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Abstract: In the realm of medical imaging, the precise segmentation and classification of gliomas 

represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 

dataset as a standard benchmark, this study delves into the potential of advanced deep learning models 

for addressing these challenges. We propose a novel approach that integrates a customized U-Net for 

segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, 

accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, 

featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. 

To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, 

data augmentation, and normalization is introduced. This novel integration surpasses existing methods, 

offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 

0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The 

experimental findings underscore the potential of integrating deep learning-based methodologies for 

tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent 

treatment strategies. 
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1. Introduction  

The human brain, the most intricate organ in the human body, orchestrates an array of vital 
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biological functions, including respiration and muscular control. However, when a mass of cells 

undergoes abnormal growth within or adjacent to the brain, it culminates in a formidable challenge—

brain tumors. Among these, gliomas [1] emerge as one of the most common categories of glial-based 

primary tumors in adults. They exhibit varying degrees of malignancy, encompassing Grade I to Grade 

IV, as classified by World Health Organization [2,3]. Grades I and II are typically deemed benign or 

low-grade (LGG), while Grades III and IV are classified as malignant or high-grade (HGG) [4]. Grade 

I tumors grow slowly and are sometimes entirely resectable with surgery, but Grade IV tumors are 

aggressive, rapidly growing, and challenging to treat. The most frequent primary tumors were 

astrocytomas (38.7%), with HGGs (59.5%) making up the majority [4]. Despite recent advancements 

in therapeutic and diagnostic techniques for malignant gliomas, the median survival for patients with 

Grade III is less than five years, and for those diagnosed with Grade IV, it stands at a mere 15 

months [5]. Table 1 presents various glioma grades categorized by their malignancy and level of 

aggressiveness. Neuroimaging data, particularly Magnetic Resonance Imaging (MRI) sequences such 

as T1C, T1W, T2W, and FLAIR (Fluid-Attenuated Inversion Recovery), offer precious insights into 

the size, shape, location, and metabolic activity of brain tumors [6]. These data serve as a crucial 

foundation for clinicians to assess the tumor's condition both before and after therapeutic interventions. 

The wealth of information contained in these images can be harnessed to distinguish between various 

brain tissues, facilitating the discrimination between tumor and normal [7–9]. 

Efficient management of gliomas necessitates two fundamental steps: the precise segmentation 

of the tumor to locate and characterize its various components and the accurate classification of the 

tumor to determine its grade. However, the conventional approach to these tasks involves manual 

intervention by physicians, which is not only laborious and time-consuming but also susceptible to 

inter-observer variability among specialists, thus potentially impeding the efficacy of treatment [10,11]. 

Table 1. Glioma grades and their characteristics. 

Grades Description 

I Slow growing tumor, 

Rarely spread to nearby tissues, 

Change in the structure of the cells is minimal, 

Relatively benign, 

Example: pilocytic astrocytoma. 

II Changes in the appearance of the tumor cells start to become evident, 

May spread into nearby tissues, 

Example: astrocytoma, oligodendroglioma and ependymoma. 

III The cells divide at a relatively high speed, 

Tumor cells infiltrate the neighbouring structures, 

High rate of hypercellularity, 

Example: anaplastic oligodendroglioma, anaplastic astrocytoma, and anaplastic 

ependymoma. 

IV Tumor cells grows abnormally fast, 

Very High rate of hypercellularity, 

Necrosis or cell death begins to start in the tumor, 

Example: glioblastoma. 
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Considering these challenges, the quest for automated diagnosis systems has gained momentum, 

aiming to equip clinicians with timely and precise morphological information about different tumor 

regions. This information is pivotal for facilitating prompt and accurate tumor diagnosis and treatment [11]. 

Recent decades have witnessed significant strides in medical image analysis, with machine learning 

(ML) emerging as a promising avenue. Traditional ML approaches, while effective, often entail the 

prerequisite of prior knowledge and manual feature extraction, which can be time-consuming [12]. In 

contrast, deep learning (DL), a more recent subfield of ML, has exhibited notable advantages in 

addressing the limitations of traditional ML based models. DL models can automatically extract 

intricate high-level features and seamlessly integrate feature extraction with 

classification/segmentation, streamlining the overall process [13,14]. Among the various DL 

approaches, Convolutional Neural Network (CNN) architectures have demonstrated superior 

performance, especially in the detection and analysis of neurological diseases [15]. To substantiate the 

viability of CNNs, they autonomously generate robust discriminative features through a hierarchical 

learning methodology. In the initial layers, feature maps extract fundamental low-level characteristics, 

while in subsequent layers, they capture more sophisticated, domain-specific attributes. The feature 

maps in the early layers encode basic structural elements such as edges, shapes, and textures, while the 

higher layers amalgamate these lower-level feature maps to construct abstract representations that 

encompass both local and global information. As a result, DL transforms manual feature extraction 

into a self-learning process. CNNs have been in existence for many years, but their popularity surged 

when Krizhevsky et al. [16] pioneered the use of DL with AlexNet. Simonyan and Zisserman [17] later 

introduced a similarly deep CNN, VGG Net, excelling in localization and classification tasks. The 

success of DL, particularly CNNs, can be attributed to advancements in computational technologies, 

such as powerful GPUs, and the evolution of learning algorithms. Some of the DL-based research 

efforts in glioma grading are discussed below. 

Hao et al. [18] introduced a fully automated brain tumor detection and segmentation approach 

based on U-Net deep convolution networks, achieving efficient and robust segmentation results 

compared to manual ground truth delineation. Khawaldeh et al. [19] proposed the use of the AlexNet 

DL algorithm for identifying and grading abnormal brain MRIs; however, this method exhibited 

limitations in handling small datasets. Anaraki et al. [20] introduced gaussian assumption to streamline 

the selection of deep neural network architectures, eliminating the need for trial and error. They also 

employed an ensemble algorithm to reduce prediction errors, achieving an impressive 90.9% accuracy 

in classifying gliomas into three grades. Mzoughi et al. [21] leveraged volumetric T1-Gado MRI 

sequences to develop an automatic deep multi-scale 3D CNN model for glioma classification, 

achieving an overall accuracy of 96.49%.Zhuge et al. [22] utilized a modified U-Net model for 

segmentation and a 3D volumetric CNNs (3DConvNet) classification model to grade gliomas, 

attaining an accuracy of 97.1%.Gutta et al. [23] constructed a DCNN model for glioma classification 

and demonstrated its superiority over traditional ML models with an accuracy of 87%.Lu et al. [24] 

employed the ResNet model for glioma classification and incorporated pyramid dilated convolution to 

enhance performance; however, this method was limited to 2D MRI interpretation and required manual 

labeling of the training set. In a study by Naser et al. [25], a multi-task DL-based method was proposed, 

utilizing the U-Net architecture for segmentation and VGG-16 for classification. The reported dice 

score and tumor detection accuracy were 0.84 and 0.92, respectively. Decuyper et al. [26] trained a 

pipeline consisting of U-Net for segmentation and ResNet for classification, achieving an accuracy 

rate of 90% and a sensitivity rate of approximately 93.48%. Furthermore, Tandel et al. [27] developed 
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four therapeutically relevant datasets and employed five DL-based models (AlexNet, VGG-16, 

ResNet18, GoogleNet, and ResNet50) along with five ML-based models. They introduced the MajVot 

method to maximize classification performance and reported an improvement in average accuracy. In 

their subsequent work [28], they worked with five pre-trained CNNs, achieving a maximum accuracy 

of 99.06% through a majority voting technique. Nassar et al. [29] also used the concept of majority 

voting to the prediction outputs of five different CNN models (GoogleNet, AlexNet, SqueezeNet, 

ShuffleNet, and NasNet-Mobile) to get an accurate classification of brain tumors based on the T1c 

MRI dataset, which achieved an accuracy of 96.08%, 95.16%, 96.67%, 97.17% and 97.5% respectively. 

From the brief literature review, it could be concluded that TL and ensemble learning emerge as 

the two predominant research-driven and application-oriented subfields in the realm of glioma 

classification and grading methods using DL. TL [30] leverages pre-trained neural network models, 

fine-tuning them to adapt to the specific characteristics of glioma data, thus capitalizing on the 

knowledge gained from other domains. Ensemble learning [31], on the other hand, encompasses a 

range of techniques that combine the predictions of multiple models to improve the overall accuracy 

and robustness of the classification and grading processes. These two subfields represent the forefront 

of research efforts in the quest for more accurate and clinically relevant solutions in the field of glioma 

analysis. Apart from this, the major drawbacks in most of the reviewed approaches for glioma 

classification and grading are summarized as follows: 

• DL requires large, well-annotated datasets, which are often lacking in glioma research. 

• Ensuring models perform well on diverse patient data is an ongoing challenge. 

• Fine-tuning complex models demands substantial computational resources and expertise. 

• Lack of standardized pre-processing affects data quality. 

• Limited research has compared models with and without segmentation to evaluate the impact, 

and no studies provide clear statistical evidence for directly incorporating segmentation 

results into classification models. 

The motivation for this research stems from the pressing need for more accurate, automated, and 

efficient methods in glioma diagnosis and grading. The complexity of gliomas, with their varied shapes, 

sizes, and locations within the brain, demands advanced image analysis techniques for accurate 

delineation. While advanced medical imaging techniques like MRI scans have enhanced our ability to 

visualize and diagnose brain tumors, manual analysis remains time-consuming and susceptible to 

human error. DL and image processing offer the potential to automate this process, potentially 

improving diagnostic accuracy and treatment planning reliability. In recent years several studies have 

explored various techniques, achieving promising results in tumor segmentation, classification, and 

even survival prediction. Although previous research has explored both segmentation and 

classification individually, fewer studies have focused on integrating them for a more comprehensive 

approach. Our novel contribution addresses this gap by integrating customized segmentation and 

classification architectures. Specifically, we have tailored the U-Net model for segmentation and the 

VGG-16 model for classification to better suit our research objectives. Our research leverages the 

BraTS2018 dataset, a widely recognized benchmark in the field of neuroimaging [32-34], to ensure 

the reliability and relevance of our findings. The methodology begins with preprocessing steps, 

including data splitting and application of gamma correction for enhanced image detail, and 
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normalization to standardize pixel values. Rotation augmentation is implemented to improve the 

model's generalization ability. Segmentation is performed using U-Net, featuring a tailored encoder-

decoder, hybrid loss function and Leaky ReLU activation for improved gradient stability. For 

classification, we leverage fine-tuned VGG-16 model, incorporating strategic layer freezing for 

optimal performance. Both the segmentation and classification models undergo systematically tuned 

training, ensuring robust and accurate analysis throughout the study. While the novelty of our approach 

lies in the integration of these modified segmentation and classification architectures, this unique 

combination not only enables precise tumor localization but also provides a means to categorize 

gliomas into low-grade and high-grade groups, a critical factor in treatment planning. Leveraging this 

combined approach, our research aims to substantially contribute to ongoing efforts to improve glioma 

diagnosis and, consequently, enhance treatment outcomes by harnessing the capabilities of DL in 

medical imaging. 

The paper is structured as follows: Section 2 introduces the proposed methodology, Section 3 

showcases experimental results and analysis, Section 4 is dedicated to discussion and limitations, and 

finally, Section 5 concludes the research and provides future directions. 

2. Materials and methods 

2.1. Dataset 

The proposed scheme is evaluated on BRaTS 2018 dataset obtained from Multimodal Brain 

Tumor Segmentation Challenge 2018. This dataset comprises 285 cases, including 210 High-Grade 

Gliomas (HGGs) and 75 Low-Grade Gliomas (LGGs). The dataset has been split into training, 

validation, and test subsets, and within the validation subset, there are 66 glioma tumors of various 

grades. The training set was further divided into 80% for training and 20% for testing, resulting in a 

total of 228 training images. The images are provided in NIfTI (Neuroimaging Informatics Technology 

Initiative) format, covering four modalities: T1W, T1C, T2W, and FLAIR. All the images within this 

dataset share a uniform volume dimension of 240×240×155, and they have been subject to careful 

manual annotation conducted by expert neuro-radiologists. This annotation aimed to delineate four 

distinct intra-tumoral regions, which include the necrotic core, non-enhancing, edema, and enhancing 

tumor areas. The dataset encompasses diverse glioma types with varying shapes, sizes, and locations 

within the brain. Each MRI sequence captures unique brain features using different scales, unlike 

standard images confined to a 0-255 gray value range. This variability stems from heterogeneous origin 

of the dataset, with scans acquired from various MRI scanners across different institutions. To address 

this inconsistency and ensure efficient training and inference, we normalize the voxel intensities using 

Equation 3. The schematic representation depicting the procedural framework employed in our study 

is illustrated in Figure 1. 

2.2. Pre-processing 

In the data preprocessing phase, the BraTS2018 dataset was prepared to ensure its suitability for 

training and evaluating the DL models. All scans were saved in neuroimaging format (i.e. nii.gz), so 

the first step is to convert nii.gz to 3D NumPy array. The use of gamma correction [35] was applied to 

address variations in image illumination and enhance the visibility of subtle structures within the MR 
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images. Mathematically, this correction can be represented as follows: 

     𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐼𝑜𝑟𝑖𝑔𝑛𝑎𝑙
𝛾

 (1) 

where, γ is the correction factor. 

Gamma correction was applied to enhance MRI modalities, except for FLAIR images. Gamma 

values of 2.3, 2.5, and 3 were chosen for T1W, T1C, and T2W modalities, respectively, to improve 

segmentation performance. This modality-specific gamma correction tailors contrast enhancement to 

each MRI type thereby optimizing the visibility of different tissue types and pathological features 

unique to each modality. 

Additionally, data augmentation techniques, such as rotation, were employed to increase the 

diversity of the training data and improve the model's generalization ability [36]. Rotation 

augmentation helps the model become invariant to different orientations of gliomas within the images. 

This rotation operation can be expressed mathematically as: 

  𝐼𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼𝑜𝑟𝑖𝑔𝑛𝑎𝑙,𝜃) (2) 

where, θ represent the rotation angle. 

The value of θ ranging from 0 to 30 degrees are chosen randomly along one of the three 

dimensions of the 3D pictures to simulate variations in glioma orientation within the brain, ensuring 

that the model can handle tumors at different angles and positions. This range is chosen to introduce 

variability in the dataset without drastically altering the original image characteristics. Rotations within 

this range can simulate different patient orientations during MRI scans, making the model more robust 

to such variations in real-world scenarios. However, larger rotations might distort the anatomical 

structures in the images, leading to unrealistic scenarios and potentially misleading the model. 

 

Figure 1. A flowchart of the methodology used in this study. 

Furthermore, to ensure consistency in model input sizes and reduce computational complexity, 

the MRI images were cropped to a uniform size of 190×190×155 pixels. This size reduction was based 

on considerations of memory constraints and computational efficiency while still preserving relevant 
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anatomical information. Finally, data normalization was performed on each sequence of MRI images 

using the following equation: 

    𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼𝑜𝑟𝑖𝑔𝑛𝑎𝑙−𝜇

𝜎
 (3) 

where, μ is the mean intensity value within the image, and σ is the standard deviation of the 

intensities within the image slices. Each MRI sequence is individually normalized using its own mean 

and standard deviation, instead of using dataset-wide values. This approach aims to improve 

generalizability while addressing the diverse intensity ranges encountered in our dataset, potentially 

leading to better model performance compared to standard normalization process. This normalization 

ensures that the input data are cantered and scaled appropriately for the DL models [37]. 

2.3. Segmentation 

In this study, U-Net [38] is employed for glioma segmentation because of its exceptional 

architecture, featuring contracting and expansive pathways, which efficiently capture intricate 

anatomical structures and tumor boundaries in MR imaging data. Figure 2 illustrates the proposed 

model. Our network comprises five convolutional blocks, incorporated within both the encoder and 

decoder paths. These convolutional layers employ a 3x3 kernel size, facilitating the extraction of 

intricate spatial features while maintaining computational efficiency. A stride of 1 is consistently 

applied in both horizontal and vertical directions, ensuring meticulous convolutional operations across 

the input. Furthermore, a 2x2 maxpooling size is employed to down sample feature maps while 

retaining essential information. The activation function chosen is Leaky ReLU, for its capacity to 

mitigate the vanishing gradient problem [39]. For the final layer, the network adopts a softmax 

activation function, essential for pixel-wise classification in multi-class segmentation. Incorporating a 

dropout rate of 0.2 bolsters the network's robustness against overfitting while maintaining model 

expressiveness. The hybrid loss function employed in this study is defined by the following equation: 

 

Loss =  α ×  (Categorical Cross Entropy)  +  β × (1 −  J_tumor)           (4) 

 

Here, the weights α and β were set to 0.3 and 0.6, respectively, through a rigorous grid search 

process to find the optimal balance for our dataset. The α coefficient scales the contribution of the 

categorical cross entropy component, which is a standard choice for multi-class classification tasks 

[40]. However, it may not fully capture the desired segmentation quality, especially for imbalanced 

classes. To address this, we combine categorical cross entropy with jaccard index. Jaccard index 

measures the overlap between predicted and ground truth tumor regions, providing a good 

understanding of segmentation accuracy. The β coefficient is used to adjust the importance of the 

Jaccard similarity-based term, (1 − J_tumor), which is designed to encourage the model to focus on 

accurate segmentation of the tumor region. This loss function is a critical element of the network's 

training process, aiding in achieving the desired balance between classification accuracy and precise 

tumor region delineation. In terms of training, the network undergoes a learning rate of 0.01 and is 

trained for 8 epochs, the optimal settings established through iterative experimentation. For parameter 

optimization, the study employs the stochastic gradient descent (SGD) algorithm with a momentum of 
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0.99. The proposed model differs from the original U-Net by including a novel hybrid loss function, 

adopting Leaky ReLU activation to improve gradient stability, and implementing dropout 

regularization. 

2.4. Classification 

VGG-16 [17] is an established CNN architecture comprising a total of 16 layers organized into 

five convolutional blocks, with Leaky ReLU activation functions applied in each block. Following 

each block, max-pooling layers are applied, and the architecture is concluded with three fully 

connected layers, as illustrated in Figure 3. In pre-trained CNNs, the lower layers capture basic, general 

features, while the upper layers specialize in more intricate features. Consequently, we typically freeze 

the parameters of the earlier layers to maintain their focus on low-level features. In our current study, 

only the last three layers were kept trainable, primarily for classification purposes. For optimization, 

we utilized the SGD algorithm and employed categorical cross-entropy as the loss function [41]. 

Furthermore, we set specific hyperparameters, including a learning rate of 0.001, a batch size of 16, 

and ran training for 8 epochs The model's construction was executed using Keras, with TensorFlow 

serving as the backend framework. The novelty of our architecture, based on VGG-16, lies in its 

adaptation for glioma classification: transfer learning from a general domain to medical imaging, a 

customized output layer, strategic layer freezing, tailored hyperparameters, and the use of dropout 

for regularization. These adaptations enhance its suitability for the specific medical image 

classification task. 

 

 

Figure 2. U-Net architecture. 
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Figure 3. VGG-16 architecture. 

3. Results 

In this section, we present the results of glioma segmentation and classification using U-Net and 

VGG-16 models, followed by a comparative analysis with state-of-the-art methods. The proposed 

model, implemented using Python 3.7, TensorFlow 2.0, and Keras 2.3.1 frameworks, was evaluated 

on the BraTS 2018 dataset. Experiments were conducted on an Nvidia GeForce RTX 2080 Ti GPU 

with 11GB RAM. The initial preprocessing involved converting NIfTI images to 3D NumPy arrays 

and applying gamma correction, rotation augmentation, cropping, and normalization to enhance model 

robustness. For segmentation, we utilized a U-Net architecture featuring five convolutional blocks 

within both the encoder and decoder paths. Leaky ReLU activation, a hybrid loss function, and dropout 

regularization were incorporated to ensure accurate delineation of tumor regions. Classification 

leveraged a modified VGG-16 architecture with strategic layer freezing, tailored hyperparameters, and 

dropout. The final layers of the fine-tuned CNN models were adapted to accommodate the two tumor 

classes (LGG and HGG). Model optimization included a comprehensive grid search, optimizing key 

parameters like learning rate and dropout rate. Empirical observations revealed an inversely 

proportional relationship between learning rate/batch size and performance/training time. 

Consequently, smaller learning rates and batch sizes were chosen to improve performance. Model 

evaluation was conducted on the validation set using metrics: categorical cross entropy loss, jaccard 

index, and accuracy. Early stopping based on validation loss prevented overfitting, and robust 5-fold 

cross-validation ensured generalizability by continuously monitoring metrics within each fold. 

3.1. Performance Evaluation Metrics 

This study aims to determine the class of glioma tumors using MR images, which can determine 

whether a patient had LGG or HGG. Depending on the result discovered, output can be either positive 

or negative. The dice score [42] serves as a widely utilized validation metric for medical image 

segmentation, facilitating comparisons between automatic segmentation outcomes and ground truth, 

while the jaccard index offers another valuable measure for assessing the overlap and accuracy of 

segmentation results. Additionally, it assesses the reproducibility of segmentation. Accuracy, a key 

efficiency metric in the classification process, is employed when equal importance is assigned to both 

positive and negative classes. Recall measures the proportion of correctly predicted positive instances, 

while specificity identifies the percentage of accurately recognized true negatives [43]. Table 2 

presents the metrics used to evaluate the model's effectiveness. 
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Table 2. Performance metrics and functionalities [42,43]. 

 

*𝑇𝑝=True Positive, 𝑇𝑛= True Negative, 𝐹𝑝=False Positive, 𝐹𝑛=False Negative, 𝑇𝑎 =Ground Truth 

3.2. Glioma Segmentation with U-Net 

Our utilization of the U-Net model for glioma segmentation yields compelling results, 

underscoring its efficacy in precisely delineating glioma regions within MR images. Table 3 

summarizes glioma segmentation results using the U-Net model, showcasing high accuracy. The Dice 

Score values for whole tumor (WT), tumor core (TC) and enhanced tumor (ET) are 0.96, 0.92, and 

0.89, respectively. The jaccard index values are 0.92, 0.85, and 0.80, and Recall values are 0.89, 0.94, 

and 0.87, indicating robust segmentation performance across different glioma regions. These results 

exhibit a substantial alignment with the ground truth. 

Table 3. Glioma segmentation results with U-Net. 

Metrics WT TC ET 

Dice Score 

  

0.96 0.92 0.89 

Jaccard Index 

  

0.92 0.85 0.80 

Recall 

 

0.89 0.94 0.87 

3.3. Glioma Classification with VGG-16 

We further evaluate the performance of our model by classifying gliomas into LGGs and HGGs 

categories using the VGG-16 model. Classification results are presented in Table 4. These results offer 

valuable insights into the performance of our grading model on the BraTS 2018 dataset. The model 

Metrics Formula Functionality 

Accuracy 𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛 + 𝑇𝑛
 

Proportion of correct model classifications 

Specificity 𝑇𝑛

𝑇𝑛 + 𝐹𝑝
 

Proportion of correctly identified negative 

instances 

Recall 𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

Proportion of correctly identified positive 

instances 

Dice Score 
2|𝑇𝑝 ∩ 𝑇𝑎|

𝑇𝑝 + 𝑇𝑎
 

Measures overlap between predictions and 

ground truth 

Jaccard 

Index 
|𝑇𝑝 ∩ 𝑇𝑎|

|𝑇𝑝 ∪ 𝑇𝑎|
 

Measures similarity between predictions 

and ground truth 
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achieved an overall accuracy of 97.89%, indicating its ability to correctly classify glioma grades. All 

metrics exceeding 0.95 for both categories underscore the model's effectiveness in distinguishing 

between both grades. Figure 4(a) illustrates our model's ability to distinguish between LGG and HGG   

through a Receiver Operating Characteristic (ROC) curve. A higher curve and greater area under it 

indicate better classification accuracy. The comparison of the model's predictions against the actual 

ground truth labels for the BraTS 2018 dataset is illustrated in Figure 4(b). 

Table 4. Glioma classification results with VGG-16 on BraTS2018 dataset. 

 

Metrics LGG HGG 

Accuracy (%)    97.89  97.89 

Specificity (%)  97.44 98.24 

Recall (%) 98.24 96.77 

 

(a) 

 

 

(b) 

Figure 4. (a) ROC curve for the grading model with 5-fold cross validation. (b) Confusion 

matrix of BraTS 2018 based classification. 
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3.4. Comparison with State-of-the-Art 

Table 5 presents a comprehensive comparative study of glioma segmentation methods, referencing 

various approaches and evaluating their performance. It investigates diverse DL based architectures 

and MRI modalities., Our model demonstrates superior performance compared to established methods, 

achieving remarkable dice scores of 0.96, 0.92, and 0.89 for WT, TC, and ET, respectively. Figure 5(a) 

complements Table 5 by visually representing the dice scores, enabling an at-a-glance comparison of 

the segmentation approaches. Figure 5(b) presents a visual comparison of the segmentation result and 

ground truth from a validation set sample image. 

Table 5. Comparative study with state-of-the-art methods for glioma segmentation. 

Refere

nces 

Dataset Sample 

Size 

MRI 

Modalities 

Architectu

re 

Validation Performance (Dice 

Score) 

WT TC ET 

[44] BraTS 

2018 

LGG:75 

HGG:210 

T1W, 

T2W, 

T1Wc,  

FLAIR 

Deep Res-

Unet 

5-fold cross 0.95 0.93 0.90 

[45] BraTS 

2018 

LGG:75 

HGG:210 

T1W, 

T2W, 

T1Wc, 

FLAIR 

Attention 

U-Net 

5-fold cross 0.89 0.82 0.81 

[46] BraTS 

2020 

LGG:76 

HGG:293 

FLAIR nnUNet - 0.89 0.85 0.82 

[47] BraTS 

2018 

LGG:75 

HGG:210 

T1W, 

T2W, 

T1Wc, 

FLAIR 

7 layers 

CNN 

Random split 

sample 

0.88 0.84 0.71 

[48] BraTS 

2020 

LGG:76 

HGG:293 

T1W, 

T2W, 

T1Wc,  

FLAIR 

MAU-Net 5-fold cross 0.9185 0.8746 0.8350 

[49] BraTS 

2018 

LGG:75 

HGG:210 

T1W, 

T2W, 

T1Wc, 

FLAIR 

BU-Net - 0.901 0.837 0.788 

[50] BraTS 

2019 

LGG:76 

HGG:259 

T1W, 

T2W, 

T1Wc,  

FLAIR 

RAAGR2-

Net 

- 0.896 0.821 0.776 

Ours BraTS 

2018 

LGG:75 

HGG:210 

T1W, 

T2W, 

T1Wc, 

FLAIR 

Modified 

U-Net 

5-fold cross 0.96 0.92 0.89 
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                                      (a) 

 

 

(b) 

Figure 5. (a) Quantitative comparison of glioma segmentation methods, (b) Segmentation 

result for a sample image from validation set of BraTS 2018. 

 Table 6 provides a comprehensive comparative analysis of various glioma classification methods, 

shedding light on their performance across different datasets, MRI modalities, architectures, and 

validation techniques. Our proposed model achieves competitive accuracy in a 5-fold cross-validation 

on the BraTS 2018 dataset. To provide a visual representation of these accuracy comparisons among 

the models mentioned in the table, Figure 6 visually summarizes their performance. Table 7 provides 

a detailed comparison of different approaches, shedding light on their efficacy in improving the 

precision and accuracy of glioma grading by integrating DL based segmentation before grading. It 

highlights the potential benefits of integrating segmentation and classification, exemplified in the table, 

as they lead to enhanced precision and accuracy in grading which is crucial for guiding clinical 

decisions and improving patient care. 
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Table 6. Comparative study for glioma classification. 

 

Refe

renc

es 

Dataset Cla

ss 

Sample 

Size 

MRI 

Modalit

ies 

Architectu

re 

Validation Performance (%) 

Accur

acy 

Recall Specific

ity 

[19] TCIA 

 

3 LGG:41 

HGG:67 

HEALT

HY:22 

FLAIR 12layers 

ConvNet 

Random 

split sample 

91.16 

 

92.25 91.79 

[51] BraTS 

2017 

2 LGG:75 

HGG:21

0 

T1C SE-

ResNeXt-

MLT 

- 97.45 94.93 98.35 

[52] Tangdu 

Hospital of 

Fourth 

Militrary 

medical 

University 

2 LGG:52 

HGG: 

61 

T1C Fine-tuned 

GoogLeNet 

5-fold cross 96.8 - - 

[53] BratTS 

2020BratT

S 2020 

2 LGG 

:76 

HGG: 

293 

T1W 

T2W 

T1Wc  

FLAIR 

DenseNet1

21 

Monte 

Carlo 

97 97 97 

[54] BraTS 

2019 

2 LGG:75 

HGG:21

0 

T1W 

T2W 

T1Wc  

FLAIR 

T1-GD 

7 stacked 

pretrained 

CNN 

10-fold 98.06 98.06 98.67 

[55] BraTS 

2019 

2 LGG:76 

HGG:25

9 

T1W 

T2W 

T1Wc  

FLAIR 

EfficientNe

tB0 

Sample 

split in 

training and 

validation 

98.87 - - 

[15] Local 

Dataset 

2 LGG:50 

HGG: 

54 

 

 

T2W, 

FLAIR 

Custom 

CNN 

5-fold cross 97.1 98.0 96.3 

Ours BraTS 

2018 

2 LGG:75 

HGG:21

0 

T1W, 

T2W, 

T1Wc, 

FLAIR 

Modified 

Pre-trained 

VGG-16 

5-fold cross 97.89 97.50 97.84 
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Table 7. Comparative study for glioma grading integrating segmentation and classification. 

 

Refere

nces 

Dataset Sample 

Size 

MRI 

Modalit

ies 

Segmentat

ion 

Classifica

tion 

Segmentation 

Performance 

Classificat

ion 

Performa

nce 

Dice Score Accuracy 

(%) 
WT TC ET 

[56] BraTS 

2019 

LGG:2

59 

HGG: 

76 

T1W, 

T2W, 

T1Wc, 

FLAIR 

U-Net VGG-16 0.91 0.72 0.82 97.44 

[57] TCIA LGG:1

59 

GBM:1

63 

T2W Cluster 

CNN 

Fusion  

of 

ResNet/18

/50/101/15

2  

0.93 95.87 

[22] BraTS 

2018Br

aTS 

2018Br

aTS 

2018 

LGG:7

5 

HGG:2

10LGG

:75 

HGG:2

10 

T1W, 

T2W, 

T1Wc, 

FLAIR 

3D U-Net 3DConvN

et 

- 97.1 

[58] BraTS 

2020 

LGG:7

6 

HGG:2

93 

T1W, 

T2W, 

T1Wc, 

FLAIR 

ResNet-50 VGG-16 0.84 95 

[59] TCIA 

and 

BraTS 

2015 

- T2W U-Net and 

Handcrafte

d Features 

Extraction 

VGG-16 - 96 

Ours BraTS 

2018 

LGG:7

5 

HGG:2

10 

T1W, 

T2W, 

T1Wc, 

FLAIR 

Modified 

U-net 

Modified  

Pre-

trained  

VGG-16 

0.96 0.92 0.89 97.89 
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Figure 6. Comparison of our classification method with existing techniques on different datasets. 

 

4. Discussion 

In the existing body of literature, the interplay between segmentation and classification in the 

context of glioma analysis has been largely unexplored. Most studies have treated these as separate 

processes, focusing either on the segmentation of gliomas or on their classification into LGGs and 

HGGs. However, our approach addresses this gap by integrating segmentation and classification into 

a single, cohesive workflow. In this study, we explore the effectiveness of DCNNs using the tailored 

U-Net architecture for segmentation and the VGG-16 model for classification. Our primary aim is to 

simultaneously tackle glioma segmentation and classify gliomas into LGG and HGG categories using 

MRI data. To establish consistency and reliability in data pre-processing, we introduce a standardized 

methodology to ensures that our experiments are underpinned by a consistent pre-processing pipeline, 

ultimately enhancing data quality, and facilitating reproducibility. We strategically selected U-Net for 

segmentation and VGG-16 for classification, leveraging their complementary strengths. U-Net excels 

in capturing intricate anatomical structures and precise tumor boundaries, making it well-suited for 

detailed segmentation. Its unique architecture, incorporating skip connections, ensures the preservation 

of fine details crucial for accurate localization. The efficiency of U-Net in handling limited data and 

its end-to-end learning approach simplify the segmentation workflow. On the other hand, VGG-16, 

with its pre-trained layers, offers powerful feature extraction capabilities, enhancing computational 

efficiency through TL. It focuses on global patterns and class discrimination, making it ideal for 

classifying tumors into different subtypes based on overall characteristics. By combining U-Net's 

segmentation precision with VGG-16's feature extraction and classification abilities, we create a 

complementary workflow for comprehensive glioma analysis. This synergistic approach 

effectively addresses both the intricate details of tumor segmentation and the accurate 
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classification of glioma grades. 

Our U-Net-based glioma segmentation demonstrates exceptional precision, as indicated by dice 

score values of 0.96, 0.92, and 0.89 for WT, TC, and ET, as detailed in Table 3. These results underscore 

the accuracy and reliability of our model in delineating glioma regions within MRIs. The robust jaccard 

index further validates the accuracy of our model's spatial predictions compared to ground truth. A 

distinguishing aspect of our research lies in the integration of these customized segmentation and 

classification architectures. Our fine-tuned VGG-16 classification model achieves an overall accuracy 

of 97.89%, complemented by high specificity and recall values exceeding 0.95 for both LGGs and 

HGGs, as presented in Table 4. These results demonstrate proficiency of our model in differentiating 

between these clinically significant categories. 

To further emphasize the novelty and significance of our work, Table 5 provides a comprehensive 

comparative investigation into glioma segmentation methodologies, assessing a range of approaches, 

and evaluating the performance of the proposed model against state-of-the-art methods. Notably, most 

of these methods leverage U-Net as their foundation. This demonstrates the impact of U-Net, as its 

versatility has led to numerous modifications and extensions for diverse medical image segmentation 

tasks. Mahasin et al. [60] achieved 95% accuracy in head MRI tumor detection with both U-Net and 

UBNet, demonstrating its continued relevance. Similar successes span other modalities: Sateesh et al. [61] 

utilized super-resolution and federated TL for lung segmentation, while Ryu et al. [62] proposed SegR-

Net for retinal vessel segmentation. Further, Tiwari et al. [63] and Ashwini et al. [64] leveraged 

modifications like inception modules and improved training strategies. Beyond U-Net, alternative 

methodologies have demonstrated notable accuracy. For instance, Ranjbarzadeh et al. [65] introduced 

a segmentation framework that integrates feature selection via the improved chimp optimization 

algorithm alongside hyperparameter optimization. In another study Ranjbarzadeh et al. [66] proposed 

a cascaded CNN model for mammogram classification. This model used 11 encoded images derived 

from the original mammogram via a GLCM-based encoding algorithm, allowing extraction of 

important features for breast and tumor tissue boundary detection. Additionally, Kasgari et al. [67] 

achieved notable performance by leveraging zernike moments and LDNP encoding, surpassing several 

conventional CNN approaches. Many more similar studies highlight the great impact of DL in the 

medical field [68]. Notably, while many of these studies achieved promising brain tumor segmentation 

results on BraTS, none addressed the crucial aspect of treatment response assessment through 

combined segmentation and classification, which remains our key contribution. Table 6 delivers an in-

depth comparative analysis of glioma classification strategies, highlighting their performance across a 

diverse array of DL-based architectural frameworks. To facilitate benchmarking, we have compiled 

results from several relevant studies. Our proposed model achieved 97.89% accuracy, exceeding most 

reported results [51–53]. While Hamdaoui et al. [54] and Khazaee et al. [55] showed slightly higher 

accuracy, their studies focused solely on classification for treatment response assessment. Table 7 

presents a comparative study for glioma grading that integrates both segmentation and classification. 

This table emphasizes our innovative approach and its performance, showcasing our method's 

superiority with other state-of-the-art techniques. Most significantly, this approach delves into the 

underexplored area of the impact of segmentation on classification, effectively bridging a notable gap 

in the existing literature. Our research contributes empirical evidence regarding the influence of 

segmentation on classification, adding depth to the understanding of glioma diagnosis. 

Despite these achievements, it is crucial to acknowledge the limitations inherent in this study, 

particularly our reliance on data from a single institution. Future research endeavors should consider 
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the inclusion of data from multiple institutions to enable more extensive clinical trials and fortify the 

generalizability of our findings. Additionally, it is important to recognize that model performance may 

exhibit variations when applied to larger and more diverse datasets. Further refinement of the model 

architectures and hyperparameter tuning may lead to overall performance improvement, and these 

avenues represent potential future research directions.  

While CNNs have dominated medical image segmentation, transformers are emerging as powerful 

alternatives. Many recent works have leverage transformers for improved accuracy and efficiency in 

medical image segmentation. Zhu et al. [69] propose a swin transformer-based method for brain tumor 

segmentation, combining it with CNNs for edge detection and feature fusion. Li et al. [70] introduce 

X-Net, a novel architecture combining CNNs and transformers for enhanced local and global feature 

extraction. Xianyu et al. [71] present a cloud-based segmentation method using transformers and 

CNNs, overcoming limitations in local computing power. Yang et al. [72] propose a hybrid network 

integrating CNNs and transformers with a multi-dimensional statistical feature extraction module for 

improved texture feature extraction. Building upon these works, future studies could investigate novel 

architectures that leverage the strengths of transformers, potentially combining them with CNNs or 

other techniques for even more accurate and efficient segmentation. Such advancements hold immense 

potential for further refining glioma diagnosis. 

5. Conclusion 

In this research, we have presented a comprehensive approach for glioma segmentation and 

classification using DL models, specifically U-Net for segmentation and VGG-16 for classification. 

Our primary goal is to identify the most optimum channel for glioma grading and assess the 

significance of segmentation in classification models. Glioma segmentation with U-Net achieved high 

DS values of 0.96, 0.92 and 0.89 for WT, TC, and ET respectively, on the test dataset, demonstrating 

the model's ability to accurately outline tumor regions in MRI images. Furthermore, the glioma 

classification using the fine-tuned VGG-16 model resulted in an impressive accuracy of 97.89%, with 

consistently high specificity and recall values above 0.95 for both grades. These results highlight the 

model's ability to distinguish between different glioma grades. The synergy between U-Net and VGG-

16 adds a layer of depth to our methodology, resulting in improved accuracy in glioma grading. 

This study underscores the potential utility of DL-based glioma segmentation and classification in 

the field of medical imaging. By demonstrating the effectiveness of this integrated approach, our study 

provides empirical evidence supporting the hypothesis that accurate segmentation can indeed enhance 

the performance of subsequent classification. This finding not only validates our methodology but also 

opens new avenues for future research in this domain. We believe that our work will inspire further 

investigations into the synergistic effects of segmentation and classification, ultimately leading to more 

accurate and reliable glioma diagnosis. Future research should focus on integrating additional clinical 

data and developing real-time diagnostic tools for practical use in clinical settings. Additionally, 

broader clinical trials involving data from multiple institutions would enhance the generalizability of 

our findings. 
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