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Abstract: During the outbreak of new infectious diseases, media information and medical resources
play crucial roles in shaping the dynamics of disease transmission. To investigate the combined
impact of media information and limited medical resources on disease spread, we proposed a two-
group compartmental model. This model divided the population into two groups based on their
ability to receive information. We derived the basic reproduction number, analyzed the local stability
of the disease-free equilibrium, and examined the conditions under which disease extinction or
persistence occured. For control strategies, we explored both constant and optimal control approaches
under the constraint of limited media resources. Numerical simulations indicated that enhancing the
population’s responsiveness to media and medical resources helped reduce the infection rate. The
model also exhibited complex dynamical behaviors, such as backward bifurcation, forward-backward
bifurcation, and homoclinic bifurcation, which presented significant challenges for disease control.
Furthermore, we conducted numerical simulations of the optimal control problem to validate and
support our theoretical findings. In the case of constant control, as the disparity between the two
populations increases, media resources should be increasingly allocated to the information-insensitive
group. For optimal control, we employed the forward-backward sweep method, where media resources
were increasingly allocated to information-insensitive groups as population heterogeneity rises. This
study established an empirical framework for optimizing media-driven public health communication
strategies, offering critical insights into the strategic allocation of limited media resources across
heterogeneous populations.

Keywords: two-group compartment model; heterogeneous; media information; limited medical
resources; control strategies; bifurcation

1. Introduction

In recent years, infectious diseases such as Dengue Fever (1979), severe acute respiratory
syndromes (SARS) (2003), influenza a (HIN1) (2009), and Corona virus disease 2019 (COVID-19)
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(2019) have spread globally. The impact of these infectious diseases extends beyond the health sector,
severely threatening the lives and health of people worldwide [1-5]. In the age of information, the
spread of infectious diseases is often accompanied by the rapid dissemination of information. On the
one hand, information related to diseases can raise public awareness, providing details about
transmission routes, infectiousness, and possible preventive measures, thereby enabling individuals to
take effective protective actions. On the other hand, disease-related information can also cause panic,
leading to negative behaviors. As a result, the spread of disease-related information can induce
changes in individual behavior, which, in turn, significantly impacts the transmission of the
disease [6—8].

With the continuous rise of social media, news channels, scientific research, and other information
sources, public understanding and responses to infectious diseases are undergoing profound changes.
Media information not only serves as a carrier of knowledge, but also plays a pivotal role in disease
prevention and control. Many ordinary differential equation models were used to analyze the impact
of individual behavioral changes, such as wearing masks, maintaining social distancing, etc., in
response to the spread of disease-related information. Generally, studies examining the dissemination
of disease-related information can be classified into two main approaches: one assumes that
behavioral changes lead to a reduction in infection or contact rates. This approach typically models
infection rates as a function of the number of infected individuals [9-12] or the number of news
items [13-16], treating news items as a separate compartment. For example, Luo and Liu [17] studied
an susceptible-vaccinated susceptible-exposed-infected-quarantined-recovered (SSVEIQR) model
with nonlinear contact rate, isolation rate and vaccination rate driven by media coverage. The
sufficient conditions to prove the global stability of the endemic equilibrium were obtained by
applying the geometric method into the four-dimensional system. They obtained some measures to
control the spread of the disease, such as reducing contact, strengthening isolation, and vaccination.
The second approach divides the population into two categories: those who are sensitive to
disease-related information and those who are not. Individuals sensitive to such information may
subconsciously take protective measures, thus reducing exposure rates. This method introduces a
heterogeneous modeling solution, which inevitably increases the system’s dimensionality and
complicates theoretical analysis [18-20]. For instance, Li and Xiao [21] proposed a two-group model
that simulates both disease and information propagation, incorporating saturated recovery rates. By
applying fast-slow theory and analyzing the system dynamics directly, they identified the existence
and stability of potential equilibrium points and the occurrence of backward bifurcation.
Consequently, considering heterogeneous models becomes crucial, as variations in information
sensitivity present significant challenges in controlling and eliminating infectious diseases.

In the early stages of emerging infectious diseases, the most significant challenge is the limitation
of medical resources, a threat faced by nearly all countries. For instance, during the initial outbreak of
COVID-19 in mainland China in early 2020, the shortage of detection kits, hospital beds, and
ventilators emerged as the most pressing issue. The need to ensure an adequate supply of medical
resources to effectively respond to outbreaks has become increasingly emphasized. In this context,
Cui et al. [22, 23] developed an epidemiological model incorporating saturated recovery in infected
individuals, demonstrating that saturated recovery can lead to bistability and periodicity. To analyze
the impact of medical conditions, Wang [24] proposed an Ebola epidemic model that incorporates
limited medical resources, immunity loss, and the tracking and quarantining of susceptible
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individuals. The study explores bifurcation phenomena and conducts sensitivity analysis, revealing a
strong correlation between the control reproduction number and the incineration or burial rate of dead
bodies. Asamoah et al. [25] introduced a mathematical model to describe the nonlinear recovery rate
in bacterial meningitis, offering a framework for controlling disease transmission in resource-limited
settings, and identifying both forward and backward bifurcations. Li and Xiao [26] proposed an
epidemic S EIM model incorporating saturated media growth and a saturated recovery rate. The
theoretical results suggest that only nonlinear recovery models may exhibit backward bifurcation
under specific conditions. Through numerical simulations, their model revealed a rich array of
dynamical behaviors, including forward and backward bifurcations, Hopf bifurcations, saddle-node
bifurcations, homoclinic bifurcations, and unstable limit cycles. Thus, the limitations of medical
resources give rise to complex dynamics, posing significant challenges in the elimination and control
of infectious diseases.

As discussed in [21, 26, 27], during the outbreak of emerging infectious diseases, medical
resources are often in short supply, and leveraging media information to control disease transmission
proves to be a highly effective strategy. Consequently, it is essential to incorporate the limitations of
medical resources into epidemiological modeling. While existing research on mathematical models
incorporating media information is relatively well-developed, few studies have considered the
heterogeneity of different population groups or examined how media-influenced infection rates and
limited medical resources interact to impact disease dynamics. Furthermore, the challenge of
formulating more effective and targeted control strategies under conditions of limited media resources
remains an area of concern. In light of these issues, this paper aims to explore the heterogeneity in
population responses to media and the constraints posed by limited medical resources. Specifically,
we focus on how these two factors influence disease transmission and control strategies within a
two-group model, taking into account the limitations of media resources.

The structure of this paper is organized as follows. Section 2 presents the model formulation for
heterogeneous infectious diseases. In Section 3, we analyze the well-posedness of the model,
calculate the basic reproduction number, and investigate the local stability of the disease-free
equilibrium. Additionally, we establish the conditions for disease extinction and persistence in the
absence of medical resource constraints. In Section 4, we formulate a control problem that considers
media information allocation and solve the corresponding optimal control problem with control
variables. Section 5 is dedicated to numerical simulations, where we explore the sensitivity of the
model to parameter changes, the bifurcation structure, and the effectiveness of two types of control
strategies. Finally, Section 6 provides a summary of the findings and an outlook for future research.

2. Model formulation

We use a classical SIR model to describe the dynamics of disease transmission, where S, I, and R
represent the susceptible, infectious, and removed (recovered or deceased) individuals, respectively. To
account for individual responses to the information they receive, we divide the total population into two
groups: information-sensitive groups (S, /1, R;) and information-insensitive groups (S,, I, Ry) [21].
We assume that the transmission rate between group j and group i is given by ;;, where 7, j = 1, 2. Due
to the limitations of medical resources, infectious individuals enter the removed compartment with a

recovery rate that follows a saturation function, 1+7T’ where i = 1,2. Here, A; (for i = 1, 2) represents
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the immigration rates, and d is the natural mortality rate for all individuals.

To simulate the impact of media reports and information on disease transmission, we consider the
number of media reports related to the epidemic as an independent variable, denoted as M(¢). To
capture the effect of media reports in reducing the effective contact between susceptible and infected
individuals, we introduce an exponential decay factor, as proposed in [26], represented by e~ and
e~ M which describes the declining coefficient of incidence for the susceptible and infected groups,
respectively. Parameters y; and u, represent the response rates of infected individuals who are sensitive
and insensitive to information, respectively. Finally, T denotes the natural disappearance rate of media
reports. Based on this framework, we consider the following model of differential equations:

% = A, = Br1eMS I} — Broe™MS | I, — dS

4 — e MS I + Broe~MS [, — LI _ g,

IR I 1+h111
ag il
dr — 1+hil, dRy,

dsy _ A, _ﬁZle—azMSQII —ﬁzze_azMSQIz — dSQ, (21)

_ — I
D = Br1e” M, I + Brre” M8, 1) — L2 — dI,,

oz J 1+hy 1>
ary _ _y2f2
dr 1+ I, dRz’

=l +wlh —T™,

The model flow diagram is shown in Figure 1, and all parameters are nonnegative constants, and
their descriptions, values, and sources are provided in Table 1. Since the equations for R, and R,
can be decoupled from the other equations in model (2.1), we exclude these equations from further
consideration in this work. Therefore, we focus on discussing the following simplified model,

Br = Ay = Brie”MS 1) = Broe™ ™S L - dS
dl; _ —a M —a M il
G =Bue VS L+ Brem S L — s —d,

dS—2 = Az —BZIE_QzMSZIl _ﬁZZe_azMSZIZ - dSz, (2‘2)

dh, _ oM - M vl
T = PBue”VSoly + B S L — 5 —db,

Tdsl dl, TdRI
7l

A, S Bie S, I 1+h, R

=l + b — ™.

wd,
ﬁl:eia.MSJz
M M
ﬂlleiu:ruslll /l [
e 7l
A, 1+ 1,1,
Sz Pre Y8, 1, IZ Rz

FOF Ok

Figure 1. Flow diagram for a two-group S /R model with independent media information
compartment M.
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Table 1. Descriptions and values of parameters involved in model (2.1).

Parameters Descriptions Values Units Sources

Immigration into the compartment of sensitive -1
Ay , . 3 day (21]
susceptible population

Immigration into the compartment of insensitive 4
Ao . . 4 day [21]
susceptible population

Contact rate of susceptible and infected individuals in )
B ) 0.00003  persons day [26]
group

Contact rate of susceptible individuals in group 1 and 4
Bz . o . 0.00005  persons day [26]
infected individuals in group 2

Contact rate of susceptible individuals in group 2 and )
Ba1 . o . 0.00006 persons day [26]
infected individuals in group 1

Contact rate of susceptible and infected individuals in

B2 0.00009  personsday”™'  [26]
group 2
Reaction of susceptible individuals to the media in group

a) | 0.0033 - [26]
Reaction of susceptible individuals to the media in group

@ 5 0.0028 - Assumed

Y1 Recovery rate in group 1 0.2 day™! [26]

V2 Recovery rate in group 2 0.15 day~! Assumed

The parameter that measures the effect of medical
h o 0.29 - [26]
resource limitation in group 1

The parameter that measures the effect of medical
hy R 0.029 - Assumed
resource limitation in group 2

i Response rate of infected individuals in group 1 0.4 day™! [26]

7 Response rate of infected individuals in group 2 0.2 day™! Assumed

d Natural mortality rate 0.001345 day™! [26]
Natural disappearance rate of media reports 0.08 day™! [26]

3. Model analysis

3.1. Well-posedness

We first prove the nonnegativity and boundedness of the solutions of model (2.2) to show the the
biological feasibility of it.
Theorem 3.1. Model (2.2) has a bounded solution for all time t > 0 with initial condition lying in
domain

A+ A Aq + A
Q:{(Sl,ll,Sz,Iz,M)eRi:0£S1+11+Sz+12£%,OSMSMI—d’uzz}.
T

Moreover, the compact set Q is positively invariant with respect to model (2.2).

Proof. Since the vector field described by the righthand sides of model (2.2) is Lipschitz continuous in
Q, a unique solution exists when 7 > 0. Note that S, =0=81>0,/,=0=1{>0,5,=0= 5, >0,
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L=0=1,>0,and M =0 = M’ > 0. Therefore, all solutions of model (2.2) starting from € remain
in Q, and model (2.2) is mathematically and epidemiological well-posed in Q.

The total population is represented by N = § + I + R. Depending on the difference of groups, the
total population N is divided into two parts, N; and N,, to represent the total population number of
two groups. To demonstrate the boundedness of the solutions of model (2.1), we add all equations of
model (2.1):

’ Al

N1=A1—dN1=>N1S7,
A

Ny = Ay —dNy = Ny < =,
A+ Ay

N=N;+N,; < .

The above inequality implies that N is bounded above as well as below. Now we prove the boundedness
of M through the equation of M in (2.1). By some calculations as,

A1+ A
M ™ = i1, + ol < ‘%.
Thus 0 < M < ""\+:2A2, which indicates that the feasible region for the model (2.2) is
A1 + A2 /J1A1 +ﬂ2A2

Q:{(SI,II’SZaIZaM)ER_S,_:OSS1+I]+S2+IQS ,0< M < 1

Td

3.2. Disease-free equilibrium and basic reproduction number

We now demonstrate that model (2.2) has a disease-free equilibrium (DFE) given by

Eo=(S0. 10,89, 15, M°) = (ﬁ,o, ﬁ,o, 0).
d d
Additionally, we determine the basic reproduction number (R), which serves as a critical threshold in
epidemiological models. R, represents the average number of secondary infections generated by an
infectious individual in a population of susceptible individuals during the infectious period. To
calculate Ry, we use the next-generation matrix approach [28] and rewrite the equations for the

infectious compartments as follows:

B MS I + BroeMS I
0

F =\ Bue ?MSoI + Bre™®MS, 1,
0
0

and

yili
1+h111 + dll

A\ +ﬁ11€_alMS i +ﬁ12€_mMS 1+ dSl
_ Y21z
(V - 1+/‘1212 + d12

—Ay + ﬁ21€_02MS I + ﬁzze“”MS 21 + ng
—ly — b + ™™
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Then we calculate the Jacobian matrices F' and V at the E\, which are given as

Ak g B2h 0 0 yi+d 0 0 00
0 0 0 00 b g E2bog
d d
F = ﬁz|d/\z 0 ﬁ'zzd/\z 00| V= 0 0 )/2+d 0 0
0 0 0 00 a9 E22 g 0
O 0 O 00 -y 0 —us O 1

The basic reproduction number is derived by computing the spectral radius of the next-generation
matrix, FV~!,

kit ko + k= k) + Ak
= : ,

_ BuM _ B _ BuM _ B
A4y A+ dd+y)’ T dd )

Next, we examine the dynamical behavior of model (2.2) around the DFE E, and identify the
basic reproduction number Ry as a crucial threshold parameter that governs the disease’s extinction or
persistence. To begin, we analyze the local stability of the Ej, by evaluating the sign of the eigenvalues
of the Jacobian matrix at the E.

Ro=p(FV')

where

Theorem 3.2. The DFE E, of model (2.2) is locally asymptotically stable (LAS) when Ry < 1, and it
becomes unstable when Ry > 1.

Proof. The Jacobian matrix at Ey is given by:

e N B N
0 B -y-d 0 fuh 0
J(Ep)=| 0 _Bahs —d _Bnhy 0
e
0 M1 O J7p) -1

It is clear that the eigenvalues —d, —d, and —7 are three negative eigenvalues of J(Ej). Therefore, the
local stability of the DFE, E|, depends on the remaining eigenvalue of J(Ey). The sign of the remaining
eigenvalues is determined by the rest of the Jacobian matrix, denoted as J,(Ej). The eigenvalues of
J1(E)) are obtained by solving the characteristic equation:
BuiAi Bi2Ai
— (Bute _ oy — d) _BuAy
AE — Ji(Ey)| = ( d d -0
| 1( 0)| ‘ _% ﬂ—(%—yz—d
Thus, the characteristic equation is:

2 (Budi—dd+y)  Bnh—dd+y,)

I [BuAi —d(d +yD][BAs —d(d + y2)] BiofaAiAs
d d

d? d?

A

=0.

In the light of Routh-Hurwitz criterion, we need to prove

_BuA = d(d +y)] By —d(d + )| = B M A,
Ay = 7 > 0,
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and
BulA —d(d+y) N By —d(d +y,)

d d

When R, is less than 1, we can get k; + k, + \/ (ky — ky)? + dksky < 2. Upon further simplification, this
leads to the condition

A+ = < 0.

k3k4 < (1 —kl)(l —kz).

After substitution, we can get

B faul <(1_ B )(1_ B )
dd+7y) dd+y) d(d+1y) dld+vy))’

which yields
[BiiA1 —d(d +y)] B2 — d(d + y2)] > BiafarAiAs.

Thus, we have 4;4, > 0. Next, we demonstrate that 4; + 4, < 0. Since Ry > 0, we deduce that
ki + ky + \/(kl — ko)? + 4ksks > 0, which implies that k3ky > kik,. Substituting into the specific
expressions, we obtain 51,81 > 81182,. Furthermore, from the inequality

[B11A1 —d(d + y1)] [Baz A2 — d(d + ¥2)| > B12Ba1 A1 A,

we substitute 51,81 > 1182 into the above inequality to obtain the result:

[B11A1 —d(d + y1)] [Ba2As — d(d + ¥2)| > B11B2nAIA,,

Bl B BiiAr B

After simplification, we get ¢ dn T ddryy < 1, which implies Ty < 1 and 7 Ty < 1, and this can

be further written as 8;;A < d(d + y;) and B A, < d(d + y»). Therefore we have
BN —d(d+y) N B> —d(d+7y,)

A+ A= <0.
1 2 d d
Through the calculation, when R, is less than 1, we can get tr (J(Ey)) < 0 and det(J(Ey)) > O.
Therefore, according to the Routh-Hurwitz criterion, we complete the proof. O

3.3. Dynamics of the model (2.2) without medical resource limitation

Note that model (2.2) has high nonlinearity, which makes the analysis of the model’s dynamics
challenging. Therefore, we consider a special case:

@ = ,8116 QIMS 11 ﬁ]ze_mMS 12 —dSl,
dll _,8 1€ oM S 11 +,812€ QIMS 12—’}/111 dI],
dsz = Ay — Br1e”MS 1y — e M8, 1, — dS,, (3.1)

dlz = B MSo 1 + Prae™ M8 1, — o1 — db,
—, =l +wh - ™,

This special case only includes the factor of contact rate influenced by information, i.e., h; = 0 and
h, = 0. Then, we proceed to theoretically analyze the conditions for the extinction or persistence of
the disease in the special case.
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Theorem 3.3. Assume model (3.1) satisfies Ry < 1, then E is globally asymptotically stable in €
given there exist two positive constant p; and p, with

B { B B2 }
< , max : <pi <1
2821, d(y: +d) d(y, +d)

P1

and

P2

BnAs max{ BiaAy BnAs
2By d(y, +d) d(y, + d)
Proof. In model (3.1), we can continue to use the conditions of the Routh-Hurwitz criterion in
Section 3.2, because when #; = 0 and A, = 0, the conditions are interlinked. We use the method of
constructing the Lyapunov function to prove the disease extinction of model (3.1). The Lyapunov
function is given by:

}<p2<l.

S S,
L=S,-8)-S{In=5 +8,-85-S%In=> + 1, + .
Sl SZ

It is straightforward that L is a positive definite function. Along the trajectories of model (3.1), we

have
‘2—’; = (1_5_(1)) (l_s_z)dsz+dll+d12
(1 - S_O)(Al —Bre " MS I} — Broe”MS I, — dSl)

+ (1 - S—i) (Az — B M1} = BroeMS, 1, - dS,)
+B11e” " MS I} + Brae™MS I, — yi 1, — dI,
+B21e7 M S 211 +,322€_"2M5212 —y2lr —dl,

0
+(ﬁ11€_alMS(1)+ﬁ21€ azMSg— 1—d)11
+ (,Blze_alMSO + B e_(leSO — Y2 — d) I
< A](Z—g—{)— )+A2(2—S—0—S—2) (ﬁ”S +,821 d)]]

+ (,3125(1) +BnSY — 2 — d) L.

Note that the first and second terms are clearly nonpositive, and the sign of the derivative of the
Lyapunov function is primarily determined by the latter two terms. Specifically, we focus on the
expression inside the parentheses of the third term,

0 0 _ BuMi ﬁzlAz _ BiiAi BaiAr

ﬁllSl +ﬁ2152_71_d— d + -7~ —(71 +d)[d(y1+d) +d(7|+d)_1:|'
Therefore, if d[z”ﬁ;) < s and df;] ﬁfz) < = are satisfied, it can be demonstrated that the third term is
nonpositive. To achieve thls, we assume that there exists 0 < p; < 1, such that 0 < d@/:l) < p;1. Due

Baiy . Buli | fuls : ; Buhy _ Bubi | Buhy . Bahy
to d(%[; d/)\ d()’l ) pna,c Wecan rewrite theﬂei(\presswn aS G0 5D = doi+d) 'g“ A <P A . To ensure

212 2112 1 : : : 1A

that ord S , it is sufficient to have p, n < 1 which implies p; < T . Thus, it is enough to

require that max {d[(;;.ﬁ:i)’ df;'lﬁfl)} o1 < 1 in order to guarantee that the third term is nonpositive. The

treatment of the last term follows a similar approach. We can conclude that there exists 0 < p, < 1, and
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it is sufficient to require that p, < % and max{

that the last term is also nonpositive.

Hence, together with conditions, we have 4 < 0. Then, & = 0,if S, =S, 1, = 10,5, =S, L, = IJ.

Therefore, the largest invariant set contained in {(S L1, S, 1) |% = 0} is (S 919,89, 1(2)) . According to
the Lasalle’s invariance principle [29], the DFE is globally asymptotically stable. O

BiaA1L Bnh
d(y2+d)’ d(ya+d)

} < p, < 1. These conditions ensure

When Ry > 1, Ey becomes unstable. Therefore, it is reasonable to assume that in this case, the
infected population /; () and I, () will remain continuous. In fact, the following theorem holds.

Theorem 3.4. Model (3.1) is uniformly persistent when Ry > 1 if, and only if, there exists a nonnegative
constant n > 0, such that all solutions of model (3.1) satisfy:

liminf7; (/) > 5, liminf L (7) > n.
1—o00 t—oo

Proof. We will apply Theorem 3.4 in [30] to prove the uniform persistence of model (3.1). Set

X = {(S1(0. 1i(0). $5(0). L(t). M(1) € RS, : [1(0) 2 0, 1,(0) 2 0},
Xo = {(S1(0), 1i(1), S (1), Io(t), M(1)) € X : [,(0) > 0, ,(0) > O},
0Xo = Q\ Xo ={(51(1),0,5,(),0,0) e X: [(0) =0 or ©,(0)=0},

which is relatively closed in X.

Let ®(#r) : X — X be the solution flow associated with model (3.1), that is, ® (r) (Ag) = A (?).
According to the positivity, it is easy to know when §; (0) > 0,7; (0) > 0,5, (0) > 0,1, (0) > 0, M (0) >
0, @ (r) is positively invariant about X, so for V¢ > 0, then S;(¢#) > 0,1, (¢) > 0,5,() > 0,1, (¢) >
0, M (t) > 0. Now we prove that X is positive invariant for ® (). According to the second and fourth
equations of model (3.1), we get that

an@

-+ (), V>0,

>
dt  —
%92%m+®uﬁ Yt > 0.

If 1,(0) > 0, 1,(0) > 0, according to the above two equations, we can get
L[i(H) > [ (0)e= 0+ (1) > L(0)e™ "D Yt > 0.

Therefore, X is positive invariant for @ (r). Moreover, model (3.1) has the ultimate upper boundary,
thus we obtain X is point dissipative for @ (). We set My = {A, € 0X,, YVt > 0} . We claim that My =
{($1,0,5,,0,0)}.

Hypothesize that A (1) € My, ¥t > 0, and it suffices to show that I,(¢r) = I,(t) = 0, V¢ > 0. If it is not
true, then there exists 7y > 0 such that either (a) 1;(zy) > 0, I,(¢y) = 0; or (b) I;(¢y) = 0, I,(z9) > 0.

For case (a), from the fourth equation of model (3.1), we have
d(1) o
ey = Bue MOS8 (10) I (1) > 0.

Hence, there is an gy > 0 such that I,(r) > 0, ¥t € (ty, ) + &9). On the other hand, from I (z;) > O,
there exists an & (0<eg <&y) such that I;(¢#) > 0, Vit € (t),t +&). Thus, we have
L@ > 0Lk > 0Vt € (t,thp+¢€1), which contradicts the assumption that
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{(S10,L@),S2(),L{#),M(t) € My, Vt > 0}. Similarly, we can obtain a contradiction for case (b).

This proves the claim.

Let A = Nyes,w (x), where A, is the global attractor of model (3.1) restricted to 9X,. We show that
A = Ey. In fact, from A C M, and the first and third equations of model (3.1), we have

A+
lim S (f) = =%
f—c0 d

Thus, Ej is the isolated invariant set in X.
Next we show that W*(Ep) N X, = 0.
(S 1), I;(1), S 2(0), I(1), M(2)) € X, such that

lim S () =
—o0

A+ &
7

If it is not true, then there exists a solution

i 5.0 10 5200, 0. M) = 50,52, 0.0).

Therefore, for any sufficiently small constant & > 0, there exists a positive constant 77 = T (£) such

that we have the following inequalities for all # > T7:

A =€ A +& A =& A+ &
, < S, <
p 7 2(0) p

<S5 <

;0 <1i(n) <6,

0<L( <& 0<MO<E

Consider the following auxiliary system with the above constant &:

dIl (t) (0] —a1M() _ vili (1) _
= Bue S1(O(2) + Brae S1(OL(1) T+ b dl, (1)
A — A —
> |Bi1e7 ¢ ik (y1 + | L(t) + Brae™™* 1 512(1),
dlz(f) oM —aaM(f) _ Y21o(1) _
= Bare S2(O(2) + Bne S2(D)(1) T+ b dl(1)
Ay — Ay —
> B 228 ) 4 | e 28 4 )| o,

Considering the following comparing system, where I, (0) = 1, (0), 1, (0) = I, (0) :

dlz(l) ﬁ e—azf

{ dll(f) [ﬁ e—alf

2—€

— 0+ D| L (@) + Broe ™ EE L (1),
2 fz] (1) + [Brae™ 25

—(n+ d)] L.

Then, the nonnegative matrix £ and the non-singular M-matrix M, represented as new-infection and
transition matrices severally, for the model (3.1), are provided by

[,3116”15(/\1—5) Broe 15(A1=§)

F= ] ]
Bre 25 (Ag—§)  Bane "2 (Ay—E)
d d

Denote
Brie ¥ (A1 =&

~ ’)/1+d 0
]’ M_( 0 ’)/2+d).

d(yz+d)
Broe” 25 (Ar—§)

T _ A1 _ d(y1+d)
J(é:) =FM" = ( Brie 2 (Ar=§)
d(yi1+d)
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According to Lemma 2.1 in [31], as long as Ry > 1, when & and s (f (0)) >0, s (f (g)) is continuous.

We can select such sufficiently small £ > O that we obtain s (f (f)) > 0, and this can explain that the
positive solutions of the lower comparing system increase exponentially. By contrasting to the standard
comparing system, as t — oo, the solutions /; () and I, (¢) of model (3.1) are infinite, which are opposite
to the truth that the solutions of the model (3.1) are bounded. Thus, W* (Ej) N Xy = 0. Clearly, every
orbit in My converges to Ej. Thus, by Theorem 3 in [32], we have

iminf(5; @), L @) > G.m), 1> 0.

By Theorem 4.3 and Remark 4.3 in [33], we conclude that model (3.1) is uniformly persistent with
respect to (Xy,0Xp). From Theorem 2.4 in [34], model (3.1) has at least one equilibrium
(S’{,II‘,S ;,I;,M*) € Xo, with I7 > 0 and I > 0. Accordingly, there is at least one an endemic
equilibrium in model (3.1). The proof of the theorem is complete. O

4. Optimal control under limited media resources

In this section, we use optimal control techniques to study the model (2.1). In order to minimize
the cost of implementing control strategies, it is necessary to find time-dependent control strategies.
Most of the control strategies used in daily life are considering continuous control. In fact, this
problem is a typical optimal control problem. If public health institutions want to eradicate a disease,
maintaining a high level of control is crucial. However, this often incurs significant economic costs,
so it is necessary to develop a time-dependent control strategy. The control strategy we adopt focuses
on the allocation of media resources. Specifically, the total media resource allocation for two groups
of infected individuals sums to 1. Let the media resource allocation rate for the sensitive infected
individuals be denoted as u(z), while the allocation rate for the insensitive infected individuals is
1 — u(t). Our primary objective is to minimize both the total number of infections and the costs
associated with adjusting media coverage intensity.

Another key issue is the limitation of media resources when using media information to control
infectious diseases. In particular, during emergencies, media resources are often constrained, as
platforms such as television, radio, and social media have limitations in terms of coverage area,
transmission frequency, and target audience. Therefore, communicators must prioritize the delivery of
essential information and avoid excessive or redundant details. In the optimal control problem we
consider, we assume a limited media resource, denoted as V. Optimal control problem with
minimizing objective function

lf C
J (u(t) = f [All(t)+BIZ(t)+5u2(t) dt
0

Mathematical Biosciences and Engineering Volume 22, Issue 5, 1109-1139.



1121

subject to

das
d_tl = Ay - Bue M8 1 — Bre™MS L — dS |,
dl, M —aM yili
B Bl ™MS I + BraeMS I, _dlI,
o7 Buie I + Brae - T !
dR, vili
. 4R,
dt 1+h1[1 :
dS2 —-aoM —anM
e Ao = Bo1e” " 8ol — fare™ " So L — dS o, (4.1)
dh M —sM Y2l
a2 Mg I+ xMe, I, — —db,
o7 paie o1y + Bre - Tonh )
dR I
2 _ Yai2 —dR,,
dt 1+]’l2[2
dM
i V{u@uidy + (1 = u(@®)plr] = ™,

where the initial condition is the same as that of model (2.1). The coefficients A, B and C/2 are positive.
A, B represent the weight of the two groups of infected people respectively. Here we assume that C/2
is the weight associated with control u(z). Note that u(z) is a Lebesgue measurable function on a finite

interval [O, tf], where 0 < u(f) < 1. To start, we prove the existence of an optimal control for the
model (4).

Theorem 4.1. There exists an optimal control u*(t) such that

. : ‘f C .,
J(' (1)) = min { f (All(t) + BL(1) + Zu (t))dt}
0

subject to the control model (4.1).

Proof. By the result in [35], we prove the existence of an optimal control. Note that the control and
the state variable are nonnegative values. In this minimizing problem, the necessary convexity of the
objective functional in u(¢) is satisfied. Meanwhile, u(#) belongs to the control set U, where

U= {u(t) :[0,77] = R | u(z) is a Lebesgue measure on [0, 1]} .

The boundedness of the optimal system ensures the compactness required for the existence of an
optimal control. In addition, the integrand in the objective function is convex on the control set U.
Also,we can see that there exist a constant p > 1 and positive numbers w;, w, such that

J (@) 2 wiluOF — w,,

because the state variables are bounded, which completes the existence of an optimal control. m]

In order to find the optimal solution, we use Pontryagin’s maximum principle as follows [36].
Define the Hamiltonian H for the control problem:

H = (SlallaRlaSZ7123R2a Ma u’/lslaﬂll’/lRl’/lSZa/]'Iz,/lea/lM’ t)
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C das, dl, dR;

= AI] + BI, + l(l) + /15l s /l]l i /lRl i
das, dl dR, amM
+/152 i '|'/1[2 i +/1R2 i +/1ME.

Then, the adjoint equations are given:

dj% = (;9;11 (,311(3 M+ Brae” "”Mlz) (As, — ) + As,d,
% + A d — Ay Vu(),

da o0H

= ar =l

d;lljz _ 352 (,3216‘ M1+ Bre” azMIZ) (As, — Ap,) + As,d,

% = _Z_Z = =B + B "MS (s, — Ap) + Pre M S1(As, — A1)

A, — A
_Ye mAR) G A V(L - u(),

(1 + hLy)?
dl,  OH
Pr M ped,
dt R, ®
dAy oOH

7 o (,311@16_‘”]"5111 +ﬁ126¥1€_a1M5112) (A, = As))

+ (ﬁZI(l/ze_azMSle +,3220’2€_(12M5212) (/1]2 — /152) + /lMT.
By the optimality conditions, we have

—aH . AV (ol — g1
= Cu(®) + AV (il —poh) = 0= u' (1) = M (/chz Hi 1),

ou(t)

Note that the boundness is placed on the control variable u(¢), then the optimality condition is changed

to
AV (ol — i 1y)
C ’1 ’0 b

u*(t) = max {min{
which is the optimal control.

5. Numerical simulations

5.1. Influence of media and limited medical resources on the number of infected individuals

First, we study the impact of the reaction of susceptible individuals to the media, @; and «;,, on the
number of sensitive infected individuals, insensitive infected individuals, and total infected individuals
at steady state, which are given in Figure 2. Figure 2(a) shows that /; decreases with the increase of
a1, however, the impact of @, remains negligible. Figure 2(b) illustrates that a higher value of a, leads
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to a more significant reduction in the number of insensitive infected individuals. Figure 2(c) indicates
that increases in both a; and @, contribute to a decrease in the total number of infected individuals.
Figure 3 shows the impact of the response rate of infected individuals, y; and u,, on the number of
sensitive infected individuals, insensitive infected individuals, and total infected individuals at steady
state. As shown in Figure 3(a), both an increase in y; and y, lead to a decrease in I;, with the effect
of u, being more pronounced. Figure 3(b) demonstrates that an increase in u, reduces I, while y;
has a negligible impact. Figure 3(c) indicates that both u; and u, contribute to a reduction in the
total number of infected individuals, although the effect of w, is more pronounced. The effect of the
impaction of limited medical resources, #; and h,, on the numbers of sensitive infected individuals,
insensitive infected individuals, and total infected individuals at steady state is shown in Figure 4. As
shown in Figure 4(a), a decrease in /; and an increase in h, both lead to a reduction in /;. Figure 4(b)
indicates that I, decreases as h, decreases, while 4; has almost no impact. Figure 4(c) demonstrates
that reductions in both %; and /4, contribute to a decrease in the total number of infected individuals. In
general, while the impact of different parameters varies, increasing the influence of media information
and medical resources contributes to a reduction in the total number of infected individuals.

a) Infected individuals I1 changes with oy and a,

(b) Infected individuals 1, changes with o, and a,,
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(c) Infected individuals |1+ I2 changes with oy and a,
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Figure 2. The numbers of sensitive infected individuals, insensitive infected individuals, and
total infected individuals change with the reaction of susceptible individuals to the media at
steady states.
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() Infected individuals I, changes with 1., and ., (b) Infected individuals I, changes with 1., and j,
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Figure 3. The numbers of sensitive infected individuals, insensitive infected individuals, and
total infected individuals change with the response rate of infected individuals steady states.

(a) Infected individuals 1, changes with h, and h,,
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Figure 4. The numbers of sensitive infected individuals, insensitive infected individuals,
and total infected individuals change with the impaction of limited medical resources at
steady states.
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Next, we examine the impact of several key parameters on the total number of infections and
model stability, as shown in Figure 5. It is evident from the figure that variations in these key
parameters significantly influence both the changes in and the stability of the total number of infected
individuals. Then, we analyze the relationship between changes in key parameters and stability
through the following bifurcation diagrams.

(a) The number of infected individuals changes with different (b) The number of infected individuals changes with different
reaction of sensitive susceptible individuals reaction of insensitive susceptible individuals
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Figure 5. The time-series of total infected individuals, with respect to the reaction of
susceptible individuals to the media (@; and «;), the response rate of infected individuals
(11 and w,), and the impaction of limited medical resources (h; and h,).

Figures 6 and 7 are Hopf bifurcation diagrams of /; and I, caused by parameters. As shown in
Figure 6(a), for the range of the reaction of sensitive susceptible individuals to the media, 0 < a; <
0.0102, the disease is asymptotically stable. For 0.0102 < «a; < 0.043, the periodic oscillations
(limit cycle) will appear, i.e., the disease outbreak will occur repeatedly. However, for a higher value
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of a4, i.e., for @; > 0.043, the periodic solutions disappear and the disease again becomes stable. For
Figure 6(b), when 0 < a, < 0.014, the disease is asymptotically stable. When alpha, > 0.014, periodic
oscillation (limit cycle) will occur, that is, disease outbreaks will occur repeatedly. For Figure 6(c),
when 0 < p; < 1, there will always be periodic oscillation (limit cycle), and the disease will break
out repeatedly. In Figure 6(d), when 0 < u, < 0.16, the disease will remain stable, while when
0.16 < up < 1, the disease will occur in periodic outbreaks. In Figure 6(e), when 0 < h; < 4, the
disease will occur periodic outbreaks. The situation of the Figure 6(f) is similar to that of Figure 6(a).
When 0 < A, < 0.006, the disease is stable, while when 0.006 < A, < 0.068, the disease is unstable

and periodic oscillation occurs, and when 4, is increased again, the disease will become stable.
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Figure 6. Bifurcation diagrams (endemic bubble) of I;, with respect to the reaction of
susceptible individuals to the media (@; and «;), the response rate of infected individuals
(u; and u,), and the impaction of limited medical resources (h4; and h;). The black color
shows the upper limit of the limit cycle, and the red color shows the lower limit of the cycle.
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Figure 7(a)—(f) analytical methods parallel to those employed for Figure 6. There are also several
situations caused by parameter changes, such as from stable to unstable, unstable to stable, unstable
in the whole stage, and from stable to unstable and then to stable. Therefore, media information and
medical resources play crucial roles in inducing complex dynamics in model (2.2).
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Figure 7. Bifurcation diagrams (endemic bubble) of I, with respect to the reaction of
susceptible individuals to the media (@; and «;), the response rate of infected individuals
(17 and u,), and the impaction of limited medical resources (4; and h;). The black color
shows the upper limit of the limit cycle, and the red color shows the lower limit of the cycle.

5.2. Numerical simulation of bifurcations

Due to computational challenges, we use the MATCONT package to perform numerical
simulations and analyze the dynamical behaviors and bifurcations of model (2.2) under various
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conditions. We shall illustrate forward bifurcation, backward bifurcation, and forward-backward
bifurcation in the following.

(a) Forward bifurcation (b) Local magnification around Ry =1
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Figure 8. (a): A forward bifurcation diagram of I; and R, (related to A;), and Hopf
bifurcation occurs when 1.0214 < R, < 1.413. The blue curve represents stable equilibrium,
the red curve represents the existence of bifurcated periodic solution around the equilibrium,
and Hopf points are marked with H; (b): A magnified local view around Ry, = 1; (c)-(f):
The four phase diagrams are the phase diagrams corresponding to the forward bifurcation
diagram under different values of Ry. (A, = 2, 51; = 0.00006, 81, = 0.00007, 8,; = 0.00007,
B2 = 0.00008, y; = 0.19, v, = 0.15, a; = 0.0033, a; = 0.0028, y; = 0.5, up = 0.4, hy =0.3,
h, =0.03,d =0.001345, 7 = 0.02)
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A forward bifurcation is illustrated in Figure 8, and Figure 8(a) gives variation in equilibrium level
of sensitive infected individuals with the basic reproduction number (associated with parameter A;)
and corresponding bifurcations, say, when Ry, = 1.0214, the model (2.2) undergoes Hopf bifurcation.
Figure 8(b) is a partial enlarged view of Figure 8(a) near R, = 1. Figure 8(c)—(f) illustrates the
time series of the model (2.2) with different parameters A; which stabilize to either the disease-free
equilibrium or endemic state or bifurcated periodic solution. The first Lyapunov coefficients at both
Hopf points are negative, which means that the Hopf bifurcation is supercritical and the periodic orbits
are born stably, that is to say, the model exists a stable limit cycle when 1.0214 < R, < 1.413. Also, we
can see that when Ry < 1, the model (2.2) only has the DFE, which is globally asymptotically stable,
shown in Figure 8(c); when 1 < Ry < 1.0214 and R, > 1.413, the model (2.2) has an unstable DFE
and a globally stable endemic equilibrium, shown in Figure 8(d),(f); when 1.0214 < R, < 1.413, the
model (2.2) has an unstable DFE and an unstable endemic equilibrium, but has a bifurcated periodic
solution around this unstable endemic equilibrium, shown in Figure 8(e).

(a) Backward bifurcation (b) Ry =0.55

450

SN

0 N 0 \
04 045 05 055 06 065 07 075 08 085 09 0% 1 105 1 500 1000 1500 2000 2500 3000 3500 4000
Ro Time

(c) Ro = 0.932 (d) Ry = 1.05

450
400
350
300

|
250 {{

200
150

100

|
— 250
|
|

50 50

0 0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time Time

Figure 9. (a): A backward bifurcation diagram of /; and R, (related to A;), and the saddle-
node point is marked with SN. The blue curve represents stable equilibrium, and the red
curve represents the unstable equilibrium; (b)—(d): The three phase diagrams are the phase
diagrams corresponding to the backward bifurcation diagram under different values of R,.
(A = 1.5, B11 = 0.00006, B1> = 0.00007, 821 = 0.00007, B2, = 0.00008, y; = 0.25,y, =0.2,
a; = 0.0033, @; = 0.0022, u; = 0.6, o = 0.4, hy = 0.29, h, = 0.029, d = 0.001345,
7 =0.06)

A backward bifurcation is shown in Figure 9, and Figure 9(a) illustrates the saddle-node
bifurcation at Ry, = 0.585 and backward bifurcation at R, = 1. Figure 9(b)—(d) are time serious
diagrams corresponding to different R, of backward bifurcation diagram. When Ry < 0.585,
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model (2.2) has a unique stable DFE, shown in Figure 9(b). As R, increases, the E, coexists with a
stable endemic state E* for 0.585 < Ry < 1, shown Figure 9(c), and further increasing R, leads to
model (2.2) stabilizing to the stable endemic equilibrium for R, > 1, shown in Figure 9(d).

(a) Forward-backward bifurcation

(b) Local magnification around Ry = 1

0.5 SN

(c) Local magnification around Ry = 0.6451

. N
08 H 1.2

1.4

1.6

0.94 0.96 0.98 1.02 1.04

1
Ro
(d) Local magnification around Ry = 1.0092528

26
Hom Hom —»
24 %
02
2l
20}
015
18
- H -
16}
0.1
al /
| SN
10}
8 . e .
0.62 064 066 _ 068 0.7 072 1.0086 1.009 1.0094 1.0098
0 Ro
(e) Variation in period of cycle versus (f) Variation in period of cycle versus
©10° Ro corresponds to (c) «10° R corresponds to (d)
45 4
4
. 35
3
° °
2.5 Q 3
=
5} 5]
o o
2
25
1.5
1
2
05}
0646 0647 0648 0649 065 0651 0652 0.653 1.00921 1.00922 1.00923 1.00924 1.00925

Ro

Ro

Figure 10. (a): A forward-backward bifurcation diagram of /; and R, (related to A;). The
blue curves represent stable equilibria, the red curves represent unstable equilibria, and a
black dot marked with SN or H indicates that the model (2.2) goes through saddle-node
bifurcation or Hopf bifurcation; (b),(c): Local bifurcation diagram, where Hom indicates
that the model (2.2) goes through homoclinic bifurcation; (d),(e): The variation in period of
cycles versus Ry. (A, = 1.5, g1 = 0.00006, 5, = 0.00007, B,; = 0.00007, 5, = 0.00008,
vy = 0.18,y, = 0.15, @; = 0.003122, a; = 0.0026, u; = 0.4, u, = 0.3, hy = 0.29, h, = 0.029,
d =0.001345, T = 0.05)

The forward-backward bifurcation is illustrated in Figure 10(a) where saddle-node bifurcation
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occurs for Ry > 1 and Hopf bifurcation may also occur, and Figure 10(b) is a local magnification of
Figure 10(a) around Ry, = 1. We find two Hopf bifurcation points at Ry = 0.6451 and R, = 1.0092528
and two saddle-node bifurcation points at Ry = 0.617 and Ry = 1.0288. The first Lyapunov
coefficients at those two Hopf points are both positive, which means that the Hopf bifurcations are
subcritical and the bifurcated periodic orbits are born unstable. To further analyze how periodic orbits
change, we plot local bifurcation diagrams (Figure 10(c),(d)) and the variation in period of cycles
versus R, (Figure 10(e),(f)). Figure 10(c),(d) show that once the periodic orbit appears, the minimum
value of /(¢) of the periodic orbit is infinitely close to the value of /() at the unstable saddle point (or
DFE) at Ry = 0.6534 and Ry, = 1.009208. Figure 10(e),(f) shows that the periods eventually go to
infinity at Ry = 0.6534 and R, = 1.009208, at which the homoclinic bifurcations occur and the limit
cycle is replaced by a homoclinic orbit.

In summary, the numerical bifurcation diagrams reveal the occurrence of forward bifurcation, Hopf
bifurcation, backward bifurcation, forward-backward bifurcation, and homoclinic bifurcation. During
the initial phase of an emerging infectious disease outbreak, intensifying public awareness campaigns
and implementing containment measures can effectively reduce the initial number of infections. This
reduction enables the system to stabilize the infection count at a lower endemic equilibrium, thereby
mitigating long-term public health burdens.

5.3. Constant control and optimal control with limited resources

To investigate the information allocation between two populations with different information
reception capabilities, numerical simulations will be conducted to determine the total number of
infections and the constant media resource allocation rate u under the constraint of limited media
resources. Subsequently, a time-varying optimal allocation rate u(¢) control strategy will be proposed
to minimize both the total number of infections and the cost associated with media information
allocation. In this section, we use the media resource data from [38] as the parameter values for V. In
their study, the daily news data from Xinhuanet (news.cn) ranged approximately between 5 to 45
articles per day. Therefore, we also adopted this data range in our analysis, where 5 articles per day
indicate insufficient media coverage (limited resources), and 45 articles per day represent sufficient
media coverage (abundant resources).

First, Figure 11 illustrates the relationship between the constant allocation rate (u) of model (4.1)
and the total number of infected individuals across varying resource levels, considering two groups
with three different types of heterogeneity. From Figure 11(a), it can be observed that when
heterogeneity is low and V < 25, media resources should be allocated to the group with higher
information sensitivity. However, when V > 25, resources should be allocated to the insensitive
group. Figure 11(b) indicates that when the heterogeneity between the two groups is moderate, the
allocation strategy shifts at V = 25, with resources now being allocated to the insensitive group. In
cases of high heterogeneity between the two groups, as shown in Figure 11(c), media resources
should also be allocated to the insensitive group when V = 15. Therefore, the allocation of media
resources is closely related to the heterogeneity between the two groups. As heterogeneity increases,
resources are more frequently allocated to the insensitive group.
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Figure 11. Under the different media resources, the ultimate infected individuals based on
different constant media resource allocation rate («#) in model (4.1). (a): Low heterogeneity
(g : @y = 1.5 : 1); (b): Moderate heterogeneity (a; : @, = 2.5 : 1); (c): High heterogeneity
((1’1 2(12:421).

Next, to gain a deeper understanding of the optimal media allocation strategy for minimizing
infections and associated costs, we simulated the optimal control in model (4.1) and derived the
corresponding optimal control. In the context of three different levels of group heterogeneity, we use
the same parameter values, except for the values of a; and a,, and apply the forward-backward sweep
method to solve the control problem. We numerically calculated optimal control strategies based on
the iterative method used in [39]. This algorithm addresses the optimal control problem by simulating
the system dynamics through Ordinary Differential Equation Solvers and updating the control strategy
using adjoint equations. During each iteration, the objective is to minimize the cost function by
adjusting the control variables. After every iteration, the control variables are updated and the system
states are recalculated until the convergence criteria are satisfied. The specific steps are as follows:

1) Parameter initialization:

* Set global variables such as 4;, 4>, 811, @1, etc., which are parameters related to the model.
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* Initialize control variables, iteration parameters, such as u, u(f) (current and previous iteration
control variables), and initial system states .

2) Model definition:

* Define different models corresponding to different control strategies.
* These models describe the system state evolution over time with control inputs affecting the
system dynamics.

3) Objective function definition:

* The objective function J is used to evaluate the effectiveness of the current control strategy.
It is computed by summing the cost at each time point, which usually involves factors such
as infection rates and control cost.

* During each iteration, calculate the new objective function and compare it with the previous
iterations value to check for convergence.

4) Control input calculation:

» Update control input # based on the adjoint equation (Lagrange multiplier) and the current
state y.

* Control input u is updated using the adjoint variable Ag,, Ay, Ag,, As,, A, Ar,> Ay and the
system state y.

* Ensure the control input is within a specified range, and update the control variable using a
step size.

5) Adjoint equation solution:

* Solve the adjoint equation to update the adjoint variables Ag,, 4;,, Ag,, As,, A1, Ag,, Ay This
step is necessary in optimal control problems.

* In the backward step, starting from the terminal time, the adjoint equations (typically linked
to the Lagrange multiplier equations of the optimization problem) are solved to update the
adjoint variables.

6) Optimization iteration:

* Iterate multiple times, updating the control variable u at each step until the objective function
changes by less than a threshold or the maximum number of iterations is reached.

 After each iteration, print the current control variables u and state variables y, and update the
objective function values.

7) Visualization:

* During the iterations, plot various graphs, such as the infection rate change and the evolution
of control strategies.
* Display the results for different control strategies.
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Figure 12. The optimal control u*(¢) for the model (4.1) obtained by using forward-backward
sweep method, and the relationship between the total infected humans prevalence and time
under different constant control or optimal control. (a),(b): Low heterogeneity (a; : a; =
1.5 : 1); (c),(d): Moderate heterogeneity (a; : @, = 2.5 : 1); (e),(f): High heterogeneity
(a’] IC¥2:421).

As shown in Figure 12(a),(c),(e), the optimal control strategy is implemented from the onset of the
epidemic. Initially, media resources are gradually allocated to sensitive groups. As the disease
progresses, all media resources must be allocated to sensitive groups. However, as the infection rate
within the population declines, media resources should gradually be shifted toward less sensitive
groups. The key distinction across varying levels of population heterogeneity is that, as heterogeneity
increases, the timing of the transition in media resource allocation occurs progressively earlier.
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Figure 12(b),(d),(f) presents the infected humans prevalence, where the red dashed line represents
the infection rate with a control strategy of 0.2, the blue dashed line represents the infection rate with
a control strategy of 0.5, the purple dashed line represents the infection rate with a control strategy of
0.8, and the green solid line indicates the infection rate under the optimal control strategy. It is evident
that under optimal control, the infected humans prevalence is minimized. However, the overall
difference in the effectiveness of infection prevalence control across the three types of heterogeneous
populations is minimal. Only in groups with high heterogeneity does controlling the infected humans
prevalence below 20% lead to slightly more effective control compared to the other two strategies.
Thus, the distribution of media resources follows a heterogeneity-dependent allocation paradigm:
under low heterogeneity conditions, priority is given to information-responsive groups, whereas
higher heterogeneity triggers a proportional reallocation to demographic segments exhibiting limited
responsiveness to media interventions.

6. Conclusions and discussion

In this study, we proposed an improved infectious disease S /R model that divides the population
into two distinct groups: the information-sensitive group and the information-insensitive group. This
model incorporates two nonlinear functions to examine the impact of media coverage and limited
medical resources on disease transmission. It more accurately reflects the actual dynamics of
infectious disease transmission under varying heterogeneity conditions. We analyze the
well-posedness of the original model, but due to its high nonlinearity, we focused on the case where
only media information influences and investigated the conditions for disease extinction and
persistence. Numerical simulations were conducted on media and medical resource parameters. The
bifurcation analysis revealed various dynamic behaviors, including forward bifurcation, backward
bifurcation, Hopf bifurcation, saddle-node bifurcation, and homoclinic bifurcation. In the control
problem, we further considered the allocation of limited media resources and explored the issue from
both constant and optimal control perspectives. Under constant control, we simulated the changes in
the number of infected individuals for different types of population heterogeneity, considering varying
media allocations and limited media resources. In the case of optimal control, we applied optimal
control theory to explore the problem related to information allocation and derived optimal control
strategy. In addition, we validated the effectiveness of the proposed control strategy by simulating the
optimal media resource allocation for different types of population heterogeneity, and compared the
similarities and differences in control strategies and effects among different types of groups.

Our model incorporates factors such as media coverage and medical resource limitations,
particularly in the early stages of a pandemic, where these factors significantly influence disease
transmission. It also captures the variations in media responses across different populations, which is
essential for developing targeted public health policies. By analyzing simplified conditions for disease
extinction and persistence, we provide theoretical insights into epidemic dynamics. However, media
coverage and medical resource limitations do not affect the threshold conditions for disease extinction
or persistence. Numerical simulations of media and medical resource parameters illustrate their
impact on the number of infected individuals. Overall, increasing public responsiveness to media and
medical resources helps reduce infections, and both factors influence the stability. Bifurcation
analysis reveals complex dynamics under varying parameters, highlighting the challenges of
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controlling disease spread. Two control methods were simulated with limited media resources. Under
constant control, resources tend to be allocated to insensitive groups as population heterogeneity
increases. In optimal control, a key distinction across varying levels of heterogeneity is that as
heterogeneity increases, resources gradually shift toward insensitive groups.

Compared to [21] and [26], our work extends the model by jointly considering the effects of media
coverage and medical resources, and explores control strategies for populations with varying
heterogeneity. Our research suggests that during the early stages of an emerging infectious disease
outbreak, public health organizations can reduce the initial number of infections and stabilize the
infected population at a lower level through measures such as quarantine controls or intensified
disease awareness campaigns. Furthermore, the allocation of media resources is closely tied to
population heterogeneity: when heterogeneity is low, resources are predominantly allocated to
information-sensitive groups, while as heterogeneity increases, resources gradually shift toward
insensitive groups. Thus, our study may contribute to advancing their work in this area. However,
certain limitations remain, particularly in the theoretical analysis, where the high nonlinearity of the
model constrained us to focus on the extinction and persistence conditions of a simplified model.
Additionally, our current framework does not account for the heterogeneity of media information,
such as its veracity (truthfulness vs. misinformation) and practical relevance (actionable guidance vs.
speculative content), which are critical factors requiring explicit consideration in real-world public
health communication strategies. This aspect can be further refined in future research.
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