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Abstract: Bearings are critical components of industrial equipment and have a significant impact on
the safety of industrial physical systems. Their failure may lead to equipment shutdown and accidents,
posing a significant risk to production safety. However, it is difficult to obtain a large amount of bearing
fault data in practice, which makes the problem of small sample size a major challenge for bearing fault
detection. In addition, some methods may overlook important features in bearing vibration signals,
leading to insufficient detection capabilities. To address the challenges in bearing fault detection,
this paper proposed a few sample learning methods based on the multidimensional convolution and
attention mechanism. First, a multichannel preprocessing method was designed to more effectively
utilize the information in the bearing vibration signal. Second, by extracting multidimensional features
and enhancing the attention to important features through multidimensional convolution operations
and attention mechanisms, the feature extraction ability of the network was improved. Furthermore,
nonlinear mapping of feature vectors into the metric space to calculate distance can better measure the
similarity between samples, thereby improving the accuracy of bearing fault detection and providing
important guarantees for the safe operation of industrial systems. Extensive experiments have shown
that the proposed method has good fault detection performance under small sample conditions, which
is beneficial for reducing machine downtime and economic losses.
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1. Introduction

In industrial systems, bearings are important mechanical components, and their normal operation
is crucial to ensure the stability and safety of the system [1]. As a key mechanical component, bear-
ing failure can seriously affect the reliable operation of the system. Under long-time operation and
harsh environments, bearings are prone to failure, leading to system performance degradation and even
accidents. The bearing fault detection has been facing technical difficulties such as complex signals,
diverse fault modes, and weak early fault characteristics, which is a hot spot in this research field. It has
been found that the probability of bearing failure is the highest among other components [2], and more
than 41% of machine failures are caused by bearings [3]. Therefore, bearing failure detection is impor-
tant for industrial systems. Bearings in different operating conditions have different levels of vibration
and noise, and these bearing vibration signals reflect the mechanical operation in real time [4]. In
addition, the rapid development of sensor technology makes the acquisition of vibration signals more
convenient. Therefore, the acquisition and analysis of vibration signals is a commonly used rolling
bearing fault diagnosis method [5].

Traditionally, the research on bearing fault detection is mainly focused on the field of signal analysis,
which is mainly to obtain the time-domain, frequency-domain and time-frequency characteristics of the
vibration signals, and the commonly used methods are power spectrum analysis [6], cepstrum analy-
sis [7], envelope spectral analysis [8], wavelet analysis [9], continuous wavelet transform (CWT) [10],
and empirical modal decomposition (EMD) [11]. Although they have achieved some success, these
methods rely on manually designed features and have weak generalization ability, making them dif-
ficult to apply to new scenarios. Deep learning is an effective solution for this issue. Deep learning
allows for layer-by-layer feature extraction through multilayer neural networks, which can automat-
ically learn to represent features in the data [12, 13]. This enables deep learning for fault detection
in vibration signals to better capture complex features in the signals. Currently, there are many deep
learning based methods, such as recurrent neural networks (RNN) [14], long short-term memory net-
works (LSTM) [15], convolutional neural networks (CNN) [16], deep ensemble learning network [17],
multi-attention fusion residual convolutional neural network [18], deep convolutional variational au-
toencoder [19], etc. Through ingeniously integrating multilayer network architectures and complex
data representation capabilities,these methods have significantly propelled innovation and progress in
the field of fault detection and feature extraction in deep learning.

However, most of the deep learning based methods rely on a large amount of sample data for train-
ing, but in practice, this poses a challenge for fault detection due to the variation of bearing vibration
information under different operating conditions and the difficulty of obtaining a large amount of sam-
ple data. Therefore, how to achieve accurate fault detection using few samples has become a hot topic.
At present, small sample learning methods mainly include data augmentation based methods, meta
learning based methods, transfer learning based methods, metric learning based methods, etc. Data
augmentation is a method of addressing insufficient sample size by directly increasing the diversity
of sample size and distribution [20–23]. Data augmentation can be combined with other methods to
improve detection performance under small samples. However, due to the insufficient number of anno-
tated samples, simply enhancing the sample and feature space for small samples can only bring limited
performance improvement, making it difficult to fundamentally solve the problem of small sample ob-
ject detection. Meta learning is to transfer prior knowledge from annotated source domains to new
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domains with few data by simulating a series of similar small sample training tasks [24]. It can quickly
update model parameters with a small number of support set samples with only a few iterations under
specific tasks. However, meta learning requires manually constructing the support set in the task and
can only perform pretraining and transfer on fixed tasks. Furthermore, it usually has high computa-
tional complexity and prunes to non-convergence issues during the learning iteration process. Metric
learning maps the features of potential targets and basic data to the same embedding space, then classi-
fies them through similarity measurement [25]. Metric learning generally needs to solve the following
three problems: class prototype representation of base classes, measurement mechanism of bounding
boxes, and loss function design. Metric learning is easy to implement incremental learning because af-
ter training the model on the base class dataset, it can be directly used to detect new classes. However,
when the data volume is large and the feature dimension is high, metric learning has problems such as
long computation time and high memory consumption, which reduces the real-time performance of the
algorithm. Transfer learning is also to transfer prior knowledge from annotated source domains to new
domains with little data. Typically, transfer learning methods include fine tuning, multitask learning,
domain adverse training, zero shot learning, etc. Compared with meta learning, transfer learning based
methods do not require designing small samples training tasks, making them widely used. Currently,
some works [26–29] have attempted to use transfer learning to address the issue of small sample fault
detection. However, transfer learning still faces some challenges and difficulties, such as establishing
a correspondence between the source domain and the target domain and maintaining the performance
of the source domain. These methods mentioned above do not begin from fully explore the hidden in-
formation of the data itself; therefore, this paper aims to solve the problem of fewer samples in bearing
fault detection by using the characteristics of the finite original signal itself to improve the efficiency
and performance of small-sample learning.

To overcome the above issues, this paper proposes a few shot bearing fault detection methods. The
main contributions of this paper include:

1) A bearing fault detection model using multidimensional convolution and attention is proposed,
which adapts to few-sample conditions via a tailored network structure.

2) A data conversion module is designed to form multichannels by combining various data prepro-
cessing methods, which effectively retains key edge information and fully utilizes data information.

3) A feature extraction module is designed, which combines self-attention mechanism with multi-
scale CNNs , enabling a more comprehensive capture of data features and an improved performance
of the proposed method.

4) A sample similarity measurement module is designed, which maps features to a measurement
space for similarity assessment and effectively distinguishes intrinsic data differences to enhance the
network’s ability to measure sample similarity.

The rest of the paper is as follows. Section 2 describes the related work, Section 3 describes the
framework of the proposed method and the details of each modular part, Section 4 gives the experi-
mental results, and Section 5 gives the conclusion.

2. Related work

Bearing fault detection is a typical classification and anomaly detection problem, often using the
vibration signal to determine its operating state. The key problem of bearing fault detection is how
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to accurately extract features from the sensor data and design an effective model. Meanwhile, it also
needs to consider the adaptability and robustness in the actual working conditions.

2.1. Bearing fault detection methods based on traditional methods

Traditional bearing fault detection methods mainly rely on characterizing the signal in the time, fre-
quency, and time-frequency, domains to extract features, and using classifiers to discriminate different
fault types. Li et al. [30] effectively extracted the characteristic frequencies of inner and outer ring
faults by proposing an adaptive morphological update to enhance the wavelet transform. Fu et al. [31]
considered the nonlinear non-Gaussian non-smooth features of the signal, and used ensemble empirical
mode decomposition (EEMD) for decomposition of the original signal. This method extracts the root
mean square value and power spectrum center of mass features as inputs and uses the optimized Elman
AdaBoost model for classification and identification of bearing faults. Zheng et al. [32] proposed an
adaptive power spectrum Fourier decomposition method to solve the problems of too many compo-
nents and cross-mixing in Fourier decomposition. This method works by automatically searching the
intervals of each component in the power spectrum of the original signal and decomposing the signal
into multiple single components. The fault feature contained in these single components can be used to
diagnose bearing faults. Konar and Chattopadhyay [10] considered the unsuitability of Fourier analysis
for analyzing nonstationary and transient signals and proposed the use of CWT for feature extraction,
then input the features into support vector machines (SVMs) to detect the bearing faults in induction
motors. These methods based on signal analysis have been widely used; however, they suffered from
the limitations of relying on expertise and a prior experience, as well as the need to manually design
the feature extraction.

2.2. Deep learning based bearing fault detection method

With the continuous development and improvement of deep learning technology, deep learning-
based bearing fault detection methods play a more important role in future industrial applications.
Deep learning-based methods can learn complex feature representations from large amounts of raw
sensor data without relying on expertise and manual feature engineering to address bearing fault de-
tection. Deep learning has been applied in emerging areas of industry such as state feature extraction
methods using similarity to monitor the propagation process of gear surface wear [33] and using digital
twins to solve the problem of monitoring and evaluating surface wear in industrial gear systems [34];
these studies provide more possibilities for deep learning in industrial applications. In addition, to
address the needs of bearing fault detection, Ni et al. [35] proposed a deep learning network struc-
ture, pulse-Coupled integrated residual network (PIResNet), to solve the problem of fault diagnosis of
rolling bearings under different operating conditions, using the method of deep learning of physical
information. Peng et al. [36] proposed a deeper one-dimensional convolutional neural network (Der-
1DCNN) deep convolutional neural network method based on 1D residual blocks to address the needs
of high-speed train bearings for fault detection in strong noise environments and variable load condi-
tions. The one-dimensional convolutional approach can capture local temporal features in the signals,
but it is unable to capture long-term dependencies due to the limited coverage of convolutional kernels.
Peng et al. [37] converted one-dimensional time series signals into two-dimensional image signals as
inputs to a two-dimensional convolutional neural network (2D-CNN) model through a linear mapping
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for bearing fault identification and classification. However, this method does not take into account
the problem of incoherent edge information in each row in the 2D convolution. 2D convolution can
enable the model to capture the periodic changes on different time scales in the data at the same time,
but its sensory field is fixed, which may not be able to flexibly adapt to the dependencies of different
time spans. Yu et al. [15] proposed a hierarchical algorithm based on stacked LSTM networks for
bearing fault diagnosis, which directly takes the raw timing signals as inputs and extracts the features
automatically. LSTM can maintain and update the information in long sequences by the design of the
gating structure and the memory cells to deal with the long-term temporal relationships. However, due
to the fixed length of the memory cells, it is often only able to capture local dependencies rather than
global dependencies of the entire sequence. Some works have proposed combining the above methods
with each other. Combining the above methods can take advantage of their respective strengths to im-
prove the performance of the model in feature extraction. For example, Wang et al. [38] automatically
learned the features of the signal at different scales by combining two channels, 1D CNN and 2D CNN,
and the network can learn the local correlation between neighboring and non-neighboring intervals of
the periodic signal. Khorram et al. [39] proposed an end-to-end 1D CNN+LSTM network architecture
that considers both local and global features of time series.

2.3. Solutions for few samples

Although deep learning based methods have achieved great success, most of these methods rely on
a large amount of data for training and optimization. However, most of the data is normal with only a
small proportion of faulty data, which is a typical few-sample problem. Therefore, some works have
proposed solutions to the few-sample problem. Liu et al. [20] used a generative adversarial networks
(GAN) to construct a generator to obtain reconstructed residuals and enhance the feature extraction
capability of the recognizer through an adversarial mechanism. A LSTM based an Autoencode frame-
work is established to reduce the dimensionality of the original sensing data and extract critical time
fault features. Yang et al. [21] used a conditional generative adversarial network to learn the distribu-
tion of the original 1D data, generated new sample data to expand the sample size, and used 2D-CNN to
extract image features and classify bearing fault types. Li et al. [29] used a transfer learning approach
utilizing CNNs and multilayer perceptrons (MLPs) as base models, with some of the base models
transferred to the target domain for fine-tuning. The above methods for a few samples provide some
solutions, but they usually require a large amount of non-primitive data to train and optimize the model.
GAN-based methods still require sufficient data to train a stable generator, with limitations such as the
quality of generated samples being difficult to assess, and discrepancies between expanded and real
data. Transferring-based methods require both source and target domains. As a result, lots of works
are needed to ensure effective knowledge transfer between source and target domains. In the case of
limited data volume, these methods may not achieve the expected performance.

3. The proposed method

In this paper, a multichannel multidimensional bearing fault detection method is proposed, and the
main architecture of the proposed model is shown in Figure 1, where multiple channels are generated
by preprocessing the input data through the preprocessing block, then the processed data is input into
the model. After the feature extraction block consisting of the multidimensional convolution and the
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Figure 1. Overall model architecture.

attention mechanism, the extracted feature vectors are passed through the similarity measure block
to measure the similarity between the two samples, then the probability that whether two samples
belong to the same category is output. The data preprocessing block converts the data into multiple
channels through median filtering, mean filtering, and convolution operations, which can retain key
edge information and make full use of the information in the data. The feature extraction block captures
the data features more comprehensively through multidimensional convolution with hybrid attention
mechanism. The similarity metric block maps the extracted feature vectors to the space of the metric
through a nonlinear method, then calculates the similarity between the samples. The ability to model
the nonlinear relationship between two samples can be improved through the nonlinear mapping, which
in turn improves the accuracy of measuring the similarity between samples. The rest of this section
describes the data preprocessing, feature extraction, and similarity measure blocks in detail.

3.1. Multichannel data preprocessing

For faulty bearings, abrupt changes in the bearing signal amplitude occur, as the rolling element
passes over the faulty region of the bearing. These sudden changes would disturb the overall distribu-
tion of the signal and, therefore, can be used as important clues for detecting faulty bearings. In order
to fully explore and utilize the information contained in the signal, additional channels processed by
median filtering and mean filtering are introduced to the original signal. Adding multiple channels can
provide more information to the CNN. In addition, we introduce using 1D convolution as a channel in
the process of 2D data conversion. This multichannel fusion preprocessing strategy aims to enhance the
model’s ability to identify meaningful patterns in the signal while reducing the interference of noise on
the analysis results, thus improving the accuracy and reliability of the subsequent analysis. The overall
result of this section is shown in the Figure 2.
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Figure 2. Visual results of multichannel data processing.

3.1.1. Preprocessing of 1D data

Median filtering aims to suppress extreme values and impulse noise, while mean filtering helps
to smooth the signal and reduce random fluctuations. Considering the limitations of the subsequent
2D-CNN, the original signal is cropped to the size of N2, the channels processed by median filtering
and mean filtering are additionally introduced on top of the original signal, and the combination of the
original data, and the filtered data can provide more information.

The input original signal is Xi, and the output of the median filter with a window number of 2m + 1
at the t-th data is:

Ximedian (t) = Median {Xi(t − m), . . . , Xi(t), . . . Xi(t + m)} (3.1)

where Median{} denotes the median of all samples taken within the window of processed data at this
time. The input original signal is Xi, and the output of the mean filter with a window of 2n + 1 at the
t-th data is:

Ximean (t) = Mean {Xi(t − n), . . . , Xi(t), . . . Xi(t + n)} (3.2)

where Med{} denotes the mean of all samples taken within the window of processed data at this time.
The output after data preprocessing is:

Xi 1
′ = [Xi, Ximean , Ximedian ] (3.3)

3.1.2. Converting 1D data to 2D data

In order to make the edge information more coherent for the process of 2D data conversion, we
introduced 1D convolution as another processing channel on the basis of the above processing method.
To begin, the one-dimensional original data Xi is subjected to the convolution operation with kernel K.
The result after convolution is:

Xiconv = K ⊗ Xi (3.4)

where ⊗ is the convolution operation.
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We map the signal from 0 to 255,



Xi
′ = g

(
Xi(c) − Xi min(c)

Xi max(c) − Xi min(c)

)
× 255

Ximean
′ = g

(
Ximean(c) − Ximean min (c)

Ximean max(c) − Ximean min (c)

)
× 255

Ximedian
′ = g

(
Ximedian (c) − Ximedian min (c)

Ximedian max(c) − Ximedian min (c)

)
× 255

Xiconv
′ = g

(
Xiconv(c) − Xiconv min (c)

Xiconv max(c) − Xiconv min (c)

)
× 255

(3.5)

where g( ) means rounding the normalized signal value.
The result of the convolution is added to Xi 1

′ as the channel, which becomes Xi 2.

Xi 2
′ =

[
Xi
′, Ximean

′, Ximedian
′, Xiconv

′] (3.6)

Then the one-dimensional vector Xi 2 is converted into the desired 4 × N × N matrix Xi 2
′, denoted

as:


Xi−2

′(c) Xi2′
′(c + 1) · · · Xi−2

′(c + N − 1)
Xi−2′

′(c + N) Xi−2
′(c + N + 1) · · · Xi−2

′(c + 2N − 1)
...

...
. . .

...

Xi−′
′
(
c + N2 − N

)
· · · · · · Xi22′

(
c + N2 − 1

)
 (3.7)

3.2. Multidimensional convolutional and attentions feature extraction block

In this study, a feature extraction block incorporating 1D-CNN, 2D-CNN, and a convolutional block
attention module (CBAM) is proposed for bearing fault detection. The block aims to make full use of
the feature information in the bearing vibration signals, which can capture the data features more
comprehensively and improve the feature extraction capability and model performance.

3.2.1. 1D feature extraction

The 1D convolutional kernel moves along the time axis to capture the local temporal dependen-
cies within the signal. The 1D-CNN utilizes the model in wavelet decomposition CNN (WDCNN) to
extract 1D features from the input vibration signals. This model effectively captures the input vibra-
tion signals by employing wide convolutional layers and multistage convolutional layers. The use of
multilayer convolutional kernels enables the network to delve deeper and extract a well-represented
model structure. Through the multilayer convolutional kernels and pooling operations of the WD-
CNN model, the temporal features of the vibration signal can be extracted more deeply, resulting in a
stronger feature representation. The structure of the WDCNN model is shown in Figure 3:
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Figure 3. WDCNN structure.

3.2.2. 2D feature extraction

The main structure of 2D feature extraction is designed as shown in Figure 4, which consists of
a series of convolutional layers, a CBAM module, and a fully connected layer. 2D-CNN enables the
model to capture both spatial information and local features in the data with attention to periodic vari-
ations on different time scales. CBAM is introduced to operate channel attention and spatial attention
on the features, which can selectively enhance or suppress the channel and spatial information in the
feature map to extract more discriminative features, thus improving the feature extraction capability.

In this block, CBAM is an attention mechanism module that combines the channel attention module
(CAM) and the spatial attention module (SAM). CAM enhances the network’s representation in the
channel dimension by adaptivly learning the weights of each channel and fusing the important ones
with weights. SAM utilizes the correlation between any two point features to mutually enhance the
representation of their respective features, and, therefore, focuses more on spatial location features.
CBAM first calculates the importance of each channel through CAM, then applies the channel attention
weights to the feature map. Subsequently, the importance of each location is calculated by SAM to
obtain the feature map, which captures the global dependency of features. The CBAM module is
introduced to improve the model representation by focusing on the important parts of the input feature
map, capturing the important features in the data, and improving the feature extraction capability and
model performance.

The entire network structure consists of two convolutional layers, two CBAM modules, two max-
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pooling layers, and two fully connected layers. Each convolutional layer is followed by a CBAM
module, and a max-pooling layer is used after each CBAM, followed by two fully connected layers.
The final length of the output sequences is kept as the same length of the outputs after 1D feature
extraction.

Figure 4. 2D feature extraction section.

Figure 5. CBAM module.

3.3. Measuring sample similarity based on nonlinear mapping

Sample similarity measurement is the core issue of fault detection. As a typical few-shot method,
siamese networks measure the similarity of two samples by calculating the L1 or L2 distance of the
eigenvectors of them. However, because the bearing vibration signal has the characteristics of period-
icity, multifrequency, nonlinearity and randomness, the direct L1 or L2 distance to the feature vector
cannot effectively measure the similarity between samples. Metric learning is a solution for the above
issue, which maps samples into the same embedding space and then calculates their similarity. Inspired
by metric learning, this paper proposes a similarity measurement method mapping to the metric space
and then calculates the L1 distance as shown in Eq (3.9).
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Table 1. Parameters setting for WDCNN.

No. Layer Type
Kernel Kernel Output Size
Size/Stride Number (Width × Depth)

1 Convolution1 64 × 1/1 × 1 16 128 × 16
2 Pooling1 2 × 1/2 × 1 16 64 × 16
3 Convolution2 3 × 1/1 × 1 32 64 × 32
4 Pooling2 2 × 1/2 × 1 32 32 × 32
5 Convolution3 3 × 1/1 × 1 64 32 × 64
6 Pooling3 2 × 1/2 × 1 64 16 × 64
7 Convolution4 3 × 1/1 × 1 64 16 × 64
8 Pooling4 2 × 1/2 × 1 64 16 × 64
9 Convolution5 3 × 1/1 × 1 64 6 × 64
10 Pooling5 2 × 1/2 × 1 64 3 × 64
11 Fully-connected 100 1 100 × 1
12 Fully-connected 10 1 10 × 1

Table 2. Parameters setting for 2D-CNN.

No. Layer Type Kernel Size Kernel Number Output Size
1 Convolution1 7 × 7 64 44 × 44
2 Pooling1 2 × 2 64 21 × 21
3 Convolution2 5 × 5 32 18 × 18
4 Pooling2 2 × 2 32 8 × 8
5 Fully connected 10 1 10

f (xi) =
1

1 + e−xi
(3.8)

D (xi, xi+1) =
∑
| f (xi) − f (xi+1)| (3.9)

First of all, the feature vector output after feature extraction is mapped nonlinearly. We use the
sigmoid activation function, which restricts the range of values of the feature vector between 0 and 1,
normalizes the range of values of the features, and makes the features more comparable. Compared
with the direct L1 distance to the feature vectors, the method of using the sigmoid activation function
mapping and L1 distance calculation can more accurately measure the similarity between the samples,
which improves the accuracy and stability of the similarity calculation.

The output is obtained by Eq (3.10), which represents the probability that the two input samples are
the same:

P (xi, xi+1) = f (FC (D (xi, xi+1))) (3.10)

where FC is the fully connected layer.
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4. Experiment

4.1. Experimental setup and data description

The code for the paper was implemented on a server equipped with two RTX4090Ti GPUs. The
bearing failure dataset from Case Western Reserve University (CWRU) is used. The bearing failure
dataset from CWRU contains different types of bearing failures in four states: normal operation, inner
ring failure, outer ring failure, and rolling element failure. Each failure type simulates three single
point failures of varying severity, with failure diameters of 0.07 inches, 0.14 inches, and 0.21 inches,
for a total of 10 states [40]. The data contains the fan-side vibration data, the drive-side vibration data
base vibration data, and the motor speed.

We compared the proposed method with SVM [10], WDCNN [40], 2DCNN [37], and a few-shot
method [41]. The kernel function of SVM is a radial basis function that automatically adjusts the
value of the kernel parameter according to the number of input features, with a penalty parameter of
1 and a “One-vs-One” decision function. The details of WDCNN [40] are shown in Table 1,and the
details of the 2DCNN-based [37] approach are also given in Table 2. Both methods use a learning
rate of 0.01, adopt cross-entropy loss as the loss function, and set epochs to 3000. The few-shot-based
approach [41], which employs the WDCNN as the feature extraction portion of the twin network, uses
the L1 distance to measure the similarity between samples. The learning rate of the method is set
to 0.01, the loss function adopts the binary cross-entropy loss, and the epoch is set to 10,000. The
learning rate and epoch of our method also refer to the few-shot-based approach, and we have carried
out a number of experiments; we set the learning rate to 0.01, the loss function adopts the binary
cross-entropy loss, and the epoch is set to 12,000.

Figure 6. Training convergence curves.
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4.2. Effect of number of training samples on performance

In the few-shot-based approach, the input is a sample pair coming from the same class or different
classes, and the output is the probability of two input samples belonging to the same class. The test
samples are then classified according to the most similar samples in the test set. Assuming that a test
needs to be performed on xt, the template set T contains samples from each class:

T = {(X1,Y1) . . . . . . (Xi,Yi)} (4.1)

M (xt, (X1, X2, . . . , Xi)) = argmax (P (xt, xm)) , xm ∈ T (4.2)

yt = ym (4.3)

where p() denotes the computation of similarity between two samples, and ym is the label corresponding
to the sample with the highest similarity.

In the training phase, all experiments were conducted ten times to ensure the fairness of the ex-
periments. Our method is compared with four classical methods, and to illustrate the performance
of the method for bearing fault detection with different sample sizes, the sample size of each group
is set to 60, 90, 120, 200, 300, 480, 720, 900, 1200, 1500. The training convergence curves of the
sample size 200 are shown in Figure 6, and accuracy of all methods are given in Figure 7. Meanwhile,
multi-category receiver operating characteristic curve (ROC) curves are generated for each category by
calculating the true and false positive rates, then micro-averaging and macro-averaging are performed
to obtain the micro-averaged area under the ROC curve (AUC) and macro-averaged AUC as an evalu-
ation metric for the overall performance of the classifiers. The ROC curves are shown in Figure 8, and
the results of training time, testing time, and F1-score are shown in Table 3.

Table 3. Time and F1-score.

60-time-
train

60-time-
test

60-F1-
score

200-time-
train

200-time-
test

200-F1-
score

wdcnn
[40]

324.10 s 0.676 s 0.491 117.70 s 1.214 s 0.612

cnn [37] 286.366 s 0.130 s 0.527 235.590 s 3.960 s 0.779
fewshot
[41]

431.295 s 7.777 s 0.684 460.762 s 9.507 s 0.891

ours 602.958 s 9.992 s 0.716 1021.204
s

15.901 s 0.899
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Figure 7. Comparison of experimental results.

Figure 8. ROC with 200 samples.

Our model performs better with higher average accuracy when the training sample size is 60, 90,
120, 200, 300, 480, 720, 900, 1200, 1500. As the number of training samples continues to increase,
the accuracy of the algorithms will actually get closer. These performance comparisons show that our
model effectively improves the accuracy of bearing fault detection in a few sample situations.

It can be seen that the latter two methods, which determine whether they belong to the same class
or different classes by measuring the similarity of the input signals and then classifying them, are
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much better than the other methods in terms of accuracy in the task under small sample conditions.
Among them, our method works better than the other methods in the small sample condition of 20-
1500, especially in the sample number of 300 with the baseline model than the improvement of 8.32%.
This shows that our method is effective in the small sample condition and it can better capture the local
features and implicit information in the small samples.

By looking at the ROC curve (in the classification task), it can be seen that our method has an ROC
curve closer to the upper left corner compared to the other three methods. This trend suggests that
our model is able to achieve a high true positive rate (TPR) while maintaining a low false positive rate
(FPR) relative to the other methods, illustrating that our method is more accurate and effective in its
ability to differentiate between different categories. In addition, the larger area under the ROC curve is
also an important indicator for assessing the overall performance of the model, further emphasizing the
superiority of our method. The analysis of the F1-score results shows that our method has a higher F1-
score compared to the other three methods. This demonstrates that our method is more balanced and
reliable in dealing with category imbalance or in scenarios with high requirements for both accuracy
and coverage.

4.3. Comparative experiments in noisy environments

In this experiment, we discuss the performance in a noisy environment to simulate the variation of
the operating conditions in the dataset. The signal-to-noise ratio is defined as in Equation 4.4. We train
the model using the raw data provided by CWRU, with the number of samples set to 60, 90, 120, 200,
300, 480, 720, 900, 1200, 1500, and then test it with Gaussian white noise with an additive range of 2
dB to 10 dB.

S NR = 10log10

(
Ps

Pn

)
(4.4)

where Ps is the power of the signal and Pn is the power of the noise.
Table 4 shows the performance comparison of three different models in various noise environments.

The results show that in most cases, our models are able to identify and utilize the valid information in
the data more accurately than the other models, especially when confronted with noise, and our models
achieve better test scores. The negative impact of noise on model performance is highlighted by the
fact that the performance of all models decreases as the noise level increases. However, our model
shows a clear advantage in this challenge, especially when the sample size is increased, by being able
to distinguish between signal and noise more efficiently, which improves the robustness of the model.
In addition, the experimental data also shows that even in a small sample size and noisy environment,
our method maintains good performance, exhibiting greater robustness and generalization ability than
the other two methods.

4.4. Comparison experiment under new working conditions

In this experiment, we evaluated the test results of sample size for each training model at a sample
size of 60, where the training set and the test set are different rotational speeds as shown in Table
5. Two of the working conditions are used for training, and the new working conditions are tested
to evaluate the effectiveness of the detection of the emergence of the new conditions under the few
sample conditions. In this experiment, we aim to evaluate the detection effectiveness of different
training models in the face of new working conditions when dealing with less sample datasets.
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Table 4. Test results under noise conditions.

model num
SNR (dB)
2 4 6 8 10

fewshot[41]

20 34.91 36.56 37.72 37.97 39.08
40 61.49 65.97 68.30 69.44 70.39
60 62.59 68.25 70.87 73.21 74.13
90 71.19 76.79 80.13 81.57 82.44
120 70.96 76.81 80.57 82.01 82.45
200 67.02 77.09 80.12 82.84 83.93
300 61.19 71.83 78.47 83.20 85.23
480 70.61 80.35 85.05 88.19 89.92
600 64.85 77.19 83.95 88.24 89.55
720 63.31 77.61 85.45 89.91 91.89
900 58.87 74.91 85.13 90.81 93.05
1200 61.45 78.52 88.16 92.73 94.77
1500 53.00 71.75 85.03 90.67 93.69

wdcnn[40]

20 20.98 21.12 21.22 21.17 21.12
40 32.38 37.29 41.62 44.30 44.84
60 44.57 46.60 47.05 47.61 48.40
90 45.31 48.44 50.48 51.23 51.71
120 44.41 46.59 48.03 48.49 49.21
200 62.11 67.00 69.64 71.36 72.16
300 66.11 69.01 72.44 73.45 74.03
480 63.88 68.03 70.10 71.50 72.40
600 61.43 67.81 71.39 73.21 73.92
720 63.89 69.39 71.73 72.99 73.49
900 71.11 74.65 75.63 76.70 76.79
1200 64.73 74.00 78.36 81.00 82.27
1500 67.01 75.58 79.85 81.96 82.55

ours

20 39.00 39.92 40.22 40.00 41.02
40 63.58 70.16 72.49 73.68 74.50
60 62.76 73.36 76.85 78.17 78.74
90 69.96 76.61 80.72 83.32 84.23
120 63.33 73.48 80.68 84.20 85.88
200 64.64 77.16 85.8 89.77 91.28
300 64.99 79.41 87.49 91.89 93.52
480 71.21 84.04 91.28 94.33 95.21
600 61.45 79.47 88.61 92.37 94.01
720 68.56 84.20 91.11 94.11 95.65
900 65.87 83.05 91.01 94.96 96.41
1200 68.60 82.20 92.09 96.23 97.95
1500 67.21 83.59 91.57 95.94 97.23
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Table 5. Dataset labels and their corresponding speeds.

Dataset A B C D
Speed 1730 1750 1772 1797

According to Figure 9, our method shows high average accuracy in all 12 different test cases.
In particular, when the training sample size is 60, our method outperforms the best results of other
methods by an average accuracy of 1.33%. This result emphasizes the effectiveness of our method in
learning scenarios with few samples. With only 60 samples, the models are able to effectively learn
and adapt to new working conditions, which demonstrates the learning efficiency and generalization
ability of our method. The performance of all models improves as the sample size increases, but our
method shows more significant performance gains. When the sample size is increased to 600, at this
point, the average accuracy of our method is 5.48% higher than the best results of the other methods.
These results indicate that our method has better performance when dealing with less sample datasets,
especially when faced with new working conditions. The experimental results in this section show
that our method has significant advantages in dealing with less sample datasets and in adapting to new
working conditions.

Figure 9. Comparative experiment under new working conditions.

4.5. Ablation analysis of the proposed method

In Table 6, we show the results of model ablation for sample sizes of 60 and 600 to verify the
contribution of each module.

(1) Item 1 demonstrates the effectiveness of the preprocessing block. We observe a decrease in
accuracy of 0.49% and 4.7% in the noiseless condition compared to the full model, which suggests
that by adding channels through our preprocessing method, more input information can be maintained
in the convolution operation. This reduces information loss and provides a more comprehensive repre-
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sentation of features, which facilitates bearing fault detection.
(2) Items 2 and 3 demonstrate the partial effectiveness of feature extraction block. We observe

that the accuracy without 1DCNN decreases by 0.43% and 2.62% compared to the full model under
noiseless condition, and the accuracy without 1DCNN decreases by 2.53% and 3.11% compared to the
full model, which shows that our approach of using a mixture of one-dimensional convolution and two-
dimensional convolution, and the attentional mechanism is effective. We demonstrate the advantage of
the multidimensional feature extraction method over single dimension.

(3) Item 4 demonstrates the results of using the L1 method to measure the similarity between sam-
ples decreased by 5.3% and 3.11% compared to the original in the noiseless condition. The method
of using nonlinear mapping is more effective than directly calculating the L1 distance, which demon-
strates that our method has a greater advantage over the measurement of similarity between samples.

Table 6. Ablation results of the proposed method.

Num method exp
SNR(dB)

2 4 6 8 10 None

0 Original model
60 62.76 73.36 76.85 78.17 78.74 79.29
600 61.45 79.47 88.61 92.37 94.01 94.95

1 No -preprocess
60 60.33 68.91 73.57 76.77 77.00 78.80
600 60.27 75.69 83.64 87.03 88.59 90.25

2 No-1D-CNN
60 47.40 66.00 75.60 77.89 77.79 78.86
600 46.45 67.68 82.26 88.41 90.02 92.33

3 No-2D-CNN+CBAM
60 62.36 68.67 70.87 73.24 75.21 76.74
600 54.65 78.35 83.95 88.24 90.34 91.84

4 No-Nonlinear mapping
60 49.13 61.17 69.27 72.11 73.51 73.99
600 42.57 61.77 78.47 89.21 92.56 94.49

5. Conclusions

The detection and diagnosis of rolling bearing fault is very important for the safe operation of
rotating machinery. Bearing fault may cause great economic losses and even endanger the safety of
personnel, so it is very important to find and diagnose it in time. However, it is difficult to collect
enough bearing fault data under all working conditions. In order to solve this problem, this paper
proposes a bearing fault diagnosis method based on the multidimensional convolution and attention
mechanism, which uses median filtering, mean filtering, and convolution operation to preprocess the
original data, and uses 1D-CNN and 2DCNN+CBAM to realize efficient feature extraction. At the
same time, the similarity between samples is measured by nonlinear mapping of feature vectors into
metric space. The experimental results verify the effectiveness of this method and have broad industrial
application prospects.

In future work, we will focus on developing more lightweight and efficient models for deployment
on mobile terminals and edge devices, making the models lighter and more efficient to handle the
complexity and diversity of faults that may occur in real industrial scenarios. In addition, in the network
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feature extraction part, consideration can be given to structures such as lightweight network structures
or deep separable convolutions to reduce the complexity and computational overhead of the model
while maintaining the ability to efficiently extract bearing fault features. Furthermore, exploring other
network structures suitable for small sample learning that can diagnose unknown types of bearing faults
occurring in real industrial scenarios could be beneficial.
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