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Abstract: This paper proposes an information-theoretic measure for discriminating epileptic patterns
in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity
in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e.,
ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated
by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs,
a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE)
methods using the coarse-graining and moving-average procedures are presented. Using two popular
epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the
proposed MDE:s is verified. Experimental results show that the proposed MDEs are robust to the length
of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are
consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By
evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better
discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-
average procedure performs marginally better than one with the coarse-graining. The experimental
results suggest that the proposed MDEs are applicable to practical seizure detection applications.

Keywords: epilepsy; seizures; electroencephalogram; entropy; distribution entropy (DE); multiscale
distribution entropy (MDE)
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1. Introduction

Over 65 million individuals worldwide have epilepsy, and 10% of the population will have at
least one seizure in their lifetime [1,2]. Epilepsy is characterized by a persistent predisposition to
epileptic seizures, which are transient neurological manifestations triggered by anomalous and
excessive neuronal activity in the brain [3]. Seizures caused by epilepsy can result in fractures,
automobile accidents, isolation, anxiety, cognitive decline, and mortality [4]. Thus, developing a
prompt diagnosis is essential for preventing morbidity and mortality due to epilepsy. As per the clinical
recommendations pertaining to epilepsy surgery, the epileptic seizure focus refers to the specific region
inside the cortex from which the seizures originate [5].

Standard diagnostic methods include electroencephalography (EEG), computed tomography
(CT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI). EEG
is a non-invasive recording of the electrical activity of the brain measured by electrodes placed on the
scalp [6]. EEG has been recognized as one of the best medical tests which assist in epilepsy diagnosis
because EEG exhibits high temporal and poor spatial resolution [7].

Since abnormal discharges (e.g., spikes) are generated by the synchronous discharges of large
groups of neurons, it has been established that epileptic EEG recordings exhibit high complexity and
nonlinearity [8-10]. In addition, EEG patterns are highly nonstationary and differ for each individual
and seizure states, including normal, ictal (during seizure), and interictal (between seizures). The onset
of clinical epileptic seizures is denoted by the manifestation of pertinent symptoms that are readily
discernible in EEG recordings. Latency pertains to the interval that elapses between the expert-
identified onset of an EEG recording and the detection system's detection of a seizure. Therefore, an
algorithm that accurately detects the onset of epileptic seizures in real-time with a reduced latency
period is increasingly advantageous for patients [11,12].

Considering the properties of EEGs, numerous nonlinear analysis methods, particularly entropy,
have been widely adopted for distinguishing epileptic EEG patterns [9]. Entropy measures the
complexity of nonlinear signals and systems by quantifying the randomness of their patterns [13].
Recently, a number of entropy methods have been widely used to detect ictal EEG or classify interictal
and ictal EEG recordings. Approximate entropy (ApEn) assesses how often new patterns emerge that
are different from those that have already appeared in the data [14,15]. As a modification of ApEn,
sample entropy (SampEn), the negative logarithm of the conditional probability, has gained a lot of
attention in analyzing various physiological signals [16]. Fuzzy entropy which uses various fuzzy
membership functions to mitigate the threshold effect, has been developed [17]. Permutation entropy
is a concept introduced to measure the complexity of a time series by analyzing the patterns of order
relations between its values rather than the values themselves [18]. Since conventional entropy
methods depend on long-term EEG recordings, it is problematic to detect epileptic seizures online
using short-term EEG recordings. In addition, most entropy measures lack practical use because they
rely on predefined parameters.

In addition, versatile entropy measures consider the irregularity of a time-series rather than the
complexity of the system, resulting in inconsistency. Considering the entropy of temporal fluctuations,
the multiscale entropy (MSE) measure has been proposed to address the inconsistency [19]. MSE is
comprised of a coarse-graining procedure and SampEn evaluation in order to exploit long-range
correlation. The coarse-graining procedure generates a new time-series by setting a window with a
scale factor size over the original time-series and then averaging the values in each window. The
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multiscale versions of conventional entropy measures have been developed inspired by MSE. However,
because coarse-graining reduces the length of a time-series, it may result in an unstable evaluation of
entropy values at large scales [13,20]. Thus, the use of an overlapping moving-average has been
presented for the computation of MSE [13,21]. More recently, capable multiscale-based nonlinear
dynamic indicator have been developed and shown their effectiveness in various applications [22,23].

Recently, DE has been introduced [24]. DE uses probability density estimation to take into
account the inherent information of the distance between vectors in state space. DE is less sensitive to
the length of a time-series and parameters that have been predefined. These properties of DE have led
to an effective entropy measure for biomedical applications [25]. In addition, DE has demonstrated its
ability to differentiate between ictal, interictal, and normal EEG signals with a 5 s duration, which is
nearly comparable to the performance of whole EEG recordings (above 27 s) [26].

However, DE may ignore quantifying complexity at the multiple temporal scales of a time-series.
The MDE has been developed to analyze the multiscale complexity of physiological signals, achieving
remarkable performance in describing the complexity of short-term heart rate variability [13,27]. To
quantify short epileptic EEG signals, it is essential to reflect the consistent complexity of short-term
EEGs and represent underlying complexity over multiple temporal scales [28,29]. The MDE benefits
the advantages of DE, i.e., effectiveness for short-term signals. To the best of our knowledge, analysis
of epileptic EEG signals using MDE to distinguish between different epileptic states, i.e., ictal,
interictal, and normal states, has been lacking.

Here, a family of MDE for differentiating EEG recordings associated with epilepsy is presented.
Two approaches are developed: one utilizing coarse-graining to measure DE over multiple time scales
and the other using a moving-average to compensate for the stability to the data length. Coarse-graining
or moving-average methods allow the proposed MDE to analyze the time series at multiple scales,
thereby capturing a more comprehensive picture of the system's dynamics. In addition, different scales
can reveal different aspects of the data. For instance, short-term fluctuations might be apparent at finer
scales, while long-term trends might only become visible at coarser scales. In this study, the Bonn
dataset [30] and the Bern-Barcelona dataset [31], which is the most common EEG analysis dataset for
epileptic patients, are used. To exploit the classification performance of short-term EEG recordings, 5
s segments from the beginning, middle, and end intervals of each EEG recording were chosen.

The main contributions of this work are summarized as the following aspects.

1) The proposed MDE methods are presented to serve appropriate features to detect epileptic

EEG patterns with short-term EEG signals.

2) The MDE methods are able to compute not only stable entropy values but also consistent
entropy values irrespective of the length of EEG signals and the selection of segments of
interest from EEG signals, respectively.

3) Using widely used public epileptic EEG datasets, the effectiveness of the proposed MDE
methods was validated through statistical analysis and the area under an ROC curve (AUC)
analysis, implying their reproducibility and generalization.

The remainder of the paper is structured as follows: Section 2 describes conventional entropy
measures, namely SampEn, DE, and MSE, as well as two proposed multiscale evaluations of DE,
namely MDE-CG and MDE-MA. In Section 3, the statistical analysis of the experimental results using
the Bonn dataset and the Bern-Barcelona dataset is presented. Section 4 presents discussion. Finally,
conclusions are presented in Section 5.
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2. Materials and methods
2.1. Sample entropy (SampEn)

SampEn is a modified version of ApEn, which utilizes the conditional probability that computes
the similarity between two sequences of different lengths m and m + 1 . Here, m denotes the
embedding dimension. SamEn differs from ApEn in that SampEn excludes the self-matches in
computing entropy values. Specifically, SampEn is computed as follows: First, for a time-series with
N sample x = {xq, x5, ..., Xy}, let us construct multidimensional vectors, which are given by

X; = {X0 Xipo oo Xit (movye ) (1)

for 1<i<N-—(m-—1)t. Here, m and ¢ denote the embedding dimension and time delay,
respectively.

Second, the Chebyshev distances d;; between all possible combinations of vectors X; and
X; are calculated forall 1 <i,j <N — (m — 1)1, i # j. Here, the Chebysheve distance is given by

di,j = max(|xi+kT — xj+k‘r|10 <k<m- 1) (2)
Scale = 2
X1 X2 X3 Xy Xs Xg e Xi—2  Xi-1 Xi-1 X
yi Y3 o e yi =5 i1+ x0)
5 1
y2 Yi-1 = E(xf—z +xi-1)
(a)

Scale = 3

X1 X2 X3 X4 X5 Xg e . )
\I/ \l/l
i \l/
¥3
(b)

Figure 1. Schematic illustration of the coarse-graining procedure. (a) scale factor s =2, (b)
scale factor s = 3.

Third, let us define C;"(r) that represents the probability that a vector X; within r of X,
which is counted if d;; is less than a threshold parameter 7, which is given by

ni*(r)

C"() =32 (3)

where 7 is a threshold parameter, n{"(r) is the number of vectors X; which meet condition d;; <
r (that means X issimilarto X;)forall 1 <i < N — (m — 1)7. Then, this process is repeated when
the embedding dimension is m + 1 to compute C/"*1(r).
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Finally, SampEn is defined by

Cm+1
SampEn(x,m,r,T) = —ln[ om ], (4)

1 N-mt ~m +1 1 N-mt ~rm+1
mrem™ and ¢t = ——yNomromal
N—m‘L'zl—1 t N—m‘rz‘—1 t

It has been known that the higher the SampEn value, the more irregular and complex, thus
providing a measure of the complexity of a time-series.

where C™ =

2.2.DE

DE measure quantifies the amount of time-series information based on the probability density
estimation of the distance between vectors in the state space [30]. In particular, the DE method con-
sists of the four steps listed below:

First, the multidimensional vector X; is reconstructed using Eq (1), which is similar to the
SampEn algorithm. Similarly, the inter-vector distances are computed using Eq (2), and the distance
matrix is constructed as D = {d, ;}. Similar to SampEn., it needs to estimate the empirical probability
density function (ePDF) of distance matrix D using the histogram approach. Self-matches are ruled
out during estimation, so the upper or lower triangular elements of D without diagonal elements can
be chosen. The bin size of the histogram is fixed at B, and the probability p, of each bin is calculated
for 1 < p; < B. Finally, the DE value of X; is computed as follows:

1
DE(x,m,B,T) = _@Z?=1 pelogz pe ®)

2.3. MSE

MSE involves analyzing a time-series at multiple temporal scales. The first step in the MSE
analysis is the coarse-graining process. The original time-series is divided into non-overlapping
windows of increasing lengths (scales). The data points within a window are averaged at each scale to
produce a new time-series that represents that scale. The coarse-graining procedure for generating a
new time-series is shown in Figure 1. The coarse-grained time-series y; is computed by Eq (5), in
which x; indicates the original time-series with N samples and s indicates the scale factor as
follows:

—1gJs

Vi = s Xis(-ns+1 ¥y 1SJ S

vz

(6)

where s denotes the scale factor. After coarse-graining, the sample entropy of the resultant time-series
y; is calculated at each scale. MSE performs better than conventional single scale-based analysis in
most cases. However, MSE provides reliable results when the length of the original time-series is long
enough since the coarse-graining process makes the length short [24].

2.4. MDE

Here, two MDE methods that can precisely measure the complexity of short-term EEG by
combining DE and two multiscale time-series decomposition methods, namely, coarse-graining and
moving-average procedures, are introduced.

Given an N point time-series X = {X;, X5, ..., Xy}, the coarse-graining procedure is applied and
the new time-series is developed by Eq (6). Then, DE is used to compute the complexity of the
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resultant time-series y* = {y{,y3, ", ¥n/s}- Thus, MDE-CG is given by
MDE — CG(x,m, B,s) = DE(y*,m,B,T = s). @)

The process of coarse-graining at multiple scales results in a reduction in the length of the original
time-series. Consequently, a limitation arises in accurately estimating the complexity of a time-series
that is not sufficiently long, leading to potentially erroneous entropy estimates. In order to tackle this
issue, a modified multiscale analysis utilizing the moving-averaging technique specifically designed
for short-term time-series is employed.

Figure 2 represents the moving-averaging procedure for generating a new time-series. The new
time-series y; is reconstructed by overlapping windows with a size of scale factor s from the
original time-series X of N samples. Here, the difference in length between the new time-series and
the original one is only s —1 samples.

Y= Xty 1<iSN-s+1 (8)

where s indicates the scale factor as in Eq (6). If the scale factor s = 1, a moving-averaged time-
series y° = {y{,¥5, ", YN—2+1} 18 identical to the original time-series x.

Then, DE calculation of the moving-averaged time-series y;* on each time scale leads to MDE-
MA as follows:

MDE — MA(x,m, B,s) = DE(y*,m,B,t = s) 9)

Note that MDE values for the scale factor s = 1 correspond to DE.

Scale = 2
X1 X2 X3 Xg Xs e Xi-1 Xi Xi+1
2 2 21
Y1 ys \/ - Yi =3 (2 + Xi41)
2 2 2 1
y2 Vi Yji-1 = E(xi_l + x;)
(a)
Scale = 3
X1 X2 X3 X4 X5 e Xi-1 Xi  Xit1 X2
3 3 3 _1
¥i Y3 e Yi =§(xi + Xit1 + Xit2)
3 3 1
Y2 Yji-1 = g(x:‘—1 + X+ Xi41)

(b)

Figure 2. Schematic illustration of the moving-average procedure. (a) scale factor s = 2,
(b) scale factor s = 3.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5556-5576.



5562

_ Normal
g O It i it e S oo iy A A s A
% 5 10 e (o 5 20
(@)
1000 - Interictal
g 0 W’Wﬁ' RO W\M“‘%’W}W‘ﬁh’\Wﬁwﬂ,«‘ W’v‘r\“ﬂ’“"u'*w"fm ”“'LW'\"\“V"M
% 5 10 et 15 -
(b)
1000 Ictal
% lw A u‘~llnm} rp W $“A"]M,’, *M .‘|I| ’ﬂ ~ ‘ \l
L h /[lm utl yp.mw i mw il \Ml\». Ll *\
1000 Tlme .
(c)

Figure 3. Sample EEG recordings of three states. (a) normal EEG signal (Group Z). (b)
interictal (seizure-free) EEG signal (Group N). (¢) ictal (seizure) EEG signal (Group S).

2.5. EEG data

In this study, two datasets are utilized. First, the Bonn dataset is used, which is one of the most
widely used public datasets in the field of epileptic seizure detection [30]. The dataset consists of 500
individual single-channel EEG recordings sampled at a frequency of 173.61 Hz. Each recording has a
duration of 23.6 seconds. The recordings are classified into five distinct categories, namely classes Z,
O, N, F, and S, with each group including a total of 100 recordings. Sets Z and O were measured from
five healthy volunteers while their eyes were open and closed in an awake state, respectively. Sets N,
F, and S were measured from patients with epilepsy, all of whom had achieved complete seizure control
after the resection of one of the hippocampal formations. Set N was measured from the hippocampal
formation of the opposite hemisphere of the brain and set F was measured within the epileptogenic
zone during seizure-free intervals. set E was recorded during seizures (i.e., in the ictal state). To
distinguish normal, interictal, and ictal states, we categorized sets Z and O as normal groups, sets N
and F as interictal groups, and set S as an ictal group. Figure 3(a)—(c) show the actual sample EEG
recordings for normal, interictal and ictal periods, respectively.
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Figure 4. Three intervals with 5 seconds duration segmented from a complete EEG
recording. Data from A, B, and C intervals are set around the first quartile, median, and
third quartile, respectively.

To detect seizures in short-length EEG, three segments of EEG with a length of 868 sampling
points (5 seconds) from the original EEG data contained in each set are utilized, as shown in Figure 4.
The window length was set to 5 seconds since EEG recordings of 5 seconds effectively reflect the
epileptic states [26]. Instead of segmenting complete EEG into short-length EEG data blocks randomly,
three intervals are selected: (A) the segment was extracted from the initial phase of the recording, with
its midpoint positioned at the first quartile; (B) the segment was extracted from the middle phase, with
its midpoint aligned at the median; (C) the segment was extracted from the later phase of the recording,
with its midpoint aligned at the third quartile.
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Figure 5. Sample EEG recordings of two states. (a) focal EEG signal. (b) non-focal EEG signal.
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Secondly, the Bern-Barcelona dataset was employed. The EEG signals of five individuals with
long-standing pharmacoresistant temporal lobe epilepsy who are candidates for epilepsy surgery are
included in this dataset [31]. The EEG signals of five individuals with chronic pharmacoresistant
temporal lobe epilepsy who are candidates for epilepsy surgery are included in this dataset and sampled
at a frequency of 512 Hz. The focus channel, which identified initial ictal EEG signal alterations and
was evaluated visually by a minimum of two clinical specialists. Non-focal channels refer to the
remaining channels. Figure 5(a),(b) depict the focal and non-focal EEG recordings, respectively.

3. Experimental results
3.1. Results with entropy values

Figure 6 depicts the entropy values of MSE, MDE-CG, and MDE-MA utilizing three segments
of EEGs, namely the A, B, and C intervals in Figure 4, from complete EEGs of normal, interictal, and
ictal groups. The entropy values are computed on a scale factor 1 < s < 20. The parameters of the
MSE were setto r = 0.150, m = 2, and 7 = 8, where o denotes the standard deviation of a EEG
signal [16,32]. For the proposed MDE-CG and MDE-MA, the parameters m = 2, t =8, and B =
64 were used.

Figures 6(a)—(c) exhibit the MSE, MDE-CG, and MDE-MA results for the A interval, respectively.
In Figure 6(a), the MSE values at the scale factors are not more than 7, and they show different levels
of entropy values across normal, interictal, and ictal EEGs. However, for larger scale factors (s = 7),
the MSE values are not evaluated due to the dependency of MSE on the length of coarse-grained time-
series. In addition, the MSE values of normal EEGs are highest among the three groups, while those
of ictal EEGs are lowest at the range of the scale factors less than 6.

In Figure 6(b), the MDE-CG values of three different epileptic states are distinguishable: the
entropy values of the ictal EEGs are higher than those of other EEGs, and normal EEGs have the
lowest values for all scale factors. Compared to Figure 6(b), the MDE-MA values of the three groups
are more differentiable for all scale factors, as shown in Figure 6(c). In Figure 6(b),(c), the three groups
using the proposed MDE-CG and MDE-MA are distinguishable, especially between normal and
epileptic EEGs in that the MDE-CG and MDE-MA values of normal EEGs are lower than interictal
and ictal EEGs, compared to the MSE. In addition, the MDE-CG and MDE-MA values of interictal
EEGs and normal EEGs are lower than those of ictal EEGs for all scale factors. Notably, the MDE-
MA values for all scale factors fluctuate less than the MDE-CG. The MSE values are not evaluated
due to the dependency of MSE on the length of the coarse-grained time-series. In addition, the MSE
values of normal EEGs are highest among the three groups, while those of ictal EEGs are lowest at the
range of the scale factors less than 6.
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Figure 6. The results of MSE, MDE-CG, and MDE-MA analyzing EEGs contained in 3
epileptic state groups at 3 intervals. (a) MSE result for A interval, (b) MDE-CG result for
A interval, (c) MDE-MA result for A interval, (d) MSE result for B interval, (¢) MDE-CG
result for B interval, (f) MDE-MA result for B interval, (g) MSE result for C interval, (h)
MDE-CG result for C interval, (i) MDE-MA result for C interval. The values on each scale
are expressed as mean + standard deviation.

Compared with the previous works, which use SampEn and DE, the MDE-CG and MDE-MA

provide quantification tools over multiple time scales in that conventional entropy can quantify
complexity at a single scale (s = 1). Furthermore, the computation of MDE-CG and MDE-MA over
multiple time scales results in more capable differentiation between epileptic EEGs: the entropy values
not only become higher in the order of ictal, interictal, and normal EEGs but also the difference between
entropy values of distinct epileptic states are more significant. This implies that MDE-CG and MDE-
MA might play a critical role in quantifying the complexity of distinct epileptic EEGs that can be used
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between different epileptic states of EEGs. This result correlates with previous findings in [26] that they
have the highest entropy values in the order of ictal, interictal, and normal EEGs. These results
correspond to the results of MDEs with a scale factor of 1.

Figure 6(d)—(f) show the MSE, MDE-CG, and MDE-MA results for the B interval, respectively.
As shown in Figure 5(d), the MSE values at less than scale factor 6 are distinguishable between the
three groups. However, as shown in the figure, the MSE values are undefined across larger scale factors,
which is similar to the results of Figure 6(a). The entropy values of MSE for the three groups are
presented in the following order: normal, interictal, and ictal EEGs, which is also similar to the results
of Figure 6(a).

In Figure 6(e),(f), the difference in entropy values of MDE-CG and MDE-MA between the three
groups widen compared to MSE, similar to Figures 6(b),(c). Specifically, the MDE-CG and MDE-MA
values of ictal EEGs are highest for all scale factors, followed by the interictal and normal EEGs. The
MDE-CG values of interictal EEGs are higher than those of normal EEGs at small scale factors (s < 5),
while the MDE-CG values of the two groups are similar at larger scale factors, as shown in Figure 6(e).
Compared with the results of MDE-CG shown in Figure 6(¢), the MDE-MA values of interictal and
normal EEGs are more differentiable over most scale factors, as shown in Figure 6(f). It suggests that
MDE-MA is more capable of quantifying the underlying complexities of epileptic and normal EEGs
than MDE-CG due to the use of moving average process.

Figure 6(g)—(i) show the MSE, MDE-CG, and MDE-MA results from all the EEG recordings for
the C interval. The results of MSE, MDE-CG, and MDE-MA for the C interval of three epileptic groups
show similar quantification compared to the results of intervals A and B.

In Figure 6, we found that MSE, MDE-CG, and MDE-MA have comparable quantification of
complexity with different protocols, implying those measures possess consistency for the selection of
epileptic EEGs.

3.2. Statistical analysis

In this section, statistical analysis was performed to verify the performance of MSE and two
proposed MDE methods. The Mann-Whitney U test was performed to validate the statistical
significance of the distinction using the above entropy methods using EEGs from three different
physiological states. The Mann-Whitney U test was utilized to verify the statistical differences between
the entropy values of the three EEGs. Each statistical analysis was carried out by comparing different
physiological states, namely, normal vs. interictal, normal vs. ictal, and interictal vs. ictal. The
significance level for the decision of hypothesis testing is set to 0.001, so if the p-value is less than
0.001, statistical significance is accepted and indicated as shaded in Table. Tables 1—3 show the
analysis results of MSE, MDE-CG, and MDE-MA, respectively.

Table 1 shows the statistical analysis results for the MSE results for three cases of comparisons
for different short-term intervals from entire EEG recordings. On a limited number of time scales, it is
able to distinguish between normal and interictal EEGs, regardless of the selection of intervals.
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Table 1. The results of the Mann—Whitney U test for MSE values.

Scale factor ~ “p-value

A interval B interval C interval

N/ Inter N / Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal
1 1.98x10%*  1.07x107%*  1.69x10 2.33x10% 9.57x10%7  1.21x10* 5.13x10%  2.65x10*  0.003
2 2.90x107  8.96x10%  9.25x10° 5.25%10"%  1.24x10%  8.17x10° 9.12x10  1.64x10%  5.81x107
3 0.003 3.66x1078  5.32x10° 1.51x10*  9.56x10™*  1.19x10° 432x10°  1.14x10"°  0.001
4 0.011 2.84x10712 2.83x10°° 0.023 4.78x10"%  2.05%107 5.03x10*  7.10x10"®  1.37x107
5 0.650 3.05x10°%  1.16x107 0.219 5.54x107  8.12x10% 0.233 3.08x1071°  7.23x107
6 0.089 0.002 0.94x10° N/A N/A N/A N/A 8.51x107  N/A
7~20 "N/A N/A N/A N/A N/A N/A N/A N/A N/A

The shadow denotes that the two groups are significantly different (p < 0.001). N/A denotes
“Not Available”. “N” indicates the normal group, ‘Inter’ indicates the interictal group, and “Ictal”
indicates the ictal group.

Table 2. The results of the Mann—Whitney U test for MDE-CG values.

Scale *p-value

factor A interval B interval C interval

N/ Inter N/ Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal
1 1.22x10* 2.98x10% 8.13x10"7 8.06x10°¢ 1.20x10% 2.93x10% 1.01x10"* 5.77x1071® 3.58x1012
2 6.50x10°° 1.12x10% 3.16x1071¢ 6.01x10® 3.17x10% 9.63x10°% 2.10x10* 9.91x10" 8.42x10712
3 0.002 5.55%10% 4.13x10" 2.95%x10* 5.03x10% 1.47x10°% 0.086 1.41x107"7 5.55%10™8
4 0.011 1.24x10% 2.63x107"7 0.005 3.34x10% 9.00x10! 0.944 2.36x10"8 3.16x1071¢
5 0.127 3.24x10% 2.00x10® 0.036 2.57x10% 3.05%x10% 0.990 1.46x10"® 7.39x10°"7
6 0.034 3.52x10% 4.42x10% 0.593 8.42x108 7.63x10°%7 0.774 2.19x10% 5.22x10%°
7 0.127 4.05%x10% 4.73x10% 0.357 1.05x107 2.33x10% 0.118 2.91x10% 3.52x10
8 0.253 3.36x10% 2.74x10°% 0.432 7.40x10°! 7.44x10%8 0.354 4.48x10% 8.64x102!
9 0.207 1.28x10% 4.30x10% 0.707 1.00x10% 2.46x10% 0.047 3.56x1018 4.02x107"
10 0.283 1.40x10% 1.85%x10% 0.734 2.18x10%¢ 5.47x10% 0.080 1.26x10% 2.66x10%
11 0.461 2.16x10% 3.73x10% 0.543 5.15%x10° 2.19x10% 0.240 2.05x10" 1.14x107"
12 0.873 1.22x10% 8.47x10"3 0.912 1.40x10* 2.71x10°% 0.004 3.38x1018 1.56x10%!
13 0.158 1.38x10% 3.43x10% 0.751 2.11x102° 5.70x1018 0.091 1.01x10™ 1.02x10'6
14 0.121 2.16x10% 2.61x1018 0.463 1.22x10°"7 2.99x1018 0.049 3.06x10"® 3.07x10
15 0.552 3.01x10% 9.69x10% 0.505 9.50x10%° 4.75x107"7 0.060 1.65x10 9.32x10'®
16 0.592 1.27x107"7 1.17x107% 0.633 2.97x10%° 1.36x108 0.294 1.21x10" 6.80x10"7
17 0.757 3.21x10% 8.30x10" 0.353 2.95%1071¢ 8.17x1012 0.048 3.78x10™M 1.03x103
18 0.325 5.60x1071 5.10x1018 0.891 1.36x10""7 9.90x101 0.037 9.54x101° 1.77x10°8
19 0.812 1.09x1013 8.67x1012 0.683 2.19x10™ 1.82x10 0.021 2.08x1013 1.46x101
20 0.339 7.18x10°1° 1.44x10™M 0.758 5.84x1012 1/06x1071° 0.078 1.31x101° 3.78x10713

The shadow denotes that the two groups are significantly different (p < 0.001).

Mathematical Biosciences and Engineering

Volume 21

, Issue 4, 5556-5576.



5568

Table 3. The results of the Mann—Whitney U test for MDE-MA values.

Scale *p-value

factor A interval B interval C interval

N/ Inter N/ Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal N/ Inter N/ Ictal Inter / Ictal
1 1.22x10* 2.98x10% 8.13x10" 8.06x10°¢ 1.20x10% 2.93x107% 1.01x10 5.77%1078 3.58%10712
2 6.50x10° 1.12x10% 3.16x10°1¢ 6.01x10° 3.17x10% 9.63x10°%° 2.10x10* 9.91x10" 8.42x10712
3 0.002 5.55%10% 4.13x10°° 2.95%x10* 5.03x10% 1.47x10°% 0.086 1.41x107"7 5.55%1013
4 0.011 1.24x102 2.63x10"7 0.005 3.34x10% 9.00x10! 0.944 2.36x107" 3.16x10716
5 0.127 3.24x10% 2.00x108 0.036 2.57x10%¢ 3.05%x10% 0.990 1.46x10718 7.39x107"7
6 0.034 3.52x10% 4.42x10% 0.593 8.42x108 7.63x10°%7 0.774 2.19x10% 5.22x10%°
7 0.127 4.05x10% 4.73x10° 0.357 1.05x10°! 2.33x10°%° 0.118 2.91x10% 3.52x102
8 0.253 3.36x10% 2.74x10% 0.432 7.40%107! 7.44x10% 0.354 4.48%10% 8.64x10!
9 0.207 1.28x10% 4.30x102 0.707 1.00x10% 2.46x102 0.047 3.56x10°"8 4.02x10°"
10 0.283 1.40x10% 1.85x10% 0.734 2.18%10% 5.47x10% 0.080 1.26x10% 2.66x10%
11 0.461 2.16x10% 3.73x10% 0.543 5.15%10% 2.19x10% 0.240 2.05x101# 1.14x10°"
12 0.873 1.22x10% 8.47x10% 0.912 1.40x10% 2.71x102% 0.004 3.38x108 1.56x107!
13 0.158 1.38x10% 3.43x10% 0.751 2.11x10%° 5.70x10# 0.091 1.01x10™ 1.02x10'
14 0.121 2.16x10% 2.61x10® 0.463 1.22x10°"7 2.99x101# 0.049 3.06x10# 3.07x10
15 0.552 3.01x10% 9.69x10% 0.505 9.50x10% 4.75x10°"7 0.060 1.65%107 9.32x10"%
16 0.592 1.27x10°"7 1.71x10°% 0.633 2.97x10% 1.46x10°"8 0.294 1.21x10°" 6.80x10"7
17 0.757 3.21x10% 8.30x10" 0.353 2.95x10 8.17x1012 0.048 3.78x10™" 1.03x10°13
18 0.325 5.60x1071 5.10x10* 0.891 1.36x10""7 9.90x10 0.037 9.54x101° 1.77x10°
19 0.812 1.09x10° 8.67x1012 0.683 2.19x10 1.82x10 0.021 2.08x10°" 1.46x107"
20 0.339 7.18x1071° 1.44x10™" 0.758 5.84x10"2 1.06x1071° 0.078 1.31x101° 3.78 x10°

The shadow denotes that the two groups are significantly different (p < 0.001).

In addition, the distinction between normal and ictal, and interictal and ictal EEGs is statistically
significant below a scale factor of 6. For larger time scales, statistical analysis is unavailable due to the
existence of a number of undefined entropy values. The statistical results are similar for the different
intervals.

In Table 2, the statistical analysis results using MDE-CG are shown. The p-values of comparison
between normal and ictal EEGs and interictal and ictal EEGs for all scale factors are less than 0.001
regardless of the intervals. This implies that the differentiation between normal and ictal EEGs, and
interictal and ictal EEGs is statistically significant.

On the other hand, the normal and interictal EEGs are differentiable on small scale factors (less
than 2 for A and C intervals, and less than 3 for B intervals, respectively). Compared to the results of
MSE analysis, the proposed MDE-CG has improved performance in distinguishing between normal
and epileptic EEGs, especially between normal and interictal EEGs, and interictal and ictal EEGs.

Table 3 exhibits the statistical analysis results of MDE-MA. As can be seen, the use of MDE-MA
leads to the ability to distinguish between normal and epileptic EEGs, especially between normal and
interictal EEGs, and interictal and ictal EEGs. For the comparison between normal and interictal EEGs,
MDE-MA is better capable of differentiating two distinct EEGs for a wider range of scale factors
compared to MSE and MDE-CG, implying the superiority of MDE-MA.
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3.3. Evaluation of classification performance

Here, we evaluated the classification performance of the MSE, MDE-CG, and MDE-MA between
three distinct EEGs, 1.e., normal, interictal and ictal EEGs using receiver operating characteristic (ROC)
curve analysis. The classification performance for each entropy method was evaluated as AUC.

Figure 7 depicts the AUC results of the MSE, MDE-CG and MDE-MA methods for classification
between three different states of EEGs by pairwise comparison. As in previous experiments, three
distinct intervals from a whole EEG recording were chosen and used for classification.

Figures 7(a)—(c) show the AUC results of MSE, MDE-CG, and MDE-MA for the A interval,
respectively. Comparing with the classifications between normal and ictal EEGs, and interictal and
ictal EEGs, the classification between normal and interictal is the worst performing. In Figure 7(a),
MSE has higher AUC values at scale factors 1 and 2 than the two MDE methods. In Figure 7(b),
regarding the classification between normal and ictal EEGs, the MDE-CG and MDE-MA methods
show better classification performance except for the scale factor of 1. Moreover, the classification
performance of MDE-MA is slightly better than that of MDE-CG. Figure 7(c) shows that MDE-CG
and MDE-MA perform better than MSE in differentiating interictal and ictal EEGs.

Figures 7(d)—(f) exhibit the AUC results of three entropy measures for the B interval. The AUC
results of MSE, MDE-CG and MDE-MA shown in Figures 7(d)—(f) are similar to those of the A
interval, shown in Figures 7(a)—(c). Figures 7(g)—(i) show that the AUC results of the C interval are
comparable to those of the other two intervals. These imply that the discrimination of distinct epileptic
EEGs is less dependent on selecting short-term EEGs from a whole EEG recording.

The AUC results in Figure 7 suggest that MSE values at restricted small scales work better for
differentiating interictal EEGs from normal EEGs. For other classifications, namely normal and ictal
EEG, and interictal and ictal EEGs, MDE-MA, MDE-CG, and MSE, in that order, perform well.

Through experiments, MDE-CG and MDE-MA have proven their effectiveness for differentiating
epileptic states using short-term EEG recording compared to conventional DE. The use of MDE for
multiple scales leads to increased features that quantify the complexities of EEGs. It might help in the
detection of interictal and ictal EEGs more accurately than conventional complexity measures.

ROC curve analysis was performed for the binary classification between the focal and non-focal
EEGs using the Bern-Barcelona dataset, followed by AUC evaluation for classification performance.

Figure 8 shows the AUC results of the MSE, MDE-CG, and MDE-MA for classification between
focal and non-focal EEGs. As can be seen, MSE has higher AUC values at the scale factor of 1 than
its competitors. However, for the other scale factors, MDE-MA performs the highest AUC values
followed by MDE-CG and MSE. Moreover, MSE fails to classify the focal and non-focal EEGs. Figure
8's AUC values suggest that MDE-MA may be a superior quantification tool for both focal and non-
focal EEGs. MDE-CG exhibits comparable performance to MDE-MA, whereas MSE demonstrates
the lowest performance among the three multiscale-based entropy methods.
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Figure 7. Area under the ROC curve (AUC) results of MSE, MDE-CG, and MDE-MA
values for all pairs of EEG data at 3 intervals. (a) performances to distinguish between
normal and interictal groups at interval A, (b) performances to distinguish between normal
and ictal groups at interval A, (c) performances to distinguish between interictal and ictal
groups at interval A, (d) performances to distinguish between normal and interictal groups
at interval B, (e) performances to distinguish between normal and ictal groups at interval
B, (f) performances to distinguish between interictal and ictal groups at interval B, (g)
performances to distinguish between normal and interictal groups at interval C, (h)
performances to distinguish between normal and ictal groups at interval C, (i)
performances to distinguish between interictal and ictal groups at interval C.

Mathematical Biosciences and Engineering

Volume 21, Issue 4, 5556-5576.



5571

I sE
I vOE-cG
[T MDE-Ma | |

18 20

Figure 8. AUC results of MSE, MDE-CG, and MDE-MA values for classification of focal
and non-focal EEGs.

2 4 6 g 10 12 14 16
Scale Factor

4, Discussion

This work presents two versions of MDE utilizing a coarse-graining and moving average process
with application to the analysis of the epileptic EEG recordings with the aim of detecting epileptic
EEG recordings rapidly.

As a means of representing the complexity of EEG signals, a variety of entropy measures have
assumed prominence in recent years. While the relationship between entropy and complexity is still a
matter of debate, entropy estimation of neurophysiological signals can serve as a partial representation
of the complexity of the neural systems that lie beneath.

MSE, the well-known entropy measure, offers a resolution to the problem of complexity-induced
inconsistency. On account of its capabilities, MSE has been implemented in a vast array of settings,
including biomedical environments. Unlike other applications, the utilization of EEG recordings
requires specific considerations. Rapidly and precisely determining the significance of a signal
quantitatively is an indispensable skill.

Recent progress in developing capable entropy measures to detect epileptic patterns from short-
term EEG recordings has been made [9,33]. Along this line of thought, a better entropy method, which
reflects the complexity of epileptic EEG signals by addressing the inconsistency between complexity
and entropy, is lacking. While a timely and robust estimation of epileptic EEG signals is of great
importance since the stable and consistent computation of entropy values results in real-time detection
of epileptic EEG signals, it encounters obstacles.

This work’s exploration into the complexity of short-term EEG signals has yielded promising
results that stand to enhance our understanding and management of epileptic seizures. The introduction
of MDE-CG and MDE-MA methods marks a significant advancement in quantifying the complexity
of EEG signals, especially for short-term EEG recordings comparing the results obtained with widely
used MSE. In addition, the performance of the proposed MDE methods was consistent regardless of
the choice of intervals in the EEG signal. In summary, the MDE-based epileptic seizure detection
methods are better able to capture not only stable features using short EEG signals but also consistent
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features regardless of the choice of intervals in the EEG signal, implying its practicality. This brevity
is crucial for real-time seizure detection applications, where speed and accuracy are imperative for
patient safety and treatment efficacy. The proposed work has limitations in analyzing multichannel
epileptic EEG recordings.

It is worth noting that current work has limitations in dealing with datasets. First, since the Bonn
dataset is mixed with scalp and intracranial EEG recordings, it needs to be validated using other
epileptic EEG datasets. Second, subject-independent experiments are needed to validate the practical
effectiveness.

Recently, from other applications such as fault diagnosis of bearing, capable and effective multiscale-
based entropy measures have been developed, showing their superiority. Adopting these methods can
improve the performance of detecting abnormalities in signals, including epileptic EEGs.

However, it is facing challenges due to the lack of an epileptic EEG database. To enhance the
generalized ability to detect epilepsy seizures, it is advisable to utilize modern and sophisticated
artificial intelligence (AI) techniques, particularly incorporating multimodal and self-supervised
learning [34,35]. In addition, applying various capable deep-learning methods for detecting epilepsy
seizures would enhance the effectiveness of this line of work [36-41].

The work lays the stage for future research on applying these approaches to various datasets and
real-world situations. Validation across diverse patient populations and seizure types will be essential
for universal adoption.

5. Conclusions

This work has presented effective quantification methods for distinguishing several types of
epileptic EEG signals, including ictal, interictal, and normal EEGs, as well as focal and non-focal
seizures, through the multiscale entropy analysis of short-term recordings. A multiscale-based DE
quantification has been developed for timely and reproducible quantification of the complexity of
EEGs over multiple temporal scales. The resultant MDE-CG and MDE-MA incorporate DE
computation and the coarse-graining and moving-average procedures, respectively.

Computing MDE:s for a distinct selection of short-term segments of EEGs shows that the MDEs
are stable and consistent with short-term EEGs. Experimental results using two public epileptic EEG
datasets indicate that the proposed MDEs outperform the conventional MSE in the following aspects.

1) The MDEs lead to remarkably more statistically significant comparison cases (p-values <

0.001) than MSE, especially for discrimination between ictal and normal EEGs, and ictal and
interictal EEGs.

2) AUC values of the MDEs over multiple scales are much higher than those of MSE for all two

datasets.

This capability of the proposed MDEs implies that the MDE-CG and MDE-MA may play a role
as prospective tools for practical epileptic seizure detection scenarios in cases where timely and precise
decisions for epileptic patients are imperative. In addition, to better detect epileptic patterns in EEGs,
a multivariate version of multiscale entropy would be preferred since a multivariate multiscale
dynamic indicator can reflect the spatial dynamic complexity of the recordings. Future works include
increasing generalization for detecting epileptic EEG signals by augmenting epileptic EEG datasets or
applying multimodal and self-supervised learning approaches.
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