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Abstract: In this paper, we introduce and analyze a contiunous-time model of co-infection dynamics
in a heterogeneous population consisting of two subpopulations that differ in the risk of getting in-
fected by individuals with two diseases. We assume that each parameter reflecting a given process for
each subpopulation has different values, which makes the population completely heterogeneous. Such
complexity and the population heterogeneity make our paper unique, reflecting co-infection dynamics.
Moreover, we establish an epidemic spread for each disease not only in a sole subpopulation but also
with criss-cross transmission, meaning between different subpopulations. The proposed system has
a disease-free stationary state and two states reflecting the presence of one disease. We indicate condi-
tions for their existence and local stability. The conditions for the local stability for states reflecting one
disease have a complicated form, so we strengthened them so that they are more transparent. Investi-
gation on the existence of a postulated endemic state corresponding to both disease’s presence leads to
a complex analysis, which is why we only provide an insight on this issue. Here, we also provide the
basic reproduction number of our model and investigate properties of this number. The system has a
universal structure; as such, it can be applied to investigate co-infection of different infectious diseases.

Keywords: co-infection; S IS model; local stability; population heterogeneity; dynamical systems

1. Introduction

There is a large number of papers with mathematical models of epidemic dynamics. These papers
relate to both homogeneous and heterogeneous populations. By heterogeneous population we under-
stand a population with at least two subpopulations that differ in the risk of getting infected. Because
of convenience and lack of appropriate data, only two subpopulations are often distinguished. In re-
cent papers [1] and [2], one can find exemplary models of epidemic spread in such populations with
mathematical analysis.
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Nowadays, the risk of co-infections is increasing worldwide, including co-infections with COVID-
19 [3]. This increase is caused by, for example, increased people’s mobility [4], drug resistance [5],
impaired immunity after suffering from long COVID-19, and reduction of exposure to microbiota
caused by home isolation during the COVID-19 pandemic [6]. Also, getting an infection raises the
probability of simultaneous development of another illness [7]. Co-infection also boosts healthcare
costs [8] and number of deaths [9]. It is therefore essential to put an effort into reducing co-infection
cases. This reduction can be achieved by applying mathematical modeling. Thanks to mathematical
models of co-infection spreading and their mathematical analysis, one can predict co-infections and
implement proper therapeutic approaches. This is desirable since data concerning co-infections are
less accessible than for single epidemics.

Generally, models of co-infection dynamics are based on models that describe the spread of a sin-
gle epidemic. Hence, they have a more complex form and are, consequently, more difficult to analyze.
However, one can find literature dealing with mathematical analysis of co-infection spread. A recent
paper [10] conducted a systemic review of mathematical models. A model of general co-infection
for an acute and a chronic disease was presented in [11]. The authors in [12] proposed and analyzed
the model of COVID-19 and tuberculosis (T B) infection. The same type of epidemics, together with
measuring impact on isolation, was investigated in [13]. Papers [14] and [15] provide mathematical
models for the spread of SARS-CoV-2 with hepatitis B virus and SARS-CoV-2 with human T-cell
lymphotropic virus type-I, respectively. The analysis of models concerning individuals suffering from
COVID-19 and kidney disease was presented in a recent work [16]. An interesting approach is pre-
sented in [17], where the authors investigated the co-infection of airborne and vector-host diseases,
namely COVID-19 and dengue.

Not only COVID-19 is investigated in co-infection modeling. Since HIV infection increases the
probability of developing T B [18], papers related to the modeling of T B and HIV spread contribute
significantly to the literature. Authors in [19] distinguish two T B infected classes: fast and slow latent.
They also considered acute and chronic HIV-infected groups. A recent paper [20] focused on an anal-
ysis of a T B/HIV epidemic spread in Ethiopia, with two infected groups for each disease. Naturally,
other co-infections are also analyzed in the literature. Authors in [21] investigated the epidemic of
HIV and hepatitis C virus, whereas paper [22] dealt with co-infection of T B and pneumonia.

In each paper described above, authors assumed that there is only one class of people that are not
infected with any disease; this means they are susceptible to both infections. This leads to situations
where the probability of co-infection is raised only by encountering a single infection. That supposition
implies no population heterogeneity for healthy individuals. Clearly, this case is not valid. Therefore,
there is a need to include heterogeneity in a susceptible class. While modeling an epidemic of a
single infection for a heterogeneous population, authors assume that values of parameters reflecting
a given subpopulation are the same. This assumption actually leads to the case of a homogeneous
population. To adequately describe the dynamics of infection, and consequently of co-infection, in a
heterogeneous population, one must consider different values of parameters for each subpopulation.
Such consideration makes the mathematical analysis of the model more difficult; thus, this approach is
uncommon.

Our paper aims to construct and analyze the mathematical models of co-infection in a heterogeneous
population consisting of two subpopulations. We assume that parameter values reflecting a given pro-
cess in each subpopulation differ. This assumption and the heterogeneity in the population make our
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paper novel among the literature considering the modeling of co-infections. In our model, we also
introduce a case of a spread of each disease not only among one subpopulation but also between sub-
populations. This introduction enables our system to be classified as a criss-cross model. We propose a
system of ordinary differential equations that is a S IS -type (susceptible–infected–susceptible) model.
In models of such type, there is no immunity after recovery and an individual becomes susceptible
again. Including heterogeneity constrains computations. For this reason, we do not incorporate a
recovered class to maintain explicit results of the analysis. Our model does not relate to particular
diseases. Hence, one can apply the obtained results to different infections. Such applications include
co-infections that combine sole airborne illnesses, such as T B, COVID-19, or influenza, sexually trans-
mitted diseases, such as gonorrhea, HIV , and hepatitis B, or incorporate illnesses from both types.

This paper is a continuation of our work from [23] and [24], in which we investigated the criss-cross
model of epidemic spread of a single disease for a heterogeneous population. In [23], we conducted
the mathematical analysis of the model that was proposed in [25]. The aim of that analysis was to con-
firm, from a mathematical point of view, the medical hypothesis that stated that to control the epidemic
spread in the heterogeneous population, one must consider criss-cross illness transmission. Investigat-
ing such spread in a single subpopulation does not provide complete insight into the epidemic dynam-
ics. Because of the proposed model’s unexpected properties, such as a possible unbounded population
growth, we modified the system from [23] by assuming a constant inflow into each subpopulation. We
analyzed that modified system in [24] and again obtained consistency with the medical hypothesis.
Considering that the second disease in epidemic dynamics for a heterogeneous population is medically
driven by an increasing number of co-infections worldwide and different scenarios regarding individu-
als’ susceptibility can provide mathematical results that can help predict a co-infection course.

In [23] and [24], we focused on the stability analysis; we indicated stationary states appearing in
the given systems and determined the conditions for their local stability. In this paper, we also apply
this approach. The model presented herein relies on the system from [24].

The paper is organized as follows: In Section 2, we describe and introduce our model. Then we
find stationary states of the system and describe conditions for their existence. The basic reproduction
number of the model is computed in Section 4. The following section deals with local stability of the
found stationary state. We summarize our results in Section 7.

2. Formulation of a model and its basic properties

Let us first describe the assumptions concerning the proposed model. In a population, we indicate
two subpopulations, a low-risk (LS ) and a high-risk (HS ) subpopulation, relating to the risk of getting
infected. LS and HS have, respectively, lower and higher susceptibility to each disease. For every
variable and parameter, we assign a subscript i equal to 1 and 2 for LS and HS respectively. If i has
no assigned value, then i ∈ {1, 2}. By S 1 and S 2, we denote a density of healthy people in LS and HS ,
respectively. The variables Ii refer to the density of individuals from the given subpopulation that are
infected by a pathogen of the disease that we call disease A (DA). Similarly, we define Ji as the density
of individuals suffering from disease B (DB). The density of a group infected by pathogens from both
diseases is denoted by Ki.

Migrating and newborn individuals join each subpopulation through S i class with a recruitment rate
Ci. A natural death rate for each subpopulation is equal to µi. For DA, we introduce the transmission

Mathematical Biosciences and Engineering Volume 22, Issue 5, 1055–1080.



1058

rates β11, β22, β12 and β21, reflecting transmission among LS , among HS , from HS to LS , and from
LS to HS , respectively. These four different rates mean that DA differs in spreading and contracting a
pathogen. To get a preliminary insight on co-infection dynamics for the heterogeneous population, for
DB we assume that individuals differ only in contracting a pathogen. For this reason, we take only two
transmission coefficients for DB: σ1 for LS and σ2 for HS . By γi and gi, we denote the recovery rate
for DA and DB, respectively. The disease-mortality rate for DA and DB is depicted by αi and ai.

The proposed model of co-infection is

Ṡ 1 = C1 − β11S 1I1 − β12S 1I2 + γ1I1 − µ1S 1 − σ1S 1(J1 + J2) + g1J1, (2.1a)
İ1 = β11S 1I1 + β12S 1I2 − (γ1 + α1 + µ1)I1 − σ1I1(J1 + J2) + g1K1, (2.1b)
J̇1 = σ1S 1(J1 + J2) − (g1 + a1 + µ1)J1 − β11J1I1 − β12J1I2 + γ1K1, (2.1c)
K̇1 = σ1I1(J1 + J2) + β11J1I1 + β12J1I2 − (g1 + a1 + γ1 + α1 + µ1)K1, (2.1d)
Ṡ 2 = C2 − β22S 2I2 − β21S 2I1 + γ2I2 − µ2S 2 − σ2S 2(J1 + J2) + g2J2, (2.1e)
İ2 = β22S 2I2 + β21S 2I1 − (γ2 + α2 + µ2)I2 − σ2I2(J1 + J2) + g2K2, (2.1f)
J̇2 = σ2S 2(J1 + J2) − (g2 + a2 + µ2)J2 − β22J2I2 − β21J2I1 + γ2K2, (2.1g)
K̇2 = σ2I2(J1 + J2) + β22J2I2 + β21J2I1 − (g2 + a2 + γ2 + α2 + µ2)K2. (2.1h)

Each parameter is fixed and positive. In particular, every parameter besides Ci is in the range (0, 1).
If we assume that σi, gi, ai = 0, the above system would reduce to the system that we introduced and
analyzed in [24].

Figure 1 is a schematic drawing of the proposed model.

Figure 1. Possible movements between particular classes from system (2.1). The green
rectangles correspond to non-infected classes, the red rectangles reflect groups with one in-
fection, and the blue rectangles relate to co-infected classes. For the sake of transparency,
subscripts are expressed as regular symbols.
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In order to make the form of system (2.1) more transparent, we define:

ki := γi + αi + µi, qi := gi + ai + µi, ri := gi + ai + γi + αi + µi. (2.2)

Now we indicate the basic properties of the model. The form of the right-hand side of system (2.1)
implies that its solutions exist and are unique and positive for any positive initial condition. Let us
introduce a variable Ni := S i + Ii + Ji +Ki that naturally means a density of the whole HS or LS . After
adding both sides of Eqs (2.1a)–(2.1d) or Eqs (2.1e)–(2.1h), we get

Ṅi = Ṡ i + İi + J̇i + K̇i = Ci − µiNi − αiIi − aiJi − (αi + ai)Ki. (2.3)

See that we can estimate Eq (2.3) from above by the inequality

Ṅi ≤ Ci − µiNi, (2.4)

which solution is

Ni(t) ≤
(
Ni(0) −

Ci

µi

)
e−µit +

Ci

µi
.

For Ni(0) > Ci
µi

, we observe a decrease of the population. Clearly, we have

S i(t), Ii(t), Ji(t),Ki(t) ≤ Ni(t) ≤ Ni(0).

For Ni(0) < Ci
µi

, we have a limited growth of the population, since

S i(t), Ii(t), Ji(t),Ki(t) ≤ Ni(t) ≤ −C̃e−µit +
Ci

µi
≤

Ci

µi
,

where C̃ is any positive constant.
Now we estimate Eq (2.3) by

Ṅi ≥ Ci − (µi + αi + ai)Ni. (2.5)

Combining inequalities (2.4) and (2.5), we get

Ci − (µi + αi + ai)Ni ≤ Ṅi ≤ Ci − µiNi,

which produces the invariant set

Ω :
{

(S 1, I1, J1,K1, S 2, I2, J2,K2) : S i + Ii + Ji + Ki ∈

[
Ci

µi + αi + ai
,
Ci

µi

]}
.

This set attracts all solutions of system (2.1). We therefore conclude that the variables S i(t), Ii(t), Ji(t),
and Ki(t) are defined for every t > 0.

3. Stationary states

In this section, we indicate stationary states of system (2.1) and determine conditions for their
existence.
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3.1. Non-endemic stationary states

Firstly, we find stationary states that are not endemic, meaning that at least one of their coordinates
equals zero.

We consider separated cases.

1) Firstly, let us assume that Ii = Ji = Ki = 0. We immediately get the form of the disease-
free stationary state:

Ed f =
(
Ŝ 1, 0, 0, 0, Ŝ 2, 0, 0, 0

)
, where Ŝ 1 =

C1

µ1
, Ŝ 2 =

C2

µ2
. (3.1)

Clearly, this state always exists.

2) Now, consider the case Ki = 0. Without loss of generality, we take K1 = 0. From Eq
(2.1d) for any stationary, state we have 0 = σ1I1(J1 + J2) + β11J1I1 + β12J1I2, which implies

(I1 = 0 ∨ J1 + J2 = 0) ∧ (J1 = 0 ∨ I1 = 0) ∧ (J1 = 0 ∨ I2 = 0). (3.2)

Let us consider the first alternative from (3.2).
a) We first take I1 = 0. From Eq (2.1b), we have β12S 1I2 = 0, which yields S 1 = 0 or I2 = 0. If S 1 = 0,
then Eq (2.1b) gives the contradiction 0 = C1 + g1J1. If I2 = 0, then from Eq (2.1h) we have K2 = 0
and our system reduces to:

Ṡ i = 0 = Ci − µiS i − σiS i(J1 + J2) + giJi,

J̇i = 0 = σiS i(J1 + J2) − qiJi.
(3.3)

The above system’s form suggests that there is a stationary state with present DB and absent DA. We
will investigate the existence of such postulated state later. System (3.3) fulfills the case I1 = 0 ∧ I1 =

0 ∧ I2 = 0 from (3.2).
Now, assume that I1 = 0 ∧ J1 = 0 ∧ J1 = 0 holds. Then from Eq (2.1b), we get β11S 1I2 + g1K1 = 0.

It provides S 1 = 0 or I2 = 0. Case S 1 = 0 linked to Eq (2.1a) yields the contrary, 0 = C1, hence we
must have I2 = 0. Then from Eqs (2.1c) and (2.1h), we get J2 = 0 and K2 = 0, respectively. We obtain
state Ed f .

It is easy to check that the case I1 = 0 ∧ J1 = 0 ∧ I2 = 0 gives Ed f as well. The case
I1 = 0 ∧ I1 = 0 ∧ J1 = 0 is equivalent to I1 = 0 ∧ J1 = 0 ∧ J1 = 0.

b) Now assume that J1 + J2 = 0. This assumption obviously provides J1 = 0 and J2 = 0.
From Eq (2.1g), we get J̇2 = γ2K2, giving K2 = 0. We obtain the system

Ṡ i = 0 = Ci − βiiS iIi − βi jS iI j + γiIi − µiS i,

İi = 0 = βiiS iIi + βi jS iI j − kiIi,
(3.4)

where j = 3− i. The above system fulfills condition J1 + J2 = 0∧ J1 = 0∧ J1 = 0, emerged from (3.2).
If we take J1 + J2 = 0 and simultaneously one of the cases J1 = 0 ∧ I2 = 0, I1 = 0 ∧ J1 = 0 or

I1 = 0 ∧ I2 = 0, then we obtain Ed f .
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3) Now suppose that I1 = 0. From Eq (2.1b), we get 0 = β12S 1I2 + g1K1. From S 1I2 = 0, we
get I2 = 0, which gives system (3.3). Choosing K1 = 0 leads to system (3.4).

4) Consider J1 = 0. Then Eq (2.1c) yields 0 = σ1S 1J2 + γ1K1. Both cases J2 = 0 and
K1 = 0 provide system (3.4).

5) Assuming I1 = 0 ∧ J1 = 0 leads to state Ed f .

6) Supposing I1 = 0 ∧ K1 = 0 and J1 = 0 ∧ K1 = 0 results in systems (3.3) and (3.4), respec-
tively.

Reasoning from points 1)–6) conducted for the variables with subscript 2 gives the same con-
clusions.

System (3.4) appears in our previous paper [24]. The solution of this system provides the en-
demic state E∗ = (S ∗1, I

∗
1, S

∗
2, I
∗
2). This state is the projection of the state

EA = (S ∗1, I
∗
1, 0, 0, S

∗
2, I
∗
2, 0, 0), S ∗i , I

∗
i > 0, (3.5)

onto the non-negative subspace (S 1, I1, S 2, I2) ∈ R4. State EA reflects the presence of DA and the
absence of DB. Observe that adding both sides of Eqs (2.1a)–(2.1b) and Eqs (2.1e)–(2.1f) for EA

yields 0 = Ci − µi(Ii + S i) − αiIi, providing

Ii =
Ci − µiS i

µi + αi
. (3.6)

Relying on results for state E∗ from [24], we formulate conditions for the existence of state EA.

Proposition 1. In System (2.1), there exists the stationary state EA defined in (3.5) that reflects the
presence of disease A and the absence of disease B. This state exists if at least one of three cases
holds:

1) β11C1 ≥ µ1k1;

2) β22C2 ≥ µ2k2;

3) βiiCi < µiki and
(µ1k1 − β11C1) (µ2k2 − β22C2) ≤ β12β21C1C2. (3.7)

For EA, we have

0 < S ∗i <
ki

βii
, max

(
0,
βiiCi − µiki

µi + αi

)
< I∗i <

βiiCi

µi + αi
.

Now we focus on system (3.3). Equation (2.3), being the sum of equations from this system,
simplifies to Ṅi = 0 = Ci − µiS i − (µi + ai)Ji, which gives

S i =
Ci − (µi + ai)Ji

µi
. (3.8)
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Computations concerning this system indicate the expected stationary state. Observe that the struc-
ture of system (3.3) is analogous to the structure of system (3.4). Based on this analogousness and
Proposition 1, we formulate the following proposition concerning the other stationary state.

Proposition 2. In System (2.1), there exists the stationary state

EB := (S̄ 1, 0, J̄1, 0, S̄ 2, 0, J̄2, 0), S̄ i, J̄i > 0, (3.9)

with present disease B and absent disease A. This state exists if at least one of three cases holds:

1) σ1C1 ≥ µ1q1;

2) σ2C2 ≥ µ2q2;

3) σiCi < µiqi and
σ1C1

µ1q1
+
σ2C2

µ2q2
≥ 1. (3.10)

For EB, we have

0 < S̄ i <
qi

βii
, max

(
0,
σiCi − µiqi

µi + ai

)
< Īi <

σiCi

µi + ai
.

3.2. The existence of the endemic stationary state

Now we investigate the endemic stationary state, reflecting the presence of both diseases A and B.
Since it is difficult to obtain its explicit form, we limit our investigation to indicate some properties
concerning its existence. Let us define Zi := Ii + JI + Ki. Obviously, variable Zi is the density of
individuals from the particular subpopulation infected by disease A, B, or both. Summing both sides
of Eqs (2.1b)–(2.1d) gives

Ż1 = β11I1S 1 + β12I2S 1 − g1J1 − a1(J1 + K1) + σ1S 1(J1 + J2) − γ1I1 − µ1Z1 − α1(I1 + K1).

From the above equation for the postulated endemic state, we have

S 1 =
g1J1 + a1(J1 + K1) + γ1I1 + µ1Z1 + α1(I1 + K1)

β11I1 + β12I2 + σ1(J1 + J2)
. (3.11)

Equation (2.3) and definition of N1 for this state yield

S 1 =
1
µ1

(
C1 − µ1(I1 + J1 + K1) − α1I1 − a1J1 − (α1 + a1)K1

)
. (3.12)

Since S 1 > 0, one must fulfill

C1 > µ1(I1 + J1 + K1) + α1I1 + a1J1 + (α1 + a1)K1.

Combining reorganized Eqs (3.12) and (3.11), we get(
C1 − µ1(I1 + J1) − α1I1 − a1J1 − s1K1

)(
β11I1 + β12I2 + σ1(J1 + J2)

)
= µ1

(
k1I1 + w1J1 + s1K1

)
,

(3.13)
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where s1 := α1 + a1 + µ1 and w1 := g1 + a1 + µ1.
From Eqs (2.1a)–(2.1d), we get the formula for coordinates S 1, I1, J1,K1:

S 1 =
C1 + g1J1 + γ1I1

β11I1 + β12I2 + µ1 + σ1(J1 + J2)
, (3.14a)

I1 =
β12S 1I2 + g1K1

σ1(J1 + J2) + k1I1 − β11S 1
, (3.14b)

J1 =
σ1S 1J2 + γ1K1

q1 + β11I1 + β12I2 − σ1S 1
(3.14c)

K1 =
β11I1J1 + β12J1I2 + σ1I1(J1 + J2)

r1
. (3.14d)

Positivity of coordinates I1 and J1 yields inequalities:

S 1 <
σ1(J1 + J2) + k1I1

β11
, S 1 <

q1 + β11I1 + β12I2

σ1
.

Combining the above dependences with condition (3.14a), we get

C1 < min
(
σ1(J1 + J2) + k1I1

β11
,

q1 + β11I1 + β12I2

σ1

) (
σ1(J1 + J2) + µ1 + β11I1 + β12I2

)
− γ1I1 − g1J1.

If we substitute Eq (3.14d) into the above inequality, we get

C1 > µ1(I1 + J1) + α1I1 + a1J1 +
α1 + a1 + µ1

r1

(
β11I1J1 + β12J1I2 + σ1I1(J1 + J2)

)
.

Observe that the reasoning presented in this subsection can be applied to variables with subscript 2.
This application provides another condition for the existence of the postulated endemic state.

4. The basic reproduction number

In this section, we find and investigate the basic reproduction number R0 of system (2.1). According
to the definition from [26], R0 refers to the number of new infections produced by a single infectious
individual in a population at a disease-free stationary state. To compute R0, we will rely on the next
generation method described in [26]. In this section, we provide a sketch of computations leading
to the formula for R0. We consider the subsystem of system (2.1), including the equations only for
infected variables: [

İ1, J̇1, K̇1, İ2, J̇2, K̇2

]T
= F −V,

where vector F concerns the terms related to new infections, and vector V reflects the remaining
processes. These vectors read

F =



β11S 1I1 + β12S 1I2

σ1S 1(J1 + J2)
σ1I1(J1 + J2) + β11J1I1 + β12J1I2

β22S 2I2 + β21S 2I1

σ2S 2(J1 + J2)
b2I2(J1 + J2) + β22J2I2 + β12J2I1


, V =



k1I1 + σ1I1(J1 + J2) − g1K1

q1J1 + β11J1I1 + β12J1I2 − γ1K1

r1K1

k2I2 + σ2I1(J1 + J2) − g2K2

q2J2 + β22J2I2 + β21J2I1 − γ2K2

r2K2


,
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respectively. We construct matrices F and V that are the Jacobian matrices of F and V evaluated at
Ed f . These matrices have the form

F =



β11Ŝ 1 β12Ŝ 1 0 0 0 0
β21Ŝ 2 β22Ŝ 2 0 0 0 0

0 0 σ1Ŝ 1 σ1Ŝ 1 0 0
0 0 σ2Ŝ 2 σ2Ŝ 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, V =



k1 0 0 0 −g1 0
0 k2 0 0 0 −g2

0 0 q1 0 −γ1 0
0 0 0 q2 0 −γ2

0 0 0 0 r1 0
0 0 0 0 0 r2


,

Then we compute FV−1 and obtain

FV−1 =



β11
k1

Ŝ 1
β12
k2

Ŝ 1 0 0 g1β11
k1r1

Ŝ 1
g2β12
k2r2

Ŝ 1
β21
k1

S 2
β22
k2

Ŝ 2 0 0 g1β21
k1r1

Ŝ 2
g2β22
k2r2

Ŝ 2

0 0 σ1
q1

Ŝ 1
σ1
q2

Ŝ 1
γ1σ1
q1r1

Ŝ 1
γ2σ1
q2r2

Ŝ 1

0 0 σ2
q1

Ŝ 2
σ2
q2

Ŝ 2
γ1σ2
q1r1

Ŝ 2
γ2σ2
q2r2

Ŝ 2

0 0 0 0 0 0
0 0 0 0 0 0


.

The basic reproduction number is the spectral radius of the matrix FV−1. The eigenvalues of this read
λ1,2,3 = 0, λ4 =

σ1
q1

Ŝ 1 +
σ2
q2

Ŝ 2, and

λ5,6 =
1

2k1k2

(
k2β11Ŝ 1 + k1β22Ŝ 2 ∓

√
(k2β11Ŝ 1 − k1β22Ŝ 2)2 + 4k1k2β12β21Ŝ 1Ŝ 2

)
We finally get

R0 = max(λ4, λ6).

See that λ4 consists of terms relying to only infection B, whereas λ6 refers only to infection A.
Now we formulate the theorem relied on the dependence between λ4 and λ6.

Theorem 4.1. R0 = λ4 if

Ŝ 1Ŝ 2(β12β21 − β11β12) < Ŝ 1Ŝ 2

(
σ1u2

q1
+
σ2u1

q2

)
+
σ1u1

q1
Ŝ 2

1 +
σ2u2

q2
Ŝ 2

2, (4.1)

where

ui := k3−i

(
kiσi

qi
− βii

)
, (4.2)

and

Ŝ 1

(
2σ1

q1
− k2β11

)
+ Ŝ 2

(
2σ2

q2
− k1β22

)
> 0. (4.3)

Proof. Observe that λ4 > λ6 if√
(k2β11Ŝ 1 − k1β22Ŝ 2)2 + 4k1k2β12β21Ŝ 1Ŝ 2 < 2λ4k1k2 − k2β11Ŝ 1 − k1β22Ŝ 2. (4.4)
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Under fulfillment of
2λ4k1k2 > k2β11Ŝ 1 + k1β22Ŝ 2 (4.5)

we raise both sides of inequality (4.4) to the square and transform the result to

Ŝ 1Ŝ 2(β12β21 − β11β12) < λ4(λ4 − k2β11Ŝ 1 − k1β22Ŝ 2).

Using the definition of λ4 in the above inequality and transforming the obtained expression, we get

Ŝ 1Ŝ 2(β12β21 − β11β12) <
σ1Ŝ 1

q1
+
σ2Ŝ 2

q2

 (Ŝ 1u1 + Ŝ 2u2

)
, (4.6)

where ui is defined by Eq (4.2). We rewrite inequality (4.6) as inequality (4.1). Inequality (4.5) with
the definition of λ4 can be transformed into inequality (4.3).

Let us strengthen the assumptions from Theorem 4.1 so that we obtain more explicit ones. Suppose
that ui > 0, which can be written as

βiiqi < kiσi. (4.7)

Then condition
σ1u2

q1
+
σ2u1

q2
> β12β21 − β11β12 (4.8)

suffices fulfillment of inequality (4.1). Moreover, if

βiiqi <
2σi

k3−i
, (4.9)

then inequality (4.3) is always true. Combining inequalities (4.7) and (4.9) yields

βiiqi < max
(
kiσi,

2σi

k3−i

)
. (4.10)

We conclude that

Corollary 1. If inequality (4.10), then R0 = λ4.

The above corollary confirms the obvious dependence that if the transmission of infection B, repre-
sented by σi, is sufficiently stronger than the transmission of infection A between different subpopula-
tions, reflected by βii, then infection B plays a bigger role in the whole population.

Observe that if in inequality (4.3) we replace sign > by sign <, then λ4 < λ6. It yields R0 = λ6,
which is the same as R0 for the system with one infection from [24].

From a medical point of view, the desirable situation is when R0 < 1. Let us check when this case
holds. We formulate the theorem

Theorem 4.2. For system (2.1) R0 < 1 if
σ1

q1
Ŝ 1 +

σ2

q2
Ŝ 2 < 1, (4.11)

Ŝ i <
ki

βii
(4.12)

and
β12β21Ŝ 1Ŝ 2 < (β11Ŝ 1 − k1)(β22S 2 − k2). (4.13)
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Proof. Condition (4.11) is obvious from the definition of λ4. The part of the proof related to λ6 is
similar to the proof of Theorem 4.1. The inequality λ6 < 1 can be transformed into√

(k2β11Ŝ 1 − k1β22Ŝ 2)2 + 4k1k2β12β21Ŝ 1Ŝ 2 < 2k1k2 − (k2β11Ŝ 1 + k1β22Ŝ 2). (4.14)

Under condition
2 >
β11

k1
Ŝ 1 +

β22

k2
Ŝ 2 (4.15)

multiplying both sides of inequality (4.14) yields

β12β21Ŝ 1Ŝ 2 < k1k2 − k2β11Ŝ 1 − k1β22Ŝ 2 + β11β12Ŝ 1Ŝ 2,

which can be written as inequality (4.13). The right-hand side of inequality (4.13) must be positive. It
is true when Ŝ i >

ki
βii

or (4.12). The first case is contrary to inequality (4.15). Hence, inequality (4.12)
must hold, which is stronger than inequality (4.15).

If is easy to check that inequality (4.13) is opposite to inequality (3.7) from Preposition 1 discussing
the existence of state EA. Similarly, inequality (4.11) is opposite to inequality (3.10) from Preposition 2
providing conditions for the EB existence.

5. Local stability of stationary states

Now we investigate the local stability of states Ed f , EA, and EB. The Jacobian matrix of system
(2.1) can be written as J =

(
M1 M2

)
, where

M1 =



G1 −β11S 1 + γ1 −σ1S 1 + g1 0
F1 β11S 1 − k1 − σ1(J1 + J2) −σ1I1 g1

σ1(J1 + J2) −β11J1 σ1S 1 − q1 − F1 γ1

0 σ1(J1 + J2) + β11J1 σ1I1 + F1 −r1

0 −β21S 2 −σ2S 2 0
0 β21S 2 −σ2I2 0
0 −β21J2 −σ2S 2 0
0 β21J2 σ2I2 0


,

and

M2 =



0 −β12S 1 −σ1S 1 0
0 β12S 1 −σ1I1 0
0 −β12J1 σ1S 1 0
0 β12J1 σ1I1 0

G2 −β22S 2 + γ2 −σ2S 2 + g2 0
F2 β22S 2 − k2 − σ2(J1 + J2) −σ2I2 g2

σ2(J1 + J2) −β22J2 σ2S 2 − q2 − F2 γ2

0 σ2(J1 + J2) + β22J2 σ2I2 + F2 −r2


with

Fi := Fi(I1, I2) = βiiIi + βi jI j, Gi := Gi(I1, I2, J1, J2) = −Fi − µi − σi(J1 + J2), j = 3 − i.

We start from the local stability of Ed f .
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Theorem 5.1. Ed f is locally stable if R0 < 1.

Proof. The Jacobian matrix for state Ed f reads

−µ1 −β11Ŝ 1 + γ1 −σ1Ŝ 1 + g1 0 0 −β12Ŝ 1 −σ1Ŝ 1 0
0 β11Ŝ 1 − k1 0 g1 0 β12Ŝ 1 0 0
0 0 σ1Ŝ 1 − q1 γ1 0 0 σ1Ŝ 1 0
0 0 0 −r1 0 0 0 0
0 −β21Ŝ 2 −σ2Ŝ 2 0 −µ2 −β22Ŝ 2 + γ2 −σ2Ŝ 2 + g2 0
0 β21Ŝ 2 0 0 0 β22Ŝ 2 − k2 0 g2

0 0 −σ2Ŝ 2 0 0 0 σ2Ŝ 2 − q2 γ2

0 0 0 0 0 0 0 −r2


.

Immediately, we get four negative eigenvalues: −µ1, −µ2, −r1, −r2. The remaining eigenvalues are the
zeros of the characteristic polynomial of the matrix:

β11Ŝ 1 − k1 0 β12Ŝ 1 0
0 σ1Ŝ 1 − q1 0 σ1Ŝ 1

β21Ŝ 2 0 β22Ŝ 2 − k2 0
0 −σ2Ŝ 2 0 σ2Ŝ 2 − q2

 .
This polynomial reads P(λ) = P1(λ)P2(λ), where

P1(λ) = λ2 − (β11Ŝ 1 − k1 + β22Ŝ 2 − k2)λ + (β11Ŝ 1 − k1)(β22S 2 − k2) − β12β21Ŝ 1Ŝ 2,

P2(λ) = λ2 − (σ1Ŝ 1 − q1 + σ2Ŝ 2 − q2)λ + (σ1Ŝ 1 − q1)(σ2Ŝ 2 − q2) − σ1σ2Ŝ 1Ŝ 2.

It is easy to check that their discriminants are positive. The zeros of P1 are negative if inequalities
(4.12) and (4.13) hold. Analogously, P2 has negative zeros if

σ1Ŝ 1 − q1 + σ2S 2 − q2 < 0 (5.1)

and
(σ1Ŝ 1 − q1)(σ2Ŝ 2 − q2) > σ1σ2Ŝ 1Ŝ 2. (5.2)

Inequality (5.2) can be transformed into inequality (4.11). According to Theorem 4.2, merging in-
equality (4.11)–(4.13) yields R0 < 1. Inequality (5.2) yields two exclusive possibilities: σiŜ i > qi

or
σiŜ i < qi. (5.3)

The first case is contrary to inequality (5.1), whereas inequality (5.3), under condition (5.2), yields
inequality (5.1). Hence, we replace inequality (5.1) by inequality (5.3). We rewrite inequality (5.3) as

Ŝ i <
qi

σi
.

Observe that the above inequality is weaker than inequality (4.11); hence, it is omitted in the thesis of
Theorem 5.1.

Theorem 5.1 is in line with the analogical result from [24], where we also obtained the local stability
of the given disease-free stationary for the basic reproduction number smaller than one.
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5.1. Local stability of EA

Now we provide a theorem guaranteeing the local stability of state EA.

Theorem 5.2. EA is locally stable if
γi

βii
< S ∗i <

ki

βii
, (5.4)

(k1 − β11S ∗1)(k2 − β22S ∗2) > β12β21S ∗1S ∗2, (5.5)

βiiI∗i + βi jI∗j + qi > σiS i, j = 3 − i, (5.6)

S ∗1S ∗2 <
r1r2

σ1σ2
, (5.7)

ri(βiiI∗i + βi jI∗j − σiS ∗i + qi) > γi(βiiI∗i + βi jI∗j + σiI∗i ), (5.8)(
r j

γ j
(β j jI∗j + β jiI∗i − σ jS ∗j + q j) − β j jI∗j − β jiI∗i − σ jI∗j

)
· (βiiI∗i + βi jI∗j − σiS ∗i + qi + ri) > σiS ∗i

(
r jσ j

γ j
S ∗j + σ jI∗j

)
, j = 3 − i,

(5.9)

and

2∏
m=1

(
rm(βmmI∗m + βm jI∗j − σmS ∗m + qm) − γm(βmmI∗m + βm jI∗j + σmI∗m)

)
>

2∏
m=1

(rmσmS ∗m + γmσmI∗m), j = 3 − m.

(5.10)

Proof. Let us rearrange matrix J(EA) so that the characteristic polynomial of the new matrix remains

the same. We get M∗ =
(
M∗1 M∗2
0 M∗3

)
, where

M∗1 =


−β11I∗1 − β12I∗2 − µ1 −β11S ∗1 + γ1 0 −β12S ∗1
β11I∗1 + β12I∗2 β11S ∗1 − k1 0 β12S ∗1

0 −β21S ∗2 −β22I∗2 − β21I∗1 − µ2 −β22S ∗2 + γ2

0 β21S ∗2 β22I∗2 + β21I∗1 β22S ∗2 − k2


and

M∗3 =


−β11I∗1 − β12I∗2 + σ1S ∗1 − q1 γ1 σ1S ∗1 0
β11I∗1 + β12I∗2 + σ1I∗1 −r1 σ1I∗1 0

σ2S ∗2 0 −β22I∗2 − β21I∗1 + σ2S ∗2 − q2 γ2

σ2I∗2 0 β22I∗2 + β21I∗1 + σ2I∗2 −r2

 .
The form of M∗2 ∈ M4(R) is not needed for further computations.

We start by investigating matrix M∗1. To simplify computations, we define auxiliary notations:

ai = βiiI∗i + βi jI∗j , ui = βiiS ∗i − γi, ti = ki − βiiS ∗i , zi = βi jS ∗i , where j = 3 − i. (5.11)
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Thanks to this simplification, matrix M∗1 reads

M∗1 =


−a1 − µ1 −u1 0 −z1

a1 −t1 0 z1

0 −z2 −a2 − µ2 −u2

0 z2 a2 −t2

 .
The characteristic polynomial of M∗1 has the form

P1(λ) := λ4 + c3λ
3 + c2λ

2 + c1λ + c0,

where

c3 = a1 + a2 + t1 + t2 + µ1 + µ2,

c2 = (a1 + µ1)(a2 + µ2) + (t1 + t2)(a1 + a2 + µ1 + µ2) + a1u1 + a2u2 + t1t2 − z1z2,

c1 = a1a2(t1 + t2 + u1 + u2) + µ1µ2(t1 + t2) + t1t2(a1 + a2) + a1µ2(t1 + t2 + u1)
+ a2µ1(t1 + t2 + u2) + a1u1t2 + a2u2t1 + (µ1 + µ2)(t1t2 − z1z2),

c0 = a1a2(t1 + u1)(t2 + u2) + a1t2µ2(t1 + u1) + a2t1µ1(t2 + u2) + µ1µ2(t1t2 − z1z2).

Observe that if
ui > 0, ti > 0 (5.12)

and
t1t2 − z1z2 > 0, (5.13)

then each coefficient of P1 is positive. Hence, from Descartes’ rule of signs, we get that P4 has real
negative roots or complex roots with negative real parts. Substituting definition (5.11) into inequalities
(5.12) and (5.13) provides inequalities (5.4) and (5.5), respectively.

Let us focus now on matrix M∗3. After using notations:

ti = βiiI∗i + βi jI∗j − σiS ∗i + qi, ai = βiiI∗i + βi jI∗j + σiI∗i ,

si = σiS ∗i , yi = σiI∗i , where j = 3 − i,
(5.14)

we rewrite M∗3 as

M∗3 =


−t1 γ1 s1 0
a1 −r1 y1 0
s2 0 −t2 γ2

y2 0 a2 −r2

 . (5.15)

The characteristic polynomial of the matrix reads P3(λ) := λ4 + c3λ
3 + c2λ

2 + c1λ + c0, where

c3 = t1 + t2 + r1 + r2 > 0,
c2 = (r1 + t1)(r2 + t2) − s1s2 + r1t1 − γ1a1 + r2t2 − γ2a2,

c1 =

2∑
j=1

(
(t j + r j)(t3− jr3− j − γ3− ja3− j) − s j(r3− js3− j + γ3− jy3− j)

)
,

c0 = (γ1a1 − r1t1)(γ2a2 − r2t2) − (r1s1 + γ1y1)(r2s2 + γ2y2).
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Let us investigate the signs of the coefficients of polynomial P3. Observe that if inequality (5.6)
holds, then t1, t2 > 0, which yields c3 > 0. Conditions r1r2 > s1s2 and riti > γiai, which can be written
as inequalities (5.7) and (5.8), respectively, yield c2 > 0. See that c1 > 0 if (ti + ri)(t jr j − γ ja j) >
si(r js j + γ jy j) for j = 3 − i, which we transform to

(ti + ri)
(

r j

γ j
t j − a j

)
> si

(
r j

γ j
s j + y j

)
.

Using expressions from (5.14), we rewrite the above inequality as inequality (5.9). Condition c0 > 0
can be written as

2∏
m=1

(γmam − rmtm) >
2∏

m=1

(rmsm + γmym)

With (5.14), the above inequality transforms into inequality (5.10).

Now let us strengthen conditions from Theorem 5.2 providing the local stability of EA so that they
have a more explicit form. Observe that the condition

S ∗i <
qi

σi
. (5.16)

yields fulfillment of inequality (5.6). Moreover, from definitions (2.2), clearly we have ri > qi. Hence,
inequality (5.16) implies inequality (5.7).

Again relying on (2.2), we get ri > γi. Instead of inequality (5.8), it is therefore enough to investigate
the inequality

ri(qi − σiS ∗i ) > γiσiI∗i .

If inequality (5.16) holds, then the left-hand side of the above inequality is always positive. Using Eq
(3.6), we transform this inequality into

S ∗i <
riqi −

Ciγiσi
αi+µi

riσi −
γiσiµi
αi+µi

. (5.17)

From the definition of ri, the denominator of the right-hand side of inequality (5.17) is positive if

(gi + ai + αi + µi)(µi + αi) + γiαi > 0,

which is always true. The positivity of the numerator of the right-hand side of inequality (5.17) is
maintained if

Ci <
riqi(µi + αi)
γiσi

. (5.18)

Now observe that since ri > γi, inequality (5.9) can be, under fulfillment of inequality (5.16), strength-
ened to (

q j − σ j(S ∗j + I∗j )
)
· (βiiI∗i + βi jI∗j − σiS ∗i + qi + ri) > σiS ∗i

(
r jσ j

γ j
S ∗j + σ jI∗j

)
. (5.19)

If inequality (5.16) holds, then one must fulfill

S ∗i + I∗i <
qi

σi
. (5.20)
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so that inequality (5.19) makes sense. Using Eq (3.6), we transform inequality (5.20) into

S ∗i <
qi(µi + αi) −Ciσi

σiαi
, (5.21)

which is reasonable if
Ci <

qi(µi + αi)
σi

. (5.22)

Observe that inequality (5.22) is stricter than inequality (5.18). Rewriting inequality (5.19), we get

(βiiI∗i + βi jI∗j )
(
q j − σ j(S ∗j + I∗j )

)
+ (qi + ri)q j

>

(
r j

γ j
− 1

)
σ1σ2S ∗1S ∗2 +

(
σiq jS ∗i + (qi + ri)σ j(S ∗j + I∗j )

)
.

Using again Eq (3.6), we transform the above inequality into

−
βi jσ jµ

2
j

(µ j + α j)2 (S ∗j)
2 −

βiiµi

µi + αi
·
σ jµ j

µ j + α j
S ∗1S ∗2 +

(
r j

γ j
− 1

)
σ1σ2S ∗1S ∗2

+

(
βiiCi

µi + αi
·
βi jC j

µ j + α j

)
σ jµ j

µ j + α j
S ∗j −

βi jµ j

µ j + α j

(
q j −

σ jC j

µ j + α j

)
S ∗j

+
α j(qi + ri)
µ j + α j

S ∗j +
(
q j −

σ jC j

µ j + α j

) (
βii(Ci − µiS ∗i )
µi + αi

+
βi jC j

µ j + α j

)
+ σiq jS ∗i +

(qi + ri)σ jC j

µ j + α j
+ (qi + ri)q j > 0, j = 3 − i.

(5.23)

Now we use the dependence ri > γi and transform inequality (5.10) into

2∏
m=1

(
rm(qm − σmS ∗m) − γmσmI∗m

)
>

2∏
m=1

(rmσmS ∗m + γmσmI∗m),

which can be simplified to
σ1

q1
(S ∗1 + I∗1) +

σ2

q2
(S ∗2 + I∗2) < 1. (5.24)

Clearly, inequality (5.24) is stricter than inequalities (5.16) and (5.21).
Using Eq (3.6), we rewrite inequality (5.24) as

2∑
j=1

(
σ j(S ∗jα j +C j)

q j(µ j + α j)

)
< 1. (5.25)

We finally conclude that

Corollary 2. If (5.4), (5.5), (5.17), (5.22), (5.23) and (5.25), then EA is locally stable.

Let us treat the left-hand side of inequality (5.23) as a quadratic trinomial P(S ∗j). If inequality (5.22)
holds, then the condition Ci > σiS ∗i suffices for the constant of P(S ∗j) to be positive. Hence, the form
of P(S ∗j) implies that inequality (5.23) is true for 0 < S ∗j < S, where S is the positive zero of P(S ∗j).
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5.2. Local stability of EB

Now we provide the theorem indicating the conditions for the local stability of state EB:

Theorem 5.3. EB is locally stable if

S̄ i <
ki

βii
, (5.26)

S̄ 1S̄ 2 <
r1r2

β12β21
, (5.27)

ri

(
σi(J̄1 + J̄2) − βiiS̄ i + ki

)
> gi

(
σi(J̄1 + J̄2) + βii J̄i

)
, (5.28)(

r j

g j

(
σ j(J̄1 + J̄2) − β j jS̄ j + k j

)
− σ j(J̄1 + J̄2) − β j j J̄ j

)
·
(
σi(J̄1 + J̄2) − βiiS̄ i + ki + ri

)
> β12β21S̄ i

(
r j

g j
S̄ j + J̄ j

)
, j = 3 − i,

(5.29)

2∏
m=1

(
gm

(
σm(J̄1 + J̄2) + βmm J̄m

)
− rm

(
σm(J̄1 + J̄2) − βmmS̄ m + km

))

>

2∏
m=1

(
rmβm jS̄ m + gmβm j J̄m

)
, j = 3 − m.

(5.30)

Proof. Similarly as in the proof of Theorem 5.2, we transform matrix J(EB) into MB =

(
M̄1 M̄2

0 M̄3

)
,

where

M̄1 =


−µ1 − σ1(J̄1 + J̄2) −σ1S̄ 1 + g1 0 −σ1S̄ 1

σ1(J̄1 + J̄2) σ1S̄ 1 − q1 0 σ1S̄ 1

0 −σ2S̄ 2 −µ2 − σ2(J̄1 + J̄2) −σ2S̄ 2 + g2

0 σ2S̄ 2 σ2(J̄1 + J̄2) σ2S̄ 2 − q2

 ,

M̄3 =


β11S̄ 1 − k1 − σ1(J̄1 + J̄2) g1 β12S̄ 1 0
σ1(J̄1 + J̄2) + β11 J̄1 −r1 β12 J̄1 0

β21S̄ 2 0 β22S̄ 2 − k2 + σ2(J̄1 + J̄2) g2

β21 J̄2 0 σ2(J̄1 + J̄2) + β22 J̄2 −r2

 .
We start from matrix M̄1. After using notations:

ai = σi(J̄1 + J̄2), si = σiS̄ i, ti = qi − σiS̄ i, (5.31)

we transform M̄1 to

M̄1 =


−a1 − µ1 g1 − s1 0 −s1

a1 −t1 0 s1

0 −s2 −a2 − µ2 g2 − s2

0 s2 a2 −t2

 .
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The characteristic polynomial of matrix M̄1 reads P1(λ) = λ4 + c3λ
3 + c2λ

2 + c1λ + c0, where

c3 = a1 + a2 + t1 + t2 + γ1 + γ2,

c2 = t1t2 − s1s2 + a1(s1 − g1) + a2(s2 − g2) + (t1 + t2)(a1 + µ1 + a2 + µ2) + (a1 + µ1)(a2 + µ2),
c1 = a1a2(s1 + s2 − g1 − g2) + (µ1 + µ2)(t1t2 − s1s2) + a1(t2 + µ2)(s1 − g1) + a2(t1 + µ1)(s2 − g2),

+ a1t1(t2 + µ2) + a2t2(t1 + µ1) + (a1a2 + µ1µ2)(t1 + t2) + a1t2µ2 + a2t1µ1,

c0 = (t1t2 − s1s2)(µ1µ2 + a1a2) + a1t2(a2 + µ2)(s2 − g2) + t1t2(a1µ2 + a2µ1)
+ a2t1(a1 + µ1)(s1 − g1) + a1a2(s1 − g1)(s2 − g2) + a1a2s1s2.

Observe that if
s1 > g1, s2 > g2, (5.32)

and
t1t2 > s1s2 (5.33)

then c2, c1, c0 > 0. Hence, from Descartes’ rule of signs, we get that P1 has real negative roots or
complex roots with negative real parts.

Using definitions (5.31), we rewrite inequality (5.32) as inequality (5.6) and inequality (5.33) as

σ1

q1
S̄ 1 +

σ2

q2
S̄ 2 < 1. (5.34)

Now we focus on matrix M̄3. With the use of expressions,

ti =σi(J̄1 + J̄2) − βiiS̄ i + ki, ai = σi(J̄1 + J̄2) + βii J̄i,

si = βi jS̄ i, yi = βi j J̄i, where j = 3 − i,
(5.35)

we rewrite M̄3 as

M̄3 =


−t1 g1 s1 0
a1 −r1 y1 0
s2 0 −t2 g2

y2 0 a2 −r2

 ,
which has a similar form as matrix M∗3 from (5.15). This similarity allows us to apply reasoning for
M∗3 to M̄3. Analogically to conditions (5.6)–(5.10), we obtain inequalities (5.26)–(5.30).

Similarly as for Theorem 5.2, let us strengthen conditions from Theorem 5.3 providing the local
stability of EB. Since ri > gi, we replace inequality (5.28) by

ri(ki − βiiS̄ i) > giβii J̄i, (5.36)

which obviously requires fulfillment of inequality (5.26). Using Eq (3.8), we express the above in-
equality as

S̄ i <
ri(µi + αi)ki −Ciβiigi

βii

(
(ai + γi + αi + µi)µi + riαi

) , (5.37)

under fulfillment of
Ci <

ri(µi + αi)ki

βiigi
. (5.38)
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Again using the dependence ri > gi, we simplify inequality (5.29) to(
r j

g j

(
k j − β j jS̄ j

)
− β j j J̄ j

) (
σi(J̄1 + J̄2) − βiiS̄ i + ki + ri

)
> β12β21S̄ i

(
r j

g j
S̄ j + J̄ j

)
, j = 3 − i. (5.39)

Since inequality (5.26) holds, it is enough that inequality (5.36) holds so that inequality (5.39) makes
sense.

Inequality (5.30) can be strengthened by

2∏
m=1

(
gmβmmJm + rm(βmmS̄ m − km)

)
>

2∏
m=1

(
rmβm jS̄ m + gmβm j J̄m

)
,

which can be expressed as

(β11β22 − β12β21)(g1 J̄1 + r1S̄ 1)(g2 J̄2 + r2S̄ 2)
+ β11k2r2(r1S̄ 1 − g1 J̄1) + β22k2r1(r2S̄ 2 − g2 J̄2) + r1r2k1k2 > 0.

(5.40)

The above inequality is always true if
β11β22 > β12β21 (5.41)

and
riS̄ i > gi J̄i. (5.42)

Using Eq (3.8), we rewrite inequality (5.42) as

S̄ i >
Cigi

µigi + µiri + αiri
. (5.43)

Let us compare inequalities (5.26) and (5.27). Observe that ri > ki. Moreover, if inequality (5.41)
holds, then inequality (5.26) is stronger than inequality (5.27).

Finally, we conclude that

Corollary 3. If inequalities (5.26), (5.37), (5.38), (5.39), (5.40), (5.41), and (5.43) hold, then EB is
locally stable.

6. Postulated local stability of the endemic state: numerical simulation

In Subsection 3.2, we provided only a slight analysis of the existence of the endemic stationary
state EE, with two diseases present. We are therefore not certain if this state exists. Furthermore, the
complexity of the proper Jacobian matrix does not allow us to obtain the explicit conditions for local
stability of such a postulated equilibrium. However, the conditions from Theorems 5.2 and 5.3 restrict
a set of parameters’ values guaranteeing the local stability of existing states EA and EB. Such restric-
tion suggests that there should be ranges of the values for the EE local stability under its existence.
Indicating these ranges is difficult, even numerically, because of the system’s intricacy. For this reason,
for each parameter, we only give specific values that yield the desirable local stability. We rely on the
values from [10] that concern T B and COVID-19. In our system, these diseases correspond to diseases
A and B, respectively. Since paper [10] relates to co-infection dynamics in a homogeneous population,
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we arbitrarily choose the values of incompatible parameters from our system. These values are chosen
so that we reach the EE local stability. In Table 1, one can find the taken numbers.

Table 1. The parameters’ values providing the local stability of postulated state EE. Each
value has the unit day−1. The values of C1, C2, β12, β21, β22 are indicated discretionally,
whereas the remaining numbers can be found in [10].

Symbol Value
C1 130
C2 10
β11 2 · 10−6

β12 8 · 10−6

β21 3 · 10−6

β22 6.5 · 10−6

σ1, σ2 5.5 · 10−6

γ1, γ2 0.02
µ1, µ2

1
59.365

g1, g2 0.015
α1, α2 0.004
a1, a2 0.0018
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Figure 2. Dependence of the infected variables for the low-risk (a) and the high-risk (b)
subpopulation of system 2.1 on time. Each curve for the particular variable has a different
color. In Figure 2(a) the curves for variables J1 and K1 merge because of the similar values
of these variables.

We illustrate the local stability of EE on the plots showing the dependence of the system’s solution
on time for each particular variable. For the illustration, we use the Matlab software, which provides
a built-in ode45 function. This function numerically solves a given differential equation system for a
specified initial condition [27]. For the simulation, we take the parameters’ values from Table 1 and
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the arbitrarily chosen initial condition

(
S 1(0), I1(0), J1(0),K1(0), S 2(0), I2(0), J2(0),K2(0)

)
= (5000, 100, 300, 10, 500, 60, 70, 5).

Figures 2–3 depict the result of the simulation. For the figures’ transparency, we show plots for the
infected variables for each subpopulation and the non-infected variables in separate picture graphs. The
obtained figures suggest the existence of the stationary state Ee that is locally stable for the parameter
values from Table 1.

Now for the illustrated example of epidemic, we depict the relative sizes of the infections for time t
that we define by ratios:

R1(t) :=
I1(t) + K1(t)
J1(t) + K1(t)

, R2(t) :=
I2(t) + K2(t)
J2(t) + K2(t)

, R(t) :=
I1(t) + I2(t) + K1(t) + K2(t)
J1(t) + J2(t) + K1(t) + K2(t)

.

These ratios correspond to LS , HS , and the whole population, respectively, and in our case represent
the number of T B-infected individuals relative to the number of COVID-infected ones. Figure 4 shows
the dependence of the relative sizes on time.

For the last point of the simulation timescale, i.e., t̄ = 1600, we get R1(t̄) = 0.1176 and R2(t̄) =
0.3432. Plots from the figure suggest the convergence of each relative size. We therefore state that
for the stabilized co-infection epidemic, for one T B-infected person, there are approximately nine and
three COVID-infected people in LS and HS , respectively.
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Figure 3. Dependence of the non-infected variables of system 2.1 on time.
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Figure 4. The relative sizes of the infections.

7. Conclusions

In this paper, we proposed and analyzed the continuous-time model (2.1) describing co-infection in
a heterogeneous population, in which we distinguish two subpopulations. These subpopulations, low-
risk LS and high-risk HS , differ in the risk of getting infected by any of two diseases, called disease
A (DA) and disease B (DA). The values of the parameters for every subpopulation are different, which
guarantees complete population heterogeneity. System (2.1) has three stationary states: disease-free
(Ed f ), with sole DA or DB (EA and EB). We also suspect that the endemic state, with two diseases
present, exists, but we did not manage to prove it because of complicated computations. State Ed f

exists unconditionally, while provided conditions determine the existence of EA and EB. For state Ee,
we only gave insight into its existence because of the complexity of the computations. For system (2.1),
we computed the basic reproduction number R0. This number is the maximum of two terms, whose
forms depend on parameters corresponding to the particular sole infection. Later, we investigated the
local stability of the stationary state. State Ed f is locally stable if R0 < 1, which is expected. Analysis
of the local stability for EA and EB provided the list of conditions. Importantly, the parameters from
both diseases affect the local stability of both states.

The proposed model expands the system from [24], where we investigated the epidemic dynamics
of one disease in heterogeneous populations. In that system, there are only two stationary states: the
disease-free state and the endemic state, which is a counterpart of state EA of system (2.1). The results
for their local stabilities are analogical to those for state Ed f and EA in this paper.

The next step of our work will be an analysis of the proposed model with some assumptions sim-
plifying this form. We hope to obtain the endemic state of the simplified model and get explicit results
concerning its local stability.
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