5. Stochastic simulations of Dengue dynamics. Four trajectories per compartment
are shown; observed infections are included for comparison.

Model performance was evaluated using the Mean Squared Error (MSE) between simulated and
observed infections. Table 4 shows that stochastic simulations generally yield slightly lower MSEs,
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particularly for young individuals (/;;), indicating improved fit by capturing temporal variability and
epidemic peaks.

Table 4. Comparison of MSE values between deterministic and stochastic models.

Simulation Deterministic Stochastic

MSE (1) MSE () MSE (I1,1) MSE (/)
1 24,628,150 41,152,402 24,627,909 41,152,091
2 25,661,649 42,547,716 25,661,758 42,548,217
3 23,393,697 39,572,211 23,393,069 39,571,244
4 25,658,699 42,524,967 25,658,880 42,525,718

3.2. Calibration of the model

Model calibration was performed to estimate the optimal parameters (5, 3,, o) of the Dengue model,
ensuring the best fit between model predictions and observed infection data in Valle del Cauca. The
procedure involved three major steps: Formulating a constrained optimization problem, implementing
the Trust Region Reflective (TRF) algorithm to solve it, and selecting the parameter set that minimizes
model residuals in Eq (2.2), while ensuring feasibility and robustness.

Practical identifiability of (5, 8,, o) was assessed using profile likelihoods and Fisher information,
with confidence intervals quantifying parameter uncertainty. Confidence bands for the state variables
illustrate how parameter uncertainty propagates through the stochastic model. Robustness was
ensured via multi-start TRF optimization from dispersed initial guesses, examining the dispersion of
resulting optima.

Parameters were estimated by bounded nonlinear least-squares,

in <2
min —||r(x
{<x<u 2 2

using the Trust-Region Reflective (TRF) algorithm. TRF handles bounds efficiently via trust-region
steps, reflection for active constraints, and Levenberg—Marquardt regularization as needed. Under
standard assumptions, TRF converges globally, with local convergence linear or superlinear for well-
conditioned problems. Confidence intervals were derived from the Jacobian at the solution, adjusted
for active bounds, providing practical evidence of identifiability.

Problem formulation: The calibration targets three key parameters: S (mosquito-to-human
transmission rate), B, (human-to-mosquito transmission rate), and o (stochastic noise intensity
capturing random environmental variations). These parameters govern the disease dynamics and its
stochastic fluctuations, whereas the remaining parameters are fixed based on empirical data. Accurate
estimation enables the model to effectively describe Dengue dynamics across young and adult
populations. Parameter estimation was performed by solving a nonlinear least-squares problem using
the TRF algorithm.

Implementation of the TRF algorithm: The Trust Region Reflective (TRF) algorithm [21],
implemented via SciPy [22] in Python, combines trust-region strategies with reflective
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transformations to handle parameter bounds. For a least-squares problem with n parameters and m
residuals (m > n), the objective is:

10 = Sl = %Z} R 1<x<u,

where x € R” is the parameter vector, r : R” — R” is the residual function, and I, u € R” define bounds.
The algorithm uses adaptive scaling:

u; — X; if (Vf(X))l < 0and u; < oo,
vi=3x -1 if(Vf(x));>0and ;> —co, D = diag(v'/?),

1 otherwise,

which rescales the search space to respect bounds. In the transformed space & = D~'x, first-order
optimality is expressed as
D*V£(x) =0,

covering interior and boundary conditions. At each iteration k, the trust-region subproblem is
N A N
mpln Ep Bp+&p| st |Ipll <A 3.1

with g, = DVf(x;) and B; = DV2f(x;)D + C;, where C; ensures positive definiteness. Constraint
violations are addressed via reflection:

211' -X X< li’

f
X0 =2u - X x>

X; otherwise.
The subproblem is solved using SVD on the scaled Jacobian JD, yielding
p=-VE'Z + D) '2T0r(x),

with A chosen to satisfy the trust-region constraint ||p|| = Ay.

Selection of the best parameter set: The final parameter vector x* is selected based on:
1) Optimality: ||D*Vf(xp)|| < €.

2) Objective minimization: X* = arg min f(x) among evaluated points.

3) Feasibility: 1 < x* < u.

The TRF algorithm guarantees convergence from any feasible starting point, rapid convergence
near the optimum, efficiency for large sparse problems, automatic handling of bounds, and numerical
stability. Using Dengue case records from Valle del Cauca and SIVIGILA data [8], the model
parameters were fitted via nonlinear least squares with TRE. Optimized parameters with 95%
confidence intervals are shown in Table 5.
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Table S. Optimized parameters using the TRF algorithm.

Parameter Value Units Calibration bounds
B 0.6306 day™! [0.3826, 1.0393]
B> 0.5875 day™! [0.3560, 0.9695]
o 0.0347 day™! [0, 84.0347]
o) 1.3844 day! [0.1369, 14.0011]
By 0.0177 day™! [0.0076, 0.0416]
o, 0.0373 day™! [0.0017, 0.8099]
le6 Susceptible youths - Sy, Infected youths - /;
sa00 {2 s
—e— Observed data
1.67 4000 { --- Prediction Start
g 166 g 3000
H g
El6s £ 2000
1.64 1 — Median 1000 »ﬂ
95% CI
-~ Prediction Start 0
> N4 > > > S\ N\ > N\ > > > N\
S ’é&p s o ’L&Q,o w&xp g @@4’9 o 2 &”%9 ’L&QQ w&Q«Q w@D g o g e w&@ w&o,,e
(a) Date (b) Date
Recovered youths - Ry 1e6 Susceptible adults - Sy,
—— Median 211 \
500001 :?euﬁwcctlion Start 2.10
40000 2.09
> >
£ 30000 £208
E E
g g
= 20000 £2.07
10000 2 Median
0 2051 __. :rS:dnifllmn Start
> > > > >
oW pw&o,o ’L&\;o s & &4,0 W@N St),o «Qm&(f w&g,o
(c) Date (d) Date
Infected adults - /1, Recovered adults - Rr
3500 —— Median 60000 —— Median
3000 { o~ Opmervec dta 50000 { -~ mecicion sar
=== Prediction Start
2500 40000
g 2000 g 30000
g 1500 g
= / = 20000
1000
500 & w 10000
. \W/ o /
> > > > > > > > > &
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Figure 6. Stochastic model simulations with estimated parameters. Median trajectories
and 95% prediction intervals are shown.
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Figure 6 illustrates the temporal evolution of human and mosquito populations, presenting the
median trajectories along with 95% prediction intervals obtained from 100 stochastic simulations
using the Euler—Maruyama method (Eq (2.4)). The vertical red line marks the transition between the
interpolation phase, during which the model is fitted to observed data, and the extrapolation phase,
which corresponds to model-based forecasts. Simulations employing the calibrated parameters
(B1,B2,01,07,B,,0,) closely reproduce the observed dynamics, revealing a pronounced decline in
susceptible human compartments S,; and S,,, with a steeper decrease among adults, concomitant
with elevated infection levels I;, in the adult population exhibiting greater variability, whereas
infections among younger individuals remain comparatively stable. Recovered compartments Rj,; and
Ry, increase steadily over time, particularly among adults. In the mosquito population, the number of
susceptible vectors, §S,, declines while the number of infected vectors, I, increases, consistent with
sustained transmission. These results indicate that the model effectively captures the temporal
patterns and the stochastic variability of Dengue dynamics, providing a robust framework for short-
and medium-term epidemic forecasting.

4. SARIMA

In this section, the SARIMA model was employed as an alternative forecasting approach to the
proposed SDE-based model, using Dengue case data for the general population, as illustrated in
Figure 3. This choice is motivated by the observation that monthly Dengue incidence in Valle del
Cauca exhibits marked seasonality: Warm and humid conditions promote the reproduction of the
vector, Aedes aegypti, whereas colder periods restrict its proliferation. Such environmental variability
gives rise to trend and seasonal components that are well captured by time series models.

The SARIMA model incorporates lagged values, representing past observations that influence the
current state of the series, thereby enabling the assessment of temporal dependence within the data.
This feature makes SARIMA a suitable tool for short- and medium-term forecasting. In this context,
two key concepts relevant to the methodology of this study are introduced: White noise, which is
essential for validating model assumptions, and the SARIMA framework, which is used to fit and
forecast the Dengue time series.

Definition 4.1. A stochastic process {Z;} is called white noise if it has zero mean, constant variance,
and its variables are uncorrelated at all lags. Formally, the following conditions are satisfied [9]:

1) E[Z]=0, t=1,2,...
2) Var(Z) =02, t=1,2,...
3) Cov(Z;,Z,1) =0, k==1,+2,...
Definition 4.2 (SARIMA Process (p,d, q) X (P, D, Q),). If d and D are non-negative integers, then
{X;} is called a seasonal ARIMA process (p,d, q) X (P,D, Q), with period s, if the differenced series
Y, := (1 — BY(1 — B*)PX, is a causal ARMA process defined by [23]

d(BYD(B")Y, = 0(B)O(BZ;, {Z;} ~ WN(0, ), 4.1)
where:

p) =1—=drz—- = Pp2’,
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O(z)=1-Dyz—-- — Dpz”,
0z)=1+6z+ - +6,77,
O@)=1+0z+-- +0Opz2.

For the SARIMA model, the following should be considered:

e The parameters d and D represent the orders of ordinary and seasonal differencing, respectively.
e ¢(B) and O(B) are the ordinary (non-seasonal) autoregressive and moving average polynomials.
o O(B’%) and O(B*) are the seasonal autoregressive and moving average polynomials associated with
a periodicity s.
The process {Y;} is causal if and only if ¢(z) # 0 and ®(z) # O for |z| < 1. In practical applications,
D is rarely greater than one, and the values of P and Q are usually less than three [24].
Equation (4.1), satisfied by the differenced process {Y;}, can be rewritten in the equivalent form:

¢"(B)Y, = 6" (B)Z,, (4.2)

where ¢*(-) and 6°(-) are polynomials of degree p + sP and g + sQ, respectively, whose coefficients can
be expressed in terms of ¢y,...,¢,, Di,...,Dp, b;,...,6, and Oy, ..., 0.

Given that p < s and g < s, the constraints on the coefficients of ¢*(-) and 8*(-) can be expressed as
multiplicative relationships:

gb;*Hj = ¢;‘CD;, fori = 1,2,...and j = 1,...,s — 1; similarly, 0;‘s+j
j=1,...,5s—1.

As a result, the modeling of the time series for monthly Dengue cases in Valle del Cauca from
January 2013 to December 2023 was carried out following the steps outlined below. First, the variance
of the time series was stabilized. Second, a differentiation diagnosis was performed. Subsequently, the
model orders were identified. Next, SARIMA models were fitted by varying the values of p, d, g and
P, D, Q. The optimal model was selected based on the Akaike Information Criterion (AIC). Finally,
the statistical assumptions of the selected model were validated, and a forecast of future values was
generated to accurately estimate monthly Dengue cases.

= 9;‘@}‘., fori = 1,2,... and

4.1. Variance stabilization

N N o o
o U o wu
| |
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I
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Figure 7. Box-Cox transformation.
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The first step involved evaluating the need to apply a Box-Cox transformation to stabilize the
variance. This transformation was applied to the time series because, as shown in Figure 3, the
variance appeared unstable. The transformation is detailed in the book Introduction to Time Series
and Forecasting [24]. As a result, in Figure 7, it is evident that the variance has been stabilized
following the transformation.

4.2. Differencing diagnosis

The values of d and D were determined to ensure the stationarity of the Box-Cox transformed series,
which, in this, case corresponds to the logarithmic transformation. To assess ordinary stationarity, the
Augmented Dickey-Fuller (ADF) test was applied, as described in Introduction to Time Series and
Forecasting [24], to determine whether regular and/or seasonal differencing is required to achieve
stationarity. This procedure is essential for the formulation of the SARIMA model, as established in
Definition 4.2. The following hypothesis test was performed with the corresponding ADF test results
for the monthly Dengue cases in Valle del Cauca, as reported in Table 6:

{HO : ¢ =1, the series is non-stationary (unit root present) 43)

H, : ¢ <1, the series is stationary (no unit root).

Table 6. Results of the augmented Dickey-Fuller (ADF) test.

Parameter Value
Test Statistic 0.047
P-value 0.700

Since the p-value is greater than 0.05, we fail to reject Hy, indicating the presence of a unit root and,
therefore, non-stationarity in the series. Consequently, the series is differenced to achieve stationarity.
In Figure 8, the differenced series is shown, which presents signs of having reached stationarity.

0.6 4

0.4 4

0.2 4

0.0 4

Log-Difference of Cases

-0.41

~0.6 1

I I I I I I I I

NS IS N NS QP«' o,'& 1N \’9«, ’v@, ”Px
34 > 3\ Vv {V {V

Q ,1/0 ,‘9 ,\/0 Q Q

Date (Year-Month)

WV
,1/0

Figure 8. Ordinarily differenced series.
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To assess whether a second differencing was necessary, the ADF test was applied to the differenced
series again. The resulting p-value of 0.0336 is below the 5% significance level (p < 0.05), leading
to rejection of the null hypothesis of non-stationarity; thus, no additional differencing is required. The
seasonal structure of the series was then examined to determine whether seasonal differencing with
period s = 12 (annual periodicity) was warranted. For this purpose, exploratory tools such as the
monthly boxplot, seasonal subseries plot, and periodogram were used, as shown in Figure 9. Among
these, the periodogram most clearly indicates seasonality, displaying a peak at frequency f = 0.083,
corresponding to a period of s = 1/0.083 ~ 12. Harmonics of this dominant frequency also appear
at2f =0.166 and 3f = 0.249.

This seasonal pattern can be attributed to the nature of the time series, which represents Dengue
infections, a phenomenon influenced by climate-related factors such as temperature and humidity that
vary across months. To confirm this seasonality, the OCSB (Osborn-Chui-Smith-Birchenhall) test was
applied using the pmdarima library and the command nsdiffs(series, m=12, test=‘‘ocsb’’),
with a seasonal period m = 12 for monthly data. Although the test does not suggest the need for
seasonal differencing, graphical analysis reveals clear seasonal behavior in the series. As a result,
seasonal differencing is applied with a 12-month lag. This decision is supported visually in Figure 10,
where the seasonally differenced series no longer exhibits a clear seasonal structure with period S = 12.
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Figure 9. Monthly box-plot, time plot, and periodogram based on the ordinary
differenced series.
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Monthly Boxplot
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Figure 10. Monthly box-plot, time plot, and periodogram based on the seasonally
differenced series.

4.3. Model order identification

The autocorrelation function (ACF) and partial autocorrelation function (PACF) were used to
identify potential orders for the SARIMA(p, d, g) X (P, D, Q), model, following the theory presented
in Introduction to Time Series and Forecasting [24]. In this context, the seasonal autoregressive
components P were associated with lags p(ks), while the non-seasonal components p correspond to
p(s). For the moving average part of the model, the seasonal components Q were identified from
a(ks), and the non-seasonal components g from &(k).

Based on the series that was differenced ordinarily and seasonally, Figure 11 presents the
corresponding autocorrelation and partial autocorrelation functions. From the ACF and PACF plots,
the following possible model orders are suggested:

The value of ¢ may be 0, 1, or 2.
The value of Q may be 0 or 1.
The value of p may be O or 1.
The value of P may be O or 1.
The seasonal period is § = 12.
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Figure 11. ACF and PACEF of the series after ordinary and seasonal differencing.

4.4. Model fitting and selection

The determined values of p, d, g, P, D, and Q were used to estimate the parameters of the SARIMA
model: ¢, 6, ®, ®, and 0. Parameter estimation and model fitting were performed on the Box-Cox
transformed series using the Python programming language, specifically with the statsmodels.api
library, imported as sm.

The parameters were estimated using the maximum likelihood method, assuming that the error term
follows a Gaussian white noise process Z, ~ N(0,0?). A total of 24 model order combinations were
evaluated, and the optimal model was selected based on the lowest value of the Akaike Information
Criterion (AIC), according to the methodology presented in [24]. The selected model, summarized in
Tables 7 and 8, corresponds to a SARIMA(1, 1, 0)(0, 1, 1), model.

Table 7. Summary statistics of the selected SARIMA model.

Dependent variable Box—Cox transformed series
Model SARIMA(1, 1,0)(0, 1, 1)1,
Number of observations 132

Log-likelihood 10.878

AIC —-15.756

Table 8. Parameter estimates of the selected SARIMA model.

Parameter Coefficient Std. error Z-statistic p-value 2.5% 97.5%
AR(1) 0.5681 0.081 6.984 < 0.001 0.409 0.727
Seasonal MA(1), —0.7948 0.123 —-6.482 < 0.001 -1.035 —-0.555
o? 0.0440 0.006 7.540 < 0.001 0.033 0.055

The results indicate that the first-order autoregressive component is positive and highly significant,
reflecting temporal dependence in current Dengue cases. The seasonal moving average component
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with a 12-month lag is negative and statistically significant, indicating an annual cyclical structure.
Furthermore, the low estimated error variance (0> = 0.044) suggests a good model fit and a limited
contribution of the random component. Overall, the results support a seasonal dynamic consistent with
the epidemiological behavior of Dengue in Valle del Cauca.

4.5. Validation of statistical assumptions

Once the optimal model was selected, the statistical assumptions about the residuals are evaluated.
These residuals were assumed to follow a Gaussian white noise process. To verify this, statistical tests
were applied, including the Jarque-Bera test for normality, the Breusch-Pagan test for
heteroscedasticity, and the Durbin-Watson statistic to detect the presence of autocorrelation.

The corresponding hypothesis tests were conducted to assess the classical assumptions of the
model: normal distribution of errors, homoscedasticity (constant variance over time), and absence of
autocorrelation among residuals. These procedures and results are detailed in Table 9.

Table 9. Results of normality, heteroscedasticity, and autocorrelation tests.

Test Statistic P-value
Normality (Jarque-Bera) - 0.667
Heteroscedasticity (Break Test) - 0.379
Autocorrelation (Durbin-Watson) 1.1889 -

Based on the results presented, the following interpretations can be made regarding the model
assumptions:

e Normality: The Jarque-Bera test yields a p-value of 0.667, which is greater than the common
significance threshold (e.g., 0.05). Thus, the null hypothesis of normality is not rejected,
indicating that the model residuals are normally distributed.

e Homoscedasticity: The Break Test result for heteroscedasticity shows a p-value of 0.379, also
above the typical significance level. This suggests that there is insufficient evidence to claim the
presence of heteroscedasticity, indicating that the residuals have constant variance.

e Autocorrelation: The Durbin-Watson statistic is 1.1889. This value is noticeably below the ideal
value of 2, which may suggest the presence of positive autocorrelation in the residuals. This
finding should be interpreted with caution, as it may affect the efficiency of the estimators.

In summary, the results suggest that the assumptions of normality and homoscedasticity are
adequately satisfied for the model residuals. However, the potential presence of autocorrelation, as
evidenced by the Durbin-Watson statistic, indicates the need to review the model structure or consider
additional adjustments to address this temporal dependence.

4.6. Forecasting

A 12-month forecast of Dengue cases for the year 2024 is presented using the fitted SARIMA
model. The predicted values are displayed on their original scale, having been transformed back from
the logarithmic scale using the exponential function, thus reversing the initial Box-Cox transformation.
Figure 12 illustrates the forecast trajectory for each month, alongside the original observed series and
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the corresponding 95% confidence intervals, enabling a clear assessment of the uncertainty associated
with the predictions.

—— Observed data (original)
—— Forecast (original)
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Figure 12. 12-month forecast generated by the SARIMA model.

From Figure 12, the following results can be interpreted:

e Expected behavior: The forecast begins in January 2024 with approximately 7303 estimated
cases and shows an increasing trend throughout the year. By December 2024, the model predicts
around 9039 cases, representing the highest projected value in the forecast horizon.

¢ Confidence intervals (95%): The confidence intervals start off moderate but widen significantly
over time:

— In January, the number of cases is expected to fall between 4783 and 11,151.
— In December, the range broadens substantially, from 1084 to 75,402 cases, indicating a high
level of uncertainty associated with long-term forecasts.

The SARIMA(O, 1, 1)(0, 1, 1)[12; model successfully captures the trend and seasonality in the series,
demonstrating good performance for short-term (12-month) forecasting. The projections suggest a
possible significant increase in Dengue cases during 2024, serving as an early warning for public
health authorities. These estimates can be valuable tools for planning and designing preventive and
control strategies.

Specifically, considering that by epidemiological week 13 of 2024, a total of 18,112 cases had
been reported, and the model projects a 95% confidence interval ranging from 2375 to 24,412 cases
for the month of April. This reflects a reasonable alignment with the observed data and the inherent
uncertainty in the forecasting process. However, caution is advised when interpreting estimates for the
final months of the forecast horizon, as uncertainty naturally increases with time.
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5. Conclusions

In this study, we developed an age-structured stochastic model to elucidate the transmission
dynamics of the Dengue virus between human and mosquito populations. Simulation results revealed
distinct epidemic patterns, characterized by declining susceptible compartments (S,; and S,,) and
pronounced infection peaks (I;; and [;;) across both age classes. Despite inherent stochastic
variability, consistent temporal trends were observed, demonstrating the robustness of the model
structure. The age-stratified analysis indicated that adult individuals experienced a higher infection
burden and greater variability in epidemic trajectories, likely due to increased exposure associated
with occupational, social, and healthcare-related activities. These findings highlight the importance of
designing targeted intervention strategies that prioritize adult populations, including strengthened
vector control measures, enhanced workplace prevention programs, and sustained public health
campaigns promoting protective behaviors.

For predictive applications, the seasonal autoregressive integrated moving average (SARIMA) and
stochastic differential equation (SDE) models demonstrated satisfactory performance. The SARIMA
framework effectively captured the observed temporal regularities, particularly seasonal and cyclical
patterns, making it well-suited for short-term forecasting and public health preparedness. In contrast,
the SDE model provided a mechanistic interpretation of Dengue transmission dynamics across age
classes and mosquito populations, offering deeper insights into system variability and the role of
random perturbations. Together, these complementary approaches strengthen the capacity for Dengue
surveillance, forecasting, and control planning by integrating statistical prediction with biologically
grounded stochastic modeling.

This study has several limitations. Model calibration was based on aggregated surveillance data,
and the lack of age-specific entomological information required simplifying assumptions. Human
mobility and multiple Dengue serotypes were not explicitly represented, and stochastic perturbations
were modeled as Gaussian noise, which may approximate only real environmental variability. Despite
these limitations, the proposed stochastic age-structured SIR—SI framework provides a robust basis
for incorporating additional heterogeneities and data sources in future work. In future research, we
will extend this framework to examine how random perturbations affect disease fade-out probabilities
and the emergence of quasi-stationary behavior in endemic regimes. In addition, using a
comprehensive sensitivity analysis, we will assess the influence of key epidemiological parameters on
temporal dynamics and the effective reproduction number. These developments will place our
findings within the broader context of stochastic threshold theory and explicitly link the framework
with the basic reproduction number formulation proposed by [5]. This integrated
deterministic—stochastic perspective may contribute to early warning systems and adaptive Dengue
control strategies, particularly in data-limited endemic settings.
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